blob: 1018053519e64c64df4d7eb845a865672cd80aba [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
Artem Bityutskiy1e517642008-07-14 19:08:37 +030033#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include "ubifs.h"
38
39/* Slab cache for UBIFS inodes */
40struct kmem_cache *ubifs_inode_slab;
41
42/* UBIFS TNC shrinker description */
43static struct shrinker ubifs_shrinker_info = {
44 .shrink = ubifs_shrinker,
45 .seeks = DEFAULT_SEEKS,
46};
47
48/**
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
52 *
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
57 */
58static int validate_inode(struct ubifs_info *c, const struct inode *inode)
59{
60 int err;
61 const struct ubifs_inode *ui = ubifs_inode(inode);
62
63 if (inode->i_size > c->max_inode_sz) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode->i_size);
66 return 1;
67 }
68
69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
70 ubifs_err("unknown compression type %d", ui->compr_type);
71 return 2;
72 }
73
74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
75 return 3;
76
77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
78 return 4;
79
80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
81 return 5;
82
83 if (!ubifs_compr_present(ui->compr_type)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode->i_ino,
86 ubifs_compr_name(ui->compr_type));
87 }
88
89 err = dbg_check_dir_size(c, inode);
90 return err;
91}
92
93struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
94{
95 int err;
96 union ubifs_key key;
97 struct ubifs_ino_node *ino;
98 struct ubifs_info *c = sb->s_fs_info;
99 struct inode *inode;
100 struct ubifs_inode *ui;
101
102 dbg_gen("inode %lu", inum);
103
104 inode = iget_locked(sb, inum);
105 if (!inode)
106 return ERR_PTR(-ENOMEM);
107 if (!(inode->i_state & I_NEW))
108 return inode;
109 ui = ubifs_inode(inode);
110
111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
112 if (!ino) {
113 err = -ENOMEM;
114 goto out;
115 }
116
117 ino_key_init(c, &key, inode->i_ino);
118
119 err = ubifs_tnc_lookup(c, &key, ino);
120 if (err)
121 goto out_ino;
122
123 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
124 inode->i_nlink = le32_to_cpu(ino->nlink);
125 inode->i_uid = le32_to_cpu(ino->uid);
126 inode->i_gid = le32_to_cpu(ino->gid);
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
135
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
144
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
150
Artem Bityutskiy0a883a02008-08-13 14:13:26 +0300151 /* Disable read-ahead */
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300152 inode->i_mapping->backing_dev_info = &c->bdi;
153
154 switch (inode->i_mode & S_IFMT) {
155 case S_IFREG:
156 inode->i_mapping->a_ops = &ubifs_file_address_operations;
157 inode->i_op = &ubifs_file_inode_operations;
158 inode->i_fop = &ubifs_file_operations;
159 if (ui->xattr) {
160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
161 if (!ui->data) {
162 err = -ENOMEM;
163 goto out_ino;
164 }
165 memcpy(ui->data, ino->data, ui->data_len);
166 ((char *)ui->data)[ui->data_len] = '\0';
167 } else if (ui->data_len != 0) {
168 err = 10;
169 goto out_invalid;
170 }
171 break;
172 case S_IFDIR:
173 inode->i_op = &ubifs_dir_inode_operations;
174 inode->i_fop = &ubifs_dir_operations;
175 if (ui->data_len != 0) {
176 err = 11;
177 goto out_invalid;
178 }
179 break;
180 case S_IFLNK:
181 inode->i_op = &ubifs_symlink_inode_operations;
182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 err = 12;
184 goto out_invalid;
185 }
186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
187 if (!ui->data) {
188 err = -ENOMEM;
189 goto out_ino;
190 }
191 memcpy(ui->data, ino->data, ui->data_len);
192 ((char *)ui->data)[ui->data_len] = '\0';
193 break;
194 case S_IFBLK:
195 case S_IFCHR:
196 {
197 dev_t rdev;
198 union ubifs_dev_desc *dev;
199
200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
201 if (!ui->data) {
202 err = -ENOMEM;
203 goto out_ino;
204 }
205
206 dev = (union ubifs_dev_desc *)ino->data;
207 if (ui->data_len == sizeof(dev->new))
208 rdev = new_decode_dev(le32_to_cpu(dev->new));
209 else if (ui->data_len == sizeof(dev->huge))
210 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
211 else {
212 err = 13;
213 goto out_invalid;
214 }
215 memcpy(ui->data, ino->data, ui->data_len);
216 inode->i_op = &ubifs_file_inode_operations;
217 init_special_inode(inode, inode->i_mode, rdev);
218 break;
219 }
220 case S_IFSOCK:
221 case S_IFIFO:
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, 0);
224 if (ui->data_len != 0) {
225 err = 14;
226 goto out_invalid;
227 }
228 break;
229 default:
230 err = 15;
231 goto out_invalid;
232 }
233
234 kfree(ino);
235 ubifs_set_inode_flags(inode);
236 unlock_new_inode(inode);
237 return inode;
238
239out_invalid:
240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
241 dbg_dump_node(c, ino);
242 dbg_dump_inode(c, inode);
243 err = -EINVAL;
244out_ino:
245 kfree(ino);
246out:
247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
248 iget_failed(inode);
249 return ERR_PTR(err);
250}
251
252static struct inode *ubifs_alloc_inode(struct super_block *sb)
253{
254 struct ubifs_inode *ui;
255
256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 if (!ui)
258 return NULL;
259
260 memset((void *)ui + sizeof(struct inode), 0,
261 sizeof(struct ubifs_inode) - sizeof(struct inode));
262 mutex_init(&ui->ui_mutex);
263 spin_lock_init(&ui->ui_lock);
264 return &ui->vfs_inode;
265};
266
267static void ubifs_destroy_inode(struct inode *inode)
268{
269 struct ubifs_inode *ui = ubifs_inode(inode);
270
271 kfree(ui->data);
272 kmem_cache_free(ubifs_inode_slab, inode);
273}
274
275/*
276 * Note, Linux write-back code calls this without 'i_mutex'.
277 */
278static int ubifs_write_inode(struct inode *inode, int wait)
279{
Artem Bityutskiyfbfa6c82008-07-22 11:52:52 +0300280 int err = 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300281 struct ubifs_info *c = inode->i_sb->s_fs_info;
282 struct ubifs_inode *ui = ubifs_inode(inode);
283
284 ubifs_assert(!ui->xattr);
285 if (is_bad_inode(inode))
286 return 0;
287
288 mutex_lock(&ui->ui_mutex);
289 /*
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
294 * 'ubifs_link()'.
