blob: 112f1bec7756d4ac2da9ed16790a746d8104a110 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * in2000.c - Linux device driver for the
3 * Always IN2000 ISA SCSI card.
4 *
5 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6 * john@geolog.com
7 * jshiffle@netcom.com
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 *
25 * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
26 * much of the inspiration and some of the code for this driver.
27 * The Linux IN2000 driver distributed in the Linux kernels through
28 * version 1.2.13 was an extremely valuable reference on the arcane
29 * (and still mysterious) workings of the IN2000's fifo. It also
30 * is where I lifted in2000_biosparam(), the gist of the card
31 * detection scheme, and other bits of code. Many thanks to the
32 * talented and courageous people who wrote, contributed to, and
33 * maintained that driver (including Brad McLean, Shaun Savage,
34 * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
35 * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
36 * Youngdale). I should also mention the driver written by
37 * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
38 * in the Linux-m68k distribution; it gave me a good initial
39 * understanding of the proper way to run a WD33c93 chip, and I
40 * ended up stealing lots of code from it.
41 *
42 * _This_ driver is (I feel) an improvement over the old one in
43 * several respects:
44 * - All problems relating to the data size of a SCSI request are
45 * gone (as far as I know). The old driver couldn't handle
46 * swapping to partitions because that involved 4k blocks, nor
47 * could it deal with the st.c tape driver unmodified, because
48 * that usually involved 4k - 32k blocks. The old driver never
49 * quite got away from a morbid dependence on 2k block sizes -
50 * which of course is the size of the card's fifo.
51 *
52 * - Target Disconnection/Reconnection is now supported. Any
53 * system with more than one device active on the SCSI bus
54 * will benefit from this. The driver defaults to what I'm
55 * calling 'adaptive disconnect' - meaning that each command
56 * is evaluated individually as to whether or not it should
57 * be run with the option to disconnect/reselect (if the
58 * device chooses), or as a "SCSI-bus-hog".
59 *
60 * - Synchronous data transfers are now supported. Because there
61 * are a few devices (and many improperly terminated systems)
62 * that choke when doing sync, the default is sync DISABLED
63 * for all devices. This faster protocol can (and should!)
64 * be enabled on selected devices via the command-line.
65 *
66 * - Runtime operating parameters can now be specified through
67 * either the LILO or the 'insmod' command line. For LILO do:
68 * "in2000=blah,blah,blah"
69 * and with insmod go like:
70 * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
71 * The defaults should be good for most people. See the comment
72 * for 'setup_strings' below for more details.
73 *
74 * - The old driver relied exclusively on what the Western Digital
75 * docs call "Combination Level 2 Commands", which are a great
76 * idea in that the CPU is relieved of a lot of interrupt
77 * overhead. However, by accepting a certain (user-settable)
78 * amount of additional interrupts, this driver achieves
79 * better control over the SCSI bus, and data transfers are
80 * almost as fast while being much easier to define, track,
81 * and debug.
82 *
83 * - You can force detection of a card whose BIOS has been disabled.
84 *
85 * - Multiple IN2000 cards might almost be supported. I've tried to
86 * keep it in mind, but have no way to test...
87 *
88 *
89 * TODO:
90 * tagged queuing. multiple cards.
91 *
92 *
93 * NOTE:
94 * When using this or any other SCSI driver as a module, you'll
95 * find that with the stock kernel, at most _two_ SCSI hard
96 * drives will be linked into the device list (ie, usable).
97 * If your IN2000 card has more than 2 disks on its bus, you
98 * might want to change the define of 'SD_EXTRA_DEVS' in the
99 * 'hosts.h' file from 2 to whatever is appropriate. It took
100 * me a while to track down this surprisingly obscure and
101 * undocumented little "feature".
102 *
103 *
104 * People with bug reports, wish-lists, complaints, comments,
105 * or improvements are asked to pah-leeez email me (John Shifflett)
106 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
107 * this thing into as good a shape as possible, and I'm positive
108 * there are lots of lurking bugs and "Stupid Places".
109 *
Alan Coxfa195af2008-10-27 15:16:36 +0000110 * Updated for Linux 2.5 by Alan Cox <alan@lxorguk.ukuu.org.uk>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111 * - Using new_eh handler
112 * - Hopefully got all the locking right again
113 * See "FIXME" notes for items that could do with more work
114 */
115
116#include <linux/module.h>
117#include <linux/blkdev.h>
118#include <linux/interrupt.h>
119#include <linux/string.h>
120#include <linux/delay.h>
121#include <linux/proc_fs.h>
122#include <linux/ioport.h>
123#include <linux/stat.h>
124
125#include <asm/io.h>
126#include <asm/system.h>
127
128#include "scsi.h"
129#include <scsi/scsi_host.h>
130
131#define IN2000_VERSION "1.33-2.5"
132#define IN2000_DATE "2002/11/03"
133
134#include "in2000.h"
135
136
137/*
138 * 'setup_strings' is a single string used to pass operating parameters and
139 * settings from the kernel/module command-line to the driver. 'setup_args[]'
140 * is an array of strings that define the compile-time default values for
141 * these settings. If Linux boots with a LILO or insmod command-line, those
142 * settings are combined with 'setup_args[]'. Note that LILO command-lines
143 * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
144 * The driver recognizes the following keywords (lower case required) and
145 * arguments:
146 *
147 * - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
148 * - noreset -No optional args. Prevents SCSI bus reset at boot time.
149 * - nosync:x -x is a bitmask where the 1st 7 bits correspond with
150 * the 7 possible SCSI devices (bit 0 for device #0, etc).
151 * Set a bit to PREVENT sync negotiation on that device.
152 * The driver default is sync DISABLED on all devices.
153 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
154 * period. Default is 500; acceptable values are 250 - 1000.
155 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
156 * x = 1 does 'adaptive' disconnects, which is the default
157 * and generally the best choice.
158 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
159 * various types of debug output to printed - see the DB_xxx
160 * defines in in2000.h
161 * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
162 * determines how the /proc interface works and what it
163 * does - see the PR_xxx defines in in2000.h
164 *
165 * Syntax Notes:
166 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
167 * _must_ be a colon between a keyword and its numeric argument, with no
168 * spaces.
169 * - Keywords are separated by commas, no spaces, in the standard kernel
170 * command-line manner.
171 * - A keyword in the 'nth' comma-separated command-line member will overwrite
172 * the 'nth' element of setup_args[]. A blank command-line member (in
173 * other words, a comma with no preceding keyword) will _not_ overwrite
174 * the corresponding setup_args[] element.
175 *
176 * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
177 * - in2000=ioport:0x220,noreset
178 * - in2000=period:250,disconnect:2,nosync:0x03
179 * - in2000=debug:0x1e
180 * - in2000=proc:3
181 */
182
183/* Normally, no defaults are specified... */
184static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
185
186/* filled in by 'insmod' */
187static char *setup_strings;
188
189module_param(setup_strings, charp, 0);
190
191static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
192{
193 write1_io(reg_num, IO_WD_ADDR);
194 return read1_io(IO_WD_DATA);
195}
196
197
198#define READ_AUX_STAT() read1_io(IO_WD_ASR)
199
200
201static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
202{
203 write1_io(reg_num, IO_WD_ADDR);
204 write1_io(value, IO_WD_DATA);
205}
206
207
208static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
209{
210/* while (READ_AUX_STAT() & ASR_CIP)
211 printk("|");*/
212 write1_io(WD_COMMAND, IO_WD_ADDR);
213 write1_io(cmd, IO_WD_DATA);
214}
215
216
217static uchar read_1_byte(struct IN2000_hostdata *hostdata)
218{
219 uchar asr, x = 0;
220
221 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
222 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80);
223 do {
224 asr = READ_AUX_STAT();
225 if (asr & ASR_DBR)
226 x = read_3393(hostdata, WD_DATA);
227 } while (!(asr & ASR_INT));
228 return x;
229}
230
231
232static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
233{
234 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
235 write1_io((value >> 16), IO_WD_DATA);
236 write1_io((value >> 8), IO_WD_DATA);
237 write1_io(value, IO_WD_DATA);
238}
239
240
241static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
242{
243 unsigned long value;
244
245 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
246 value = read1_io(IO_WD_DATA) << 16;
247 value |= read1_io(IO_WD_DATA) << 8;
248 value |= read1_io(IO_WD_DATA);
249 return value;
250}
251
252
253/* The 33c93 needs to be told which direction a command transfers its
254 * data; we use this function to figure it out. Returns true if there
255 * will be a DATA_OUT phase with this command, false otherwise.
256 * (Thanks to Joerg Dorchain for the research and suggestion.)
