blob: d271d04adccd91fd99108f8c5253259801f74f37 [file] [log] [blame]
Matt Flemingbd353862009-08-14 01:58:43 +09001/*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
Matt Fleming97efbbd2009-08-16 15:56:35 +010014 * - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
Matt Flemingbd353862009-08-14 01:58:43 +090015 */
16
17/* #define DEBUG */
18#include <linux/kernel.h>
19#include <linux/io.h>
20#include <linux/list.h>
Matt Flemingfb3f3e72009-08-16 15:44:08 +010021#include <linux/mempool.h>
Matt Flemingbd353862009-08-14 01:58:43 +090022#include <linux/mm.h>
23#include <asm/dwarf.h>
24#include <asm/unwinder.h>
25#include <asm/sections.h>
Paul Mundt34974472009-08-14 02:10:59 +090026#include <asm/unaligned.h>
Matt Flemingbd353862009-08-14 01:58:43 +090027#include <asm/dwarf.h>
28#include <asm/stacktrace.h>
29
Matt Flemingfb3f3e72009-08-16 15:44:08 +010030/* Reserve enough memory for two stack frames */
31#define DWARF_FRAME_MIN_REQ 2
32/* ... with 4 registers per frame. */
33#define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
34
35static struct kmem_cache *dwarf_frame_cachep;
36static mempool_t *dwarf_frame_pool;
37
38static struct kmem_cache *dwarf_reg_cachep;
39static mempool_t *dwarf_reg_pool;
40
Matt Flemingbd353862009-08-14 01:58:43 +090041static LIST_HEAD(dwarf_cie_list);
Paul Mundt97f361e2009-08-17 05:07:38 +090042static DEFINE_SPINLOCK(dwarf_cie_lock);
Matt Flemingbd353862009-08-14 01:58:43 +090043
44static LIST_HEAD(dwarf_fde_list);
Paul Mundt97f361e2009-08-17 05:07:38 +090045static DEFINE_SPINLOCK(dwarf_fde_lock);
Matt Flemingbd353862009-08-14 01:58:43 +090046
47static struct dwarf_cie *cached_cie;
48
Matt Flemingfb3f3e72009-08-16 15:44:08 +010049/**
50 * dwarf_frame_alloc_reg - allocate memory for a DWARF register
51 * @frame: the DWARF frame whose list of registers we insert on
52 * @reg_num: the register number
Matt Flemingbd353862009-08-14 01:58:43 +090053 *
Matt Flemingfb3f3e72009-08-16 15:44:08 +010054 * Allocate space for, and initialise, a dwarf reg from
55 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of
56 * dwarf registers for @frame.
57 *
58 * Return the initialised DWARF reg.
Matt Flemingbd353862009-08-14 01:58:43 +090059 */
Matt Flemingfb3f3e72009-08-16 15:44:08 +010060static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
61 unsigned int reg_num)
Matt Flemingbd353862009-08-14 01:58:43 +090062{
Matt Flemingfb3f3e72009-08-16 15:44:08 +010063 struct dwarf_reg *reg;
Matt Flemingbd353862009-08-14 01:58:43 +090064
Matt Flemingfb3f3e72009-08-16 15:44:08 +010065 reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
66 if (!reg) {
67 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
Matt Flemingbd353862009-08-14 01:58:43 +090068 /*
69 * Let's just bomb hard here, we have no way to
70 * gracefully recover.
71 */
72 BUG();
73 }
74
Matt Flemingfb3f3e72009-08-16 15:44:08 +010075 reg->number = reg_num;
76 reg->addr = 0;
77 reg->flags = 0;
78
79 list_add(&reg->link, &frame->reg_list);
80
81 return reg;
82}
83
84static void dwarf_frame_free_regs(struct dwarf_frame *frame)
85{
86 struct dwarf_reg *reg, *n;
87
88 list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
89 list_del(&reg->link);
90 mempool_free(reg, dwarf_reg_pool);
91 }
92}
93
94/**
95 * dwarf_frame_reg - return a DWARF register
96 * @frame: the DWARF frame to search in for @reg_num
97 * @reg_num: the register number to search for
98 *
99 * Lookup and return the dwarf reg @reg_num for this frame. Return
100 * NULL if @reg_num is an register invalid number.