295 */
296 if (!ui->dirty) {
297 mutex_unlock(&ui->ui_mutex);
298 return 0;
299 }
300
Artem Bityutskiyfbfa6c82008-07-22 11:52:52 +0300301 /*
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
304 */
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 if (inode->i_nlink) {
Artem Bityutskiy1f286812008-07-22 12:06:13 +0300308 err = ubifs_jnl_write_inode(c, inode);
Artem Bityutskiyfbfa6c82008-07-22 11:52:52 +0300309 if (err)
310 ubifs_err("can't write inode %lu, error %d",
311 inode->i_ino, err);
312 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300313
314 ui->dirty = 0;
315 mutex_unlock(&ui->ui_mutex);
316 ubifs_release_dirty_inode_budget(c, ui);
317 return err;
318}
319
320static void ubifs_delete_inode(struct inode *inode)
321{
322 int err;
323 struct ubifs_info *c = inode->i_sb->s_fs_info;
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300324 struct ubifs_inode *ui = ubifs_inode(inode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300325
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300326 if (ui->xattr)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300327 /*
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
331 */
332 goto out;
333
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +0300334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300335 ubifs_assert(!atomic_read(&inode->i_count));
336 ubifs_assert(inode->i_nlink == 0);
337
338 truncate_inode_pages(&inode->i_data, 0);
339 if (is_bad_inode(inode))
340 goto out;
341
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300342 ui->ui_size = inode->i_size = 0;
Artem Bityutskiyde94eb52008-07-22 13:06:20 +0300343 err = ubifs_jnl_delete_inode(c, inode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300344 if (err)
345 /*
346 * Worst case we have a lost orphan inode wasting space, so a
Artem Bityutskiy0a883a02008-08-13 14:13:26 +0300347 * simple error message is OK here.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300348 */
Artem Bityutskiyde94eb52008-07-22 13:06:20 +0300349 ubifs_err("can't delete inode %lu, error %d",
350 inode->i_ino, err);
351
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300352out:
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300353 if (ui->dirty)
354 ubifs_release_dirty_inode_budget(c, ui);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300355 clear_inode(inode);
356}
357
358static void ubifs_dirty_inode(struct inode *inode)
359{
360 struct ubifs_inode *ui = ubifs_inode(inode);
361
362 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
363 if (!ui->dirty) {
364 ui->dirty = 1;
365 dbg_gen("inode %lu", inode->i_ino);
366 }
367}
368
369static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
370{
371 struct ubifs_info *c = dentry->d_sb->s_fs_info;
372 unsigned long long free;
373
374 free = ubifs_budg_get_free_space(c);
375 dbg_gen("free space %lld bytes (%lld blocks)",
376 free, free >> UBIFS_BLOCK_SHIFT);
377
378 buf->f_type = UBIFS_SUPER_MAGIC;
379 buf->f_bsize = UBIFS_BLOCK_SIZE;
380 buf->f_blocks = c->block_cnt;
381 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
382 if (free > c->report_rp_size)
383 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
384 else
385 buf->f_bavail = 0;
386 buf->f_files = 0;
387 buf->f_ffree = 0;
388 buf->f_namelen = UBIFS_MAX_NLEN;
389
390 return 0;
391}
392
393static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
394{
395 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
396
397 if (c->mount_opts.unmount_mode == 2)
398 seq_printf(s, ",fast_unmount");
399 else if (c->mount_opts.unmount_mode == 1)
400 seq_printf(s, ",norm_unmount");
401
402 return 0;
403}
404
405static int ubifs_sync_fs(struct super_block *sb, int wait)
406{
407 struct ubifs_info *c = sb->s_fs_info;
408 int i, ret = 0, err;
409
410 if (c->jheads)
411 for (i = 0; i < c->jhead_cnt; i++) {
412 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
413 if (err && !ret)
414 ret = err;
415 }
416 /*
417 * We ought to call sync for c->ubi but it does not have one. If it had
418 * it would in turn call mtd->sync, however mtd operations are
419 * synchronous anyway, so we don't lose any sleep here.
420 */
421 return ret;
422}
423
424/**
425 * init_constants_early - initialize UBIFS constants.
426 * @c: UBIFS file-system description object
427 *
428 * This function initialize UBIFS constants which do not need the superblock to
429 * be read. It also checks that the UBI volume satisfies basic UBIFS
430 * requirements. Returns zero in case of success and a negative error code in
431 * case of failure.
432 */
433static int init_constants_early(struct ubifs_info *c)
434{
435 if (c->vi.corrupted) {
436 ubifs_warn("UBI volume is corrupted - read-only mode");
437 c->ro_media = 1;
438 }
439
440 if (c->di.ro_mode) {
441 ubifs_msg("read-only UBI device");
442 c->ro_media = 1;
443 }
444
445 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
446 ubifs_msg("static UBI volume - read-only mode");
447 c->ro_media = 1;
448 }
449
450 c->leb_cnt = c->vi.size;
451 c->leb_size = c->vi.usable_leb_size;
452 c->half_leb_size = c->leb_size / 2;
453 c->min_io_size = c->di.min_io_size;
454 c->min_io_shift = fls(c->min_io_size) - 1;
455
456 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
457 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
458 c->leb_size, UBIFS_MIN_LEB_SZ);
459 return -EINVAL;
460 }
461
462 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
463 ubifs_err("too few LEBs (%d), min. is %d",
464 c->leb_cnt, UBIFS_MIN_LEB_CNT);
465 return -EINVAL;
466 }
467
468 if (!is_power_of_2(c->min_io_size)) {
469 ubifs_err("bad min. I/O size %d", c->min_io_size);
470 return -EINVAL;
471 }
472
473 /*
474 * UBIFS aligns all node to 8-byte boundary, so to make function in
475 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
476 * less than 8.
477 */
478 if (c->min_io_size < 8) {
479 c->min_io_size = 8;
480 c->min_io_shift = 3;
481 }
482
483 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
484 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
485
486 /*
487 * Initialize node length ranges which are mostly needed for node
488 * length validation.
489 */
490 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
491 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
492 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
493 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
494 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
495 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
496
497 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
498 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
499 c->ranges[UBIFS_ORPH_NODE].min_len =
500 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
501 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
502 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
503 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
504 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
505 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
506 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
507 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
508 /*
509 * Minimum indexing node size is amended later when superblock is
510 * read and the key length is known.
511 */
512 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
513 /*
514 * Maximum indexing node size is amended later when superblock is
515 * read and the fanout is known.
516 */
517 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
518
519 /*
520 * Initialize dead and dark LEB space watermarks.
521 *
522 * Dead space is the space which cannot be used. Its watermark is
523 * equivalent to min. I/O unit or minimum node size if it is greater
524 * then min. I/O unit.
525 *
526 * Dark space is the space which might be used, or might not, depending
527 * on which node should be written to the LEB. Its watermark is
528 * equivalent to maximum UBIFS node size.
529 */
530 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
531 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
532
533 return 0;
534}
535
536/**
537 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
538 * @c: UBIFS file-system description object
539 * @lnum: LEB the write-buffer was synchronized to
540 * @free: how many free bytes left in this LEB
541 * @pad: how many bytes were padded
542 *
543 * This is a callback function which is called by the I/O unit when the
544 * write-buffer is synchronized. We need this to correctly maintain space
545 * accounting in bud logical eraseblocks. This function returns zero in case of
546 * success and a negative error code in case of failure.
547 *
548 * This function actually belongs to the journal, but we keep it here because
549 * we want to keep it static.
550 */
551static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
552{
553 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
554}
555
556/*
557 * init_constants_late - initialize UBIFS constants.