257 */
258static int is_dir_out(Scsi_Cmnd * cmd)
259{
260 switch (cmd->cmnd[0]) {
261 case WRITE_6:
262 case WRITE_10:
263 case WRITE_12:
264 case WRITE_LONG:
265 case WRITE_SAME:
266 case WRITE_BUFFER:
267 case WRITE_VERIFY:
268 case WRITE_VERIFY_12:
269 case COMPARE:
270 case COPY:
271 case COPY_VERIFY:
272 case SEARCH_EQUAL:
273 case SEARCH_HIGH:
274 case SEARCH_LOW:
275 case SEARCH_EQUAL_12:
276 case SEARCH_HIGH_12:
277 case SEARCH_LOW_12:
278 case FORMAT_UNIT:
279 case REASSIGN_BLOCKS:
280 case RESERVE:
281 case MODE_SELECT:
282 case MODE_SELECT_10:
283 case LOG_SELECT:
284 case SEND_DIAGNOSTIC:
285 case CHANGE_DEFINITION:
286 case UPDATE_BLOCK:
287 case SET_WINDOW:
288 case MEDIUM_SCAN:
289 case SEND_VOLUME_TAG:
290 case 0xea:
291 return 1;
292 default:
293 return 0;
294 }
295}
296
297
298
299static struct sx_period sx_table[] = {
300 {1, 0x20},
301 {252, 0x20},
302 {376, 0x30},
303 {500, 0x40},
304 {624, 0x50},
305 {752, 0x60},
306 {876, 0x70},
307 {1000, 0x00},
308 {0, 0}
309};
310
311static int round_period(unsigned int period)
312{
313 int x;
314
315 for (x = 1; sx_table[x].period_ns; x++) {
316 if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) {
317 return x;
318 }
319 }
320 return 7;
321}
322
323static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
324{
325 uchar result;
326
327 period *= 4; /* convert SDTR code to ns */
328 result = sx_table[round_period(period)].reg_value;
329 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
330 return result;
331}
332
333
334
335static void in2000_execute(struct Scsi_Host *instance);
336
Jeff Garzikf2812332010-11-16 02:10:29 -0500337static int in2000_queuecommand_lck(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700338{
339 struct Scsi_Host *instance;
340 struct IN2000_hostdata *hostdata;
341 Scsi_Cmnd *tmp;
342
343 instance = cmd->device->host;
344 hostdata = (struct IN2000_hostdata *) instance->hostdata;
345
Christoph Hellwig5cd049a2011-04-04 09:42:14 -0400346 DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x(", cmd->cmnd[0]))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700347
348/* Set up a few fields in the Scsi_Cmnd structure for our own use:
349 * - host_scribble is the pointer to the next cmd in the input queue
350 * - scsi_done points to the routine we call when a cmd is finished
351 * - result is what you'd expect
352 */
353 cmd->host_scribble = NULL;
354 cmd->scsi_done = done;
355 cmd->result = 0;
356
357/* We use the Scsi_Pointer structure that's included with each command
358 * as a scratchpad (as it's intended to be used!). The handy thing about
359 * the SCp.xxx fields is that they're always associated with a given
360 * cmd, and are preserved across disconnect-reselect. This means we
361 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
362 * if we keep all the critical pointers and counters in SCp:
363 * - SCp.ptr is the pointer into the RAM buffer
364 * - SCp.this_residual is the size of that buffer
365 * - SCp.buffer points to the current scatter-gather buffer
366 * - SCp.buffers_residual tells us how many S.G. buffers there are
367 * - SCp.have_data_in helps keep track of >2048 byte transfers
368 * - SCp.sent_command is not used
369 * - SCp.phase records this command's SRCID_ER bit setting
370 */
371
Boaz Harrosh53d2a882007-09-09 21:14:41 +0300372 if (scsi_bufflen(cmd)) {
373 cmd->SCp.buffer = scsi_sglist(cmd);
374 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
Jens Axboe45711f12007-10-22 21:19:53 +0200375 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 cmd->SCp.this_residual = cmd->SCp.buffer->length;
377 } else {
378 cmd->SCp.buffer = NULL;
379 cmd->SCp.buffers_residual = 0;
Boaz Harrosh53d2a882007-09-09 21:14:41 +0300380 cmd->SCp.ptr = NULL;
381 cmd->SCp.this_residual = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382 }
383 cmd->SCp.have_data_in = 0;
384
385/* We don't set SCp.phase here - that's done in in2000_execute() */
386
387/* WD docs state that at the conclusion of a "LEVEL2" command, the
388 * status byte can be retrieved from the LUN register. Apparently,
389 * this is the case only for *uninterrupted* LEVEL2 commands! If
390 * there are any unexpected phases entered, even if they are 100%
391 * legal (different devices may choose to do things differently),
392 * the LEVEL2 command sequence is exited. This often occurs prior
393 * to receiving the status byte, in which case the driver does a
394 * status phase interrupt and gets the status byte on its own.
395 * While such a command can then be "resumed" (ie restarted to
396 * finish up as a LEVEL2 command), the LUN register will NOT be
397 * a valid status byte at the command's conclusion, and we must
398 * use the byte obtained during the earlier interrupt. Here, we
399 * preset SCp.Status to an illegal value (0xff) so that when
400 * this command finally completes, we can tell where the actual
401 * status byte is stored.
402 */
403
404 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
405
406/* We need to disable interrupts before messing with the input
407 * queue and calling in2000_execute().
408 */
409
410 /*
411 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
412 * commands are added to the head of the queue so that the desired
413 * sense data is not lost before REQUEST_SENSE executes.
414 */
415
416 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
417 cmd->host_scribble = (uchar *) hostdata->input_Q;
418 hostdata->input_Q = cmd;
419 } else { /* find the end of the queue */
420 for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble);
421 tmp->host_scribble = (uchar *) cmd;
422 }
423
424/* We know that there's at least one command in 'input_Q' now.
425 * Go see if any of them are runnable!
426 */
427
428 in2000_execute(cmd->device->host);
429
Christoph Hellwig5cd049a2011-04-04 09:42:14 -0400430 DB(DB_QUEUE_COMMAND, printk(")Q "))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431 return 0;
432}
433
Jeff Garzikf2812332010-11-16 02:10:29 -0500434static DEF_SCSI_QCMD(in2000_queuecommand)
435
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436
437
438/*
439 * This routine attempts to start a scsi command. If the host_card is
440 * already connected, we give up immediately. Otherwise, look through
441 * the input_Q, using the first command we find that's intended
442 * for a currently non-busy target/lun.
443 * Note that this function is always called with interrupts already
444 * disabled (either from in2000_queuecommand() or in2000_intr()).
445 */
446static void in2000_execute(struct Scsi_Host *instance)
447{
448 struct IN2000_hostdata *hostdata;
449 Scsi_Cmnd *cmd, *prev;
450 int i;
451 unsigned short *sp;
452 unsigned short f;
453 unsigned short flushbuf[16];
454
455
456 hostdata = (struct IN2000_hostdata *) instance->hostdata;
457
458 DB(DB_EXECUTE, printk("EX("))
459
460 if (hostdata->selecting || hostdata->connected) {
461
462 DB(DB_EXECUTE, printk(")EX-0 "))
463
464 return;
465 }
466
467 /*
468 * Search through the input_Q for a command destined
469 * for an idle target/lun.
470 */
471
472 cmd = (Scsi_Cmnd *) hostdata->input_Q;
473 prev = NULL;
474 while (cmd) {
475 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
476 break;
477 prev = cmd;
478 cmd = (Scsi_Cmnd *) cmd->host_scribble;
479 }
480
481 /* quit if queue empty or all possible targets are busy */
482
483 if (!cmd) {
484
485 DB(DB_EXECUTE, printk(")EX-1 "))
486
487 return;
488 }
489
490 /* remove command from queue */
491
492 if (prev)
493 prev->host_scribble = cmd->host_scribble;
494 else
495 hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble;
496
497#ifdef PROC_STATISTICS
498 hostdata->cmd_cnt[cmd->device->id]++;
499#endif
500
501/*
502 * Start the selection process
503 */
504
505 if (is_dir_out(cmd))
506 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
507 else
508 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
509
510/* Now we need to figure out whether or not this command is a good
511 * candidate for disconnect/reselect. We guess to the best of our
512 * ability, based on a set of hierarchical rules. When several
513 * devices are operating simultaneously, disconnects are usually
514 * an advantage. In a single device system, or if only 1 device
515 * is being accessed, transfers usually go faster if disconnects
516 * are not allowed:
517 *
518 * + Commands should NEVER disconnect if hostdata->disconnect =
519 * DIS_NEVER (this holds for tape drives also), and ALWAYS
520 * disconnect if hostdata->disconnect = DIS_ALWAYS.
521 * + Tape drive commands should always be allowed to disconnect.
522 * + Disconnect should be allowed if disconnected_Q isn't empty.
523 * + Commands should NOT disconnect if input_Q is empty.
524 * + Disconnect should be allowed if there are commands in input_Q
525 * for a different target/lun. In this case, the other commands
526 * should be made disconnect-able, if not already.
527 *
528 * I know, I know - this code would flunk me out of any
529 * "C Programming 101" class ever offered. But it's easy
530 * to change around and experiment with for now.
531 */
532
533 cmd->SCp.phase = 0; /* assume no disconnect */
534 if (hostdata->disconnect == DIS_NEVER)
535 goto no;
536 if (hostdata->disconnect == DIS_ALWAYS)
537 goto yes;
538 if (cmd->device->type == 1) /* tape drive? */
539 goto yes;
540 if (hostdata->disconnected_Q) /* other commands disconnected? */
541 goto yes;
542 if (!(hostdata->input_Q)) /* input_Q empty? */
543 goto no;
544 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) {
545 if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) {
546 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble)
547 prev->SCp.phase = 1;
548 goto yes;
549 }
550 }
551 goto no;
552
553 yes:
554 cmd->SCp.phase = 1;
555
556#ifdef PROC_STATISTICS
557 hostdata->disc_allowed_cnt[cmd->device->id]++;
558#endif
559
560 no:
561 write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
562
563 write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun);
564 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
565 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
566
567 if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
568
569 /*
570 * Do a 'Select-With-ATN' command. This will end with
571 * one of the following interrupts:
572 * CSR_RESEL_AM: failure - can try again later.
573 * CSR_TIMEOUT: failure - give up.
574 * CSR_SELECT: success - proceed.
575 */
576
577 hostdata->selecting = cmd;
578
579/* Every target has its own synchronous transfer setting, kept in
580 * the sync_xfer array, and a corresponding status byte in sync_stat[].