101 */
102static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
103 unsigned int reg_num)
104{
105 struct dwarf_reg *reg;
106
107 list_for_each_entry(reg, &frame->reg_list, link) {
108 if (reg->number == reg_num)
109 return reg;
Matt Flemingbd353862009-08-14 01:58:43 +0900110 }
111
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100112 return NULL;
Matt Flemingbd353862009-08-14 01:58:43 +0900113}
114
115/**
116 * dwarf_read_addr - read dwarf data
117 * @src: source address of data
118 * @dst: destination address to store the data to
119 *
120 * Read 'n' bytes from @src, where 'n' is the size of an address on
121 * the native machine. We return the number of bytes read, which
122 * should always be 'n'. We also have to be careful when reading
123 * from @src and writing to @dst, because they can be arbitrarily
124 * aligned. Return 'n' - the number of bytes read.
125 */
Paul Mundt34974472009-08-14 02:10:59 +0900126static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
Matt Flemingbd353862009-08-14 01:58:43 +0900127{
Paul Mundtbf43a162009-08-14 03:06:13 +0900128 u32 val = get_unaligned(src);
129 put_unaligned(val, dst);
Matt Flemingbd353862009-08-14 01:58:43 +0900130 return sizeof(unsigned long *);
131}
132
133/**
134 * dwarf_read_uleb128 - read unsigned LEB128 data
135 * @addr: the address where the ULEB128 data is stored
136 * @ret: address to store the result
137 *
138 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
139 * from Appendix C of the DWARF 3 spec. For information on the
140 * encodings refer to section "7.6 - Variable Length Data". Return
141 * the number of bytes read.
142 */
143static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
144{
145 unsigned int result;
146 unsigned char byte;
147 int shift, count;
148
149 result = 0;
150 shift = 0;
151 count = 0;
152
153 while (1) {
154 byte = __raw_readb(addr);
155 addr++;
156 count++;
157
158 result |= (byte & 0x7f) << shift;
159 shift += 7;
160
161 if (!(byte & 0x80))
162 break;
163 }
164
165 *ret = result;
166
167 return count;
168}
169
170/**
171 * dwarf_read_leb128 - read signed LEB128 data
172 * @addr: the address of the LEB128 encoded data
173 * @ret: address to store the result
174 *
175 * Decode signed LEB128 data. The algorithm is taken from Appendix
176 * C of the DWARF 3 spec. Return the number of bytes read.
177 */
178static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
179{
180 unsigned char byte;
181 int result, shift;
182 int num_bits;
183 int count;
184
185 result = 0;
186 shift = 0;
187 count = 0;
188
189 while (1) {
190 byte = __raw_readb(addr);
191 addr++;
192 result |= (byte & 0x7f) << shift;
193 shift += 7;
194 count++;
195
196 if (!(byte & 0x80))
197 break;
198 }
199
200 /* The number of bits in a signed integer. */
201 num_bits = 8 * sizeof(result);
202
203 if ((shift < num_bits) && (byte & 0x40))
204 result |= (-1 << shift);
205
206 *ret = result;
207
208 return count;
209}
210
211/**
212 * dwarf_read_encoded_value - return the decoded value at @addr
213 * @addr: the address of the encoded value
214 * @val: where to write the decoded value
215 * @encoding: the encoding with which we can decode @addr
216 *
217 * GCC emits encoded address in the .eh_frame FDE entries. Decode
218 * the value at @addr using @encoding. The decoded value is written
219 * to @val and the number of bytes read is returned.