558 * @c: UBIFS file-system description object
559 *
560 * This is a helper function which initializes various UBIFS constants after
561 * the superblock has been read. It also checks various UBIFS parameters and
562 * makes sure they are all right. Returns zero in case of success and a
563 * negative error code in case of failure.
564 */
565static int init_constants_late(struct ubifs_info *c)
566{
567 int tmp, err;
568 uint64_t tmp64;
569
570 c->main_bytes = (long long)c->main_lebs * c->leb_size;
571 c->max_znode_sz = sizeof(struct ubifs_znode) +
572 c->fanout * sizeof(struct ubifs_zbranch);
573
574 tmp = ubifs_idx_node_sz(c, 1);
575 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
576 c->min_idx_node_sz = ALIGN(tmp, 8);
577
578 tmp = ubifs_idx_node_sz(c, c->fanout);
579 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
580 c->max_idx_node_sz = ALIGN(tmp, 8);
581
582 /* Make sure LEB size is large enough to fit full commit */
583 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
584 tmp = ALIGN(tmp, c->min_io_size);
585 if (tmp > c->leb_size) {
586 dbg_err("too small LEB size %d, at least %d needed",
587 c->leb_size, tmp);
588 return -EINVAL;
589 }
590
591 /*
592 * Make sure that the log is large enough to fit reference nodes for
593 * all buds plus one reserved LEB.
594 */
595 tmp64 = c->max_bud_bytes;
596 tmp = do_div(tmp64, c->leb_size);
597 c->max_bud_cnt = tmp64 + !!tmp;
598 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
599 tmp /= c->leb_size;
600 tmp += 1;
601 if (c->log_lebs < tmp) {
602 dbg_err("too small log %d LEBs, required min. %d LEBs",
603 c->log_lebs, tmp);
604 return -EINVAL;
605 }
606
607 /*
608 * When budgeting we assume worst-case scenarios when the pages are not
609 * be compressed and direntries are of the maximum size.
610 *
611 * Note, data, which may be stored in inodes is budgeted separately, so
612 * it is not included into 'c->inode_budget'.
613 */
614 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
615 c->inode_budget = UBIFS_INO_NODE_SZ;
616 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
617
618 /*
619 * When the amount of flash space used by buds becomes
620 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
621 * The writers are unblocked when the commit is finished. To avoid
622 * writers to be blocked UBIFS initiates background commit in advance,
623 * when number of bud bytes becomes above the limit defined below.
624 */
625 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
626
627 /*
628 * Ensure minimum journal size. All the bytes in the journal heads are
629 * considered to be used, when calculating the current journal usage.
630 * Consequently, if the journal is too small, UBIFS will treat it as
631 * always full.
632 */
633 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
634 if (c->bg_bud_bytes < tmp64)
635 c->bg_bud_bytes = tmp64;
636 if (c->max_bud_bytes < tmp64 + c->leb_size)
637 c->max_bud_bytes = tmp64 + c->leb_size;
638
639 err = ubifs_calc_lpt_geom(c);
640 if (err)
641 return err;
642
643 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
644
645 /*
646 * Calculate total amount of FS blocks. This number is not used
647 * internally because it does not make much sense for UBIFS, but it is
648 * necessary to report something for the 'statfs()' call.
649 *
650 * Subtract the LEB reserved for GC and the LEB which is reserved for
651 * deletions.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300652 */
653 tmp64 = c->main_lebs - 2;
654 tmp64 *= (uint64_t)c->leb_size - c->dark_wm;
655 tmp64 = ubifs_reported_space(c, tmp64);
656 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
657
658 return 0;
659}
660
661/**
662 * take_gc_lnum - reserve GC LEB.
663 * @c: UBIFS file-system description object
664 *
665 * This function ensures that the LEB reserved for garbage collection is
666 * unmapped and is marked as "taken" in lprops. We also have to set free space
667 * to LEB size and dirty space to zero, because lprops may contain out-of-date
668 * information if the file-system was un-mounted before it has been committed.
669 * This function returns zero in case of success and a negative error code in
670 * case of failure.
671 */
672static int take_gc_lnum(struct ubifs_info *c)
673{
674 int err;
675
676 if (c->gc_lnum == -1) {
677 ubifs_err("no LEB for GC");
678 return -EINVAL;
679 }
680
681 err = ubifs_leb_unmap(c, c->gc_lnum);
682 if (err)
683 return err;
684
685 /* And we have to tell lprops that this LEB is taken */
686 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
687 LPROPS_TAKEN, 0, 0);
688 return err;
689}
690
691/**
692 * alloc_wbufs - allocate write-buffers.
693 * @c: UBIFS file-system description object
694 *
695 * This helper function allocates and initializes UBIFS write-buffers. Returns
696 * zero in case of success and %-ENOMEM in case of failure.
697 */
698static int alloc_wbufs(struct ubifs_info *c)
699{
700 int i, err;
701
702 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
703 GFP_KERNEL);
704 if (!c->jheads)
705 return -ENOMEM;
706
707 /* Initialize journal heads */
708 for (i = 0; i < c->jhead_cnt; i++) {
709 INIT_LIST_HEAD(&c->jheads[i].buds_list);
710 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
711 if (err)
712 return err;
713
714 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
715 c->jheads[i].wbuf.jhead = i;
716 }
717
718 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
719 /*
720 * Garbage Collector head likely contains long-term data and
721 * does not need to be synchronized by timer.
722 */
723 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
724 c->jheads[GCHD].wbuf.timeout = 0;
725
726 return 0;
727}
728
729/**
730 * free_wbufs - free write-buffers.
731 * @c: UBIFS file-system description object
732 */
733static void free_wbufs(struct ubifs_info *c)
734{
735 int i;
736
737 if (c->jheads) {
738 for (i = 0; i < c->jhead_cnt; i++) {
739 kfree(c->jheads[i].wbuf.buf);
740 kfree(c->jheads[i].wbuf.inodes);
741 }
742 kfree(c->jheads);
743 c->jheads = NULL;
744 }
745}
746
747/**
748 * free_orphans - free orphans.
749 * @c: UBIFS file-system description object
750 */
751static void free_orphans(struct ubifs_info *c)
752{
753 struct ubifs_orphan *orph;
754
755 while (c->orph_dnext) {
756 orph = c->orph_dnext;
757 c->orph_dnext = orph->dnext;
758 list_del(&orph->list);
759 kfree(orph);
760 }
761
762 while (!list_empty(&c->orph_list)) {
763 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
764 list_del(&orph->list);
765 kfree(orph);
766 dbg_err("orphan list not empty at unmount");
767 }
768
769 vfree(c->orph_buf);
770 c->orph_buf = NULL;
771}
772
773/**
774 * free_buds - free per-bud objects.
775 * @c: UBIFS file-system description object
776 */
777static void free_buds(struct ubifs_info *c)
778{
779 struct rb_node *this = c->buds.rb_node;
780 struct ubifs_bud *bud;
781
782 while (this) {
783 if (this->rb_left)
784 this = this->rb_left;
785 else if (this->rb_right)
786 this = this->rb_right;
787 else {
788 bud = rb_entry(this, struct ubifs_bud, rb);
789 this = rb_parent(this);
790 if (this) {
791 if (this->rb_left == &bud->rb)
792 this->rb_left = NULL;
793 else
794 this->rb_right = NULL;
795 }
796 kfree(bud);
797 }
798 }
799}
800
801/**
802 * check_volume_empty - check if the UBI volume is empty.
