blob: 1e1f41b3fdf610c0e80d8330514975e722b22fcc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/config.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
12#include <linux/smp_lock.h>
13#include <linux/notifier.h>
14#include <linux/reboot.h>
15#include <linux/prctl.h>
16#include <linux/init.h>
17#include <linux/highuid.h>
18#include <linux/fs.h>
Eric W. Biedermandc009d92005-06-25 14:57:52 -070019#include <linux/kernel.h>
20#include <linux/kexec.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/workqueue.h>
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
Jesper Juhl7ed20e12005-05-01 08:59:14 -070030#include <linux/signal.h>
Matt Helsley9f460802005-11-07 00:59:16 -080031#include <linux/cn_proc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032
33#include <linux/compat.h>
34#include <linux/syscalls.h>
35
36#include <asm/uaccess.h>
37#include <asm/io.h>
38#include <asm/unistd.h>
39
40#ifndef SET_UNALIGN_CTL
41# define SET_UNALIGN_CTL(a,b) (-EINVAL)
42#endif
43#ifndef GET_UNALIGN_CTL
44# define GET_UNALIGN_CTL(a,b) (-EINVAL)
45#endif
46#ifndef SET_FPEMU_CTL
47# define SET_FPEMU_CTL(a,b) (-EINVAL)
48#endif
49#ifndef GET_FPEMU_CTL
50# define GET_FPEMU_CTL(a,b) (-EINVAL)
51#endif
52#ifndef SET_FPEXC_CTL
53# define SET_FPEXC_CTL(a,b) (-EINVAL)
54#endif
55#ifndef GET_FPEXC_CTL
56# define GET_FPEXC_CTL(a,b) (-EINVAL)
57#endif
58
59/*
60 * this is where the system-wide overflow UID and GID are defined, for
61 * architectures that now have 32-bit UID/GID but didn't in the past
62 */
63
64int overflowuid = DEFAULT_OVERFLOWUID;
65int overflowgid = DEFAULT_OVERFLOWGID;
66
67#ifdef CONFIG_UID16
68EXPORT_SYMBOL(overflowuid);
69EXPORT_SYMBOL(overflowgid);
70#endif
71
72/*
73 * the same as above, but for filesystems which can only store a 16-bit
74 * UID and GID. as such, this is needed on all architectures
75 */
76
77int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
78int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
79
80EXPORT_SYMBOL(fs_overflowuid);
81EXPORT_SYMBOL(fs_overflowgid);
82
83/*
84 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
85 */
86
87int C_A_D = 1;
88int cad_pid = 1;
89
90/*
91 * Notifier list for kernel code which wants to be called
92 * at shutdown. This is used to stop any idling DMA operations
93 * and the like.
94 */
95
96static struct notifier_block *reboot_notifier_list;
97static DEFINE_RWLOCK(notifier_lock);
98
99/**
100 * notifier_chain_register - Add notifier to a notifier chain
101 * @list: Pointer to root list pointer
102 * @n: New entry in notifier chain
103 *
104 * Adds a notifier to a notifier chain.
105 *
106 * Currently always returns zero.
107 */
108
109int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
110{
111 write_lock(&notifier_lock);
112 while(*list)
113 {
114 if(n->priority > (*list)->priority)
115 break;
116 list= &((*list)->next);
117 }
118 n->next = *list;
119 *list=n;
120 write_unlock(&notifier_lock);
121 return 0;
122}
123
124EXPORT_SYMBOL(notifier_chain_register);
125
126/**
127 * notifier_chain_unregister - Remove notifier from a notifier chain
128 * @nl: Pointer to root list pointer
129 * @n: New entry in notifier chain
130 *
131 * Removes a notifier from a notifier chain.
132 *
133 * Returns zero on success, or %-ENOENT on failure.
134 */
135
136int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
137{
138 write_lock(&notifier_lock);
139 while((*nl)!=NULL)
140 {
141 if((*nl)==n)
142 {
143 *nl=n->next;
144 write_unlock(&notifier_lock);
145 return 0;
146 }
147 nl=&((*nl)->next);
148 }
149 write_unlock(&notifier_lock);
150 return -ENOENT;
151}
152
153EXPORT_SYMBOL(notifier_chain_unregister);
154
155/**
156 * notifier_call_chain - Call functions in a notifier chain
157 * @n: Pointer to root pointer of notifier chain
158 * @val: Value passed unmodified to notifier function
159 * @v: Pointer passed unmodified to notifier function
160 *
161 * Calls each function in a notifier chain in turn.
162 *
163 * If the return value of the notifier can be and'd
164 * with %NOTIFY_STOP_MASK, then notifier_call_chain
165 * will return immediately, with the return value of
166 * the notifier function which halted execution.
167 * Otherwise, the return value is the return value
168 * of the last notifier function called.
169 */
170
171int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
172{
173 int ret=NOTIFY_DONE;
174 struct notifier_block *nb = *n;
175
176 while(nb)
177 {
178 ret=nb->notifier_call(nb,val,v);
179 if(ret&NOTIFY_STOP_MASK)
180 {
181 return ret;
182 }
183 nb=nb->next;
184 }
185 return ret;
186}
187
188EXPORT_SYMBOL(notifier_call_chain);
189
190/**
191 * register_reboot_notifier - Register function to be called at reboot time
192 * @nb: Info about notifier function to be called
193 *
194 * Registers a function with the list of functions
195 * to be called at reboot time.
196 *
197 * Currently always returns zero, as notifier_chain_register
198 * always returns zero.
199 */
200
201int register_reboot_notifier(struct notifier_block * nb)
202{
203 return notifier_chain_register(&reboot_notifier_list, nb);
204}
205
206EXPORT_SYMBOL(register_reboot_notifier);
207
208/**
209 * unregister_reboot_notifier - Unregister previously registered reboot notifier
210 * @nb: Hook to be unregistered
211 *
212 * Unregisters a previously registered reboot
213 * notifier function.
214 *
215 * Returns zero on success, or %-ENOENT on failure.
