blob: 04151da399c6ce8c344409c2ce7fbf289ac645e5 [file] [log] [blame]
Christoph Lameter81819f02007-05-06 14:49:36 -07001/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
Christoph Lameter672bba32007-05-09 02:32:39 -070069 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
Christoph Lameter81819f02007-05-06 14:49:36 -070071 * freed then the slab will show up again on the partial lists.
Christoph Lameter672bba32007-05-09 02:32:39 -070072 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
Christoph Lameter81819f02007-05-06 14:49:36 -070074 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
Christoph Lameter4b6f0752007-05-16 22:10:53 -070081 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
Christoph Lameter894b8782007-05-10 03:15:16 -070093 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
Christoph Lameter81819f02007-05-06 14:49:36 -070096 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
Christoph Lameter894b8782007-05-10 03:15:16 -070099 * the fast path and disables lockless freelists.
Christoph Lameter81819f02007-05-06 14:49:36 -0700100 */
101
Christoph Lameter5577bd82007-05-16 22:10:56 -0700102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700110static inline int SlabFrozen(struct page *page)
111{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700112 return page->flags & FROZEN;
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700117 page->flags |= FROZEN;
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700122 page->flags &= ~FROZEN;
Christoph Lameter4b6f0752007-05-16 22:10:53 -0700123}
124
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700125static inline int SlabDebug(struct page *page)
126{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700127 return page->flags & SLABDEBUG;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700128}
129
130static inline void SetSlabDebug(struct page *page)
131{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700132 page->flags |= SLABDEBUG;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
Christoph Lameter5577bd82007-05-16 22:10:56 -0700137 page->flags &= ~SLABDEBUG;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -0700138}
139
Christoph Lameter81819f02007-05-06 14:49:36 -0700140/*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
Christoph Lameter672bba32007-05-09 02:32:39 -0700145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
Christoph Lameter81819f02007-05-06 14:49:36 -0700147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156#if PAGE_SHIFT <= 12
157
158/*
159 * Small page size. Make sure that we do not fragment memory
160 */
161#define DEFAULT_MAX_ORDER 1
162#define DEFAULT_MIN_OBJECTS 4
163
164#else
165
166/*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170#define DEFAULT_MAX_ORDER 2
171#define DEFAULT_MIN_OBJECTS 8
172
173#endif
174
175/*
Christoph Lameter2086d262007-05-06 14:49:46 -0700176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
Christoph Lametere95eed52007-05-06 14:49:44 -0700179#define MIN_PARTIAL 2
180
Christoph Lameter2086d262007-05-06 14:49:46 -0700181/*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186#define MAX_PARTIAL 10
187
Christoph Lameter81819f02007-05-06 14:49:36 -0700188#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
Christoph Lameter672bba32007-05-09 02:32:39 -0700190
Christoph Lameter81819f02007-05-06 14:49:36 -0700191/*
192 * Set of flags that will prevent slab merging
193 */
194#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200#ifndef ARCH_KMALLOC_MINALIGN
Christoph Lameter47bfdc02007-05-06 14:49:37 -0700201#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Christoph Lameter81819f02007-05-06 14:49:36 -0700202#endif
203
204#ifndef ARCH_SLAB_MINALIGN
Christoph Lameter47bfdc02007-05-06 14:49:37 -0700205#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
Christoph Lameter81819f02007-05-06 14:49:36 -0700206#endif
207
Christoph Lameter6300ea72007-07-17 04:03:20 -0700208/*
209 * The page->inuse field is 16 bit thus we have this limitation
210 */
211#define MAX_OBJECTS_PER_SLAB 65535
212
Christoph Lameter81819f02007-05-06 14:49:36 -0700213/* Internal SLUB flags */
Christoph Lameter1ceef402007-08-07 15:11:48 -0700214#define __OBJECT_POISON 0x80000000 /* Poison object */
215#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
Christoph Lameter81819f02007-05-06 14:49:36 -0700216
Christoph Lameter65c02d42007-05-09 02:32:35 -0700217/* Not all arches define cache_line_size */
218#ifndef cache_line_size
219#define cache_line_size() L1_CACHE_BYTES
220#endif
221
Christoph Lameter81819f02007-05-06 14:49:36 -0700222static int kmem_size = sizeof(struct kmem_cache);
223
224#ifdef CONFIG_SMP
225static struct notifier_block slab_notifier;
226#endif
227
228static enum {
229 DOWN, /* No slab functionality available */
230 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
Christoph Lameter672bba32007-05-09 02:32:39 -0700231 UP, /* Everything works but does not show up in sysfs */
Christoph Lameter81819f02007-05-06 14:49:36 -0700232 SYSFS /* Sysfs up */
233} slab_state = DOWN;
234
235/* A list of all slab caches on the system */
236static DECLARE_RWSEM(slub_lock);
Adrian Bunk5af328a2007-07-17 04:03:27 -0700237static LIST_HEAD(slab_caches);
Christoph Lameter81819f02007-05-06 14:49:36 -0700238
Christoph Lameter02cbc872007-05-09 02:32:43 -0700239/*
240 * Tracking user of a slab.
241 */
242struct track {
243 void *addr; /* Called from address */
244 int cpu; /* Was running on cpu */
245 int pid; /* Pid context */
246 unsigned long when; /* When did the operation occur */
247};
248
249enum track_item { TRACK_ALLOC, TRACK_FREE };
250
Christoph Lameter41ecc552007-05-09 02:32:44 -0700251#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
Christoph Lameter81819f02007-05-06 14:49:36 -0700252static int sysfs_slab_add(struct kmem_cache *);
253static int sysfs_slab_alias(struct kmem_cache *, const char *);
254static void sysfs_slab_remove(struct kmem_cache *);
255#else
Christoph Lameter0c710012007-07-17 04:03:24 -0700256static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
257static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
258 { return 0; }
259static inline void sysfs_slab_remove(struct kmem_cache *s) {}
Christoph Lameter81819f02007-05-06 14:49:36 -0700260#endif
261
262/********************************************************************
263 * Core slab cache functions
264 *******************************************************************/
265
266int slab_is_available(void)
267{
268 return slab_state >= UP;
269}
270
271static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
272{
273#ifdef CONFIG_NUMA
274 return s->node[node];
275#else
276 return &s->local_node;
277#endif
278}
279
Christoph Lameter02cbc872007-05-09 02:32:43 -0700280static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
282{
283 void *base;
284
285 if (!object)
286 return 1;
287
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
292 }
293
294 return 1;
295}
296
Christoph Lameter81819f02007-05-06 14:49:36 -0700297/*
Christoph Lameter7656c722007-05-09 02:32:40 -0700298 * Slow version of get and set free pointer.