581 * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
582 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
583 * means that the parameters are undetermined as yet, and that we
584 * need to send an SDTR message to this device after selection is
585 * complete. We set SS_FIRST to tell the interrupt routine to do so,
586 * unless we don't want to even _try_ synchronous transfers: In this
587 * case we set SS_SET to make the defaults final.
588 */
589 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) {
590 if (hostdata->sync_off & (1 << cmd->device->id))
591 hostdata->sync_stat[cmd->device->id] = SS_SET;
592 else
593 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
594 }
595 hostdata->state = S_SELECTING;
596 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
597 write_3393_cmd(hostdata, WD_CMD_SEL_ATN);
598 }
599
600 else {
601
602 /*
603 * Do a 'Select-With-ATN-Xfer' command. This will end with
604 * one of the following interrupts:
605 * CSR_RESEL_AM: failure - can try again later.
606 * CSR_TIMEOUT: failure - give up.
607 * anything else: success - proceed.
608 */
609
610 hostdata->connected = cmd;
611 write_3393(hostdata, WD_COMMAND_PHASE, 0);
612
613 /* copy command_descriptor_block into WD chip
614 * (take advantage of auto-incrementing)
615 */
616
617 write1_io(WD_CDB_1, IO_WD_ADDR);
618 for (i = 0; i < cmd->cmd_len; i++)
619 write1_io(cmd->cmnd[i], IO_WD_DATA);
620
621 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
622 * it's doing a 'select-and-transfer'. To be safe, we write the
623 * size of the CDB into the OWN_ID register for every case. This
624 * way there won't be problems with vendor-unique, audio, etc.
625 */
626
627 write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
628
629 /* When doing a non-disconnect command, we can save ourselves a DATA
630 * phase interrupt later by setting everything up now. With writes we
631 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
632 * put them in there too - that'll avoid a fifo interrupt. Reads are
633 * somewhat simpler.
634 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
635 * This results in the IO_FIFO_COUNT register rolling over to zero,
636 * and apparently the gate array logic sees this as empty, not full,
637 * so the 3393 chip is never signalled to start reading from the
638 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
639 * Regardless, we fix this by temporarily pretending that the fifo
640 * is 16 bytes smaller. (I see now that the old driver has a comment
641 * about "don't fill completely" in an analogous place - must be the
642 * same deal.) This results in CDROM, swap partitions, and tape drives
643 * needing an extra interrupt per write command - I think we can live
644 * with that!
645 */
646
647 if (!(cmd->SCp.phase)) {
648 write_3393_count(hostdata, cmd->SCp.this_residual);
649 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
650 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */
651
652 if (is_dir_out(cmd)) {
653 hostdata->fifo = FI_FIFO_WRITING;
654 if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16))
655 i = IN2000_FIFO_SIZE - 16;
656 cmd->SCp.have_data_in = i; /* this much data in fifo */
657 i >>= 1; /* Gulp. Assuming modulo 2. */
658 sp = (unsigned short *) cmd->SCp.ptr;
659 f = hostdata->io_base + IO_FIFO;
660
661#ifdef FAST_WRITE_IO
662
663 FAST_WRITE2_IO();
664#else
665 while (i--)
666 write2_io(*sp++, IO_FIFO);
667
668#endif
669
670 /* Is there room for the flush bytes? */
671
672 if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
673 sp = flushbuf;
674 i = 16;
675
676#ifdef FAST_WRITE_IO
677
678 FAST_WRITE2_IO();
679#else
680 while (i--)
681 write2_io(0, IO_FIFO);
682
683#endif
684
685 }
686 }
687
688 else {
689 write1_io(0, IO_FIFO_READ); /* put fifo in read mode */
690 hostdata->fifo = FI_FIFO_READING;
691 cmd->SCp.have_data_in = 0; /* nothing transferred yet */
692 }
693
694 } else {
695 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
696 }
697 hostdata->state = S_RUNNING_LEVEL2;
698 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
699 }
700
701 /*
702 * Since the SCSI bus can handle only 1 connection at a time,
703 * we get out of here now. If the selection fails, or when
704 * the command disconnects, we'll come back to this routine
705 * to search the input_Q again...
706 */
707
Christoph Hellwig5cd049a2011-04-04 09:42:14 -0400708 DB(DB_EXECUTE, printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709
710}
711
712
713
714static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata)
715{
716 uchar asr;
717
718 DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out"))
719
720 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
721 write_3393_count(hostdata, cnt);
722 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
723 if (data_in_dir) {
724 do {
725 asr = READ_AUX_STAT();
726 if (asr & ASR_DBR)
727 *buf++ = read_3393(hostdata, WD_DATA);
728 } while (!(asr & ASR_INT));
729 } else {
730 do {
731 asr = READ_AUX_STAT();
732 if (asr & ASR_DBR)
733 write_3393(hostdata, WD_DATA, *buf++);
734 } while (!(asr & ASR_INT));
735 }
736
737 /* Note: we are returning with the interrupt UN-cleared.
738 * Since (presumably) an entire I/O operation has
739 * completed, the bus phase is probably different, and
740 * the interrupt routine will discover this when it
741 * responds to the uncleared int.
742 */
743
744}
745
746
747
748static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir)
749{
750 struct IN2000_hostdata *hostdata;
751 unsigned short *sp;
752 unsigned short f;
753 int i;
754
755 hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata;
756
757/* Normally, you'd expect 'this_residual' to be non-zero here.
758 * In a series of scatter-gather transfers, however, this
759 * routine will usually be called with 'this_residual' equal
760 * to 0 and 'buffers_residual' non-zero. This means that a
761 * previous transfer completed, clearing 'this_residual', and
762 * now we need to setup the next scatter-gather buffer as the
763 * source or destination for THIS transfer.
764 */
765 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
766 ++cmd->SCp.buffer;
767 --cmd->SCp.buffers_residual;
768 cmd->SCp.this_residual = cmd->SCp.buffer->length;
Jens Axboe45711f12007-10-22 21:19:53 +0200769 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 }
771
772/* Set up hardware registers */
773
774 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
775 write_3393_count(hostdata, cmd->SCp.this_residual);
776 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
777 write1_io(0, IO_FIFO_WRITE); /* zero counter, assume write */
778
779/* Reading is easy. Just issue the command and return - we'll
780 * get an interrupt later when we have actual data to worry about.
781 */
782
783 if (data_in_dir) {
784 write1_io(0, IO_FIFO_READ);
785 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
786 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
787 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
788 hostdata->state = S_RUNNING_LEVEL2;
789 } else
790 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
791 hostdata->fifo = FI_FIFO_READING;
792 cmd->SCp.have_data_in = 0;
793 return;
794 }
795
796/* Writing is more involved - we'll start the WD chip and write as
797 * much data to the fifo as we can right now. Later interrupts will
798 * write any bytes that don't make it at this stage.
799 */
800
801 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
802 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
803 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
804 hostdata->state = S_RUNNING_LEVEL2;
805 } else
806 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
807 hostdata->fifo = FI_FIFO_WRITING;
808 sp = (unsigned short *) cmd->SCp.ptr;
809
810 if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
811 i = IN2000_FIFO_SIZE;
812 cmd->SCp.have_data_in = i;
813 i >>= 1; /* Gulp. We assume this_residual is modulo 2 */
814 f = hostdata->io_base + IO_FIFO;
815
816#ifdef FAST_WRITE_IO
817
818 FAST_WRITE2_IO();
819#else
820 while (i--)
821 write2_io(*sp++, IO_FIFO);
822
823#endif
824
825}
826
827
828/* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
829 * function in order to work in an SMP environment. (I'd be surprised
830 * if the driver is ever used by anyone on a real multi-CPU motherboard,
831 * but it _does_ need to be able to compile and run in an SMP kernel.)
832 */
833
David Howells7d12e782006-10-05 14:55:46 +0100834static irqreturn_t in2000_intr(int irqnum, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700835{
836 struct Scsi_Host *instance = dev_id;
837 struct IN2000_hostdata *hostdata;
838 Scsi_Cmnd *patch, *cmd;
839 uchar asr, sr, phs, id, lun, *ucp, msg;
840 int i, j;
841 unsigned long length;
842 unsigned short *sp;
843 unsigned short f;
844 unsigned long flags;
845
846 hostdata = (struct IN2000_hostdata *) instance->hostdata;
847
848/* Get the spin_lock and disable further ints, for SMP */
849
850 spin_lock_irqsave(instance->host_lock, flags);
851
852#ifdef PROC_STATISTICS
853 hostdata->int_cnt++;
854#endif
855
856/* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
857 * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
858 * with a big logic array, so it's a little different than what you might
859 * expect). As far as I know, there's no reason that BOTH can't be active
860 * at the same time, but there's a problem: while we can read the 3393
861 * to tell if _it_ wants an interrupt, I don't know of a way to ask the
862 * fifo the same question. The best we can do is check the 3393 and if
863 * it _isn't_ the source of the interrupt, then we can be pretty sure
864 * that the fifo is the culprit.
865 * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
866 * IO_FIFO_COUNT register mirrors the fifo interrupt state. I
867 * assume that bit clear means interrupt active. As it turns
868 * out, the driver really doesn't need to check for this after
869 * all, so my remarks above about a 'problem' can safely be
870 * ignored. The way the logic is set up, there's no advantage
871 * (that I can see) to worrying about it.
872 *
873 * It seems that the fifo interrupt signal is negated when we extract
874 * bytes during read or write bytes during write.