216 */
217
218int unregister_reboot_notifier(struct notifier_block * nb)
219{
220 return notifier_chain_unregister(&reboot_notifier_list, nb);
221}
222
223EXPORT_SYMBOL(unregister_reboot_notifier);
224
225static int set_one_prio(struct task_struct *p, int niceval, int error)
226{
227 int no_nice;
228
229 if (p->uid != current->euid &&
230 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
231 error = -EPERM;
232 goto out;
233 }
Matt Mackalle43379f2005-05-01 08:59:00 -0700234 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235 error = -EACCES;
236 goto out;
237 }
238 no_nice = security_task_setnice(p, niceval);
239 if (no_nice) {
240 error = no_nice;
241 goto out;
242 }
243 if (error == -ESRCH)
244 error = 0;
245 set_user_nice(p, niceval);
246out:
247 return error;
248}
249
250asmlinkage long sys_setpriority(int which, int who, int niceval)
251{
252 struct task_struct *g, *p;
253 struct user_struct *user;
254 int error = -EINVAL;
255
256 if (which > 2 || which < 0)
257 goto out;
258
259 /* normalize: avoid signed division (rounding problems) */
260 error = -ESRCH;
261 if (niceval < -20)
262 niceval = -20;
263 if (niceval > 19)
264 niceval = 19;
265
266 read_lock(&tasklist_lock);
267 switch (which) {
268 case PRIO_PROCESS:
269 if (!who)
270 who = current->pid;
271 p = find_task_by_pid(who);
272 if (p)
273 error = set_one_prio(p, niceval, error);
274 break;
275 case PRIO_PGRP:
276 if (!who)
277 who = process_group(current);
278 do_each_task_pid(who, PIDTYPE_PGID, p) {
279 error = set_one_prio(p, niceval, error);
280 } while_each_task_pid(who, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 user = current->user;
284 if (!who)
285 who = current->uid;
286 else
287 if ((who != current->uid) && !(user = find_user(who)))
288 goto out_unlock; /* No processes for this user */
289
290 do_each_thread(g, p)
291 if (p->uid == who)
292 error = set_one_prio(p, niceval, error);
293 while_each_thread(g, p);
294 if (who != current->uid)
295 free_uid(user); /* For find_user() */
296 break;
297 }
298out_unlock:
299 read_unlock(&tasklist_lock);
300out:
301 return error;
302}
303
304/*
305 * Ugh. To avoid negative return values, "getpriority()" will
306 * not return the normal nice-value, but a negated value that
307 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
308 * to stay compatible.
309 */
310asmlinkage long sys_getpriority(int which, int who)
311{
312 struct task_struct *g, *p;
313 struct user_struct *user;
314 long niceval, retval = -ESRCH;
315
316 if (which > 2 || which < 0)
317 return -EINVAL;
318
319 read_lock(&tasklist_lock);
320 switch (which) {
321 case PRIO_PROCESS:
322 if (!who)
323 who = current->pid;
324 p = find_task_by_pid(who);
325 if (p) {
326 niceval = 20 - task_nice(p);
327 if (niceval > retval)
328 retval = niceval;
329 }
330 break;
331 case PRIO_PGRP:
332 if (!who)
333 who = process_group(current);
334 do_each_task_pid(who, PIDTYPE_PGID, p) {
335 niceval = 20 - task_nice(p);
336 if (niceval > retval)
337 retval = niceval;
338 } while_each_task_pid(who, PIDTYPE_PGID, p);
339 break;
340 case PRIO_USER:
341 user = current->user;
342 if (!who)
343 who = current->uid;
344 else
345 if ((who != current->uid) && !(user = find_user(who)))
346 goto out_unlock; /* No processes for this user */
347
348 do_each_thread(g, p)
349 if (p->uid == who) {
350 niceval = 20 - task_nice(p);
351 if (niceval > retval)
352 retval = niceval;
353 }
354 while_each_thread(g, p);
355 if (who != current->uid)
356 free_uid(user); /* for find_user() */
357 break;
358 }
359out_unlock:
360 read_unlock(&tasklist_lock);
361
362 return retval;
363}
364
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700365/**
366 * emergency_restart - reboot the system
367 *
368 * Without shutting down any hardware or taking any locks
369 * reboot the system. This is called when we know we are in
370 * trouble so this is our best effort to reboot. This is
371 * safe to call in interrupt context.
372 */
Eric W. Biederman7c903472005-07-26 11:29:55 -0600373void emergency_restart(void)
374{
375 machine_emergency_restart();
376}
377EXPORT_SYMBOL_GPL(emergency_restart);
378
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700379/**
380 * kernel_restart - reboot the system
381 *
382 * Shutdown everything and perform a clean reboot.
383 * This is not safe to call in interrupt context.
384 */
385void kernel_restart_prepare(char *cmd)
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600386{
387 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
388 system_state = SYSTEM_RESTART;
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600389 device_shutdown();
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700390}
391void kernel_restart(char *cmd)
392{
393 kernel_restart_prepare(cmd);
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600394 if (!cmd) {
395 printk(KERN_EMERG "Restarting system.\n");
396 } else {
397 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
398 }
399 printk(".\n");
400 machine_restart(cmd);
401}
402EXPORT_SYMBOL_GPL(kernel_restart);
403
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700404/**
405 * kernel_kexec - reboot the system
406 *
407 * Move into place and start executing a preloaded standalone
408 * executable. If nothing was preloaded return an error.
409 */
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600410void kernel_kexec(void)
411{
412#ifdef CONFIG_KEXEC
413 struct kimage *image;
414 image = xchg(&kexec_image, 0);
415 if (!image) {
416 return;
417 }
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700418 kernel_restart_prepare(NULL);
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600419 printk(KERN_EMERG "Starting new kernel\n");
420 machine_shutdown();
421 machine_kexec(image);
422#endif
423}
424EXPORT_SYMBOL_GPL(kernel_kexec);
425
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700426/**
427 * kernel_halt - halt the system
428 *
429 * Shutdown everything and perform a clean system halt.
430 */
431void kernel_halt_prepare(void)
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600432{
433 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
434 system_state = SYSTEM_HALT;
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600435 device_shutdown();
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700436}
437void kernel_halt(void)
438{
439 kernel_halt_prepare();
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600440 printk(KERN_EMERG "System halted.\n");
441 machine_halt();
442}
443EXPORT_SYMBOL_GPL(kernel_halt);
444
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700445/**
446 * kernel_power_off - power_off the system
447 *
448 * Shutdown everything and perform a clean system power_off.
449 */
450void kernel_power_off_prepare(void)
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600451{
452 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
453 system_state = SYSTEM_POWER_OFF;
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600454 device_shutdown();
Eric W. Biedermane4c94332005-09-22 21:43:45 -0700455}
456void kernel_power_off(void)
457{
458 kernel_power_off_prepare();
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600459 printk(KERN_EMERG "Power down.\n");
460 machine_power_off();
461}
462EXPORT_SYMBOL_GPL(kernel_power_off);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463
464/*
465 * Reboot system call: for obvious reasons only root may call it,
466 * and even root needs to set up some magic numbers in the registers
467 * so that some mistake won't make this reboot the whole machine.
468 * You can also set the meaning of the ctrl-alt-del-key here.
469 *
470 * reboot doesn't sync: do that yourself before calling this.