299 *
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
303 */
304static inline void *get_freepointer(struct kmem_cache *s, void *object)
305{
306 return *(void **)(object + s->offset);
307}
308
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
311 *(void **)(object + s->offset) = fp;
312}
313
314/* Loop over all objects in a slab */
315#define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
318
319/* Scan freelist */
320#define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
323/* Determine object index from a given position */
324static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325{
326 return (p - addr) / s->size;
327}
328
Christoph Lameter41ecc552007-05-09 02:32:44 -0700329#ifdef CONFIG_SLUB_DEBUG
330/*
331 * Debug settings:
332 */
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700333#ifdef CONFIG_SLUB_DEBUG_ON
334static int slub_debug = DEBUG_DEFAULT_FLAGS;
335#else
Christoph Lameter41ecc552007-05-09 02:32:44 -0700336static int slub_debug;
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700337#endif
Christoph Lameter41ecc552007-05-09 02:32:44 -0700338
339static char *slub_debug_slabs;
340
Christoph Lameter7656c722007-05-09 02:32:40 -0700341/*
Christoph Lameter81819f02007-05-06 14:49:36 -0700342 * Object debugging
343 */
344static void print_section(char *text, u8 *addr, unsigned int length)
345{
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
349
350 ascii[16] = 0;
351
352 for (i = 0; i < length; i++) {
353 if (newline) {
Christoph Lameter24922682007-07-17 04:03:18 -0700354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
Christoph Lameter81819f02007-05-06 14:49:36 -0700355 newline = 0;
356 }
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
363 }
364 }
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
371 }
372 printk(" %s\n", ascii);
373 }
374}
375
Christoph Lameter81819f02007-05-06 14:49:36 -0700376static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
378{
379 struct track *p;
380
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
385
386 return p + alloc;
387}
388
389static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
391{
392 struct track *p;
393
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
398
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
407}
408
Christoph Lameter81819f02007-05-06 14:49:36 -0700409static void init_tracking(struct kmem_cache *s, void *object)
410{
Christoph Lameter24922682007-07-17 04:03:18 -0700411 if (!(s->flags & SLAB_STORE_USER))
412 return;
413
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
Christoph Lameter81819f02007-05-06 14:49:36 -0700416}
417
418static void print_track(const char *s, struct track *t)
419{
420 if (!t->addr)
421 return;
422
Christoph Lameter24922682007-07-17 04:03:18 -0700423 printk(KERN_ERR "INFO: %s in ", s);
Christoph Lameter81819f02007-05-06 14:49:36 -0700424 __print_symbol("%s", (unsigned long)t->addr);
Christoph Lameter24922682007-07-17 04:03:18 -0700425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
Christoph Lameter81819f02007-05-06 14:49:36 -0700426}
427
Christoph Lameter24922682007-07-17 04:03:18 -0700428static void print_tracking(struct kmem_cache *s, void *object)
429{
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
432
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
435}
436
437static void print_page_info(struct page *page)
438{
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
441
442}
443
444static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445{
446 va_list args;
447 char buf[100];
448
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
457}
458
459static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460{
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468}
469
470static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
Christoph Lameter81819f02007-05-06 14:49:36 -0700471{
472 unsigned int off; /* Offset of last byte */
Christoph Lameter24922682007-07-17 04:03:18 -0700473 u8 *addr = page_address(page);
474
475 print_tracking(s, p);
476
477 print_page_info(page);
478
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
481
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
484
485 print_section("Object", p, min(s->objsize, 128));
Christoph Lameter81819f02007-05-06 14:49:36 -0700486
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
490
Christoph Lameter81819f02007-05-06 14:49:36 -0700491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
495
Christoph Lameter24922682007-07-17 04:03:18 -0700496 if (s->flags & SLAB_STORE_USER)
Christoph Lameter81819f02007-05-06 14:49:36 -0700497 off += 2 * sizeof(struct track);
Christoph Lameter81819f02007-05-06 14:49:36 -0700498
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
Christoph Lameter24922682007-07-17 04:03:18 -0700501 print_section("Padding", p + off, s->size - off);
502
503 dump_stack();
Christoph Lameter81819f02007-05-06 14:49:36 -0700504}
505
506static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
508{
Christoph Lameter24922682007-07-17 04:03:18 -0700509 slab_bug(s, reason);
510 print_trailer(s, page, object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700511}
512
Christoph Lameter24922682007-07-17 04:03:18 -0700513static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
Christoph Lameter81819f02007-05-06 14:49:36 -0700514{
515 va_list args;
516 char buf[100];
517
Christoph Lameter24922682007-07-17 04:03:18 -0700518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
Christoph Lameter81819f02007-05-06 14:49:36 -0700520 va_end(args);
Christoph Lameter24922682007-07-17 04:03:18 -0700521 slab_bug(s, fmt);
522 print_page_info(page);
Christoph Lameter81819f02007-05-06 14:49:36 -0700523 dump_stack();
524}
525
526static void init_object(struct kmem_cache *s, void *object, int active)
527{
528 u8 *p = object;
529
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
533 }
534
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
539}
540
Christoph Lameter24922682007-07-17 04:03:18 -0700541static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
Christoph Lameter81819f02007-05-06 14:49:36 -0700542{
543 while (bytes) {
544 if (*start != (u8)value)
Christoph Lameter24922682007-07-17 04:03:18 -0700545 return start;
Christoph Lameter81819f02007-05-06 14:49:36 -0700546 start++;
547 bytes--;
548 }
Christoph Lameter24922682007-07-17 04:03:18 -0700549 return NULL;
550}
551
552static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
554{
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
557}
558
559static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
562{
563 u8 *fault;
564 u8 *end;
565
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
569
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
573
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
578
579 restore_bytes(s, what, value, fault, end);
580 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700581}
582
Christoph Lameter81819f02007-05-06 14:49:36 -0700583/*
584 * Object layout:
585 *
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
Christoph Lameter672bba32007-05-09 02:32:39 -0700590 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
593 *
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
Christoph Lameter672bba32007-05-09 02:32:39 -0700596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
598 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
601 *
602 * object + s->inuse
Christoph Lameter672bba32007-05-09 02:32:39 -0700603 * Meta data starts here.