875 * - fifo will interrupt when data is moving from it to the 3393, and
876 * there are 31 (or less?) bytes left to go. This is sort of short-
877 * sighted: what if you don't WANT to do more? In any case, our
878 * response is to push more into the fifo - either actual data or
879 * dummy bytes if need be. Note that we apparently have to write at
880 * least 32 additional bytes to the fifo after an interrupt in order
881 * to get it to release the ones it was holding on to - writing fewer
882 * than 32 will result in another fifo int.
883 * UPDATE: Again, info from Bill Earnest makes this more understandable:
884 * 32 bytes = two counts of the fifo counter register. He tells
885 * me that the fifo interrupt is a non-latching signal derived
886 * from a straightforward boolean interpretation of the 7
887 * highest bits of the fifo counter and the fifo-read/fifo-write
888 * state. Who'd a thought?
889 */
890
891 write1_io(0, IO_LED_ON);
892 asr = READ_AUX_STAT();
893 if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
894
895/* Ok. This is definitely a FIFO-only interrupt.
896 *
897 * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
898 * maybe more to come from the SCSI bus. Read as many as we can out of the
899 * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
900 * update have_data_in afterwards.
901 *
902 * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
903 * into the WD3393 chip (I think the interrupt happens when there are 31
904 * bytes left, but it may be fewer...). The 3393 is still waiting, so we
905 * shove some more into the fifo, which gets things moving again. If the
906 * original SCSI command specified more than 2048 bytes, there may still
907 * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
908 * Don't forget to update have_data_in. If we've already written out the
909 * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
910 * push out the remaining real data.
911 * (Big thanks to Bill Earnest for getting me out of the mud in here.)
912 */
913
914 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
915 CHECK_NULL(cmd, "fifo_int")
916
917 if (hostdata->fifo == FI_FIFO_READING) {
918
919 DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT)))
920
921 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
922 i = read1_io(IO_FIFO_COUNT) & 0xfe;
923 i <<= 2; /* # of words waiting in the fifo */
924 f = hostdata->io_base + IO_FIFO;
925
926#ifdef FAST_READ_IO
927
928 FAST_READ2_IO();
929#else
930 while (i--)
931 *sp++ = read2_io(IO_FIFO);
932
933#endif
934
935 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
936 i <<= 1;
937 cmd->SCp.have_data_in += i;
938 }
939
940 else if (hostdata->fifo == FI_FIFO_WRITING) {
941
942 DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT)))
943
944/* If all bytes have been written to the fifo, flush out the stragglers.
945 * Note that while writing 16 dummy words seems arbitrary, we don't
946 * have another choice that I can see. What we really want is to read
947 * the 3393 transfer count register (that would tell us how many bytes
948 * needed flushing), but the TRANSFER_INFO command hasn't completed
949 * yet (not enough bytes!) and that register won't be accessible. So,
950 * we use 16 words - a number obtained through trial and error.
951 * UPDATE: Bill says this is exactly what Always does, so there.
952 * More thanks due him for help in this section.
953 */
954 if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
955 i = 16;
956 while (i--) /* write 32 dummy bytes */
957 write2_io(0, IO_FIFO);
958 }
959
960/* If there are still bytes left in the SCSI buffer, write as many as we
961 * can out to the fifo.
962 */
963
964 else {
965 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
966 i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */
967 j = read1_io(IO_FIFO_COUNT) & 0xfe;
968 j <<= 2; /* how many words the fifo has room for */
969 if ((j << 1) > i)
970 j = (i >> 1);
971 while (j--)
972 write2_io(*sp++, IO_FIFO);
973
974 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
975 i <<= 1;
976 cmd->SCp.have_data_in += i;
977 }
978 }
979
980 else {
981 printk("*** Spurious FIFO interrupt ***");
982 }
983
984 write1_io(0, IO_LED_OFF);
985
986/* release the SMP spin_lock and restore irq state */
987 spin_unlock_irqrestore(instance->host_lock, flags);
988 return IRQ_HANDLED;
989 }
990
991/* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
992 * may also be asserted, but we don't bother to check it: we get more
993 * detailed info from FIFO_READING and FIFO_WRITING (see below).
994 */
995
996 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
997 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear the interrupt */
998 phs = read_3393(hostdata, WD_COMMAND_PHASE);
999
1000 if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1001 printk("\nNR:wd-intr-1\n");
1002 write1_io(0, IO_LED_OFF);
1003
1004/* release the SMP spin_lock and restore irq state */
1005 spin_unlock_irqrestore(instance->host_lock, flags);
1006 return IRQ_HANDLED;
1007 }
1008
1009 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
1010
1011/* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1012 * guaranteed to be in response to the completion of the transfer.
1013 * If we were reading, there's probably data in the fifo that needs
1014 * to be copied into RAM - do that here. Also, we have to update
1015 * 'this_residual' and 'ptr' based on the contents of the
1016 * TRANSFER_COUNT register, in case the device decided to do an
1017 * intermediate disconnect (a device may do this if it has to
1018 * do a seek, or just to be nice and let other devices have
1019 * some bus time during long transfers).
1020 * After doing whatever is necessary with the fifo, we go on and
1021 * service the WD3393 interrupt normally.
1022 */
1023 if (hostdata->fifo == FI_FIFO_READING) {
1024
1025/* buffer index = start-of-buffer + #-of-bytes-already-read */
1026
1027 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
1028
1029/* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1030
1031 i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1032 i >>= 1; /* Gulp. We assume this will always be modulo 2 */
1033 f = hostdata->io_base + IO_FIFO;
1034
1035#ifdef FAST_READ_IO
1036
1037 FAST_READ2_IO();
1038#else
1039 while (i--)
1040 *sp++ = read2_io(IO_FIFO);
1041
1042#endif
1043
1044 hostdata->fifo = FI_FIFO_UNUSED;
1045 length = cmd->SCp.this_residual;
1046 cmd->SCp.this_residual = read_3393_count(hostdata);
1047 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1048
1049 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1050
1051 }
1052
1053 else if (hostdata->fifo == FI_FIFO_WRITING) {
1054 hostdata->fifo = FI_FIFO_UNUSED;
1055 length = cmd->SCp.this_residual;
1056 cmd->SCp.this_residual = read_3393_count(hostdata);
1057 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1058
1059 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1060
1061 }
1062
1063/* Respond to the specific WD3393 interrupt - there are quite a few! */
1064
1065 switch (sr) {
1066
1067 case CSR_TIMEOUT:
1068 DB(DB_INTR, printk("TIMEOUT"))
1069
1070 if (hostdata->state == S_RUNNING_LEVEL2)
1071 hostdata->connected = NULL;
1072 else {
1073 cmd = (Scsi_Cmnd *) hostdata->selecting; /* get a valid cmd */
1074 CHECK_NULL(cmd, "csr_timeout")
1075 hostdata->selecting = NULL;
1076 }
1077
1078 cmd->result = DID_NO_CONNECT << 16;
1079 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1080 hostdata->state = S_UNCONNECTED;
1081 cmd->scsi_done(cmd);
1082
1083/* We are not connected to a target - check to see if there
1084 * are commands waiting to be executed.