220 */
221static int dwarf_read_encoded_value(char *addr, unsigned long *val,
222 char encoding)
223{
224 unsigned long decoded_addr = 0;
225 int count = 0;
226
227 switch (encoding & 0x70) {
228 case DW_EH_PE_absptr:
229 break;
230 case DW_EH_PE_pcrel:
231 decoded_addr = (unsigned long)addr;
232 break;
233 default:
234 pr_debug("encoding=0x%x\n", (encoding & 0x70));
235 BUG();
236 }
237
238 if ((encoding & 0x07) == 0x00)
239 encoding |= DW_EH_PE_udata4;
240
241 switch (encoding & 0x0f) {
242 case DW_EH_PE_sdata4:
243 case DW_EH_PE_udata4:
244 count += 4;
Paul Mundt34974472009-08-14 02:10:59 +0900245 decoded_addr += get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900246 __raw_writel(decoded_addr, val);
247 break;
248 default:
249 pr_debug("encoding=0x%x\n", encoding);
250 BUG();
251 }
252
253 return count;
254}
255
256/**
257 * dwarf_entry_len - return the length of an FDE or CIE
258 * @addr: the address of the entry
259 * @len: the length of the entry
260 *
261 * Read the initial_length field of the entry and store the size of
262 * the entry in @len. We return the number of bytes read. Return a
263 * count of 0 on error.
264 */
265static inline int dwarf_entry_len(char *addr, unsigned long *len)
266{
267 u32 initial_len;
268 int count;
269
Paul Mundt34974472009-08-14 02:10:59 +0900270 initial_len = get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900271 count = 4;
272
273 /*
274 * An initial length field value in the range DW_LEN_EXT_LO -
275 * DW_LEN_EXT_HI indicates an extension, and should not be
276 * interpreted as a length. The only extension that we currently
277 * understand is the use of DWARF64 addresses.
278 */
279 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
280 /*
281 * The 64-bit length field immediately follows the
282 * compulsory 32-bit length field.
283 */
284 if (initial_len == DW_EXT_DWARF64) {
Paul Mundt34974472009-08-14 02:10:59 +0900285 *len = get_unaligned((u64 *)addr + 4);
Matt Flemingbd353862009-08-14 01:58:43 +0900286 count = 12;
287 } else {
288 printk(KERN_WARNING "Unknown DWARF extension\n");
289 count = 0;
290 }
291 } else
292 *len = initial_len;
293
294 return count;
295}
296
297/**
298 * dwarf_lookup_cie - locate the cie
299 * @cie_ptr: pointer to help with lookup
300 */
301static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
302{
Paul Mundt97f361e2009-08-17 05:07:38 +0900303 struct dwarf_cie *cie;
Matt Flemingbd353862009-08-14 01:58:43 +0900304 unsigned long flags;
305
306 spin_lock_irqsave(&dwarf_cie_lock, flags);
307
308 /*
309 * We've cached the last CIE we looked up because chances are
310 * that the FDE wants this CIE.
311 */
312 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
313 cie = cached_cie;
314 goto out;
315 }
316
Paul Mundt97f361e2009-08-17 05:07:38 +0900317 list_for_each_entry(cie, &dwarf_cie_list, link) {
Matt Flemingbd353862009-08-14 01:58:43 +0900318 if (cie->cie_pointer == cie_ptr) {
319 cached_cie = cie;
320 break;
321 }
322 }
323
324 /* Couldn't find the entry in the list. */
325 if (&cie->link == &dwarf_cie_list)
326 cie = NULL;
327out:
328 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
329 return cie;
330}
331
332/**
333 * dwarf_lookup_fde - locate the FDE that covers pc
334 * @pc: the program counter
335 */
336struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
337{
Paul Mundt97f361e2009-08-17 05:07:38 +0900338 struct dwarf_fde *fde;
Matt Flemingbd353862009-08-14 01:58:43 +0900339 unsigned long flags;
Matt Flemingbd353862009-08-14 01:58:43 +0900340
341 spin_lock_irqsave(&dwarf_fde_lock, flags);
Paul Mundt97f361e2009-08-17 05:07:38 +0900342
343 list_for_each_entry(fde, &dwarf_fde_list, link) {
Matt Flemingbd353862009-08-14 01:58:43 +0900344 unsigned long start, end;
345
346 start = fde->initial_location;
347 end = fde->initial_location + fde->address_range;
348
349 if (pc >= start && pc < end)
350 break;
351 }
352
353 /* Couldn't find the entry in the list. */
354 if (&fde->link == &dwarf_fde_list)
355 fde = NULL;
356
357 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
358
359 return fde;
360}
361
362/**
363 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
364 * @insn_start: address of the first instruction
365 * @insn_end: address of the last instruction
366 * @cie: the CIE for this function
367 * @fde: the FDE for this function
368 * @frame: the instructions calculate the CFA for this frame
369 * @pc: the program counter of the address we're interested in
370 *
371 * Execute the Call Frame instruction sequence starting at
372 * @insn_start and ending at @insn_end. The instructions describe
373 * how to calculate the Canonical Frame Address of a stackframe.