604 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
Christoph Lameter672bba32007-05-09 02:32:39 -0700607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
610 *
611 * Padding is done using 0x5a (POISON_INUSE)
Christoph Lameter81819f02007-05-06 14:49:36 -0700612 *
613 * object + s->size
Christoph Lameter672bba32007-05-09 02:32:39 -0700614 * Nothing is used beyond s->size.
Christoph Lameter81819f02007-05-06 14:49:36 -0700615 *
Christoph Lameter672bba32007-05-09 02:32:39 -0700616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
Christoph Lameter81819f02007-05-06 14:49:36 -0700618 * may be used with merged slabcaches.
619 */
620
Christoph Lameter81819f02007-05-06 14:49:36 -0700621static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622{
623 unsigned long off = s->inuse; /* The end of info */
624
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
628
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
632
633 if (s->size == off)
634 return 1;
635
Christoph Lameter24922682007-07-17 04:03:18 -0700636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
Christoph Lameter81819f02007-05-06 14:49:36 -0700638}
639
640static int slab_pad_check(struct kmem_cache *s, struct page *page)
641{
Christoph Lameter24922682007-07-17 04:03:18 -0700642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
Christoph Lameter81819f02007-05-06 14:49:36 -0700647
648 if (!(s->flags & SLAB_POISON))
649 return 1;
650
Christoph Lameter24922682007-07-17 04:03:18 -0700651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
Christoph Lameter81819f02007-05-06 14:49:36 -0700653 length = s->objects * s->size;
Christoph Lameter24922682007-07-17 04:03:18 -0700654 remainder = end - (start + length);
Christoph Lameter81819f02007-05-06 14:49:36 -0700655 if (!remainder)
656 return 1;
657
Christoph Lameter24922682007-07-17 04:03:18 -0700658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
663
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
666
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700669}
670
671static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
673{
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
676
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
Christoph Lameter24922682007-07-17 04:03:18 -0700681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
Christoph Lameter81819f02007-05-06 14:49:36 -0700683 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700684 } else {
Christoph Lameter24922682007-07-17 04:03:18 -0700685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
Christoph Lameter81819f02007-05-06 14:49:36 -0700688 }
689
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
Christoph Lameter24922682007-07-17 04:03:18 -0700692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
Christoph Lameter81819f02007-05-06 14:49:36 -0700696 return 0;
Christoph Lameter81819f02007-05-06 14:49:36 -0700697 /*
698 * check_pad_bytes cleans up on its own.
699 */
700 check_pad_bytes(s, page, p);
701 }
702
703 if (!s->offset && active)
704 /*
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
707 */
708 return 1;
709
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
713 /*
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
Christoph Lameter672bba32007-05-09 02:32:39 -0700716 * another error because the object count is now wrong.
Christoph Lameter81819f02007-05-06 14:49:36 -0700717 */
718 set_freepointer(s, p, NULL);
719 return 0;
720 }
721 return 1;
722}
723
724static int check_slab(struct kmem_cache *s, struct page *page)
725{
726 VM_BUG_ON(!irqs_disabled());
727
728 if (!PageSlab(page)) {
Christoph Lameter24922682007-07-17 04:03:18 -0700729 slab_err(s, page, "Not a valid slab page");
Christoph Lameter81819f02007-05-06 14:49:36 -0700730 return 0;
731 }
732 if (page->offset * sizeof(void *) != s->offset) {
Christoph Lameter24922682007-07-17 04:03:18 -0700733 slab_err(s, page, "Corrupted offset %lu",
734 (unsigned long)(page->offset * sizeof(void *)));
Christoph Lameter81819f02007-05-06 14:49:36 -0700735 return 0;
736 }
737 if (page->inuse > s->objects) {
Christoph Lameter24922682007-07-17 04:03:18 -0700738 slab_err(s, page, "inuse %u > max %u",
739 s->name, page->inuse, s->objects);
Christoph Lameter81819f02007-05-06 14:49:36 -0700740 return 0;
741 }
742 /* Slab_pad_check fixes things up after itself */
743 slab_pad_check(s, page);
744 return 1;
745}
746
747/*
Christoph Lameter672bba32007-05-09 02:32:39 -0700748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
Christoph Lameter81819f02007-05-06 14:49:36 -0700750 */
751static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
752{
753 int nr = 0;
754 void *fp = page->freelist;
755 void *object = NULL;
756
757 while (fp && nr <= s->objects) {
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
764 set_freepointer(s, object, NULL);
765 break;
766 } else {
Christoph Lameter24922682007-07-17 04:03:18 -0700767 slab_err(s, page, "Freepointer corrupt");
Christoph Lameter81819f02007-05-06 14:49:36 -0700768 page->freelist = NULL;
769 page->inuse = s->objects;
Christoph Lameter24922682007-07-17 04:03:18 -0700770 slab_fix(s, "Freelist cleared");
Christoph Lameter81819f02007-05-06 14:49:36 -0700771 return 0;
772 }
773 break;
774 }
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
778 }
779
780 if (page->inuse != s->objects - nr) {
Christoph Lameter70d71222007-05-06 14:49:47 -0700781 slab_err(s, page, "Wrong object count. Counter is %d but "
Christoph Lameter24922682007-07-17 04:03:18 -0700782 "counted were %d", page->inuse, s->objects - nr);
Christoph Lameter81819f02007-05-06 14:49:36 -0700783 page->inuse = s->objects - nr;
Christoph Lameter24922682007-07-17 04:03:18 -0700784 slab_fix(s, "Object count adjusted.");
Christoph Lameter81819f02007-05-06 14:49:36 -0700785 }
786 return search == NULL;
787}
788
Christoph Lameter3ec09742007-05-16 22:11:00 -0700789static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
790{
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803}
804
Christoph Lameter643b1132007-05-06 14:49:42 -0700805/*
Christoph Lameter672bba32007-05-09 02:32:39 -0700806 * Tracking of fully allocated slabs for debugging purposes.