1085 */
1086
1087 in2000_execute(instance);
1088 break;
1089
1090
1091/* Note: this interrupt should not occur in a LEVEL2 command */
1092
1093 case CSR_SELECT:
1094 DB(DB_INTR, printk("SELECT"))
1095 hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting;
1096 CHECK_NULL(cmd, "csr_select")
1097 hostdata->selecting = NULL;
1098
1099 /* construct an IDENTIFY message with correct disconnect bit */
1100
1101 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
1102 if (cmd->SCp.phase)
1103 hostdata->outgoing_msg[0] |= 0x40;
1104
1105 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1106#ifdef SYNC_DEBUG
1107 printk(" sending SDTR ");
1108#endif
1109
1110 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
1111
1112 /* tack on a 2nd message to ask about synchronous transfers */
1113
1114 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1115 hostdata->outgoing_msg[2] = 3;
1116 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1117 hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
1118 hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1119 hostdata->outgoing_len = 6;
1120 } else
1121 hostdata->outgoing_len = 1;
1122
1123 hostdata->state = S_CONNECTED;
1124 break;
1125
1126
1127 case CSR_XFER_DONE | PHS_DATA_IN:
1128 case CSR_UNEXP | PHS_DATA_IN:
1129 case CSR_SRV_REQ | PHS_DATA_IN:
1130 DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1131 transfer_bytes(cmd, DATA_IN_DIR);
1132 if (hostdata->state != S_RUNNING_LEVEL2)
1133 hostdata->state = S_CONNECTED;
1134 break;
1135
1136
1137 case CSR_XFER_DONE | PHS_DATA_OUT:
1138 case CSR_UNEXP | PHS_DATA_OUT:
1139 case CSR_SRV_REQ | PHS_DATA_OUT:
1140 DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1141 transfer_bytes(cmd, DATA_OUT_DIR);
1142 if (hostdata->state != S_RUNNING_LEVEL2)
1143 hostdata->state = S_CONNECTED;
1144 break;
1145
1146
1147/* Note: this interrupt should not occur in a LEVEL2 command */
1148
1149 case CSR_XFER_DONE | PHS_COMMAND:
1150 case CSR_UNEXP | PHS_COMMAND:
1151 case CSR_SRV_REQ | PHS_COMMAND:
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001152 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153 transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1154 hostdata->state = S_CONNECTED;
1155 break;
1156
1157
1158 case CSR_XFER_DONE | PHS_STATUS:
1159 case CSR_UNEXP | PHS_STATUS:
1160 case CSR_SRV_REQ | PHS_STATUS:
1161 DB(DB_INTR, printk("STATUS="))
1162
1163 cmd->SCp.Status = read_1_byte(hostdata);
1164 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
1165 if (hostdata->level2 >= L2_BASIC) {
1166 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1167 hostdata->state = S_RUNNING_LEVEL2;
1168 write_3393(hostdata, WD_COMMAND_PHASE, 0x50);
1169 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1170 } else {
1171 hostdata->state = S_CONNECTED;
1172 }
1173 break;
1174
1175
1176 case CSR_XFER_DONE | PHS_MESS_IN:
1177 case CSR_UNEXP | PHS_MESS_IN:
1178 case CSR_SRV_REQ | PHS_MESS_IN:
1179 DB(DB_INTR, printk("MSG_IN="))
1180
1181 msg = read_1_byte(hostdata);
1182 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1183
1184 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1185 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1186 msg = EXTENDED_MESSAGE;
1187 else
1188 hostdata->incoming_ptr = 0;
1189
1190 cmd->SCp.Message = msg;
1191 switch (msg) {
1192
1193 case COMMAND_COMPLETE:
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001194 DB(DB_INTR, printk("CCMP"))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1196 hostdata->state = S_PRE_CMP_DISC;
1197 break;
1198
1199 case SAVE_POINTERS:
1200 DB(DB_INTR, printk("SDP"))
1201 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1202 hostdata->state = S_CONNECTED;
1203 break;
1204
1205 case RESTORE_POINTERS:
1206 DB(DB_INTR, printk("RDP"))
1207 if (hostdata->level2 >= L2_BASIC) {
1208 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1209 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1210 hostdata->state = S_RUNNING_LEVEL2;
1211 } else {
1212 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1213 hostdata->state = S_CONNECTED;
1214 }
1215 break;
1216
1217 case DISCONNECT:
1218 DB(DB_INTR, printk("DIS"))
1219 cmd->device->disconnect = 1;
1220 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1221 hostdata->state = S_PRE_TMP_DISC;
1222 break;
1223
1224 case MESSAGE_REJECT:
1225 DB(DB_INTR, printk("REJ"))
1226#ifdef SYNC_DEBUG
1227 printk("-REJ-");
1228#endif
1229 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1230 hostdata->sync_stat[cmd->device->id] = SS_SET;
1231 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1232 hostdata->state = S_CONNECTED;
1233 break;
1234
1235 case EXTENDED_MESSAGE:
1236 DB(DB_INTR, printk("EXT"))
1237
1238 ucp = hostdata->incoming_msg;
1239
1240#ifdef SYNC_DEBUG
1241 printk("%02x", ucp[hostdata->incoming_ptr]);
1242#endif
1243 /* Is this the last byte of the extended message? */
1244
1245 if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) {
1246
1247 switch (ucp[2]) { /* what's the EXTENDED code? */
1248 case EXTENDED_SDTR:
1249 id = calc_sync_xfer(ucp[3], ucp[4]);
1250 if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) {
1251
1252/* A device has sent an unsolicited SDTR message; rather than go
1253 * through the effort of decoding it and then figuring out what
1254 * our reply should be, we're just gonna say that we have a
1255 * synchronous fifo depth of 0. This will result in asynchronous
1256 * transfers - not ideal but so much easier.
1257 * Actually, this is OK because it assures us that if we don't
1258 * specifically ask for sync transfers, we won't do any.
1259 */
1260
1261 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1262 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1263 hostdata->outgoing_msg[1] = 3;
1264 hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1265 hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4;
1266 hostdata->outgoing_msg[4] = 0;
1267 hostdata->outgoing_len = 5;
1268 hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0);
1269 } else {
1270 hostdata->sync_xfer[cmd->device->id] = id;
1271 }
1272#ifdef SYNC_DEBUG
1273 printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]);
1274#endif
1275 hostdata->sync_stat[cmd->device->id] = SS_SET;
1276 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1277 hostdata->state = S_CONNECTED;
1278 break;
1279 case EXTENDED_WDTR:
1280 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1281 printk("sending WDTR ");
1282 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1283 hostdata->outgoing_msg[1] = 2;
1284 hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1285 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1286 hostdata->outgoing_len = 4;
1287 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1288 hostdata->state = S_CONNECTED;
1289 break;
1290 default:
1291 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1292 printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]);
1293 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1294 hostdata->outgoing_len = 1;
1295 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1296 hostdata->state = S_CONNECTED;
1297 break;
1298 }
1299 hostdata->incoming_ptr = 0;
1300 }
1301
1302 /* We need to read more MESS_IN bytes for the extended message */
1303
1304 else {
1305 hostdata->incoming_ptr++;
1306 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1307 hostdata->state = S_CONNECTED;
1308 }
1309 break;
1310
1311 default:
1312 printk("Rejecting Unknown Message(%02x) ", msg);
1313 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1314 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1315 hostdata->outgoing_len = 1;
1316 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1317 hostdata->state = S_CONNECTED;
1318 }
1319 break;
1320
1321
1322/* Note: this interrupt will occur only after a LEVEL2 command */
1323
1324 case CSR_SEL_XFER_DONE:
1325
1326/* Make sure that reselection is enabled at this point - it may
1327 * have been turned off for the command that just completed.
1328 */
1329
1330 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1331 if (phs == 0x60) {
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001332 DB(DB_INTR, printk("SX-DONE"))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001333 cmd->SCp.Message = COMMAND_COMPLETE;
1334 lun = read_3393(hostdata, WD_TARGET_LUN);
1335 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1336 hostdata->connected = NULL;
1337 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1338 hostdata->state = S_UNCONNECTED;
1339 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1340 cmd->SCp.Status = lun;
1341 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1342 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1343 else
1344 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1345 cmd->scsi_done(cmd);
1346
1347/* We are no longer connected to a target - check to see if
1348 * there are commands waiting to be executed.
1349 */
1350
1351 in2000_execute(instance);
1352 } else {
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001353 printk("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354 }
1355 break;
1356
1357
1358/* Note: this interrupt will occur only after a LEVEL2 command */
1359
1360 case CSR_SDP:
1361 DB(DB_INTR, printk("SDP"))
1362 hostdata->state = S_RUNNING_LEVEL2;
1363 write_3393(hostdata, WD_COMMAND_PHASE, 0x41);
1364 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1365 break;
1366
1367
1368 case CSR_XFER_DONE | PHS_MESS_OUT:
1369 case CSR_UNEXP | PHS_MESS_OUT:
1370 case CSR_SRV_REQ | PHS_MESS_OUT:
1371 DB(DB_INTR, printk("MSG_OUT="))
1372
1373/* To get here, we've probably requested MESSAGE_OUT and have
1374 * already put the correct bytes in outgoing_msg[] and filled
1375 * in outgoing_len. We simply send them out to the SCSI bus.
1376 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1377 * it - like when our SDTR message is rejected by a target. Some
1378 * targets send the REJECT before receiving all of the extended
1379 * message, and then seem to go back to MESSAGE_OUT for a byte
1380 * or two. Not sure why, or if I'm doing something wrong to
1381 * cause this to happen. Regardless, it seems that sending
1382 * NOP messages in these situations results in no harm and
1383 * makes everyone happy.
1384 */
1385 if (hostdata->outgoing_len == 0) {
1386 hostdata->outgoing_len = 1;
1387 hostdata->outgoing_msg[0] = NOP;
1388 }
1389 transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1390 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1391 hostdata->outgoing_len = 0;
1392 hostdata->state = S_CONNECTED;
1393 break;
1394
1395
1396 case CSR_UNEXP_DISC:
1397
1398/* I think I've seen this after a request-sense that was in response
1399 * to an error condition, but not sure. We certainly need to do
1400 * something when we get this interrupt - the question is 'what?'.
1401 * Let's think positively, and assume some command has finished
1402 * in a legal manner (like a command that provokes a request-sense),
1403 * so we treat it as a normal command-complete-disconnect.
1404 */
1405
1406
1407/* Make sure that reselection is enabled at this point - it may
1408 * have been turned off for the command that just completed.
1409 */
1410
1411 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1412 if (cmd == NULL) {
1413 printk(" - Already disconnected! ");
1414 hostdata->state = S_UNCONNECTED;
1415
1416/* release the SMP spin_lock and restore irq state */
1417 spin_unlock_irqrestore(instance->host_lock, flags);
1418 return IRQ_HANDLED;
1419 }
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001420 DB(DB_INTR, printk("UNEXP_DISC"))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 hostdata->connected = NULL;
1422 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1423 hostdata->state = S_UNCONNECTED;
1424 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1425 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1426 else
1427 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1428 cmd->scsi_done(cmd);
1429
1430/* We are no longer connected to a target - check to see if
1431 * there are commands waiting to be executed.
1432 */
1433
1434 in2000_execute(instance);
1435 break;
1436
1437
1438 case CSR_DISC:
1439
1440/* Make sure that reselection is enabled at this point - it may
1441 * have been turned off for the command that just completed.
1442 */
1443
1444 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001445 DB(DB_INTR, printk("DISC"))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 if (cmd == NULL) {
1447 printk(" - Already disconnected! ");
1448 hostdata->state = S_UNCONNECTED;
1449 }
1450 switch (hostdata->state) {
1451 case S_PRE_CMP_DISC:
1452 hostdata->connected = NULL;
1453 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1454 hostdata->state = S_UNCONNECTED;
1455 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1456 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1457 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1458 else
1459 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1460 cmd->scsi_done(cmd);
1461 break;
1462 case S_PRE_TMP_DISC:
1463 case S_RUNNING_LEVEL2:
1464 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1465 hostdata->disconnected_Q = cmd;
1466 hostdata->connected = NULL;
1467 hostdata->state = S_UNCONNECTED;
1468
1469#ifdef PROC_STATISTICS
1470 hostdata->disc_done_cnt[cmd->device->id]++;
1471#endif
1472
1473 break;
1474 default:
1475 printk("*** Unexpected DISCONNECT interrupt! ***");
1476 hostdata->state = S_UNCONNECTED;
1477 }
1478
1479/* We are no longer connected to a target - check to see if
1480 * there are commands waiting to be executed.