374 * Store the results in @frame.
375 */
376static int dwarf_cfa_execute_insns(unsigned char *insn_start,
377 unsigned char *insn_end,
378 struct dwarf_cie *cie,
379 struct dwarf_fde *fde,
380 struct dwarf_frame *frame,
Matt Flemingb9558732009-08-15 23:10:57 +0100381 unsigned long pc)
Matt Flemingbd353862009-08-14 01:58:43 +0900382{
383 unsigned char insn;
384 unsigned char *current_insn;
385 unsigned int count, delta, reg, expr_len, offset;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100386 struct dwarf_reg *regp;
Matt Flemingbd353862009-08-14 01:58:43 +0900387
388 current_insn = insn_start;
389
Matt Flemingb9558732009-08-15 23:10:57 +0100390 while (current_insn < insn_end && frame->pc <= pc) {
Matt Flemingbd353862009-08-14 01:58:43 +0900391 insn = __raw_readb(current_insn++);
392
393 /*
394 * Firstly, handle the opcodes that embed their operands
395 * in the instructions.
396 */
397 switch (DW_CFA_opcode(insn)) {
398 case DW_CFA_advance_loc:
399 delta = DW_CFA_operand(insn);
400 delta *= cie->code_alignment_factor;
401 frame->pc += delta;
402 continue;
403 /* NOTREACHED */
404 case DW_CFA_offset:
405 reg = DW_CFA_operand(insn);
406 count = dwarf_read_uleb128(current_insn, &offset);
407 current_insn += count;
408 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100409 regp = dwarf_frame_alloc_reg(frame, reg);
410 regp->addr = offset;
411 regp->flags |= DWARF_REG_OFFSET;
Matt Flemingbd353862009-08-14 01:58:43 +0900412 continue;
413 /* NOTREACHED */
414 case DW_CFA_restore:
415 reg = DW_CFA_operand(insn);
416 continue;
417 /* NOTREACHED */
418 }
419
420 /*
421 * Secondly, handle the opcodes that don't embed their
422 * operands in the instruction.
423 */
424 switch (insn) {
425 case DW_CFA_nop:
426 continue;
427 case DW_CFA_advance_loc1:
428 delta = *current_insn++;
429 frame->pc += delta * cie->code_alignment_factor;
430 break;
431 case DW_CFA_advance_loc2:
Paul Mundt34974472009-08-14 02:10:59 +0900432 delta = get_unaligned((u16 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900433 current_insn += 2;
434 frame->pc += delta * cie->code_alignment_factor;
435 break;
436 case DW_CFA_advance_loc4:
Paul Mundt34974472009-08-14 02:10:59 +0900437 delta = get_unaligned((u32 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900438 current_insn += 4;
439 frame->pc += delta * cie->code_alignment_factor;
440 break;
441 case DW_CFA_offset_extended:
442 count = dwarf_read_uleb128(current_insn, &reg);
443 current_insn += count;
444 count = dwarf_read_uleb128(current_insn, &offset);
445 current_insn += count;
446 offset *= cie->data_alignment_factor;
447 break;
448 case DW_CFA_restore_extended:
449 count = dwarf_read_uleb128(current_insn, &reg);
450 current_insn += count;
451 break;
452 case DW_CFA_undefined:
453 count = dwarf_read_uleb128(current_insn, &reg);
454 current_insn += count;
455 break;
456 case DW_CFA_def_cfa:
457 count = dwarf_read_uleb128(current_insn,
458 &frame->cfa_register);
459 current_insn += count;
460 count = dwarf_read_uleb128(current_insn,
461 &frame->cfa_offset);
462 current_insn += count;
463
464 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
465 break;
466 case DW_CFA_def_cfa_register:
467 count = dwarf_read_uleb128(current_insn,
468 &frame->cfa_register);
469 current_insn += count;
470 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
471 break;
472 case DW_CFA_def_cfa_offset:
473 count = dwarf_read_uleb128(current_insn, &offset);
474 current_insn += count;
475 frame->cfa_offset = offset;
476 break;
477 case DW_CFA_def_cfa_expression:
478 count = dwarf_read_uleb128(current_insn, &expr_len);
479 current_insn += count;
480
481 frame->cfa_expr = current_insn;
482 frame->cfa_expr_len = expr_len;
483 current_insn += expr_len;
484
485 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
486 break;
487 case DW_CFA_offset_extended_sf:
488 count = dwarf_read_uleb128(current_insn, &reg);
489 current_insn += count;