Christoph Lameter643b1132007-05-06 14:49:42 -0700807 */
Christoph Lametere95eed52007-05-06 14:49:44 -0700808static void add_full(struct kmem_cache_node *n, struct page *page)
Christoph Lameter643b1132007-05-06 14:49:42 -0700809{
Christoph Lameter643b1132007-05-06 14:49:42 -0700810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813}
814
815static void remove_full(struct kmem_cache *s, struct page *page)
816{
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827}
828
Christoph Lameter3ec09742007-05-16 22:11:00 -0700829static void setup_object_debug(struct kmem_cache *s, struct page *page,
830 void *object)
831{
832 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833 return;
834
835 init_object(s, object, 0);
836 init_tracking(s, object);
837}
838
839static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840 void *object, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -0700841{
842 if (!check_slab(s, page))
843 goto bad;
844
845 if (object && !on_freelist(s, page, object)) {
Christoph Lameter24922682007-07-17 04:03:18 -0700846 object_err(s, page, object, "Object already allocated");
Christoph Lameter70d71222007-05-06 14:49:47 -0700847 goto bad;
Christoph Lameter81819f02007-05-06 14:49:36 -0700848 }
849
850 if (!check_valid_pointer(s, page, object)) {
851 object_err(s, page, object, "Freelist Pointer check fails");
Christoph Lameter70d71222007-05-06 14:49:47 -0700852 goto bad;
Christoph Lameter81819f02007-05-06 14:49:36 -0700853 }
854
Christoph Lameter3ec09742007-05-16 22:11:00 -0700855 if (object && !check_object(s, page, object, 0))
Christoph Lameter81819f02007-05-06 14:49:36 -0700856 goto bad;
Christoph Lameter81819f02007-05-06 14:49:36 -0700857
Christoph Lameter3ec09742007-05-16 22:11:00 -0700858 /* Success perform special debug activities for allocs */
859 if (s->flags & SLAB_STORE_USER)
860 set_track(s, object, TRACK_ALLOC, addr);
861 trace(s, page, object, 1);
862 init_object(s, object, 1);
Christoph Lameter81819f02007-05-06 14:49:36 -0700863 return 1;
Christoph Lameter3ec09742007-05-16 22:11:00 -0700864
Christoph Lameter81819f02007-05-06 14:49:36 -0700865bad:
866 if (PageSlab(page)) {
867 /*
868 * If this is a slab page then lets do the best we can
869 * to avoid issues in the future. Marking all objects
Christoph Lameter672bba32007-05-09 02:32:39 -0700870 * as used avoids touching the remaining objects.
Christoph Lameter81819f02007-05-06 14:49:36 -0700871 */
Christoph Lameter24922682007-07-17 04:03:18 -0700872 slab_fix(s, "Marking all objects used");
Christoph Lameter81819f02007-05-06 14:49:36 -0700873 page->inuse = s->objects;
874 page->freelist = NULL;
875 /* Fix up fields that may be corrupted */
876 page->offset = s->offset / sizeof(void *);
877 }
878 return 0;
879}
880
Christoph Lameter3ec09742007-05-16 22:11:00 -0700881static int free_debug_processing(struct kmem_cache *s, struct page *page,
882 void *object, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -0700883{
884 if (!check_slab(s, page))
885 goto fail;
886
887 if (!check_valid_pointer(s, page, object)) {
Christoph Lameter70d71222007-05-06 14:49:47 -0700888 slab_err(s, page, "Invalid object pointer 0x%p", object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700889 goto fail;
890 }
891
892 if (on_freelist(s, page, object)) {
Christoph Lameter24922682007-07-17 04:03:18 -0700893 object_err(s, page, object, "Object already free");
Christoph Lameter81819f02007-05-06 14:49:36 -0700894 goto fail;
895 }
896
897 if (!check_object(s, page, object, 1))
898 return 0;
899
900 if (unlikely(s != page->slab)) {
901 if (!PageSlab(page))
Christoph Lameter70d71222007-05-06 14:49:47 -0700902 slab_err(s, page, "Attempt to free object(0x%p) "
903 "outside of slab", object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700904 else
Christoph Lameter70d71222007-05-06 14:49:47 -0700905 if (!page->slab) {
Christoph Lameter81819f02007-05-06 14:49:36 -0700906 printk(KERN_ERR
Christoph Lameter70d71222007-05-06 14:49:47 -0700907 "SLUB <none>: no slab for object 0x%p.\n",
Christoph Lameter81819f02007-05-06 14:49:36 -0700908 object);
Christoph Lameter70d71222007-05-06 14:49:47 -0700909 dump_stack();
910 }
Christoph Lameter81819f02007-05-06 14:49:36 -0700911 else
Christoph Lameter24922682007-07-17 04:03:18 -0700912 object_err(s, page, object,
913 "page slab pointer corrupt.");
Christoph Lameter81819f02007-05-06 14:49:36 -0700914 goto fail;
915 }
Christoph Lameter3ec09742007-05-16 22:11:00 -0700916
917 /* Special debug activities for freeing objects */
918 if (!SlabFrozen(page) && !page->freelist)
919 remove_full(s, page);
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_FREE, addr);
922 trace(s, page, object, 0);
923 init_object(s, object, 0);
Christoph Lameter81819f02007-05-06 14:49:36 -0700924 return 1;
Christoph Lameter3ec09742007-05-16 22:11:00 -0700925
Christoph Lameter81819f02007-05-06 14:49:36 -0700926fail:
Christoph Lameter24922682007-07-17 04:03:18 -0700927 slab_fix(s, "Object at 0x%p not freed", object);
Christoph Lameter81819f02007-05-06 14:49:36 -0700928 return 0;
929}
930
Christoph Lameter41ecc552007-05-09 02:32:44 -0700931static int __init setup_slub_debug(char *str)
932{
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700933 slub_debug = DEBUG_DEFAULT_FLAGS;
934 if (*str++ != '=' || !*str)
935 /*
936 * No options specified. Switch on full debugging.
937 */
938 goto out;
Christoph Lameter41ecc552007-05-09 02:32:44 -0700939
940 if (*str == ',')
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700941 /*
942 * No options but restriction on slabs. This means full
943 * debugging for slabs matching a pattern.
944 */
945 goto check_slabs;
946
947 slub_debug = 0;
948 if (*str == '-')
949 /*
950 * Switch off all debugging measures.
951 */
952 goto out;
953
954 /*
955 * Determine which debug features should be switched on
956 */
957 for ( ;*str && *str != ','; str++) {
958 switch (tolower(*str)) {
959 case 'f':
960 slub_debug |= SLAB_DEBUG_FREE;
961 break;
962 case 'z':
963 slub_debug |= SLAB_RED_ZONE;
964 break;
965 case 'p':
966 slub_debug |= SLAB_POISON;
967 break;
968 case 'u':
969 slub_debug |= SLAB_STORE_USER;
970 break;
971 case 't':
972 slub_debug |= SLAB_TRACE;
973 break;
974 default:
975 printk(KERN_ERR "slub_debug option '%c' "
976 "unknown. skipped\n",*str);
977 }
978 }
979
980check_slabs:
981 if (*str == ',')
Christoph Lameter41ecc552007-05-09 02:32:44 -0700982 slub_debug_slabs = str + 1;
Christoph Lameterf0630ff2007-07-15 23:38:14 -0700983out:
Christoph Lameter41ecc552007-05-09 02:32:44 -0700984 return 1;
985}
986
987__setup("slub_debug", setup_slub_debug);
988
989static void kmem_cache_open_debug_check(struct kmem_cache *s)
990{
991 /*
992 * The page->offset field is only 16 bit wide. This is an offset
993 * in units of words from the beginning of an object. If the slab
994 * size is bigger then we cannot move the free pointer behind the
995 * object anymore.