471 */
472asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
473{
474 char buffer[256];
475
476 /* We only trust the superuser with rebooting the system. */
477 if (!capable(CAP_SYS_BOOT))
478 return -EPERM;
479
480 /* For safety, we require "magic" arguments. */
481 if (magic1 != LINUX_REBOOT_MAGIC1 ||
482 (magic2 != LINUX_REBOOT_MAGIC2 &&
483 magic2 != LINUX_REBOOT_MAGIC2A &&
484 magic2 != LINUX_REBOOT_MAGIC2B &&
485 magic2 != LINUX_REBOOT_MAGIC2C))
486 return -EINVAL;
487
488 lock_kernel();
489 switch (cmd) {
490 case LINUX_REBOOT_CMD_RESTART:
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600491 kernel_restart(NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492 break;
493
494 case LINUX_REBOOT_CMD_CAD_ON:
495 C_A_D = 1;
496 break;
497
498 case LINUX_REBOOT_CMD_CAD_OFF:
499 C_A_D = 0;
500 break;
501
502 case LINUX_REBOOT_CMD_HALT:
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600503 kernel_halt();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504 unlock_kernel();
505 do_exit(0);
506 break;
507
508 case LINUX_REBOOT_CMD_POWER_OFF:
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600509 kernel_power_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510 unlock_kernel();
511 do_exit(0);
512 break;
513
514 case LINUX_REBOOT_CMD_RESTART2:
515 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
516 unlock_kernel();
517 return -EFAULT;
518 }
519 buffer[sizeof(buffer) - 1] = '\0';
520
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600521 kernel_restart(buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522 break;
523
Eric W. Biedermandc009d92005-06-25 14:57:52 -0700524 case LINUX_REBOOT_CMD_KEXEC:
Eric W. Biederman4a00ea12005-07-26 11:24:14 -0600525 kernel_kexec();
526 unlock_kernel();
527 return -EINVAL;
528
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529#ifdef CONFIG_SOFTWARE_SUSPEND
530 case LINUX_REBOOT_CMD_SW_SUSPEND:
531 {
532 int ret = software_suspend();
533 unlock_kernel();
534 return ret;
535 }
536#endif
537
538 default:
539 unlock_kernel();
540 return -EINVAL;
541 }
542 unlock_kernel();
543 return 0;
544}
545
546static void deferred_cad(void *dummy)
547{
Eric W. Biedermanabcd9e52005-07-26 11:27:34 -0600548 kernel_restart(NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549}
550
551/*
552 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
553 * As it's called within an interrupt, it may NOT sync: the only choice
554 * is whether to reboot at once, or just ignore the ctrl-alt-del.
555 */
556void ctrl_alt_del(void)
557{
558 static DECLARE_WORK(cad_work, deferred_cad, NULL);
559
560 if (C_A_D)
561 schedule_work(&cad_work);
562 else
563 kill_proc(cad_pid, SIGINT, 1);
564}
565
566
567/*
568 * Unprivileged users may change the real gid to the effective gid
569 * or vice versa. (BSD-style)
570 *
571 * If you set the real gid at all, or set the effective gid to a value not
572 * equal to the real gid, then the saved gid is set to the new effective gid.
573 *
574 * This makes it possible for a setgid program to completely drop its
575 * privileges, which is often a useful assertion to make when you are doing
576 * a security audit over a program.
577 *
578 * The general idea is that a program which uses just setregid() will be
579 * 100% compatible with BSD. A program which uses just setgid() will be
580 * 100% compatible with POSIX with saved IDs.
581 *
582 * SMP: There are not races, the GIDs are checked only by filesystem
583 * operations (as far as semantic preservation is concerned).
584 */
585asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
586{
587 int old_rgid = current->gid;
588 int old_egid = current->egid;
589 int new_rgid = old_rgid;
590 int new_egid = old_egid;
591 int retval;
592
593 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
594 if (retval)
595 return retval;
596
597 if (rgid != (gid_t) -1) {
598 if ((old_rgid == rgid) ||
599 (current->egid==rgid) ||
600 capable(CAP_SETGID))
601 new_rgid = rgid;
602 else
603 return -EPERM;
604 }
605 if (egid != (gid_t) -1) {
606 if ((old_rgid == egid) ||
607 (current->egid == egid) ||
608 (current->sgid == egid) ||
609 capable(CAP_SETGID))
610 new_egid = egid;
611 else {
612 return -EPERM;
613 }
614 }
615 if (new_egid != old_egid)
616 {
Alan Coxd6e71142005-06-23 00:09:43 -0700617 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700618 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619 }
620 if (rgid != (gid_t) -1 ||
621 (egid != (gid_t) -1 && egid != old_rgid))
622 current->sgid = new_egid;
623 current->fsgid = new_egid;
624 current->egid = new_egid;
625 current->gid = new_rgid;
626 key_fsgid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800627 proc_id_connector(current, PROC_EVENT_GID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700628 return 0;
629}
630
631/*
632 * setgid() is implemented like SysV w/ SAVED_IDS
633 *
634 * SMP: Same implicit races as above.
635 */
636asmlinkage long sys_setgid(gid_t gid)
637{
638 int old_egid = current->egid;
639 int retval;
640
641 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
642 if (retval)
643 return retval;
644
645 if (capable(CAP_SETGID))
646 {
647 if(old_egid != gid)
648 {
Alan Coxd6e71142005-06-23 00:09:43 -0700649 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700650 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651 }
652 current->gid = current->egid = current->sgid = current->fsgid = gid;
653 }
654 else if ((gid == current->gid) || (gid == current->sgid))
655 {
656 if(old_egid != gid)
657 {
Alan Coxd6e71142005-06-23 00:09:43 -0700658 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700659 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660 }
661 current->egid = current->fsgid = gid;
662 }
663 else
664 return -EPERM;
665
666 key_fsgid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800667 proc_id_connector(current, PROC_EVENT_GID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700668 return 0;
669}
670
671static int set_user(uid_t new_ruid, int dumpclear)
672{
673 struct user_struct *new_user;
674
675 new_user = alloc_uid(new_ruid);
676 if (!new_user)
677 return -EAGAIN;
678
679 if (atomic_read(&new_user->processes) >=
680 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
681 new_user != &root_user) {
682 free_uid(new_user);
683 return -EAGAIN;
684 }
685
686 switch_uid(new_user);
687
688 if(dumpclear)
689 {
Alan Coxd6e71142005-06-23 00:09:43 -0700690 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700691 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692 }
693 current->uid = new_ruid;
694 return 0;
695}
696
697/*
698 * Unprivileged users may change the real uid to the effective uid
699 * or vice versa. (BSD-style)
700 *
701 * If you set the real uid at all, or set the effective uid to a value not
702 * equal to the real uid, then the saved uid is set to the new effective uid.
703 *
704 * This makes it possible for a setuid program to completely drop its
705 * privileges, which is often a useful assertion to make when you are doing
706 * a security audit over a program.
707 *
708 * The general idea is that a program which uses just setreuid() will be
709 * 100% compatible with BSD. A program which uses just setuid() will be
710 * 100% compatible with POSIX with saved IDs.