803 * @c: UBIFS file-system description object
804 *
805 * This function checks if the UBIFS volume is empty by looking if its LEBs are
806 * mapped or not. The result of checking is stored in the @c->empty variable.
807 * Returns zero in case of success and a negative error code in case of
808 * failure.
809 */
810static int check_volume_empty(struct ubifs_info *c)
811{
812 int lnum, err;
813
814 c->empty = 1;
815 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
816 err = ubi_is_mapped(c->ubi, lnum);
817 if (unlikely(err < 0))
818 return err;
819 if (err == 1) {
820 c->empty = 0;
821 break;
822 }
823
824 cond_resched();
825 }
826
827 return 0;
828}
829
830/*
831 * UBIFS mount options.
832 *
833 * Opt_fast_unmount: do not run a journal commit before un-mounting
834 * Opt_norm_unmount: run a journal commit before un-mounting
835 * Opt_err: just end of array marker
836 */
837enum {
838 Opt_fast_unmount,
839 Opt_norm_unmount,
840 Opt_err,
841};
842
843static match_table_t tokens = {
844 {Opt_fast_unmount, "fast_unmount"},
845 {Opt_norm_unmount, "norm_unmount"},
846 {Opt_err, NULL},
847};
848
849/**
850 * ubifs_parse_options - parse mount parameters.
851 * @c: UBIFS file-system description object
852 * @options: parameters to parse
853 * @is_remount: non-zero if this is FS re-mount
854 *
855 * This function parses UBIFS mount options and returns zero in case success
856 * and a negative error code in case of failure.
857 */
858static int ubifs_parse_options(struct ubifs_info *c, char *options,
859 int is_remount)
860{
861 char *p;
862 substring_t args[MAX_OPT_ARGS];
863
864 if (!options)
865 return 0;
866
867 while ((p = strsep(&options, ","))) {
868 int token;
869
870 if (!*p)
871 continue;
872
873 token = match_token(p, tokens, args);
874 switch (token) {
875 case Opt_fast_unmount:
876 c->mount_opts.unmount_mode = 2;
877 c->fast_unmount = 1;
878 break;
879 case Opt_norm_unmount:
880 c->mount_opts.unmount_mode = 1;
881 c->fast_unmount = 0;
882 break;
883 default:
884 ubifs_err("unrecognized mount option \"%s\" "
885 "or missing value", p);
886 return -EINVAL;
887 }
888 }
889
890 return 0;
891}
892
893/**
894 * destroy_journal - destroy journal data structures.
895 * @c: UBIFS file-system description object
896 *
897 * This function destroys journal data structures including those that may have
898 * been created by recovery functions.
899 */
900static void destroy_journal(struct ubifs_info *c)
901{
902 while (!list_empty(&c->unclean_leb_list)) {
903 struct ubifs_unclean_leb *ucleb;
904
905 ucleb = list_entry(c->unclean_leb_list.next,
906 struct ubifs_unclean_leb, list);
907 list_del(&ucleb->list);
908 kfree(ucleb);
909 }
910 while (!list_empty(&c->old_buds)) {
911 struct ubifs_bud *bud;
912
913 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
914 list_del(&bud->list);
915 kfree(bud);
916 }
917 ubifs_destroy_idx_gc(c);
918 ubifs_destroy_size_tree(c);
919 ubifs_tnc_close(c);
920 free_buds(c);
921}
922
923/**
924 * mount_ubifs - mount UBIFS file-system.
925 * @c: UBIFS file-system description object
926 *
927 * This function mounts UBIFS file system. Returns zero in case of success and
928 * a negative error code in case of failure.
929 *
930 * Note, the function does not de-allocate resources it it fails half way
931 * through, and the caller has to do this instead.
932 */
933static int mount_ubifs(struct ubifs_info *c)
934{
935 struct super_block *sb = c->vfs_sb;
936 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
937 long long x;
938 size_t sz;
939
940 err = init_constants_early(c);
941 if (err)
942 return err;
943
944#ifdef CONFIG_UBIFS_FS_DEBUG
945 c->dbg_buf = vmalloc(c->leb_size);
946 if (!c->dbg_buf)
947 return -ENOMEM;
948#endif
949
950 err = check_volume_empty(c);
951 if (err)
952 goto out_free;
953
954 if (c->empty && (mounted_read_only || c->ro_media)) {
955 /*
956 * This UBI volume is empty, and read-only, or the file system
957 * is mounted read-only - we cannot format it.
958 */
959 ubifs_err("can't format empty UBI volume: read-only %s",
960 c->ro_media ? "UBI volume" : "mount");
961 err = -EROFS;
962 goto out_free;
963 }
964
965 if (c->ro_media && !mounted_read_only) {
966 ubifs_err("cannot mount read-write - read-only media");
967 err = -EROFS;
968 goto out_free;
969 }
970
971 /*
972 * The requirement for the buffer is that it should fit indexing B-tree
973 * height amount of integers. We assume the height if the TNC tree will
974 * never exceed 64.
975 */
976 err = -ENOMEM;
977 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
978 if (!c->bottom_up_buf)
979 goto out_free;
980
981 c->sbuf = vmalloc(c->leb_size);
982 if (!c->sbuf)
983 goto out_free;
984
985 if (!mounted_read_only) {
986 c->ileb_buf = vmalloc(c->leb_size);
987 if (!c->ileb_buf)
988 goto out_free;
989 }
990
991 err = ubifs_read_superblock(c);
992 if (err)
993 goto out_free;
994
995 /*
996 * Make sure the compressor which is set as the default on in the
997 * superblock was actually compiled in.
998 */
999 if (!ubifs_compr_present(c->default_compr)) {
1000 ubifs_warn("'%s' compressor is set by superblock, but not "
1001 "compiled in", ubifs_compr_name(c->default_compr));
1002 c->default_compr = UBIFS_COMPR_NONE;
1003 }
1004
1005 dbg_failure_mode_registration(c);
1006
1007 err = init_constants_late(c);
1008 if (err)
1009 goto out_dereg;
1010
1011 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1012 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1013 c->cbuf = kmalloc(sz, GFP_NOFS);
1014 if (!c->cbuf) {
1015 err = -ENOMEM;
1016 goto out_dereg;
1017 }
1018
1019 if (!mounted_read_only) {
1020 err = alloc_wbufs(c);
1021 if (err)
1022 goto out_cbuf;
1023
1024 /* Create background thread */
1025 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num,
1026 c->vi.vol_id);
1027 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1028 if (!c->bgt)
1029 c->bgt = ERR_PTR(-EINVAL);
1030 if (IS_ERR(c->bgt)) {
1031 err = PTR_ERR(c->bgt);
1032 c->bgt = NULL;
1033 ubifs_err("cannot spawn \"%s\", error %d",
1034 c->bgt_name, err);
1035 goto out_wbufs;
1036 }
1037 wake_up_process(c->bgt);
1038 }
1039
1040 err = ubifs_read_master(c);
1041 if (err)
1042 goto out_master;
1043
1044 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1045 ubifs_msg("recovery needed");
1046 c->need_recovery = 1;
1047 if (!mounted_read_only) {
1048 err = ubifs_recover_inl_heads(c, c->sbuf);
1049 if (err)
1050 goto out_master;
1051 }
1052 } else if (!mounted_read_only) {
1053 /*
1054 * Set the "dirty" flag so that if we reboot uncleanly we
1055 * will notice this immediately on the next mount.