1481 */
1482
1483 in2000_execute(instance);
1484 break;
1485
1486
1487 case CSR_RESEL_AM:
1488 DB(DB_INTR, printk("RESEL"))
1489
1490 /* First we have to make sure this reselection didn't */
1491 /* happen during Arbitration/Selection of some other device. */
1492 /* If yes, put losing command back on top of input_Q. */
1493 if (hostdata->level2 <= L2_NONE) {
1494
1495 if (hostdata->selecting) {
1496 cmd = (Scsi_Cmnd *) hostdata->selecting;
1497 hostdata->selecting = NULL;
1498 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1499 cmd->host_scribble = (uchar *) hostdata->input_Q;
1500 hostdata->input_Q = cmd;
1501 }
1502 }
1503
1504 else {
1505
1506 if (cmd) {
1507 if (phs == 0x00) {
1508 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1509 cmd->host_scribble = (uchar *) hostdata->input_Q;
1510 hostdata->input_Q = cmd;
1511 } else {
1512 printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs);
1513 while (1)
1514 printk("\r");
1515 }
1516 }
1517
1518 }
1519
1520 /* OK - find out which device reselected us. */
1521
1522 id = read_3393(hostdata, WD_SOURCE_ID);
1523 id &= SRCID_MASK;
1524
1525 /* and extract the lun from the ID message. (Note that we don't
1526 * bother to check for a valid message here - I guess this is
1527 * not the right way to go, but....)
1528 */
1529
1530 lun = read_3393(hostdata, WD_DATA);
1531 if (hostdata->level2 < L2_RESELECT)
1532 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1533 lun &= 7;
1534
1535 /* Now we look for the command that's reconnecting. */
1536
1537 cmd = (Scsi_Cmnd *) hostdata->disconnected_Q;
1538 patch = NULL;
1539 while (cmd) {
1540 if (id == cmd->device->id && lun == cmd->device->lun)
1541 break;
1542 patch = cmd;
1543 cmd = (Scsi_Cmnd *) cmd->host_scribble;
1544 }
1545
1546 /* Hmm. Couldn't find a valid command.... What to do? */
1547
1548 if (!cmd) {
1549 printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun);
1550 break;
1551 }
1552
1553 /* Ok, found the command - now start it up again. */
1554
1555 if (patch)
1556 patch->host_scribble = cmd->host_scribble;
1557 else
1558 hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble;
1559 hostdata->connected = cmd;
1560
1561 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1562 * because these things are preserved over a disconnect.
1563 * But we DO need to fix the DPD bit so it's correct for this command.
1564 */
1565
1566 if (is_dir_out(cmd))
1567 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
1568 else
1569 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
1570 if (hostdata->level2 >= L2_RESELECT) {
1571 write_3393_count(hostdata, 0); /* we want a DATA_PHASE interrupt */
1572 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1573 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1574 hostdata->state = S_RUNNING_LEVEL2;
1575 } else
1576 hostdata->state = S_CONNECTED;
1577
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 break;
1579
1580 default:
1581 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1582 }
1583
1584 write1_io(0, IO_LED_OFF);
1585
1586 DB(DB_INTR, printk("} "))
1587
1588/* release the SMP spin_lock and restore irq state */
1589 spin_unlock_irqrestore(instance->host_lock, flags);
1590 return IRQ_HANDLED;
1591}
1592
1593
1594
1595#define RESET_CARD 0
1596#define RESET_CARD_AND_BUS 1
1597#define B_FLAG 0x80
1598
1599/*
1600 * Caller must hold instance lock!
1601 */
1602
1603static int reset_hardware(struct Scsi_Host *instance, int type)
1604{
1605 struct IN2000_hostdata *hostdata;
1606 int qt, x;
1607
1608 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1609
1610 write1_io(0, IO_LED_ON);
1611 if (type == RESET_CARD_AND_BUS) {
1612 write1_io(0, IO_CARD_RESET);
1613 x = read1_io(IO_HARDWARE);
1614 }
1615 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear any WD intrpt */
1616 write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1617 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1618 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF));
1619
1620 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
1621 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
1622 write_3393(hostdata, WD_COMMAND, WD_CMD_RESET);
1623 /* FIXME: timeout ?? */
1624 while (!(READ_AUX_STAT() & ASR_INT))
1625 cpu_relax(); /* wait for RESET to complete */
1626
1627 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1628
1629 write_3393(hostdata, WD_QUEUE_TAG, 0xa5); /* any random number */
1630 qt = read_3393(hostdata, WD_QUEUE_TAG);
1631 if (qt == 0xa5) {
1632 x |= B_FLAG;
1633 write_3393(hostdata, WD_QUEUE_TAG, 0);
1634 }
1635 write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1636 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1637 write1_io(0, IO_LED_OFF);
1638 return x;
1639}
1640
1641
1642
1643static int in2000_bus_reset(Scsi_Cmnd * cmd)
1644{
1645 struct Scsi_Host *instance;
1646 struct IN2000_hostdata *hostdata;
1647 int x;
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001648 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649
1650 instance = cmd->device->host;
1651 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1652
1653 printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no);
1654
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001655 spin_lock_irqsave(instance->host_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001657 /* do scsi-reset here */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658 reset_hardware(instance, RESET_CARD_AND_BUS);
1659 for (x = 0; x < 8; x++) {
1660 hostdata->busy[x] = 0;
1661 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1662 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
1663 }
1664 hostdata->input_Q = NULL;
1665 hostdata->selecting = NULL;
1666 hostdata->connected = NULL;
1667 hostdata->disconnected_Q = NULL;
1668 hostdata->state = S_UNCONNECTED;
1669 hostdata->fifo = FI_FIFO_UNUSED;
1670 hostdata->incoming_ptr = 0;
1671 hostdata->outgoing_len = 0;
1672
1673 cmd->result = DID_RESET << 16;
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001674
1675 spin_unlock_irqrestore(instance->host_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 return SUCCESS;
1677}
1678
Jeff Garzik 8fa728a2005-05-28 07:54:40 -04001679static int __in2000_abort(Scsi_Cmnd * cmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680{
1681 struct Scsi_Host *instance;
1682 struct IN2000_hostdata *hostdata;
1683 Scsi_Cmnd *tmp, *prev;
1684 uchar sr, asr;
1685 unsigned long timeout;
1686
1687 instance = cmd->device->host;
1688 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1689
1690 printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no);
1691 printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT));
1692
1693/*
1694 * Case 1 : If the command hasn't been issued yet, we simply remove it
1695 * from the inout_Q.
1696 */
1697
1698 tmp = (Scsi_Cmnd *) hostdata->input_Q;
1699 prev = NULL;
1700 while (tmp) {
1701 if (tmp == cmd) {
1702 if (prev)
1703 prev->host_scribble = cmd->host_scribble;
1704 cmd->host_scribble = NULL;
1705 cmd->result = DID_ABORT << 16;
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001706 printk(KERN_WARNING "scsi%d: Abort - removing command from input_Q. ", instance->host_no);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 cmd->scsi_done(cmd);
1708 return SUCCESS;
1709 }
1710 prev = tmp;
1711 tmp = (Scsi_Cmnd *) tmp->host_scribble;
1712 }
1713
1714/*
1715 * Case 2 : If the command is connected, we're going to fail the abort
1716 * and let the high level SCSI driver retry at a later time or
1717 * issue a reset.
1718 *
1719 * Timeouts, and therefore aborted commands, will be highly unlikely
1720 * and handling them cleanly in this situation would make the common
1721 * case of noresets less efficient, and would pollute our code. So,
1722 * we fail.
1723 */
1724
1725 if (hostdata->connected == cmd) {
1726
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04001727 printk(KERN_WARNING "scsi%d: Aborting connected command - ", instance->host_no);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728
1729 printk("sending wd33c93 ABORT command - ");
1730 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1731 write_3393_cmd(hostdata, WD_CMD_ABORT);
1732
1733/* Now we have to attempt to flush out the FIFO... */
1734
1735 printk("flushing fifo - ");
1736 timeout = 1000000;
1737 do {
1738 asr = READ_AUX_STAT();
1739 if (asr & ASR_DBR)
1740 read_3393(hostdata, WD_DATA);
1741 } while (!(asr & ASR_INT) && timeout-- > 0);
1742 sr = read_3393(hostdata, WD_SCSI_STATUS);
1743 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout);
1744
1745 /*
1746 * Abort command processed.
1747 * Still connected.
1748 * We must disconnect.
1749 */
1750
1751 printk("sending wd33c93 DISCONNECT command - ");
1752 write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1753
1754 timeout = 1000000;
1755 asr = READ_AUX_STAT();
1756 while ((asr & ASR_CIP) && timeout-- > 0)
1757 asr = READ_AUX_STAT();
1758 sr = read_3393(hostdata, WD_SCSI_STATUS);
1759 printk("asr=%02x, sr=%02x.", asr, sr);
1760
1761 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1762 hostdata->connected = NULL;
1763 hostdata->state = S_UNCONNECTED;
1764 cmd->result = DID_ABORT << 16;
1765 cmd->scsi_done(cmd);
1766
1767 in2000_execute(instance);
1768
1769 return SUCCESS;
1770 }
1771
1772/*
1773 * Case 3: If the command is currently disconnected from the bus,
1774 * we're not going to expend much effort here: Let's just return
1775 * an ABORT_SNOOZE and hope for the best...