711 */
712asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
713{
714 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
715 int retval;
716
717 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
718 if (retval)
719 return retval;
720
721 new_ruid = old_ruid = current->uid;
722 new_euid = old_euid = current->euid;
723 old_suid = current->suid;
724
725 if (ruid != (uid_t) -1) {
726 new_ruid = ruid;
727 if ((old_ruid != ruid) &&
728 (current->euid != ruid) &&
729 !capable(CAP_SETUID))
730 return -EPERM;
731 }
732
733 if (euid != (uid_t) -1) {
734 new_euid = euid;
735 if ((old_ruid != euid) &&
736 (current->euid != euid) &&
737 (current->suid != euid) &&
738 !capable(CAP_SETUID))
739 return -EPERM;
740 }
741
742 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
743 return -EAGAIN;
744
745 if (new_euid != old_euid)
746 {
Alan Coxd6e71142005-06-23 00:09:43 -0700747 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700748 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700749 }
750 current->fsuid = current->euid = new_euid;
751 if (ruid != (uid_t) -1 ||
752 (euid != (uid_t) -1 && euid != old_ruid))
753 current->suid = current->euid;
754 current->fsuid = current->euid;
755
756 key_fsuid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800757 proc_id_connector(current, PROC_EVENT_UID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758
759 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
760}
761
762
763
764/*
765 * setuid() is implemented like SysV with SAVED_IDS
766 *
767 * Note that SAVED_ID's is deficient in that a setuid root program
768 * like sendmail, for example, cannot set its uid to be a normal
769 * user and then switch back, because if you're root, setuid() sets
770 * the saved uid too. If you don't like this, blame the bright people
771 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
772 * will allow a root program to temporarily drop privileges and be able to
773 * regain them by swapping the real and effective uid.
774 */
775asmlinkage long sys_setuid(uid_t uid)
776{
777 int old_euid = current->euid;
778 int old_ruid, old_suid, new_ruid, new_suid;
779 int retval;
780
781 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
782 if (retval)
783 return retval;
784
785 old_ruid = new_ruid = current->uid;
786 old_suid = current->suid;
787 new_suid = old_suid;
788
789 if (capable(CAP_SETUID)) {
790 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
791 return -EAGAIN;
792 new_suid = uid;
793 } else if ((uid != current->uid) && (uid != new_suid))
794 return -EPERM;
795
796 if (old_euid != uid)
797 {
Alan Coxd6e71142005-06-23 00:09:43 -0700798 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700799 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 }
801 current->fsuid = current->euid = uid;
802 current->suid = new_suid;
803
804 key_fsuid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800805 proc_id_connector(current, PROC_EVENT_UID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806
807 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
808}
809
810
811/*
812 * This function implements a generic ability to update ruid, euid,
813 * and suid. This allows you to implement the 4.4 compatible seteuid().
814 */
815asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
816{
817 int old_ruid = current->uid;
818 int old_euid = current->euid;
819 int old_suid = current->suid;
820 int retval;
821
822 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
823 if (retval)
824 return retval;
825
826 if (!capable(CAP_SETUID)) {
827 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
828 (ruid != current->euid) && (ruid != current->suid))
829 return -EPERM;
830 if ((euid != (uid_t) -1) && (euid != current->uid) &&
831 (euid != current->euid) && (euid != current->suid))
832 return -EPERM;
833 if ((suid != (uid_t) -1) && (suid != current->uid) &&
834 (suid != current->euid) && (suid != current->suid))
835 return -EPERM;
836 }
837 if (ruid != (uid_t) -1) {
838 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
839 return -EAGAIN;
840 }
841 if (euid != (uid_t) -1) {
842 if (euid != current->euid)
843 {
Alan Coxd6e71142005-06-23 00:09:43 -0700844 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700845 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700846 }
847 current->euid = euid;
848 }
849 current->fsuid = current->euid;
850 if (suid != (uid_t) -1)
851 current->suid = suid;
852
853 key_fsuid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800854 proc_id_connector(current, PROC_EVENT_UID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855
856 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
857}
858
859asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
860{
861 int retval;
862
863 if (!(retval = put_user(current->uid, ruid)) &&
864 !(retval = put_user(current->euid, euid)))
865 retval = put_user(current->suid, suid);
866
867 return retval;
868}
869
870/*
871 * Same as above, but for rgid, egid, sgid.
872 */
873asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
874{
875 int retval;
876
877 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
878 if (retval)
879 return retval;
880
881 if (!capable(CAP_SETGID)) {
882 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
883 (rgid != current->egid) && (rgid != current->sgid))
884 return -EPERM;
885 if ((egid != (gid_t) -1) && (egid != current->gid) &&
886 (egid != current->egid) && (egid != current->sgid))
887 return -EPERM;
888 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
889 (sgid != current->egid) && (sgid != current->sgid))
890 return -EPERM;
891 }
892 if (egid != (gid_t) -1) {
893 if (egid != current->egid)
894 {
Alan Coxd6e71142005-06-23 00:09:43 -0700895 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700896 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 }
898 current->egid = egid;
899 }
900 current->fsgid = current->egid;
901 if (rgid != (gid_t) -1)
902 current->gid = rgid;
903 if (sgid != (gid_t) -1)
904 current->sgid = sgid;
905
906 key_fsgid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800907 proc_id_connector(current, PROC_EVENT_GID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908 return 0;
909}
910
911asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
912{
913 int retval;
914
915 if (!(retval = put_user(current->gid, rgid)) &&
916 !(retval = put_user(current->egid, egid)))
917 retval = put_user(current->sgid, sgid);
918
919 return retval;
920}
921
922
923/*
924 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
925 * is used for "access()" and for the NFS daemon (letting nfsd stay at
926 * whatever uid it wants to). It normally shadows "euid", except when
927 * explicitly set by setfsuid() or for access..
928 */
929asmlinkage long sys_setfsuid(uid_t uid)
930{
931 int old_fsuid;
932
933 old_fsuid = current->fsuid;
934 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
935 return old_fsuid;
936
937 if (uid == current->uid || uid == current->euid ||
938 uid == current->suid || uid == current->fsuid ||
939 capable(CAP_SETUID))
940 {
941 if (uid != old_fsuid)
942 {
Alan Coxd6e71142005-06-23 00:09:43 -0700943 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700944 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 }
946 current->fsuid = uid;
947 }
948
949 key_fsuid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800950 proc_id_connector(current, PROC_EVENT_UID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951
952 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
953
954 return old_fsuid;
955}
956
957/*
958 * Samma på svenska..
959 */
960asmlinkage long sys_setfsgid(gid_t gid)
961{
962 int old_fsgid;
963
964 old_fsgid = current->fsgid;
965 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
966 return old_fsgid;
967
968 if (gid == current->gid || gid == current->egid ||
969 gid == current->sgid || gid == current->fsgid ||
970 capable(CAP_SETGID))
971 {
972 if (gid != old_fsgid)
973 {
Alan Coxd6e71142005-06-23 00:09:43 -0700974 current->mm->dumpable = suid_dumpable;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700975 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 }
977 current->fsgid = gid;
978 key_fsgid_changed(current);
Matt Helsley9f460802005-11-07 00:59:16 -0800979 proc_id_connector(current, PROC_EVENT_GID);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980 }
981 return old_fsgid;
982}
983
984asmlinkage long sys_times(struct tms __user * tbuf)
985{
986 /*
987 * In the SMP world we might just be unlucky and have one of
988 * the times increment as we use it. Since the value is an
989 * atomically safe type this is just fine. Conceptually its
990 * as if the syscall took an instant longer to occur.