996 *
997 * On 32 bit platforms the limit is 256k. On 64bit platforms
998 * the limit is 512k.
999 *
Christoph Lameterc59def92007-05-16 22:10:50 -07001000 * Debugging or ctor may create a need to move the free
Christoph Lameter41ecc552007-05-09 02:32:44 -07001001 * pointer. Fail if this happens.
1002 */
Christoph Lameter33e9e242007-05-23 13:57:56 -07001003 if (s->objsize >= 65535 * sizeof(void *)) {
Christoph Lameter41ecc552007-05-09 02:32:44 -07001004 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
1005 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
Christoph Lameterc59def92007-05-16 22:10:50 -07001006 BUG_ON(s->ctor);
Christoph Lameter41ecc552007-05-09 02:32:44 -07001007 }
1008 else
1009 /*
1010 * Enable debugging if selected on the kernel commandline.
1011 */
1012 if (slub_debug && (!slub_debug_slabs ||
1013 strncmp(slub_debug_slabs, s->name,
1014 strlen(slub_debug_slabs)) == 0))
1015 s->flags |= slub_debug;
1016}
1017#else
Christoph Lameter3ec09742007-05-16 22:11:00 -07001018static inline void setup_object_debug(struct kmem_cache *s,
1019 struct page *page, void *object) {}
Christoph Lameter41ecc552007-05-09 02:32:44 -07001020
Christoph Lameter3ec09742007-05-16 22:11:00 -07001021static inline int alloc_debug_processing(struct kmem_cache *s,
1022 struct page *page, void *object, void *addr) { return 0; }
Christoph Lameter41ecc552007-05-09 02:32:44 -07001023
Christoph Lameter3ec09742007-05-16 22:11:00 -07001024static inline int free_debug_processing(struct kmem_cache *s,
1025 struct page *page, void *object, void *addr) { return 0; }
Christoph Lameter41ecc552007-05-09 02:32:44 -07001026
Christoph Lameter41ecc552007-05-09 02:32:44 -07001027static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1028 { return 1; }
1029static inline int check_object(struct kmem_cache *s, struct page *page,
1030 void *object, int active) { return 1; }
Christoph Lameter3ec09742007-05-16 22:11:00 -07001031static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
Christoph Lameter41ecc552007-05-09 02:32:44 -07001032static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
1033#define slub_debug 0
1034#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07001035/*
1036 * Slab allocation and freeing
1037 */
1038static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1039{
1040 struct page * page;
1041 int pages = 1 << s->order;
1042
1043 if (s->order)
1044 flags |= __GFP_COMP;
1045
1046 if (s->flags & SLAB_CACHE_DMA)
1047 flags |= SLUB_DMA;
1048
1049 if (node == -1)
1050 page = alloc_pages(flags, s->order);
1051 else
1052 page = alloc_pages_node(node, flags, s->order);
1053
1054 if (!page)
1055 return NULL;
1056
1057 mod_zone_page_state(page_zone(page),
1058 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1059 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1060 pages);
1061
1062 return page;
1063}
1064
1065static void setup_object(struct kmem_cache *s, struct page *page,
1066 void *object)
1067{
Christoph Lameter3ec09742007-05-16 22:11:00 -07001068 setup_object_debug(s, page, object);
Christoph Lameter4f104932007-05-06 14:50:17 -07001069 if (unlikely(s->ctor))
Christoph Lametera35afb82007-05-16 22:10:57 -07001070 s->ctor(object, s, 0);
Christoph Lameter81819f02007-05-06 14:49:36 -07001071}
1072
1073static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1074{
1075 struct page *page;
1076 struct kmem_cache_node *n;
1077 void *start;
1078 void *end;
1079 void *last;
1080 void *p;
1081
Christoph Lameterd07dbea2007-07-17 04:03:23 -07001082 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
Christoph Lameter81819f02007-05-06 14:49:36 -07001083
1084 if (flags & __GFP_WAIT)
1085 local_irq_enable();
1086
1087 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1088 if (!page)
1089 goto out;
1090
1091 n = get_node(s, page_to_nid(page));
1092 if (n)
1093 atomic_long_inc(&n->nr_slabs);
1094 page->offset = s->offset / sizeof(void *);
1095 page->slab = s;
1096 page->flags |= 1 << PG_slab;
1097 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1098 SLAB_STORE_USER | SLAB_TRACE))
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001099 SetSlabDebug(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001100
1101 start = page_address(page);
1102 end = start + s->objects * s->size;
1103
1104 if (unlikely(s->flags & SLAB_POISON))
1105 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1106
1107 last = start;
Christoph Lameter7656c722007-05-09 02:32:40 -07001108 for_each_object(p, s, start) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001109 setup_object(s, page, last);
1110 set_freepointer(s, last, p);
1111 last = p;
1112 }
1113 setup_object(s, page, last);
1114 set_freepointer(s, last, NULL);
1115
1116 page->freelist = start;
Christoph Lameter894b8782007-05-10 03:15:16 -07001117 page->lockless_freelist = NULL;
Christoph Lameter81819f02007-05-06 14:49:36 -07001118 page->inuse = 0;
1119out:
1120 if (flags & __GFP_WAIT)
1121 local_irq_disable();
1122 return page;
1123}
1124
1125static void __free_slab(struct kmem_cache *s, struct page *page)
1126{
1127 int pages = 1 << s->order;
1128
Christoph Lameterc59def92007-05-16 22:10:50 -07001129 if (unlikely(SlabDebug(page))) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001130 void *p;
1131
1132 slab_pad_check(s, page);
Christoph Lameterc59def92007-05-16 22:10:50 -07001133 for_each_object(p, s, page_address(page))
Christoph Lameter81819f02007-05-06 14:49:36 -07001134 check_object(s, page, p, 0);
Peter Zijlstra2208b762007-07-26 20:54:34 +02001135 ClearSlabDebug(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001136 }
1137
1138 mod_zone_page_state(page_zone(page),
1139 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1140 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1141 - pages);
1142
1143 page->mapping = NULL;
1144 __free_pages(page, s->order);
1145}
1146
1147static void rcu_free_slab(struct rcu_head *h)
1148{
1149 struct page *page;
1150
1151 page = container_of((struct list_head *)h, struct page, lru);
1152 __free_slab(page->slab, page);
1153}
1154
1155static void free_slab(struct kmem_cache *s, struct page *page)
1156{