490 count = dwarf_read_leb128(current_insn, &offset);
491 current_insn += count;
492 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100493 regp = dwarf_frame_alloc_reg(frame, reg);
494 regp->flags |= DWARF_REG_OFFSET;
495 regp->addr = offset;
Matt Flemingbd353862009-08-14 01:58:43 +0900496 break;
497 case DW_CFA_val_offset:
498 count = dwarf_read_uleb128(current_insn, &reg);
499 current_insn += count;
500 count = dwarf_read_leb128(current_insn, &offset);
501 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100502 regp = dwarf_frame_alloc_reg(frame, reg);
Matt Fleming97efbbd2009-08-16 15:56:35 +0100503 regp->flags |= DWARF_VAL_OFFSET;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100504 regp->addr = offset;
Matt Flemingbd353862009-08-14 01:58:43 +0900505 break;
Matt Flemingcd7246f2009-08-16 01:44:33 +0100506 case DW_CFA_GNU_args_size:
507 count = dwarf_read_uleb128(current_insn, &offset);
508 current_insn += count;
509 break;
510 case DW_CFA_GNU_negative_offset_extended:
511 count = dwarf_read_uleb128(current_insn, &reg);
512 current_insn += count;
513 count = dwarf_read_uleb128(current_insn, &offset);
514 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100515
516 regp = dwarf_frame_alloc_reg(frame, reg);
517 regp->flags |= DWARF_REG_OFFSET;
518 regp->addr = -offset;
Matt Flemingcd7246f2009-08-16 01:44:33 +0100519 break;
Matt Flemingbd353862009-08-14 01:58:43 +0900520 default:
521 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
522 break;
523 }
524 }
525
526 return 0;
527}
528
529/**
530 * dwarf_unwind_stack - recursively unwind the stack
531 * @pc: address of the function to unwind
532 * @prev: struct dwarf_frame of the previous stackframe on the callstack
533 *
534 * Return a struct dwarf_frame representing the most recent frame
535 * on the callstack. Each of the lower (older) stack frames are
536 * linked via the "prev" member.
537 */
538struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
539 struct dwarf_frame *prev)
540{
541 struct dwarf_frame *frame;
542 struct dwarf_cie *cie;
543 struct dwarf_fde *fde;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100544 struct dwarf_reg *reg;
Matt Flemingbd353862009-08-14 01:58:43 +0900545 unsigned long addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900546
547 /*
548 * If this is the first invocation of this recursive function we
549 * need get the contents of a physical register to get the CFA
550 * in order to begin the virtual unwinding of the stack.
551 *
Matt Flemingf8264662009-08-13 20:41:31 +0100552 * NOTE: the return address is guaranteed to be setup by the
553 * time this function makes its first function call.
Matt Flemingbd353862009-08-14 01:58:43 +0900554 */
Matt Flemingb9558732009-08-15 23:10:57 +0100555 if (!pc && !prev)
556 pc = (unsigned long)current_text_addr();
Matt Flemingbd353862009-08-14 01:58:43 +0900557
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100558 frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
559 if (!frame) {
560 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
561 BUG();
562 }
Matt Flemingbd353862009-08-14 01:58:43 +0900563
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100564 INIT_LIST_HEAD(&frame->reg_list);
565 frame->flags = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900566 frame->prev = prev;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100567 frame->return_addr = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900568
569 fde = dwarf_lookup_fde(pc);
570 if (!fde) {
571 /*
572 * This is our normal exit path - the one that stops the
573 * recursion. There's two reasons why we might exit
574 * here,
575 *
576 * a) pc has no asscociated DWARF frame info and so
577 * we don't know how to unwind this frame. This is
578 * usually the case when we're trying to unwind a
579 * frame that was called from some assembly code
580 * that has no DWARF info, e.g. syscalls.