991 */
992 if (tbuf) {
993 struct tms tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700994 cputime_t utime, stime, cutime, cstime;
995
Christoph Lameter71a22242005-06-23 00:10:05 -0700996#ifdef CONFIG_SMP
997 if (thread_group_empty(current)) {
998 /*
999 * Single thread case without the use of any locks.
1000 *
1001 * We may race with release_task if two threads are
1002 * executing. However, release task first adds up the
1003 * counters (__exit_signal) before removing the task
1004 * from the process tasklist (__unhash_process).
1005 * __exit_signal also acquires and releases the
1006 * siglock which results in the proper memory ordering
1007 * so that the list modifications are always visible
1008 * after the counters have been updated.
1009 *
1010 * If the counters have been updated by the second thread
1011 * but the thread has not yet been removed from the list
1012 * then the other branch will be executing which will
1013 * block on tasklist_lock until the exit handling of the
1014 * other task is finished.
1015 *
1016 * This also implies that the sighand->siglock cannot
1017 * be held by another processor. So we can also
1018 * skip acquiring that lock.
1019 */
1020 utime = cputime_add(current->signal->utime, current->utime);
1021 stime = cputime_add(current->signal->utime, current->stime);
1022 cutime = current->signal->cutime;
1023 cstime = current->signal->cstime;
1024 } else
1025#endif
1026 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027
Christoph Lameter71a22242005-06-23 00:10:05 -07001028 /* Process with multiple threads */
1029 struct task_struct *tsk = current;
1030 struct task_struct *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031
Christoph Lameter71a22242005-06-23 00:10:05 -07001032 read_lock(&tasklist_lock);
1033 utime = tsk->signal->utime;
1034 stime = tsk->signal->stime;
1035 t = tsk;
1036 do {
1037 utime = cputime_add(utime, t->utime);
1038 stime = cputime_add(stime, t->stime);
1039 t = next_thread(t);
1040 } while (t != tsk);
1041
1042 /*
1043 * While we have tasklist_lock read-locked, no dying thread
1044 * can be updating current->signal->[us]time. Instead,
1045 * we got their counts included in the live thread loop.
1046 * However, another thread can come in right now and
1047 * do a wait call that updates current->signal->c[us]time.
1048 * To make sure we always see that pair updated atomically,
1049 * we take the siglock around fetching them.
1050 */
1051 spin_lock_irq(&tsk->sighand->siglock);
1052 cutime = tsk->signal->cutime;
1053 cstime = tsk->signal->cstime;
1054 spin_unlock_irq(&tsk->sighand->siglock);
1055 read_unlock(&tasklist_lock);
1056 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057 tmp.tms_utime = cputime_to_clock_t(utime);
1058 tmp.tms_stime = cputime_to_clock_t(stime);
1059 tmp.tms_cutime = cputime_to_clock_t(cutime);
1060 tmp.tms_cstime = cputime_to_clock_t(cstime);
1061 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1062 return -EFAULT;
1063 }
1064 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1065}
1066
1067/*
1068 * This needs some heavy checking ...
1069 * I just haven't the stomach for it. I also don't fully
1070 * understand sessions/pgrp etc. Let somebody who does explain it.
1071 *
1072 * OK, I think I have the protection semantics right.... this is really
1073 * only important on a multi-user system anyway, to make sure one user
1074 * can't send a signal to a process owned by another. -TYT, 12/12/91
1075 *
1076 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1077 * LBT 04.03.94
1078 */
1079
1080asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1081{
1082 struct task_struct *p;
1083 int err = -EINVAL;
1084
1085 if (!pid)
1086 pid = current->pid;
1087 if (!pgid)
1088 pgid = pid;
1089 if (pgid < 0)
1090 return -EINVAL;
1091
1092 /* From this point forward we keep holding onto the tasklist lock
1093 * so that our parent does not change from under us. -DaveM
1094 */
1095 write_lock_irq(&tasklist_lock);
1096
1097 err = -ESRCH;
1098 p = find_task_by_pid(pid);
1099 if (!p)
1100 goto out;
1101
1102 err = -EINVAL;
1103 if (!thread_group_leader(p))
1104 goto out;
1105
1106 if (p->parent == current || p->real_parent == current) {
1107 err = -EPERM;
1108 if (p->signal->session != current->signal->session)
1109 goto out;
1110 err = -EACCES;
1111 if (p->did_exec)
1112 goto out;
1113 } else {
1114 err = -ESRCH;
1115 if (p != current)
1116 goto out;
1117 }
1118
1119 err = -EPERM;
1120 if (p->signal->leader)
1121 goto out;
1122
1123 if (pgid != pid) {
1124 struct task_struct *p;
1125
1126 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1127 if (p->signal->session == current->signal->session)
1128 goto ok_pgid;
1129 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1130 goto out;
1131 }
1132
1133ok_pgid:
1134 err = security_task_setpgid(p, pgid);
1135 if (err)
1136 goto out;
1137
1138 if (process_group(p) != pgid) {
1139 detach_pid(p, PIDTYPE_PGID);
1140 p->signal->pgrp = pgid;
1141 attach_pid(p, PIDTYPE_PGID, pgid);
1142 }
1143
1144 err = 0;
1145out:
1146 /* All paths lead to here, thus we are safe. -DaveM */
1147 write_unlock_irq(&tasklist_lock);
1148 return err;
1149}
1150
1151asmlinkage long sys_getpgid(pid_t pid)
1152{
1153 if (!pid) {
1154 return process_group(current);
1155 } else {
1156 int retval;
1157 struct task_struct *p;
1158
1159 read_lock(&tasklist_lock);
1160 p = find_task_by_pid(pid);
1161
1162 retval = -ESRCH;
1163 if (p) {
1164 retval = security_task_getpgid(p);
1165 if (!retval)
1166 retval = process_group(p);
1167 }
1168 read_unlock(&tasklist_lock);
1169 return retval;
1170 }
1171}
1172
1173#ifdef __ARCH_WANT_SYS_GETPGRP
1174
1175asmlinkage long sys_getpgrp(void)
1176{
1177 /* SMP - assuming writes are word atomic this is fine */
1178 return process_group(current);
1179}
1180
1181#endif
1182
1183asmlinkage long sys_getsid(pid_t pid)
1184{
1185 if (!pid) {
1186 return current->signal->session;
1187 } else {
1188 int retval;
1189 struct task_struct *p;
1190
1191 read_lock(&tasklist_lock);
1192 p = find_task_by_pid(pid);
1193
1194 retval = -ESRCH;
1195 if(p) {