1157 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1158 /*
1159 * RCU free overloads the RCU head over the LRU
1160 */
1161 struct rcu_head *head = (void *)&page->lru;
1162
1163 call_rcu(head, rcu_free_slab);
1164 } else
1165 __free_slab(s, page);
1166}
1167
1168static void discard_slab(struct kmem_cache *s, struct page *page)
1169{
1170 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1171
1172 atomic_long_dec(&n->nr_slabs);
1173 reset_page_mapcount(page);
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001174 __ClearPageSlab(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001175 free_slab(s, page);
1176}
1177
1178/*
1179 * Per slab locking using the pagelock
1180 */
1181static __always_inline void slab_lock(struct page *page)
1182{
1183 bit_spin_lock(PG_locked, &page->flags);
1184}
1185
1186static __always_inline void slab_unlock(struct page *page)
1187{
1188 bit_spin_unlock(PG_locked, &page->flags);
1189}
1190
1191static __always_inline int slab_trylock(struct page *page)
1192{
1193 int rc = 1;
1194
1195 rc = bit_spin_trylock(PG_locked, &page->flags);
1196 return rc;
1197}
1198
1199/*
1200 * Management of partially allocated slabs
1201 */
Christoph Lametere95eed52007-05-06 14:49:44 -07001202static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
Christoph Lameter81819f02007-05-06 14:49:36 -07001203{
Christoph Lametere95eed52007-05-06 14:49:44 -07001204 spin_lock(&n->list_lock);
1205 n->nr_partial++;
1206 list_add_tail(&page->lru, &n->partial);
1207 spin_unlock(&n->list_lock);
1208}
Christoph Lameter81819f02007-05-06 14:49:36 -07001209
Christoph Lametere95eed52007-05-06 14:49:44 -07001210static void add_partial(struct kmem_cache_node *n, struct page *page)
1211{
Christoph Lameter81819f02007-05-06 14:49:36 -07001212 spin_lock(&n->list_lock);
1213 n->nr_partial++;
1214 list_add(&page->lru, &n->partial);
1215 spin_unlock(&n->list_lock);
1216}
1217
1218static void remove_partial(struct kmem_cache *s,
1219 struct page *page)
1220{
1221 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1222
1223 spin_lock(&n->list_lock);
1224 list_del(&page->lru);
1225 n->nr_partial--;
1226 spin_unlock(&n->list_lock);
1227}
1228
1229/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001230 * Lock slab and remove from the partial list.
Christoph Lameter81819f02007-05-06 14:49:36 -07001231 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001232 * Must hold list_lock.
Christoph Lameter81819f02007-05-06 14:49:36 -07001233 */
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001234static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
Christoph Lameter81819f02007-05-06 14:49:36 -07001235{
1236 if (slab_trylock(page)) {
1237 list_del(&page->lru);
1238 n->nr_partial--;
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001239 SetSlabFrozen(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001240 return 1;
1241 }
1242 return 0;
1243}
1244
1245/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001246 * Try to allocate a partial slab from a specific node.
Christoph Lameter81819f02007-05-06 14:49:36 -07001247 */
1248static struct page *get_partial_node(struct kmem_cache_node *n)
1249{
1250 struct page *page;
1251
1252 /*
1253 * Racy check. If we mistakenly see no partial slabs then we
1254 * just allocate an empty slab. If we mistakenly try to get a
Christoph Lameter672bba32007-05-09 02:32:39 -07001255 * partial slab and there is none available then get_partials()
1256 * will return NULL.
Christoph Lameter81819f02007-05-06 14:49:36 -07001257 */
1258 if (!n || !n->nr_partial)
1259 return NULL;
1260
1261 spin_lock(&n->list_lock);
1262 list_for_each_entry(page, &n->partial, lru)
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001263 if (lock_and_freeze_slab(n, page))
Christoph Lameter81819f02007-05-06 14:49:36 -07001264 goto out;
1265 page = NULL;
1266out:
1267 spin_unlock(&n->list_lock);
1268 return page;
1269}
1270
1271/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001272 * Get a page from somewhere. Search in increasing NUMA distances.
Christoph Lameter81819f02007-05-06 14:49:36 -07001273 */
1274static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1275{
1276#ifdef CONFIG_NUMA
1277 struct zonelist *zonelist;
1278 struct zone **z;
1279 struct page *page;
1280
1281 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001282 * The defrag ratio allows a configuration of the tradeoffs between
1283 * inter node defragmentation and node local allocations. A lower
1284 * defrag_ratio increases the tendency to do local allocations
1285 * instead of attempting to obtain partial slabs from other nodes.
Christoph Lameter81819f02007-05-06 14:49:36 -07001286 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001287 * If the defrag_ratio is set to 0 then kmalloc() always
1288 * returns node local objects. If the ratio is higher then kmalloc()
1289 * may return off node objects because partial slabs are obtained
1290 * from other nodes and filled up.
Christoph Lameter81819f02007-05-06 14:49:36 -07001291 *
1292 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
Christoph Lameter672bba32007-05-09 02:32:39 -07001293 * defrag_ratio = 1000) then every (well almost) allocation will
1294 * first attempt to defrag slab caches on other nodes. This means
1295 * scanning over all nodes to look for partial slabs which may be
1296 * expensive if we do it every time we are trying to find a slab
1297 * with available objects.
Christoph Lameter81819f02007-05-06 14:49:36 -07001298 */
1299 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1300 return NULL;
1301
1302 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1303 ->node_zonelists[gfp_zone(flags)];
1304 for (z = zonelist->zones; *z; z++) {
1305 struct kmem_cache_node *n;
1306
1307 n = get_node(s, zone_to_nid(*z));
1308
1309 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lametere95eed52007-05-06 14:49:44 -07001310 n->nr_partial > MIN_PARTIAL) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001311 page = get_partial_node(n);
1312 if (page)
1313 return page;
1314 }
1315 }
1316#endif
1317 return NULL;
1318}
1319
1320/*
1321 * Get a partial page, lock it and return it.