581 *
582 * b) the DEBUG info for pc is bogus. There's
583 * really no way to distinguish this case from the
584 * case above, which sucks because we could print a
585 * warning here.
586 */
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100587 goto bail;
Matt Flemingbd353862009-08-14 01:58:43 +0900588 }
589
590 cie = dwarf_lookup_cie(fde->cie_pointer);
591
592 frame->pc = fde->initial_location;
593
594 /* CIE initial instructions */
595 dwarf_cfa_execute_insns(cie->initial_instructions,
Matt Flemingf8264662009-08-13 20:41:31 +0100596 cie->instructions_end, cie, fde,
Matt Flemingb9558732009-08-15 23:10:57 +0100597 frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900598
599 /* FDE instructions */
600 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
Matt Flemingb9558732009-08-15 23:10:57 +0100601 fde, frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900602
603 /* Calculate the CFA */
604 switch (frame->flags) {
605 case DWARF_FRAME_CFA_REG_OFFSET:
606 if (prev) {
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100607 reg = dwarf_frame_reg(prev, frame->cfa_register);
608 BUG_ON(!reg);
Matt Flemingbd353862009-08-14 01:58:43 +0900609
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100610 addr = prev->cfa + reg->addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900611 frame->cfa = __raw_readl(addr);
612
613 } else {
614 /*
615 * Again, this is the first invocation of this
616 * recurisve function. We need to physically
617 * read the contents of a register in order to
618 * get the Canonical Frame Address for this
619 * function.
620 */
621 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
622 }
623
624 frame->cfa += frame->cfa_offset;
625 break;
626 default:
627 BUG();
628 }
629
630 /* If we haven't seen the return address reg, we're screwed. */
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100631 reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
632 BUG_ON(!reg);
Matt Flemingbd353862009-08-14 01:58:43 +0900633
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100634 addr = frame->cfa + reg->addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900635 frame->return_addr = __raw_readl(addr);
636
Matt Flemingbd353862009-08-14 01:58:43 +0900637 return frame;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100638
639bail:
640 dwarf_frame_free_regs(frame);
641 mempool_free(frame, dwarf_frame_pool);
642 return NULL;
Matt Flemingbd353862009-08-14 01:58:43 +0900643}
644
645static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
646 unsigned char *end)
647{
648 struct dwarf_cie *cie;
649 unsigned long flags;
650 int count;
651
652 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
653 if (!cie)
654 return -ENOMEM;
655
656 cie->length = len;
657
658 /*
659 * Record the offset into the .eh_frame section
660 * for this CIE. It allows this CIE to be
661 * quickly and easily looked up from the
662 * corresponding FDE.
663 */
664 cie->cie_pointer = (unsigned long)entry;
665
666 cie->version = *(char *)p++;
667 BUG_ON(cie->version != 1);
668
669 cie->augmentation = p;
670 p += strlen(cie->augmentation) + 1;
671
672 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
673 p += count;
674
675 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
676 p += count;
677
678 /*
679 * Which column in the rule table contains the
680 * return address?
681 */
682 if (cie->version == 1) {
683 cie->return_address_reg = __raw_readb(p);
684 p++;
685 } else {
686 count = dwarf_read_uleb128(p, &cie->return_address_reg);
687 p += count;
688 }
689
690 if (cie->augmentation[0] == 'z') {
691 unsigned int length, count;
692 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
693
694 count = dwarf_read_uleb128(p, &length);
695 p += count;
696
697 BUG_ON((unsigned char *)p > end);
698
699 cie->initial_instructions = p + length;
700 cie->augmentation++;
701 }
702
703 while (*cie->augmentation) {
704 /*
705 * "L" indicates a byte showing how the
706 * LSDA pointer is encoded. Skip it.