1196 retval = security_task_getsid(p);
1197 if (!retval)
1198 retval = p->signal->session;
1199 }
1200 read_unlock(&tasklist_lock);
1201 return retval;
1202 }
1203}
1204
1205asmlinkage long sys_setsid(void)
1206{
1207 struct pid *pid;
1208 int err = -EPERM;
1209
1210 if (!thread_group_leader(current))
1211 return -EINVAL;
1212
1213 down(&tty_sem);
1214 write_lock_irq(&tasklist_lock);
1215
1216 pid = find_pid(PIDTYPE_PGID, current->pid);
1217 if (pid)
1218 goto out;
1219
1220 current->signal->leader = 1;
1221 __set_special_pids(current->pid, current->pid);
1222 current->signal->tty = NULL;
1223 current->signal->tty_old_pgrp = 0;
1224 err = process_group(current);
1225out:
1226 write_unlock_irq(&tasklist_lock);
1227 up(&tty_sem);
1228 return err;
1229}
1230
1231/*
1232 * Supplementary group IDs
1233 */
1234
1235/* init to 2 - one for init_task, one to ensure it is never freed */
1236struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1237
1238struct group_info *groups_alloc(int gidsetsize)
1239{
1240 struct group_info *group_info;
1241 int nblocks;
1242 int i;
1243
1244 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1245 /* Make sure we always allocate at least one indirect block pointer */
1246 nblocks = nblocks ? : 1;
1247 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1248 if (!group_info)
1249 return NULL;
1250 group_info->ngroups = gidsetsize;
1251 group_info->nblocks = nblocks;
1252 atomic_set(&group_info->usage, 1);
1253
1254 if (gidsetsize <= NGROUPS_SMALL) {
1255 group_info->blocks[0] = group_info->small_block;
1256 } else {
1257 for (i = 0; i < nblocks; i++) {
1258 gid_t *b;
1259 b = (void *)__get_free_page(GFP_USER);
1260 if (!b)
1261 goto out_undo_partial_alloc;
1262 group_info->blocks[i] = b;
1263 }
1264 }
1265 return group_info;
1266
1267out_undo_partial_alloc:
1268 while (--i >= 0) {
1269 free_page((unsigned long)group_info->blocks[i]);
1270 }
1271 kfree(group_info);
1272 return NULL;
1273}
1274
1275EXPORT_SYMBOL(groups_alloc);
1276
1277void groups_free(struct group_info *group_info)
1278{
1279 if (group_info->blocks[0] != group_info->small_block) {
1280 int i;
1281 for (i = 0; i < group_info->nblocks; i++)
1282 free_page((unsigned long)group_info->blocks[i]);
1283 }
1284 kfree(group_info);
1285}
1286
1287EXPORT_SYMBOL(groups_free);
1288
1289/* export the group_info to a user-space array */
1290static int groups_to_user(gid_t __user *grouplist,
1291 struct group_info *group_info)
1292{
1293 int i;
1294 int count = group_info->ngroups;
1295
1296 for (i = 0; i < group_info->nblocks; i++) {
1297 int cp_count = min(NGROUPS_PER_BLOCK, count);
1298 int off = i * NGROUPS_PER_BLOCK;
1299 int len = cp_count * sizeof(*grouplist);
1300
1301 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1302 return -EFAULT;
1303
1304 count -= cp_count;
1305 }
1306 return 0;
1307}
1308
1309/* fill a group_info from a user-space array - it must be allocated already */
1310static int groups_from_user(struct group_info *group_info,
1311 gid_t __user *grouplist)
1312 {
1313 int i;
1314 int count = group_info->ngroups;
1315
1316 for (i = 0; i < group_info->nblocks; i++) {
1317 int cp_count = min(NGROUPS_PER_BLOCK, count);
1318 int off = i * NGROUPS_PER_BLOCK;
1319 int len = cp_count * sizeof(*grouplist);
1320
1321 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1322 return -EFAULT;
1323
1324 count -= cp_count;
1325 }
1326 return 0;
1327}
1328
Domen Puncerebe8b542005-05-05 16:16:19 -07001329/* a simple Shell sort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330static void groups_sort(struct group_info *group_info)
1331{
1332 int base, max, stride;
1333 int gidsetsize = group_info->ngroups;
1334
1335 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1336 ; /* nothing */
1337 stride /= 3;
1338
1339 while (stride) {
1340 max = gidsetsize - stride;
1341 for (base = 0; base < max; base++) {
1342 int left = base;
1343 int right = left + stride;
1344 gid_t tmp = GROUP_AT(group_info, right);
1345
1346 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1347 GROUP_AT(group_info, right) =
1348 GROUP_AT(group_info, left);
1349 right = left;
1350 left -= stride;
1351 }
1352 GROUP_AT(group_info, right) = tmp;
1353 }
1354 stride /= 3;
1355 }
1356}
1357
1358/* a simple bsearch */
David Howells3e301482005-06-23 22:00:56 -07001359int groups_search(struct group_info *group_info, gid_t grp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360{
1361 int left, right;
1362
1363 if (!group_info)
1364 return 0;
1365
1366 left = 0;
1367 right = group_info->ngroups;
1368 while (left < right) {
1369 int mid = (left+right)/2;
1370 int cmp = grp - GROUP_AT(group_info, mid);
1371 if (cmp > 0)
1372 left = mid + 1;
1373 else if (cmp < 0)
1374 right = mid;
1375 else
1376 return 1;
1377 }
1378 return 0;
1379}
1380
1381/* validate and set current->group_info */
1382int set_current_groups(struct group_info *group_info)
1383{
1384 int retval;
1385 struct group_info *old_info;
1386
1387 retval = security_task_setgroups(group_info);
1388 if (retval)
1389 return retval;
1390
1391 groups_sort(group_info);
1392 get_group_info(group_info);
1393
1394 task_lock(current);
1395 old_info = current->group_info;
1396 current->group_info = group_info;
1397 task_unlock(current);
1398
1399 put_group_info(old_info);
1400
1401 return 0;
1402}
1403
1404EXPORT_SYMBOL(set_current_groups);
1405
1406asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1407{
1408 int i = 0;
1409
1410 /*
1411 * SMP: Nobody else can change our grouplist. Thus we are
1412 * safe.
1413 */
1414
1415 if (gidsetsize < 0)
1416 return -EINVAL;
1417
1418 /* no need to grab task_lock here; it cannot change */
1419 get_group_info(current->group_info);
1420 i = current->group_info->ngroups;
1421 if (gidsetsize) {
1422 if (i > gidsetsize) {
1423 i = -EINVAL;
1424 goto out;
1425 }
1426 if (groups_to_user(grouplist, current->group_info)) {
1427 i = -EFAULT;
1428 goto out;
1429 }
1430 }
1431out:
1432 put_group_info(current->group_info);
1433 return i;
1434}
1435
1436/*
1437 * SMP: Our groups are copy-on-write. We can set them safely
1438 * without another task interfering.