1776 */
1777
1778 for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble)
1779 if (cmd == tmp) {
1780 printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no);
1781 return FAILED;
1782 }
1783
1784/*
1785 * Case 4 : If we reached this point, the command was not found in any of
1786 * the queues.
1787 *
1788 * We probably reached this point because of an unlikely race condition
1789 * between the command completing successfully and the abortion code,
1790 * so we won't panic, but we will notify the user in case something really
1791 * broke.
1792 */
1793
1794 in2000_execute(instance);
1795
1796 printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no);
1797 return SUCCESS;
1798}
1799
Jeff Garzik 8fa728a2005-05-28 07:54:40 -04001800static int in2000_abort(Scsi_Cmnd * cmd)
1801{
1802 int rc;
1803
1804 spin_lock_irq(cmd->device->host->host_lock);
1805 rc = __in2000_abort(cmd);
1806 spin_unlock_irq(cmd->device->host->host_lock);
1807
1808 return rc;
1809}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810
1811
1812#define MAX_IN2000_HOSTS 3
Tobias Klauser6391a112006-06-08 22:23:48 -07001813#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814#define SETUP_BUFFER_SIZE 200
1815static char setup_buffer[SETUP_BUFFER_SIZE];
1816static char setup_used[MAX_SETUP_ARGS];
1817static int done_setup = 0;
1818
1819static void __init in2000_setup(char *str, int *ints)
1820{
1821 int i;
1822 char *p1, *p2;
1823
1824 strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE);
1825 p1 = setup_buffer;
1826 i = 0;
1827 while (*p1 && (i < MAX_SETUP_ARGS)) {
1828 p2 = strchr(p1, ',');
1829 if (p2) {
1830 *p2 = '\0';
1831 if (p1 != p2)
1832 setup_args[i] = p1;
1833 p1 = p2 + 1;
1834 i++;
1835 } else {
1836 setup_args[i] = p1;
1837 break;
1838 }
1839 }
1840 for (i = 0; i < MAX_SETUP_ARGS; i++)
1841 setup_used[i] = 0;
1842 done_setup = 1;
1843}
1844
1845
1846/* check_setup_args() returns index if key found, 0 if not
1847 */
1848
1849static int __init check_setup_args(char *key, int *val, char *buf)
1850{
1851 int x;
1852 char *cp;
1853
1854 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1855 if (setup_used[x])
1856 continue;
1857 if (!strncmp(setup_args[x], key, strlen(key)))
1858 break;
1859 }
1860 if (x == MAX_SETUP_ARGS)
1861 return 0;
1862 setup_used[x] = 1;
1863 cp = setup_args[x] + strlen(key);
1864 *val = -1;
1865 if (*cp != ':')
1866 return ++x;
1867 cp++;
1868 if ((*cp >= '0') && (*cp <= '9')) {
1869 *val = simple_strtoul(cp, NULL, 0);
1870 }
1871 return ++x;
1872}
1873
1874
1875
1876/* The "correct" (ie portable) way to access memory-mapped hardware
1877 * such as the IN2000 EPROM and dip switch is through the use of
1878 * special macros declared in 'asm/io.h'. We use readb() and readl()
1879 * when reading from the card's BIOS area in in2000_detect().
1880 */
1881static u32 bios_tab[] in2000__INITDATA = {
1882 0xc8000,
1883 0xd0000,
1884 0xd8000,
1885 0
1886};
1887
1888static unsigned short base_tab[] in2000__INITDATA = {
1889 0x220,
1890 0x200,
1891 0x110,
1892 0x100,
1893};
1894
1895static int int_tab[] in2000__INITDATA = {
1896 15,
1897 14,
1898 11,
1899 10
1900};
1901
Al Viro22bc6852006-03-24 03:15:38 -08001902static int probe_bios(u32 addr, u32 *s1, uchar *switches)
1903{
1904 void __iomem *p = ioremap(addr, 0x34);
1905 if (!p)
1906 return 0;
1907 *s1 = readl(p + 0x10);
1908 if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) {
1909 /* Read the switch image that's mapped into EPROM space */
1910 *switches = ~readb(p + 0x20);
1911 iounmap(p);
1912 return 1;
1913 }
1914 iounmap(p);
1915 return 0;
1916}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917
Christoph Hellwigd0be4a7d2005-10-31 18:31:40 +01001918static int __init in2000_detect(struct scsi_host_template * tpnt)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919{
1920 struct Scsi_Host *instance;
1921 struct IN2000_hostdata *hostdata;
1922 int detect_count;
1923 int bios;
1924 int x;
1925 unsigned short base;
1926 uchar switches;
1927 uchar hrev;
1928 unsigned long flags;
1929 int val;
1930 char buf[32];
1931
1932/* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1933 * pretty straightforward and fool-proof operation. There are 3
1934 * possible locations for the IN2000 EPROM in memory space - if we
1935 * find a BIOS signature, we can read the dip switch settings from
1936 * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1937 * of the switch bits we get the card's address in IO space. There's
1938 * an image of the dip switch there, also, so we have a way to back-
1939 * check that this really is an IN2000 card. Very nifty. Use the
1940 * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1941 * or disabled.
1942 */
1943
1944 if (!done_setup && setup_strings)
1945 in2000_setup(setup_strings, NULL);
1946
1947 detect_count = 0;
1948 for (bios = 0; bios_tab[bios]; bios++) {
Al Viro22bc6852006-03-24 03:15:38 -08001949 u32 s1 = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950 if (check_setup_args("ioport", &val, buf)) {
1951 base = val;
1952 switches = ~inb(base + IO_SWITCHES) & 0xff;
1953 printk("Forcing IN2000 detection at IOport 0x%x ", base);
1954 bios = 2;
1955 }
1956/*
1957 * There have been a couple of BIOS versions with different layouts
1958 * for the obvious ID strings. We look for the 2 most common ones and
1959 * hope that they cover all the cases...
1960 */
Al Viro22bc6852006-03-24 03:15:38 -08001961 else if (probe_bios(bios_tab[bios], &s1, &switches)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001962 printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]);
1963
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964/* Find out where the IO space is */
1965
1966 x = switches & (SW_ADDR0 | SW_ADDR1);
1967 base = base_tab[x];
1968
1969/* Check for the IN2000 signature in IO space. */
1970
1971 x = ~inb(base + IO_SWITCHES) & 0xff;
1972 if (x != switches) {
1973 printk("Bad IO signature: %02x vs %02x.\n", x, switches);
1974 continue;
1975 }
1976 } else
1977 continue;
1978
1979/* OK. We have a base address for the IO ports - run a few safety checks */
1980
1981 if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */
1982 printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base);
1983 continue;
1984 }
1985
1986/* Let's assume any hardware version will work, although the driver
1987 * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
1988 * print out the rev number for reference later, but accept them all.
1989 */
1990
1991 hrev = inb(base + IO_HARDWARE);
1992
1993 /* Bit 2 tells us if interrupts are disabled */
1994 if (switches & SW_DISINT) {
1995 printk("The IN-2000 SCSI card at IOport 0x%03x ", base);
1996 printk("is not configured for interrupt operation!\n");
1997 printk("This driver requires an interrupt: cancelling detection.\n");
1998 continue;
1999 }
2000
2001/* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2002 * initialize it.