1322 */
1323static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1324{
1325 struct page *page;
1326 int searchnode = (node == -1) ? numa_node_id() : node;
1327
1328 page = get_partial_node(get_node(s, searchnode));
1329 if (page || (flags & __GFP_THISNODE))
1330 return page;
1331
1332 return get_any_partial(s, flags);
1333}
1334
1335/*
1336 * Move a page back to the lists.
1337 *
1338 * Must be called with the slab lock held.
1339 *
1340 * On exit the slab lock will have been dropped.
1341 */
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001342static void unfreeze_slab(struct kmem_cache *s, struct page *page)
Christoph Lameter81819f02007-05-06 14:49:36 -07001343{
Christoph Lametere95eed52007-05-06 14:49:44 -07001344 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1345
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001346 ClearSlabFrozen(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001347 if (page->inuse) {
Christoph Lametere95eed52007-05-06 14:49:44 -07001348
Christoph Lameter81819f02007-05-06 14:49:36 -07001349 if (page->freelist)
Christoph Lametere95eed52007-05-06 14:49:44 -07001350 add_partial(n, page);
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001351 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
Christoph Lametere95eed52007-05-06 14:49:44 -07001352 add_full(n, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001353 slab_unlock(page);
Christoph Lametere95eed52007-05-06 14:49:44 -07001354
Christoph Lameter81819f02007-05-06 14:49:36 -07001355 } else {
Christoph Lametere95eed52007-05-06 14:49:44 -07001356 if (n->nr_partial < MIN_PARTIAL) {
1357 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001358 * Adding an empty slab to the partial slabs in order
1359 * to avoid page allocator overhead. This slab needs
1360 * to come after the other slabs with objects in
1361 * order to fill them up. That way the size of the
1362 * partial list stays small. kmem_cache_shrink can
1363 * reclaim empty slabs from the partial list.
Christoph Lametere95eed52007-05-06 14:49:44 -07001364 */
1365 add_partial_tail(n, page);
1366 slab_unlock(page);
1367 } else {
1368 slab_unlock(page);
1369 discard_slab(s, page);
1370 }
Christoph Lameter81819f02007-05-06 14:49:36 -07001371 }
1372}
1373
1374/*
1375 * Remove the cpu slab
1376 */
1377static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1378{
Christoph Lameter894b8782007-05-10 03:15:16 -07001379 /*
1380 * Merge cpu freelist into freelist. Typically we get here
1381 * because both freelists are empty. So this is unlikely
1382 * to occur.
1383 */
1384 while (unlikely(page->lockless_freelist)) {
1385 void **object;
1386
1387 /* Retrieve object from cpu_freelist */
1388 object = page->lockless_freelist;
1389 page->lockless_freelist = page->lockless_freelist[page->offset];
1390
1391 /* And put onto the regular freelist */
1392 object[page->offset] = page->freelist;
1393 page->freelist = object;
1394 page->inuse--;
1395 }
Christoph Lameter81819f02007-05-06 14:49:36 -07001396 s->cpu_slab[cpu] = NULL;
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001397 unfreeze_slab(s, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001398}
1399
Christoph Lameter0c710012007-07-17 04:03:24 -07001400static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
Christoph Lameter81819f02007-05-06 14:49:36 -07001401{
1402 slab_lock(page);
1403 deactivate_slab(s, page, cpu);
1404}
1405
1406/*
1407 * Flush cpu slab.
1408 * Called from IPI handler with interrupts disabled.
1409 */
Christoph Lameter0c710012007-07-17 04:03:24 -07001410static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
Christoph Lameter81819f02007-05-06 14:49:36 -07001411{
1412 struct page *page = s->cpu_slab[cpu];
1413
1414 if (likely(page))
1415 flush_slab(s, page, cpu);
1416}
1417
1418static void flush_cpu_slab(void *d)
1419{
1420 struct kmem_cache *s = d;
1421 int cpu = smp_processor_id();
1422
1423 __flush_cpu_slab(s, cpu);
1424}
1425
1426static void flush_all(struct kmem_cache *s)
1427{
1428#ifdef CONFIG_SMP
1429 on_each_cpu(flush_cpu_slab, s, 1, 1);
1430#else
1431 unsigned long flags;
1432
1433 local_irq_save(flags);
1434 flush_cpu_slab(s);
1435 local_irq_restore(flags);
1436#endif
1437}
1438
1439/*
Christoph Lameter894b8782007-05-10 03:15:16 -07001440 * Slow path. The lockless freelist is empty or we need to perform
1441 * debugging duties.
Christoph Lameter81819f02007-05-06 14:49:36 -07001442 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001443 * Interrupts are disabled.
Christoph Lameter81819f02007-05-06 14:49:36 -07001444 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001445 * Processing is still very fast if new objects have been freed to the
1446 * regular freelist. In that case we simply take over the regular freelist
1447 * as the lockless freelist and zap the regular freelist.
Christoph Lameter81819f02007-05-06 14:49:36 -07001448 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001449 * If that is not working then we fall back to the partial lists. We take the
1450 * first element of the freelist as the object to allocate now and move the
1451 * rest of the freelist to the lockless freelist.
1452 *
1453 * And if we were unable to get a new slab from the partial slab lists then
1454 * we need to allocate a new slab. This is slowest path since we may sleep.