1439 */
1440
1441asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1442{
1443 struct group_info *group_info;
1444 int retval;
1445
1446 if (!capable(CAP_SETGID))
1447 return -EPERM;
1448 if ((unsigned)gidsetsize > NGROUPS_MAX)
1449 return -EINVAL;
1450
1451 group_info = groups_alloc(gidsetsize);
1452 if (!group_info)
1453 return -ENOMEM;
1454 retval = groups_from_user(group_info, grouplist);
1455 if (retval) {
1456 put_group_info(group_info);
1457 return retval;
1458 }
1459
1460 retval = set_current_groups(group_info);
1461 put_group_info(group_info);
1462
1463 return retval;
1464}
1465
1466/*
1467 * Check whether we're fsgid/egid or in the supplemental group..
1468 */
1469int in_group_p(gid_t grp)
1470{
1471 int retval = 1;
1472 if (grp != current->fsgid) {
1473 get_group_info(current->group_info);
1474 retval = groups_search(current->group_info, grp);
1475 put_group_info(current->group_info);
1476 }
1477 return retval;
1478}
1479
1480EXPORT_SYMBOL(in_group_p);
1481
1482int in_egroup_p(gid_t grp)
1483{
1484 int retval = 1;
1485 if (grp != current->egid) {
1486 get_group_info(current->group_info);
1487 retval = groups_search(current->group_info, grp);
1488 put_group_info(current->group_info);
1489 }
1490 return retval;
1491}
1492
1493EXPORT_SYMBOL(in_egroup_p);
1494
1495DECLARE_RWSEM(uts_sem);
1496
1497EXPORT_SYMBOL(uts_sem);
1498
1499asmlinkage long sys_newuname(struct new_utsname __user * name)
1500{
1501 int errno = 0;
1502
1503 down_read(&uts_sem);
1504 if (copy_to_user(name,&system_utsname,sizeof *name))
1505 errno = -EFAULT;
1506 up_read(&uts_sem);
1507 return errno;
1508}
1509
1510asmlinkage long sys_sethostname(char __user *name, int len)
1511{
1512 int errno;
1513 char tmp[__NEW_UTS_LEN];
1514
1515 if (!capable(CAP_SYS_ADMIN))
1516 return -EPERM;
1517 if (len < 0 || len > __NEW_UTS_LEN)
1518 return -EINVAL;
1519 down_write(&uts_sem);
1520 errno = -EFAULT;
1521 if (!copy_from_user(tmp, name, len)) {
1522 memcpy(system_utsname.nodename, tmp, len);
1523 system_utsname.nodename[len] = 0;
1524 errno = 0;
1525 }
1526 up_write(&uts_sem);
1527 return errno;
1528}
1529
1530#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1531
1532asmlinkage long sys_gethostname(char __user *name, int len)
1533{
1534 int i, errno;
1535
1536 if (len < 0)
1537 return -EINVAL;
1538 down_read(&uts_sem);
1539 i = 1 + strlen(system_utsname.nodename);
1540 if (i > len)
1541 i = len;
1542 errno = 0;
1543 if (copy_to_user(name, system_utsname.nodename, i))
1544 errno = -EFAULT;
1545 up_read(&uts_sem);
1546 return errno;
1547}
1548
1549#endif
1550
1551/*
1552 * Only setdomainname; getdomainname can be implemented by calling
1553 * uname()
1554 */
1555asmlinkage long sys_setdomainname(char __user *name, int len)
1556{
1557 int errno;
1558 char tmp[__NEW_UTS_LEN];
1559
1560 if (!capable(CAP_SYS_ADMIN))
1561 return -EPERM;
1562 if (len < 0 || len > __NEW_UTS_LEN)
1563 return -EINVAL;
1564
1565 down_write(&uts_sem);
1566 errno = -EFAULT;
1567 if (!copy_from_user(tmp, name, len)) {
1568 memcpy(system_utsname.domainname, tmp, len);
1569 system_utsname.domainname[len] = 0;
1570 errno = 0;
1571 }
1572 up_write(&uts_sem);
1573 return errno;
1574}
1575
1576asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1577{
1578 if (resource >= RLIM_NLIMITS)
1579 return -EINVAL;
1580 else {
1581 struct rlimit value;
1582 task_lock(current->group_leader);
1583 value = current->signal->rlim[resource];
1584 task_unlock(current->group_leader);
1585 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1586 }
1587}
1588
1589#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1590
1591/*
1592 * Back compatibility for getrlimit. Needed for some apps.
1593 */
1594
1595asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1596{
1597 struct rlimit x;
1598 if (resource >= RLIM_NLIMITS)
1599 return -EINVAL;
1600
1601 task_lock(current->group_leader);
1602 x = current->signal->rlim[resource];
1603 task_unlock(current->group_leader);
1604 if(x.rlim_cur > 0x7FFFFFFF)
1605 x.rlim_cur = 0x7FFFFFFF;
1606 if(x.rlim_max > 0x7FFFFFFF)
1607 x.rlim_max = 0x7FFFFFFF;
1608 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1609}
1610
1611#endif
1612
1613asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1614{
1615 struct rlimit new_rlim, *old_rlim;
1616 int retval;
1617
1618 if (resource >= RLIM_NLIMITS)
1619 return -EINVAL;
1620 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1621 return -EFAULT;
1622 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1623 return -EINVAL;
1624 old_rlim = current->signal->rlim + resource;
1625 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1626 !capable(CAP_SYS_RESOURCE))
1627 return -EPERM;
1628 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1629 return -EPERM;
1630
1631 retval = security_task_setrlimit(resource, &new_rlim);
1632 if (retval)
1633 return retval;
1634
1635 task_lock(current->group_leader);
1636 *old_rlim = new_rlim;
1637 task_unlock(current->group_leader);
1638
1639 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1640 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1641 new_rlim.rlim_cur <= cputime_to_secs(
1642 current->signal->it_prof_expires))) {
1643 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1644 read_lock(&tasklist_lock);
1645 spin_lock_irq(&current->sighand->siglock);
1646 set_process_cpu_timer(current, CPUCLOCK_PROF,
1647 &cputime, NULL);
1648 spin_unlock_irq(&current->sighand->siglock);
1649 read_unlock(&tasklist_lock);
1650 }
1651
1652 return 0;
1653}
1654
1655/*
1656 * It would make sense to put struct rusage in the task_struct,
1657 * except that would make the task_struct be *really big*. After
1658 * task_struct gets moved into malloc'ed memory, it would
1659 * make sense to do this. It will make moving the rest of the information
1660 * a lot simpler! (Which we're not doing right now because we're not
1661 * measuring them yet).