2003 */
2004
2005 tpnt->proc_name = "in2000";
2006 instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2007 if (instance == NULL)
2008 continue;
2009 detect_count++;
2010 hostdata = (struct IN2000_hostdata *) instance->hostdata;
2011 instance->io_port = hostdata->io_base = base;
2012 hostdata->dip_switch = switches;
2013 hostdata->hrev = hrev;
2014
2015 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
2016 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
2017 write1_io(0, IO_INTR_MASK); /* allow all ints */
2018 x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
Thomas Gleixner1d6f3592006-07-01 19:29:42 -07002019 if (request_irq(x, in2000_intr, IRQF_DISABLED, "in2000", instance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020 printk("in2000_detect: Unable to allocate IRQ.\n");
2021 detect_count--;
2022 continue;
2023 }
2024 instance->irq = x;
2025 instance->n_io_port = 13;
2026 request_region(base, 13, "in2000"); /* lock in this IO space for our use */
2027
2028 for (x = 0; x < 8; x++) {
2029 hostdata->busy[x] = 0;
2030 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
2031 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
2032#ifdef PROC_STATISTICS
2033 hostdata->cmd_cnt[x] = 0;
2034 hostdata->disc_allowed_cnt[x] = 0;
2035 hostdata->disc_done_cnt[x] = 0;
2036#endif
2037 }
2038 hostdata->input_Q = NULL;
2039 hostdata->selecting = NULL;
2040 hostdata->connected = NULL;
2041 hostdata->disconnected_Q = NULL;
2042 hostdata->state = S_UNCONNECTED;
2043 hostdata->fifo = FI_FIFO_UNUSED;
2044 hostdata->level2 = L2_BASIC;
2045 hostdata->disconnect = DIS_ADAPTIVE;
2046 hostdata->args = DEBUG_DEFAULTS;
2047 hostdata->incoming_ptr = 0;
2048 hostdata->outgoing_len = 0;
2049 hostdata->default_sx_per = DEFAULT_SX_PER;
2050
2051/* Older BIOS's had a 'sync on/off' switch - use its setting */
2052
Al Viro22bc6852006-03-24 03:15:38 -08002053 if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054 hostdata->sync_off = 0x00; /* sync defaults to on */
2055 else
2056 hostdata->sync_off = 0xff; /* sync defaults to off */
2057
2058#ifdef PROC_INTERFACE
2059 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
2060#ifdef PROC_STATISTICS
2061 hostdata->int_cnt = 0;
2062#endif
2063#endif
2064
2065 if (check_setup_args("nosync", &val, buf))
2066 hostdata->sync_off = val;
2067
2068 if (check_setup_args("period", &val, buf))
2069 hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns;
2070
2071 if (check_setup_args("disconnect", &val, buf)) {
2072 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2073 hostdata->disconnect = val;
2074 else
2075 hostdata->disconnect = DIS_ADAPTIVE;
2076 }
2077
2078 if (check_setup_args("noreset", &val, buf))
2079 hostdata->args ^= A_NO_SCSI_RESET;
2080
2081 if (check_setup_args("level2", &val, buf))
2082 hostdata->level2 = val;
2083
2084 if (check_setup_args("debug", &val, buf))
2085 hostdata->args = (val & DB_MASK);
2086
2087#ifdef PROC_INTERFACE
2088 if (check_setup_args("proc", &val, buf))
2089 hostdata->proc = val;
2090#endif
2091
2092
2093 /* FIXME: not strictly needed I think but the called code expects
2094 to be locked */
2095 spin_lock_irqsave(instance->host_lock, flags);
2096 x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS);
2097 spin_unlock_irqrestore(instance->host_lock, flags);
2098
2099 hostdata->microcode = read_3393(hostdata, WD_CDB_1);
2100 if (x & 0x01) {
2101 if (x & B_FLAG)
2102 hostdata->chip = C_WD33C93B;
2103 else
2104 hostdata->chip = C_WD33C93A;
2105 } else
2106 hostdata->chip = C_WD33C93;
2107
2108 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No");
2109 printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode);
2110#ifdef DEBUGGING_ON
2111 printk("setup_args = ");
2112 for (x = 0; x < MAX_SETUP_ARGS; x++)
2113 printk("%s,", setup_args[x]);
2114 printk("\n");
2115#endif
2116 if (hostdata->sync_off == 0xff)
2117 printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2118 printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE);
2119 }
2120
2121 return detect_count;
2122}
2123
2124static int in2000_release(struct Scsi_Host *shost)
2125{
2126 if (shost->irq)
2127 free_irq(shost->irq, shost);
2128 if (shost->io_port && shost->n_io_port)
2129 release_region(shost->io_port, shost->n_io_port);
2130 return 0;
2131}
2132
2133/* NOTE: I lifted this function straight out of the old driver,
2134 * and have not tested it. Presumably it does what it's
2135 * supposed to do...
2136 */
2137
2138static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo)
2139{
2140 int size;
2141
2142 size = capacity;
2143 iinfo[0] = 64;
2144 iinfo[1] = 32;
2145 iinfo[2] = size >> 11;
2146
2147/* This should approximate the large drive handling that the DOS ASPI manager
2148 uses. Drives very near the boundaries may not be handled correctly (i.e.
2149 near 2.0 Gb and 4.0 Gb) */
2150
2151 if (iinfo[2] > 1024) {
2152 iinfo[0] = 64;
2153 iinfo[1] = 63;
2154 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2155 }
2156 if (iinfo[2] > 1024) {
2157 iinfo[0] = 128;
2158 iinfo[1] = 63;
2159 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2160 }
2161 if (iinfo[2] > 1024) {
2162 iinfo[0] = 255;
2163 iinfo[1] = 63;
2164 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2165 }
2166 return 0;
2167}
2168
2169
2170static int in2000_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
2171{
2172
2173#ifdef PROC_INTERFACE
2174
2175 char *bp;
2176 char tbuf[128];
2177 unsigned long flags;
2178 struct IN2000_hostdata *hd;
2179 Scsi_Cmnd *cmd;
2180 int x, i;
2181 static int stop = 0;
2182
2183 hd = (struct IN2000_hostdata *) instance->hostdata;
2184
2185/* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2186 * keywords (same format as command-line, but only ONE per read):
2187 * debug
2188 * disconnect
2189 * period
2190 * resync
2191 * proc
2192 */
2193
2194 if (in) {
2195 buf[len] = '\0';
2196 bp = buf;
2197 if (!strncmp(bp, "debug:", 6)) {
2198 bp += 6;
2199 hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
2200 } else if (!strncmp(bp, "disconnect:", 11)) {
2201 bp += 11;
2202 x = simple_strtoul(bp, NULL, 0);
2203 if (x < DIS_NEVER || x > DIS_ALWAYS)
2204 x = DIS_ADAPTIVE;
2205 hd->disconnect = x;
2206 } else if (!strncmp(bp, "period:", 7)) {
2207 bp += 7;
2208 x = simple_strtoul(bp, NULL, 0);
2209 hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns;
2210 } else if (!strncmp(bp, "resync:", 7)) {
2211 bp += 7;
2212 x = simple_strtoul(bp, NULL, 0);
2213 for (i = 0; i < 7; i++)
2214 if (x & (1 << i))
2215 hd->sync_stat[i] = SS_UNSET;
2216 } else if (!strncmp(bp, "proc:", 5)) {
2217 bp += 5;
2218 hd->proc = simple_strtoul(bp, NULL, 0);
2219 } else if (!strncmp(bp, "level2:", 7)) {
2220 bp += 7;
2221 hd->level2 = simple_strtoul(bp, NULL, 0);
2222 }
2223 return len;
2224 }
2225
2226 spin_lock_irqsave(instance->host_lock, flags);
2227 bp = buf;
2228 *bp = '\0';
2229 if (hd->proc & PR_VERSION) {
Michal Marek4c315a52011-04-01 12:41:20 +02002230 sprintf(tbuf, "\nVersion %s - %s.", IN2000_VERSION, IN2000_DATE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231 strcat(bp, tbuf);
2232 }
2233 if (hd->proc & PR_INFO) {
2234 sprintf(tbuf, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No");
2235 strcat(bp, tbuf);
2236 strcat(bp, "\nsync_xfer[] = ");
2237 for (x = 0; x < 7; x++) {
2238 sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
2239 strcat(bp, tbuf);
2240 }
2241 strcat(bp, "\nsync_stat[] = ");
2242 for (x = 0; x < 7; x++) {
2243 sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
2244 strcat(bp, tbuf);
2245 }
2246 }
2247#ifdef PROC_STATISTICS
2248 if (hd->proc & PR_STATISTICS) {
2249 strcat(bp, "\ncommands issued: ");
2250 for (x = 0; x < 7; x++) {
2251 sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
2252 strcat(bp, tbuf);
2253 }
2254 strcat(bp, "\ndisconnects allowed:");
2255 for (x = 0; x < 7; x++) {
2256 sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
2257 strcat(bp, tbuf);
2258 }
2259 strcat(bp, "\ndisconnects done: ");
2260 for (x = 0; x < 7; x++) {
2261 sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
2262 strcat(bp, tbuf);
2263 }
2264 sprintf(tbuf, "\ninterrupts: \t%ld", hd->int_cnt);
2265 strcat(bp, tbuf);
2266 }
2267#endif
2268 if (hd->proc & PR_CONNECTED) {
2269 strcat(bp, "\nconnected: ");
2270 if (hd->connected) {
2271 cmd = (Scsi_Cmnd *) hd->connected;
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04002272 sprintf(tbuf, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 strcat(bp, tbuf);
2274 }
2275 }
2276 if (hd->proc & PR_INPUTQ) {
2277 strcat(bp, "\ninput_Q: ");
2278 cmd = (Scsi_Cmnd *) hd->input_Q;
2279 while (cmd) {
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04002280 sprintf(tbuf, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 strcat(bp, tbuf);
2282 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2283 }
2284 }
2285 if (hd->proc & PR_DISCQ) {
2286 strcat(bp, "\ndisconnected_Q:");
2287 cmd = (Scsi_Cmnd *) hd->disconnected_Q;
2288 while (cmd) {
Christoph Hellwig5cd049a2011-04-04 09:42:14 -04002289 sprintf(tbuf, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290 strcat(bp, tbuf);
2291 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2292 }
2293 }
2294 if (hd->proc & PR_TEST) {
2295 ; /* insert your own custom function here */
2296 }
2297 strcat(bp, "\n");
2298 spin_unlock_irqrestore(instance->host_lock, flags);
2299 *start = buf;
2300 if (stop) {
2301 stop = 0;
2302 return 0; /* return 0 to signal end-of-file */
2303 }
2304 if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
2305 stop = 1;
2306 if (hd->proc & PR_STOP) /* stop every other time */
2307 stop = 1;
2308 return strlen(bp);
2309
2310#else /* PROC_INTERFACE */
2311
2312 return 0;
2313
2314#endif /* PROC_INTERFACE */
2315
2316}
2317
2318MODULE_LICENSE("GPL");
2319
2320
Christoph Hellwigd0be4a7d2005-10-31 18:31:40 +01002321static struct scsi_host_template driver_template = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 .proc_name = "in2000",
2323 .proc_info = in2000_proc_info,
2324 .name = "Always IN2000",
2325 .detect = in2000_detect,
2326 .release = in2000_release,
2327 .queuecommand = in2000_queuecommand,
2328 .eh_abort_handler = in2000_abort,
2329 .eh_bus_reset_handler = in2000_bus_reset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330 .bios_param = in2000_biosparam,
2331 .can_queue = IN2000_CAN_Q,
2332 .this_id = IN2000_HOST_ID,
2333 .sg_tablesize = IN2000_SG,
2334 .cmd_per_lun = IN2000_CPL,
2335 .use_clustering = DISABLE_CLUSTERING,
2336};
2337#include "scsi_module.c"