1056 */
1057 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1058 err = ubifs_write_master(c);
1059 if (err)
1060 goto out_master;
1061 }
1062
1063 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1064 if (err)
1065 goto out_lpt;
1066
1067 err = dbg_check_idx_size(c, c->old_idx_sz);
1068 if (err)
1069 goto out_lpt;
1070
1071 err = ubifs_replay_journal(c);
1072 if (err)
1073 goto out_journal;
1074
1075 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1076 if (err)
1077 goto out_orphans;
1078
1079 if (!mounted_read_only) {
1080 int lnum;
1081
1082 /* Check for enough free space */
1083 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1084 ubifs_err("insufficient available space");
1085 err = -EINVAL;
1086 goto out_orphans;
1087 }
1088
1089 /* Check for enough log space */
1090 lnum = c->lhead_lnum + 1;
1091 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1092 lnum = UBIFS_LOG_LNUM;
1093 if (lnum == c->ltail_lnum) {
1094 err = ubifs_consolidate_log(c);
1095 if (err)
1096 goto out_orphans;
1097 }
1098
1099 if (c->need_recovery) {
1100 err = ubifs_recover_size(c);
1101 if (err)
1102 goto out_orphans;
1103 err = ubifs_rcvry_gc_commit(c);
1104 } else
1105 err = take_gc_lnum(c);
1106 if (err)
1107 goto out_orphans;
1108
1109 err = dbg_check_lprops(c);
1110 if (err)
1111 goto out_orphans;
1112 } else if (c->need_recovery) {
1113 err = ubifs_recover_size(c);
1114 if (err)
1115 goto out_orphans;
1116 }
1117
1118 spin_lock(&ubifs_infos_lock);
1119 list_add_tail(&c->infos_list, &ubifs_infos);
1120 spin_unlock(&ubifs_infos_lock);
1121
1122 if (c->need_recovery) {
1123 if (mounted_read_only)
1124 ubifs_msg("recovery deferred");
1125 else {
1126 c->need_recovery = 0;
1127 ubifs_msg("recovery completed");
1128 }
1129 }
1130
1131 err = dbg_check_filesystem(c);
1132 if (err)
1133 goto out_infos;
1134
Artem Bityutskiyce769ca2008-07-18 12:54:21 +03001135 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1136 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001137 if (mounted_read_only)
1138 ubifs_msg("mounted read-only");
1139 x = (long long)c->main_lebs * c->leb_size;
1140 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1141 x, x >> 10, x >> 20, c->main_lebs);
1142 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1143 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1144 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1145 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1146 ubifs_msg("media format %d, latest format %d",
1147 c->fmt_version, UBIFS_FORMAT_VERSION);
1148
1149 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1150 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1151 dbg_msg("LEB size: %d bytes (%d KiB)",
1152 c->leb_size, c->leb_size / 1024);
1153 dbg_msg("data journal heads: %d",
1154 c->jhead_cnt - NONDATA_JHEADS_CNT);
1155 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1156 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1157 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1158 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1159 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1160 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1161 dbg_msg("fast unmount: %d", c->fast_unmount);
1162 dbg_msg("big_lpt %d", c->big_lpt);
1163 dbg_msg("log LEBs: %d (%d - %d)",
1164 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1165 dbg_msg("LPT area LEBs: %d (%d - %d)",
1166 c->lpt_lebs, c->lpt_first, c->lpt_last);
1167 dbg_msg("orphan area LEBs: %d (%d - %d)",
1168 c->orph_lebs, c->orph_first, c->orph_last);
1169 dbg_msg("main area LEBs: %d (%d - %d)",
1170 c->main_lebs, c->main_first, c->leb_cnt - 1);
1171 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1172 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1173 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1174 dbg_msg("key hash type: %d", c->key_hash_type);
1175 dbg_msg("tree fanout: %d", c->fanout);
1176 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1177 dbg_msg("first main LEB: %d", c->main_first);
1178 dbg_msg("dead watermark: %d", c->dead_wm);
1179 dbg_msg("dark watermark: %d", c->dark_wm);
1180 x = (long long)c->main_lebs * c->dark_wm;
1181 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1182 x, x >> 10, x >> 20);
1183 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1184 c->max_bud_bytes, c->max_bud_bytes >> 10,
1185 c->max_bud_bytes >> 20);
1186 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1187 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1188 c->bg_bud_bytes >> 20);
1189 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1190 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1191 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1192 dbg_msg("commit number: %llu", c->cmt_no);
1193
1194 return 0;
1195
1196out_infos:
1197 spin_lock(&ubifs_infos_lock);
1198 list_del(&c->infos_list);
1199 spin_unlock(&ubifs_infos_lock);
1200out_orphans:
1201 free_orphans(c);
1202out_journal:
1203 destroy_journal(c);
1204out_lpt:
1205 ubifs_lpt_free(c, 0);
1206out_master:
1207 kfree(c->mst_node);
1208 kfree(c->rcvrd_mst_node);
1209 if (c->bgt)
1210 kthread_stop(c->bgt);
1211out_wbufs:
1212 free_wbufs(c);
1213out_cbuf:
1214 kfree(c->cbuf);
1215out_dereg:
1216 dbg_failure_mode_deregistration(c);
1217out_free:
1218 vfree(c->ileb_buf);
1219 vfree(c->sbuf);
1220 kfree(c->bottom_up_buf);
1221 UBIFS_DBG(vfree(c->dbg_buf));
1222 return err;
1223}
1224
1225/**
1226 * ubifs_umount - un-mount UBIFS file-system.
1227 * @c: UBIFS file-system description object
1228 *
1229 * Note, this function is called to free allocated resourced when un-mounting,
1230 * as well as free resources when an error occurred while we were half way
1231 * through mounting (error path cleanup function). So it has to make sure the
1232 * resource was actually allocated before freeing it.
1233 */
1234static void ubifs_umount(struct ubifs_info *c)
1235{
1236 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1237 c->vi.vol_id);
1238
1239 spin_lock(&ubifs_infos_lock);
1240 list_del(&c->infos_list);
1241 spin_unlock(&ubifs_infos_lock);
1242
1243 if (c->bgt)
1244 kthread_stop(c->bgt);
1245
1246 destroy_journal(c);
1247 free_wbufs(c);
1248 free_orphans(c);
1249 ubifs_lpt_free(c, 0);
1250
1251 kfree(c->cbuf);
1252 kfree(c->rcvrd_mst_node);
1253 kfree(c->mst_node);
1254 vfree(c->sbuf);
1255 kfree(c->bottom_up_buf);
1256 UBIFS_DBG(vfree(c->dbg_buf));
1257 vfree(c->ileb_buf);
1258 dbg_failure_mode_deregistration(c);
1259}
1260
1261/**
1262 * ubifs_remount_rw - re-mount in read-write mode.