707 */
708 if (*cie->augmentation == 'L') {
709 p++;
710 cie->augmentation++;
711 } else if (*cie->augmentation == 'R') {
712 /*
713 * "R" indicates a byte showing
714 * how FDE addresses are
715 * encoded.
716 */
717 cie->encoding = *(char *)p++;
718 cie->augmentation++;
719 } else if (*cie->augmentation == 'P') {
720 /*
721 * "R" indicates a personality
722 * routine in the CIE
723 * augmentation.
724 */
725 BUG();
726 } else if (*cie->augmentation == 'S') {
727 BUG();
728 } else {
729 /*
730 * Unknown augmentation. Assume
731 * 'z' augmentation.
732 */
733 p = cie->initial_instructions;
734 BUG_ON(!p);
735 break;
736 }
737 }
738
739 cie->initial_instructions = p;
740 cie->instructions_end = end;
741
742 /* Add to list */
743 spin_lock_irqsave(&dwarf_cie_lock, flags);
744 list_add_tail(&cie->link, &dwarf_cie_list);
745 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
746
747 return 0;
748}
749
750static int dwarf_parse_fde(void *entry, u32 entry_type,
751 void *start, unsigned long len)
752{
753 struct dwarf_fde *fde;
754 struct dwarf_cie *cie;
755 unsigned long flags;
756 int count;
757 void *p = start;
758
759 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
760 if (!fde)
761 return -ENOMEM;
762
763 fde->length = len;
764
765 /*
766 * In a .eh_frame section the CIE pointer is the
767 * delta between the address within the FDE
768 */
769 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
770
771 cie = dwarf_lookup_cie(fde->cie_pointer);
772 fde->cie = cie;
773
774 if (cie->encoding)
775 count = dwarf_read_encoded_value(p, &fde->initial_location,
776 cie->encoding);
777 else
778 count = dwarf_read_addr(p, &fde->initial_location);
779
780 p += count;
781
782 if (cie->encoding)
783 count = dwarf_read_encoded_value(p, &fde->address_range,
784 cie->encoding & 0x0f);
785 else
786 count = dwarf_read_addr(p, &fde->address_range);
787
788 p += count;
789
790 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
791 unsigned int length;
792 count = dwarf_read_uleb128(p, &length);
793 p += count + length;
794 }
795
796 /* Call frame instructions. */
797 fde->instructions = p;
798 fde->end = start + len;
799
800 /* Add to list. */
801 spin_lock_irqsave(&dwarf_fde_lock, flags);
802 list_add_tail(&fde->link, &dwarf_fde_list);
803 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
804
805 return 0;
806}
807
808static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
809 unsigned long *sp,
810 const struct stacktrace_ops *ops, void *data)
811{
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100812 struct dwarf_frame *frame, *_frame;
813 unsigned long return_addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900814
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100815 _frame = NULL;
816 return_addr = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900817
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100818 while (1) {
819 frame = dwarf_unwind_stack(return_addr, _frame);
820
821 if (_frame) {
822 dwarf_frame_free_regs(_frame);
823 mempool_free(_frame, dwarf_frame_pool);
824 }
825
826 _frame = frame;
827
828 if (!frame || !frame->return_addr)
829 break;
830
831 return_addr = frame->return_addr;
832 ops->address(data, return_addr, 1);
Matt Flemingbd353862009-08-14 01:58:43 +0900833 }
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100834
Matt Flemingbd353862009-08-14 01:58:43 +0900835}
836
837static struct unwinder dwarf_unwinder = {
838 .name = "dwarf-unwinder",
839 .dump = dwarf_unwinder_dump,
840 .rating = 150,
841};
842
843static void dwarf_unwinder_cleanup(void)
844{
Paul Mundt97f361e2009-08-17 05:07:38 +0900845 struct dwarf_cie *cie;
846 struct dwarf_fde *fde;
Matt Flemingbd353862009-08-14 01:58:43 +0900847
848 /*
849 * Deallocate all the memory allocated for the DWARF unwinder.