1662 *
1663 * This expects to be called with tasklist_lock read-locked or better,
1664 * and the siglock not locked. It may momentarily take the siglock.
1665 *
1666 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1667 * races with threads incrementing their own counters. But since word
1668 * reads are atomic, we either get new values or old values and we don't
1669 * care which for the sums. We always take the siglock to protect reading
1670 * the c* fields from p->signal from races with exit.c updating those
1671 * fields when reaping, so a sample either gets all the additions of a
1672 * given child after it's reaped, or none so this sample is before reaping.
1673 */
1674
1675static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1676{
1677 struct task_struct *t;
1678 unsigned long flags;
1679 cputime_t utime, stime;
1680
1681 memset((char *) r, 0, sizeof *r);
1682
1683 if (unlikely(!p->signal))
1684 return;
1685
1686 switch (who) {
1687 case RUSAGE_CHILDREN:
1688 spin_lock_irqsave(&p->sighand->siglock, flags);
1689 utime = p->signal->cutime;
1690 stime = p->signal->cstime;
1691 r->ru_nvcsw = p->signal->cnvcsw;
1692 r->ru_nivcsw = p->signal->cnivcsw;
1693 r->ru_minflt = p->signal->cmin_flt;
1694 r->ru_majflt = p->signal->cmaj_flt;
1695 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1696 cputime_to_timeval(utime, &r->ru_utime);
1697 cputime_to_timeval(stime, &r->ru_stime);
1698 break;
1699 case RUSAGE_SELF:
1700 spin_lock_irqsave(&p->sighand->siglock, flags);
1701 utime = stime = cputime_zero;
1702 goto sum_group;
1703 case RUSAGE_BOTH:
1704 spin_lock_irqsave(&p->sighand->siglock, flags);
1705 utime = p->signal->cutime;
1706 stime = p->signal->cstime;
1707 r->ru_nvcsw = p->signal->cnvcsw;
1708 r->ru_nivcsw = p->signal->cnivcsw;
1709 r->ru_minflt = p->signal->cmin_flt;
1710 r->ru_majflt = p->signal->cmaj_flt;
1711 sum_group:
1712 utime = cputime_add(utime, p->signal->utime);
1713 stime = cputime_add(stime, p->signal->stime);
1714 r->ru_nvcsw += p->signal->nvcsw;
1715 r->ru_nivcsw += p->signal->nivcsw;
1716 r->ru_minflt += p->signal->min_flt;
1717 r->ru_majflt += p->signal->maj_flt;
1718 t = p;
1719 do {
1720 utime = cputime_add(utime, t->utime);
1721 stime = cputime_add(stime, t->stime);
1722 r->ru_nvcsw += t->nvcsw;
1723 r->ru_nivcsw += t->nivcsw;
1724 r->ru_minflt += t->min_flt;
1725 r->ru_majflt += t->maj_flt;
1726 t = next_thread(t);
1727 } while (t != p);
1728 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1729 cputime_to_timeval(utime, &r->ru_utime);
1730 cputime_to_timeval(stime, &r->ru_stime);
1731 break;
1732 default:
1733 BUG();
1734 }
1735}
1736
1737int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1738{
1739 struct rusage r;
1740 read_lock(&tasklist_lock);
1741 k_getrusage(p, who, &r);
1742 read_unlock(&tasklist_lock);
1743 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1744}
1745
1746asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1747{
1748 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1749 return -EINVAL;
1750 return getrusage(current, who, ru);
1751}
1752
1753asmlinkage long sys_umask(int mask)
1754{
1755 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1756 return mask;
1757}
1758
1759asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1760 unsigned long arg4, unsigned long arg5)
1761{
1762 long error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001763
1764 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1765 if (error)
1766 return error;
1767
1768 switch (option) {
1769 case PR_SET_PDEATHSIG:
Jesper Juhl0730ded2005-09-06 15:17:37 -07001770 if (!valid_signal(arg2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001771 error = -EINVAL;
1772 break;
1773 }
Jesper Juhl0730ded2005-09-06 15:17:37 -07001774 current->pdeath_signal = arg2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 break;
1776 case PR_GET_PDEATHSIG:
1777 error = put_user(current->pdeath_signal, (int __user *)arg2);
1778 break;
1779 case PR_GET_DUMPABLE:
Michael Kerrisk2030c0f2005-09-16 19:28:02 -07001780 error = current->mm->dumpable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 break;
1782 case PR_SET_DUMPABLE:
Alan Coxd6e71142005-06-23 00:09:43 -07001783 if (arg2 < 0 || arg2 > 2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784 error = -EINVAL;
1785 break;
1786 }
1787 current->mm->dumpable = arg2;
1788 break;
1789
1790 case PR_SET_UNALIGN:
1791 error = SET_UNALIGN_CTL(current, arg2);
1792 break;
1793 case PR_GET_UNALIGN:
1794 error = GET_UNALIGN_CTL(current, arg2);
1795 break;
1796 case PR_SET_FPEMU:
1797 error = SET_FPEMU_CTL(current, arg2);
1798 break;
1799 case PR_GET_FPEMU:
1800 error = GET_FPEMU_CTL(current, arg2);
1801 break;
1802 case PR_SET_FPEXC:
1803 error = SET_FPEXC_CTL(current, arg2);
1804 break;
1805 case PR_GET_FPEXC:
1806 error = GET_FPEXC_CTL(current, arg2);
1807 break;
1808 case PR_GET_TIMING:
1809 error = PR_TIMING_STATISTICAL;
1810 break;
1811 case PR_SET_TIMING:
1812 if (arg2 == PR_TIMING_STATISTICAL)
1813 error = 0;
1814 else
1815 error = -EINVAL;
1816 break;
1817
1818 case PR_GET_KEEPCAPS:
1819 if (current->keep_capabilities)
1820 error = 1;
1821 break;
1822 case PR_SET_KEEPCAPS:
1823 if (arg2 != 0 && arg2 != 1) {
1824 error = -EINVAL;
1825 break;
1826 }
1827 current->keep_capabilities = arg2;
1828 break;
1829 case PR_SET_NAME: {
1830 struct task_struct *me = current;
1831 unsigned char ncomm[sizeof(me->comm)];
1832
1833 ncomm[sizeof(me->comm)-1] = 0;
1834 if (strncpy_from_user(ncomm, (char __user *)arg2,
1835 sizeof(me->comm)-1) < 0)
1836 return -EFAULT;
1837 set_task_comm(me, ncomm);
1838 return 0;
1839 }
1840 case PR_GET_NAME: {
1841 struct task_struct *me = current;
1842 unsigned char tcomm[sizeof(me->comm)];
1843
1844 get_task_comm(tcomm, me);
1845 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1846 return -EFAULT;
1847 return 0;
1848 }
1849 default:
1850 error = -EINVAL;
1851 break;
1852 }
1853 return error;
1854}