1263 * @c: UBIFS file-system description object
1264 *
1265 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1266 * mode. This function allocates the needed resources and re-mounts UBIFS in
1267 * read-write mode.
1268 */
1269static int ubifs_remount_rw(struct ubifs_info *c)
1270{
1271 int err, lnum;
1272
1273 if (c->ro_media)
1274 return -EINVAL;
1275
1276 mutex_lock(&c->umount_mutex);
1277 c->remounting_rw = 1;
1278
1279 /* Check for enough free space */
1280 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1281 ubifs_err("insufficient available space");
1282 err = -EINVAL;
1283 goto out;
1284 }
1285
1286 if (c->old_leb_cnt != c->leb_cnt) {
1287 struct ubifs_sb_node *sup;
1288
1289 sup = ubifs_read_sb_node(c);
1290 if (IS_ERR(sup)) {
1291 err = PTR_ERR(sup);
1292 goto out;
1293 }
1294 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1295 err = ubifs_write_sb_node(c, sup);
1296 if (err)
1297 goto out;
1298 }
1299
1300 if (c->need_recovery) {
1301 ubifs_msg("completing deferred recovery");
1302 err = ubifs_write_rcvrd_mst_node(c);
1303 if (err)
1304 goto out;
1305 err = ubifs_recover_size(c);
1306 if (err)
1307 goto out;
1308 err = ubifs_clean_lebs(c, c->sbuf);
1309 if (err)
1310 goto out;
1311 err = ubifs_recover_inl_heads(c, c->sbuf);
1312 if (err)
1313 goto out;
1314 }
1315
1316 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1317 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1318 err = ubifs_write_master(c);
1319 if (err)
1320 goto out;
1321 }
1322
1323 c->ileb_buf = vmalloc(c->leb_size);
1324 if (!c->ileb_buf) {
1325 err = -ENOMEM;
1326 goto out;
1327 }
1328
1329 err = ubifs_lpt_init(c, 0, 1);
1330 if (err)
1331 goto out;
1332
1333 err = alloc_wbufs(c);
1334 if (err)
1335 goto out;
1336
1337 ubifs_create_buds_lists(c);
1338
1339 /* Create background thread */
1340 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1341 if (!c->bgt)
1342 c->bgt = ERR_PTR(-EINVAL);
1343 if (IS_ERR(c->bgt)) {
1344 err = PTR_ERR(c->bgt);
1345 c->bgt = NULL;
1346 ubifs_err("cannot spawn \"%s\", error %d",
1347 c->bgt_name, err);
1348 return err;
1349 }
1350 wake_up_process(c->bgt);
1351
1352 c->orph_buf = vmalloc(c->leb_size);
1353 if (!c->orph_buf)
1354 return -ENOMEM;
1355
1356 /* Check for enough log space */
1357 lnum = c->lhead_lnum + 1;
1358 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1359 lnum = UBIFS_LOG_LNUM;
1360 if (lnum == c->ltail_lnum) {
1361 err = ubifs_consolidate_log(c);
1362 if (err)
1363 goto out;
1364 }
1365
1366 if (c->need_recovery)
1367 err = ubifs_rcvry_gc_commit(c);
1368 else
1369 err = take_gc_lnum(c);
1370 if (err)
1371 goto out;
1372
1373 if (c->need_recovery) {
1374 c->need_recovery = 0;
1375 ubifs_msg("deferred recovery completed");
1376 }
1377
1378 dbg_gen("re-mounted read-write");
1379 c->vfs_sb->s_flags &= ~MS_RDONLY;
1380 c->remounting_rw = 0;
1381 mutex_unlock(&c->umount_mutex);
1382 return 0;
1383
1384out:
1385 vfree(c->orph_buf);
1386 c->orph_buf = NULL;
1387 if (c->bgt) {
1388 kthread_stop(c->bgt);
1389 c->bgt = NULL;
1390 }
1391 free_wbufs(c);
1392 vfree(c->ileb_buf);
1393 c->ileb_buf = NULL;
1394 ubifs_lpt_free(c, 1);
1395 c->remounting_rw = 0;
1396 mutex_unlock(&c->umount_mutex);
1397 return err;
1398}
1399
1400/**
1401 * commit_on_unmount - commit the journal when un-mounting.
1402 * @c: UBIFS file-system description object
1403 *
1404 * This function is called during un-mounting and it commits the journal unless
1405 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1406 * it contains too few data.
1407 *
1408 * Sometimes recovery requires the journal to be committed at least once, and
1409 * this function takes care about this.
1410 */
1411static void commit_on_unmount(struct ubifs_info *c)
1412{
1413 if (!c->fast_unmount) {
1414 long long bud_bytes;
1415
1416 spin_lock(&c->buds_lock);
1417 bud_bytes = c->bud_bytes;
1418 spin_unlock(&c->buds_lock);
1419 if (bud_bytes > c->leb_size)
1420 ubifs_run_commit(c);
1421 }
1422}
1423
1424/**
1425 * ubifs_remount_ro - re-mount in read-only mode.
1426 * @c: UBIFS file-system description object
1427 *
1428 * We rely on VFS to have stopped writing. Possibly the background thread could
1429 * be running a commit, however kthread_stop will wait in that case.
1430 */
1431static void ubifs_remount_ro(struct ubifs_info *c)
1432{
1433 int i, err;
1434
1435 ubifs_assert(!c->need_recovery);
1436 commit_on_unmount(c);
1437
1438 mutex_lock(&c->umount_mutex);
1439 if (c->bgt) {
1440 kthread_stop(c->bgt);
1441 c->bgt = NULL;
1442 }
1443
1444 for (i = 0; i < c->jhead_cnt; i++) {
1445 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1446 del_timer_sync(&c->jheads[i].wbuf.timer);
1447 }
1448
1449 if (!c->ro_media) {
1450 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1451 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1452 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1453 err = ubifs_write_master(c);
1454 if (err)
1455 ubifs_ro_mode(c, err);
1456 }
1457
1458 ubifs_destroy_idx_gc(c);
1459 free_wbufs(c);
1460 vfree(c->orph_buf);
1461 c->orph_buf = NULL;
1462 vfree(c->ileb_buf);
1463 c->ileb_buf = NULL;
1464 ubifs_lpt_free(c, 1);
1465 mutex_unlock(&c->umount_mutex);
1466}
1467
1468static void ubifs_put_super(struct super_block *sb)
1469{
1470 int i;
1471 struct ubifs_info *c = sb->s_fs_info;
1472
1473 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1474 c->vi.vol_id);
1475 /*
1476 * The following asserts are only valid if there has not been a failure
1477 * of the media. For example, there will be dirty inodes if we failed
1478 * to write them back because of I/O errors.
1479 */
1480 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1481 ubifs_assert(c->budg_idx_growth == 0);
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +03001482 ubifs_assert(c->budg_dd_growth == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001483 ubifs_assert(c->budg_data_growth == 0);
1484
1485 /*
1486 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1487 * and file system un-mount. Namely, it prevents the shrinker from
1488 * picking this superblock for shrinking - it will be just skipped if
1489 * the mutex is locked.