850 * Traverse all the FDE/CIE lists and remove and free all the
851 * memory associated with those data structures.
852 */
Paul Mundt97f361e2009-08-17 05:07:38 +0900853 list_for_each_entry(cie, &dwarf_cie_list, link)
Matt Flemingbd353862009-08-14 01:58:43 +0900854 kfree(cie);
Matt Flemingbd353862009-08-14 01:58:43 +0900855
Paul Mundt97f361e2009-08-17 05:07:38 +0900856 list_for_each_entry(fde, &dwarf_fde_list, link)
Matt Flemingbd353862009-08-14 01:58:43 +0900857 kfree(fde);
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100858
859 kmem_cache_destroy(dwarf_reg_cachep);
860 kmem_cache_destroy(dwarf_frame_cachep);
Matt Flemingbd353862009-08-14 01:58:43 +0900861}
862
863/**
864 * dwarf_unwinder_init - initialise the dwarf unwinder
865 *
866 * Build the data structures describing the .dwarf_frame section to
867 * make it easier to lookup CIE and FDE entries. Because the
868 * .eh_frame section is packed as tightly as possible it is not
869 * easy to lookup the FDE for a given PC, so we build a list of FDE
870 * and CIE entries that make it easier.
871 */
Paul Mundt97f361e2009-08-17 05:07:38 +0900872static int __init dwarf_unwinder_init(void)
Matt Flemingbd353862009-08-14 01:58:43 +0900873{
874 u32 entry_type;
875 void *p, *entry;
876 int count, err;
877 unsigned long len;
878 unsigned int c_entries, f_entries;
879 unsigned char *end;
880 INIT_LIST_HEAD(&dwarf_cie_list);
881 INIT_LIST_HEAD(&dwarf_fde_list);
882
883 c_entries = 0;
884 f_entries = 0;
885 entry = &__start_eh_frame;
886
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100887 dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
888 sizeof(struct dwarf_frame), 0, SLAB_PANIC, NULL);
889 dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
890 sizeof(struct dwarf_reg), 0, SLAB_PANIC, NULL);
891
892 dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
893 mempool_alloc_slab,
894 mempool_free_slab,
895 dwarf_frame_cachep);
896
897 dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
898 mempool_alloc_slab,
899 mempool_free_slab,
900 dwarf_reg_cachep);
901
Matt Flemingbd353862009-08-14 01:58:43 +0900902 while ((char *)entry < __stop_eh_frame) {
903 p = entry;
904
905 count = dwarf_entry_len(p, &len);
906 if (count == 0) {
907 /*
908 * We read a bogus length field value. There is
909 * nothing we can do here apart from disabling
910 * the DWARF unwinder. We can't even skip this
911 * entry and move to the next one because 'len'
912 * tells us where our next entry is.
913 */
914 goto out;
915 } else
916 p += count;
917
918 /* initial length does not include itself */
919 end = p + len;
920
Paul Mundt34974472009-08-14 02:10:59 +0900921 entry_type = get_unaligned((u32 *)p);
Matt Flemingbd353862009-08-14 01:58:43 +0900922 p += 4;
923
924 if (entry_type == DW_EH_FRAME_CIE) {
925 err = dwarf_parse_cie(entry, p, len, end);
926 if (err < 0)
927 goto out;
928 else
929 c_entries++;
930 } else {
931 err = dwarf_parse_fde(entry, entry_type, p, len);
932 if (err < 0)
933 goto out;
934 else
935 f_entries++;
936 }
937
938 entry = (char *)entry + len + 4;
939 }
940
941 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
942 c_entries, f_entries);
943
944 err = unwinder_register(&dwarf_unwinder);
945 if (err)
946 goto out;
947
Paul Mundt97f361e2009-08-17 05:07:38 +0900948 return 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900949
950out:
951 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
952 dwarf_unwinder_cleanup();
Paul Mundt97f361e2009-08-17 05:07:38 +0900953 return -EINVAL;
Matt Flemingbd353862009-08-14 01:58:43 +0900954}
Paul Mundt97f361e2009-08-17 05:07:38 +0900955early_initcall(dwarf_unwinder_init);