1490 */
1491 mutex_lock(&c->umount_mutex);
1492 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1493 /*
1494 * First of all kill the background thread to make sure it does
1495 * not interfere with un-mounting and freeing resources.
1496 */
1497 if (c->bgt) {
1498 kthread_stop(c->bgt);
1499 c->bgt = NULL;
1500 }
1501
1502 /* Synchronize write-buffers */
1503 if (c->jheads)
1504 for (i = 0; i < c->jhead_cnt; i++) {
1505 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1506 del_timer_sync(&c->jheads[i].wbuf.timer);
1507 }
1508
1509 /*
1510 * On fatal errors c->ro_media is set to 1, in which case we do
1511 * not write the master node.
1512 */
1513 if (!c->ro_media) {
1514 /*
1515 * We are being cleanly unmounted which means the
1516 * orphans were killed - indicate this in the master
1517 * node. Also save the reserved GC LEB number.
1518 */
1519 int err;
1520
1521 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1522 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1523 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1524 err = ubifs_write_master(c);
1525 if (err)
1526 /*
1527 * Recovery will attempt to fix the master area
1528 * next mount, so we just print a message and
1529 * continue to unmount normally.
1530 */
1531 ubifs_err("failed to write master node, "
1532 "error %d", err);
1533 }
1534 }
1535
1536 ubifs_umount(c);
1537 bdi_destroy(&c->bdi);
1538 ubi_close_volume(c->ubi);
1539 mutex_unlock(&c->umount_mutex);
1540 kfree(c);
1541}
1542
1543static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1544{
1545 int err;
1546 struct ubifs_info *c = sb->s_fs_info;
1547
1548 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1549
1550 err = ubifs_parse_options(c, data, 1);
1551 if (err) {
1552 ubifs_err("invalid or unknown remount parameter");
1553 return err;
1554 }
1555 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1556 err = ubifs_remount_rw(c);
1557 if (err)
1558 return err;
1559 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1560 ubifs_remount_ro(c);
1561
1562 return 0;
1563}
1564
1565struct super_operations ubifs_super_operations = {
1566 .alloc_inode = ubifs_alloc_inode,
1567 .destroy_inode = ubifs_destroy_inode,
1568 .put_super = ubifs_put_super,
1569 .write_inode = ubifs_write_inode,
1570 .delete_inode = ubifs_delete_inode,
1571 .statfs = ubifs_statfs,
1572 .dirty_inode = ubifs_dirty_inode,
1573 .remount_fs = ubifs_remount_fs,
1574 .show_options = ubifs_show_options,
1575 .sync_fs = ubifs_sync_fs,
1576};
1577
1578/**
1579 * open_ubi - parse UBI device name string and open the UBI device.
1580 * @name: UBI volume name
1581 * @mode: UBI volume open mode
1582 *
1583 * There are several ways to specify UBI volumes when mounting UBIFS:
1584 * o ubiX_Y - UBI device number X, volume Y;
1585 * o ubiY - UBI device number 0, volume Y;
1586 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1587 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1588 *
1589 * Alternative '!' separator may be used instead of ':' (because some shells
1590 * like busybox may interpret ':' as an NFS host name separator). This function
1591 * returns ubi volume object in case of success and a negative error code in
1592 * case of failure.
1593 */
1594static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1595{
1596 int dev, vol;
1597 char *endptr;
1598
1599 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1600 return ERR_PTR(-EINVAL);
1601
1602 /* ubi:NAME method */
1603 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1604 return ubi_open_volume_nm(0, name + 4, mode);
1605
1606 if (!isdigit(name[3]))
1607 return ERR_PTR(-EINVAL);
1608
1609 dev = simple_strtoul(name + 3, &endptr, 0);
1610
1611 /* ubiY method */
1612 if (*endptr == '\0')
1613 return ubi_open_volume(0, dev, mode);
1614
1615 /* ubiX_Y method */
1616 if (*endptr == '_' && isdigit(endptr[1])) {
1617 vol = simple_strtoul(endptr + 1, &endptr, 0);
1618 if (*endptr != '\0')
1619 return ERR_PTR(-EINVAL);
1620 return ubi_open_volume(dev, vol, mode);
1621 }
1622
1623 /* ubiX:NAME method */
1624 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1625 return ubi_open_volume_nm(dev, ++endptr, mode);
1626
1627 return ERR_PTR(-EINVAL);
1628}
1629
1630static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1631{
1632 struct ubi_volume_desc *ubi = sb->s_fs_info;
1633 struct ubifs_info *c;
1634 struct inode *root;
1635 int err;
1636
1637 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1638 if (!c)
1639 return -ENOMEM;
1640
1641 spin_lock_init(&c->cnt_lock);
1642 spin_lock_init(&c->cs_lock);
1643 spin_lock_init(&c->buds_lock);
1644 spin_lock_init(&c->space_lock);
1645 spin_lock_init(&c->orphan_lock);
1646 init_rwsem(&c->commit_sem);
1647 mutex_init(&c->lp_mutex);
1648 mutex_init(&c->tnc_mutex);
1649 mutex_init(&c->log_mutex);
1650 mutex_init(&c->mst_mutex);
1651 mutex_init(&c->umount_mutex);
1652 init_waitqueue_head(&c->cmt_wq);
1653 c->buds = RB_ROOT;
1654 c->old_idx = RB_ROOT;
1655 c->size_tree = RB_ROOT;
1656 c->orph_tree = RB_ROOT;
1657 INIT_LIST_HEAD(&c->infos_list);
1658 INIT_LIST_HEAD(&c->idx_gc);
1659 INIT_LIST_HEAD(&c->replay_list);
1660 INIT_LIST_HEAD(&c->replay_buds);
1661 INIT_LIST_HEAD(&c->uncat_list);
1662 INIT_LIST_HEAD(&c->empty_list);
1663 INIT_LIST_HEAD(&c->freeable_list);
1664 INIT_LIST_HEAD(&c->frdi_idx_list);
1665 INIT_LIST_HEAD(&c->unclean_leb_list);
1666 INIT_LIST_HEAD(&c->old_buds);
1667 INIT_LIST_HEAD(&c->orph_list);
1668 INIT_LIST_HEAD(&c->orph_new);
1669
1670 c->highest_inum = UBIFS_FIRST_INO;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001671 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1672
1673 ubi_get_volume_info(ubi, &c->vi);
1674 ubi_get_device_info(c->vi.ubi_num, &c->di);
1675
1676 /* Re-open the UBI device in read-write mode */
1677 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1678 if (IS_ERR(c->ubi)) {
1679 err = PTR_ERR(c->ubi);
1680 goto out_free;
1681 }
1682
1683 /*
Artem Bityutskiy0a883a02008-08-13 14:13:26 +03001684 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001685 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1686 * which means the user would have to wait not just for their own I/O
Artem Bityutskiy0a883a02008-08-13 14:13:26 +03001687 * but the read-ahead I/O as well i.e. completely pointless.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001688 *
1689 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1690 */
1691 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1692 c->bdi.unplug_io_fn = default_unplug_io_fn;
1693 err = bdi_init(&c->bdi);
1694 if (err)
1695 goto out_close;
1696
1697 err = ubifs_parse_options(c, data, 0);
1698 if (err)
1699 goto out_bdi;
1700
1701 c->vfs_sb = sb;
1702
1703 sb->s_fs_info = c;
1704 sb->s_magic = UBIFS_SUPER_MAGIC;
1705 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1706 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1707 sb->s_dev = c->vi.cdev;
1708 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1709 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1710 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1711 sb->s_op = &ubifs_super_operations;
1712
1713 mutex_lock(&c->umount_mutex);
1714 err = mount_ubifs(c);
1715 if (err) {
1716 ubifs_assert(err < 0);
1717 goto out_unlock;
1718 }
1719
1720 /* Read the root inode */
1721 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1722 if (IS_ERR(root)) {
1723 err = PTR_ERR(root);
1724 goto out_umount;
1725 }
1726
1727 sb->s_root = d_alloc_root(root);
1728 if (!sb->s_root)
1729 goto out_iput;
1730
1731 mutex_unlock(&c->umount_mutex);
1732
1733 return 0;
1734
1735out_iput:
1736 iput(root);
1737out_umount:
1738 ubifs_umount(c);
1739out_unlock:
1740 mutex_unlock(&c->umount_mutex);
1741out_bdi:
1742 bdi_destroy(&c->bdi);
1743out_close:
1744 ubi_close_volume(c->ubi);
1745out_free:
1746 kfree(c);
1747 return err;
1748}
1749
1750static int sb_test(struct super_block *sb, void *data)
1751{
1752 dev_t *dev = data;
1753
1754 return sb->s_dev == *dev;
1755}
1756
1757static int sb_set(struct super_block *sb, void *data)
1758{
1759 dev_t *dev = data;
1760
1761 sb->s_dev = *dev;
1762 return 0;
1763}
1764
1765static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1766 const char *name, void *data, struct vfsmount *mnt)
1767{
1768 struct ubi_volume_desc *ubi;
1769 struct ubi_volume_info vi;
1770 struct super_block *sb;
1771 int err;
1772
1773 dbg_gen("name %s, flags %#x", name, flags);
1774
1775 /*
1776 * Get UBI device number and volume ID. Mount it read-only so far
1777 * because this might be a new mount point, and UBI allows only one
1778 * read-write user at a time.
1779 */
1780 ubi = open_ubi(name, UBI_READONLY);
1781 if (IS_ERR(ubi)) {
1782 ubifs_err("cannot open \"%s\", error %d",
1783 name, (int)PTR_ERR(ubi));
1784 return PTR_ERR(ubi);
1785 }
1786 ubi_get_volume_info(ubi, &vi);
1787
1788 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1789
1790 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1791 if (IS_ERR(sb)) {
1792 err = PTR_ERR(sb);
1793 goto out_close;
1794 }
1795
1796 if (sb->s_root) {
1797 /* A new mount point for already mounted UBIFS */
1798 dbg_gen("this ubi volume is already mounted");
1799 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1800 err = -EBUSY;
1801 goto out_deact;
1802 }
1803 } else {
1804 sb->s_flags = flags;
1805 /*
1806 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1807 * replaced by 'c'.
1808 */
1809 sb->s_fs_info = ubi;
1810 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1811 if (err)
1812 goto out_deact;
1813 /* We do not support atime */
1814 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1815 }
1816
1817 /* 'fill_super()' opens ubi again so we must close it here */
1818 ubi_close_volume(ubi);
1819
1820 return simple_set_mnt(mnt, sb);
1821
1822out_deact:
1823 up_write(&sb->s_umount);
1824 deactivate_super(sb);
1825out_close:
1826 ubi_close_volume(ubi);
1827 return err;
1828}
1829
1830static void ubifs_kill_sb(struct super_block *sb)
1831{
1832 struct ubifs_info *c = sb->s_fs_info;
1833
1834 /*
1835 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1836 * in order to be outside BKL.
1837 */
1838 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1839 commit_on_unmount(c);
1840 /* The un-mount routine is actually done in put_super() */
1841 generic_shutdown_super(sb);
1842}
1843
1844static struct file_system_type ubifs_fs_type = {
1845 .name = "ubifs",
1846 .owner = THIS_MODULE,
1847 .get_sb = ubifs_get_sb,
1848 .kill_sb = ubifs_kill_sb
1849};
1850
1851/*
1852 * Inode slab cache constructor.
1853 */
Alexey Dobriyan51cc5062008-07-25 19:45:34 -07001854static void inode_slab_ctor(void *obj)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001855{
1856 struct ubifs_inode *ui = obj;
1857 inode_init_once(&ui->vfs_inode);
1858}
1859
1860static int __init ubifs_init(void)
1861{
1862 int err;
1863
1864 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1865
1866 /* Make sure node sizes are 8-byte aligned */
1867 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1868 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1869 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1870 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1871 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1872 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1873 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1874 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1875 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1876 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1877 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1878
1879 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1880 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1881 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1882 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1883 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1884 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1885
1886 /* Check min. node size */
1887 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1888 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1889 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1890 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1891
1892 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1893 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1894 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1895 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1896
1897 /* Defined node sizes */
1898 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1899 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1900 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1901 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1902
1903 /*
1904 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1905 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1906 */
1907 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1908 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1909 " at least 4096 bytes",
1910 (unsigned int)PAGE_CACHE_SIZE);
1911 return -EINVAL;
1912 }
1913
1914 err = register_filesystem(&ubifs_fs_type);
1915 if (err) {
1916 ubifs_err("cannot register file system, error %d", err);
1917 return err;
1918 }
1919
1920 err = -ENOMEM;
1921 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1922 sizeof(struct ubifs_inode), 0,
1923 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1924 &inode_slab_ctor);
1925 if (!ubifs_inode_slab)
1926 goto out_reg;
1927
1928 register_shrinker(&ubifs_shrinker_info);
1929
1930 err = ubifs_compressors_init();
1931 if (err)
1932 goto out_compr;
1933
1934 return 0;
1935
1936out_compr:
1937 unregister_shrinker(&ubifs_shrinker_info);
1938 kmem_cache_destroy(ubifs_inode_slab);
1939out_reg:
1940 unregister_filesystem(&ubifs_fs_type);
1941 return err;
1942}
1943/* late_initcall to let compressors initialize first */
1944late_initcall(ubifs_init);
1945
1946static void __exit ubifs_exit(void)
1947{
1948 ubifs_assert(list_empty(&ubifs_infos));
1949 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1950
1951 ubifs_compressors_exit();
1952 unregister_shrinker(&ubifs_shrinker_info);
1953 kmem_cache_destroy(ubifs_inode_slab);
1954 unregister_filesystem(&ubifs_fs_type);
1955}
1956module_exit(ubifs_exit);
1957
1958MODULE_LICENSE("GPL");
1959MODULE_VERSION(__stringify(UBIFS_VERSION));
1960MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1961MODULE_DESCRIPTION("UBIFS - UBI File System");