Christoph Lameter81819f02007-05-06 14:49:36 -07001455 */
Christoph Lameter894b8782007-05-10 03:15:16 -07001456static void *__slab_alloc(struct kmem_cache *s,
1457 gfp_t gfpflags, int node, void *addr, struct page *page)
Christoph Lameter81819f02007-05-06 14:49:36 -07001458{
Christoph Lameter81819f02007-05-06 14:49:36 -07001459 void **object;
Christoph Lameter894b8782007-05-10 03:15:16 -07001460 int cpu = smp_processor_id();
Christoph Lameter81819f02007-05-06 14:49:36 -07001461
Christoph Lameter81819f02007-05-06 14:49:36 -07001462 if (!page)
1463 goto new_slab;
1464
1465 slab_lock(page);
1466 if (unlikely(node != -1 && page_to_nid(page) != node))
1467 goto another_slab;
Christoph Lameter894b8782007-05-10 03:15:16 -07001468load_freelist:
Christoph Lameter81819f02007-05-06 14:49:36 -07001469 object = page->freelist;
1470 if (unlikely(!object))
1471 goto another_slab;
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001472 if (unlikely(SlabDebug(page)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001473 goto debug;
1474
Christoph Lameter894b8782007-05-10 03:15:16 -07001475 object = page->freelist;
1476 page->lockless_freelist = object[page->offset];
1477 page->inuse = s->objects;
1478 page->freelist = NULL;
Christoph Lameter81819f02007-05-06 14:49:36 -07001479 slab_unlock(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001480 return object;
1481
1482another_slab:
1483 deactivate_slab(s, page, cpu);
1484
1485new_slab:
1486 page = get_partial(s, gfpflags, node);
Christoph Lameter894b8782007-05-10 03:15:16 -07001487 if (page) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001488 s->cpu_slab[cpu] = page;
Christoph Lameter894b8782007-05-10 03:15:16 -07001489 goto load_freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001490 }
1491
1492 page = new_slab(s, gfpflags, node);
1493 if (page) {
1494 cpu = smp_processor_id();
1495 if (s->cpu_slab[cpu]) {
1496 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001497 * Someone else populated the cpu_slab while we
1498 * enabled interrupts, or we have gotten scheduled
1499 * on another cpu. The page may not be on the
1500 * requested node even if __GFP_THISNODE was
1501 * specified. So we need to recheck.
Christoph Lameter81819f02007-05-06 14:49:36 -07001502 */
1503 if (node == -1 ||
1504 page_to_nid(s->cpu_slab[cpu]) == node) {
1505 /*
1506 * Current cpuslab is acceptable and we
1507 * want the current one since its cache hot
1508 */
1509 discard_slab(s, page);
1510 page = s->cpu_slab[cpu];
1511 slab_lock(page);
Christoph Lameter894b8782007-05-10 03:15:16 -07001512 goto load_freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001513 }
Christoph Lameter672bba32007-05-09 02:32:39 -07001514 /* New slab does not fit our expectations */
Christoph Lameter81819f02007-05-06 14:49:36 -07001515 flush_slab(s, s->cpu_slab[cpu], cpu);
1516 }
1517 slab_lock(page);
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001518 SetSlabFrozen(page);
1519 s->cpu_slab[cpu] = page;
1520 goto load_freelist;
Christoph Lameter81819f02007-05-06 14:49:36 -07001521 }
Christoph Lameter81819f02007-05-06 14:49:36 -07001522 return NULL;
1523debug:
Christoph Lameter894b8782007-05-10 03:15:16 -07001524 object = page->freelist;
Christoph Lameter3ec09742007-05-16 22:11:00 -07001525 if (!alloc_debug_processing(s, page, object, addr))
Christoph Lameter81819f02007-05-06 14:49:36 -07001526 goto another_slab;
Christoph Lameter894b8782007-05-10 03:15:16 -07001527
1528 page->inuse++;
1529 page->freelist = object[page->offset];
1530 slab_unlock(page);
1531 return object;
1532}
1533
1534/*
1535 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1536 * have the fastpath folded into their functions. So no function call
1537 * overhead for requests that can be satisfied on the fastpath.
1538 *
1539 * The fastpath works by first checking if the lockless freelist can be used.
1540 * If not then __slab_alloc is called for slow processing.
1541 *
1542 * Otherwise we can simply pick the next object from the lockless free list.
1543 */
1544static void __always_inline *slab_alloc(struct kmem_cache *s,
Christoph Lameterce15fea2007-07-17 04:03:28 -07001545 gfp_t gfpflags, int node, void *addr)
Christoph Lameter894b8782007-05-10 03:15:16 -07001546{
1547 struct page *page;
1548 void **object;
1549 unsigned long flags;
1550
1551 local_irq_save(flags);
1552 page = s->cpu_slab[smp_processor_id()];
1553 if (unlikely(!page || !page->lockless_freelist ||
1554 (node != -1 && page_to_nid(page) != node)))
1555
1556 object = __slab_alloc(s, gfpflags, node, addr, page);
1557
1558 else {
1559 object = page->lockless_freelist;
1560 page->lockless_freelist = object[page->offset];
1561 }
1562 local_irq_restore(flags);
Christoph Lameterd07dbea2007-07-17 04:03:23 -07001563
1564 if (unlikely((gfpflags & __GFP_ZERO) && object))
Christoph Lameterce15fea2007-07-17 04:03:28 -07001565 memset(object, 0, s->objsize);
Christoph Lameterd07dbea2007-07-17 04:03:23 -07001566
Christoph Lameter894b8782007-05-10 03:15:16 -07001567 return object;
Christoph Lameter81819f02007-05-06 14:49:36 -07001568}
1569
1570void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1571{
Christoph Lameterce15fea2007-07-17 04:03:28 -07001572 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001573}
1574EXPORT_SYMBOL(kmem_cache_alloc);
1575
1576#ifdef CONFIG_NUMA
1577void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1578{
Christoph Lameterce15fea2007-07-17 04:03:28 -07001579 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001580}
1581EXPORT_SYMBOL(kmem_cache_alloc_node);
1582#endif
1583
1584/*
Christoph Lameter894b8782007-05-10 03:15:16 -07001585 * Slow patch handling. This may still be called frequently since objects
1586 * have a longer lifetime than the cpu slabs in most processing loads.
Christoph Lameter81819f02007-05-06 14:49:36 -07001587 *
Christoph Lameter894b8782007-05-10 03:15:16 -07001588 * So we still attempt to reduce cache line usage. Just take the slab
1589 * lock and free the item. If there is no additional partial page
1590 * handling required then we can return immediately.
Christoph Lameter81819f02007-05-06 14:49:36 -07001591 */
Christoph Lameter894b8782007-05-10 03:15:16 -07001592static void __slab_free(struct kmem_cache *s, struct page *page,
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001593 void *x, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -07001594{
1595 void *prior;
1596 void **object = (void *)x;
Christoph Lameter81819f02007-05-06 14:49:36 -07001597
Christoph Lameter81819f02007-05-06 14:49:36 -07001598 slab_lock(page);
1599
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07001600 if (unlikely(SlabDebug(page)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001601 goto debug;
1602checks_ok:
1603 prior = object[page->offset] = page->freelist;
1604 page->freelist = object;
1605 page->inuse--;
1606
Christoph Lameter4b6f0752007-05-16 22:10:53 -07001607 if (unlikely(SlabFrozen(page)))
Christoph Lameter81819f02007-05-06 14:49:36 -07001608 goto out_unlock;
1609
1610 if (unlikely(!page->inuse))
1611 goto slab_empty;
1612
1613 /*
1614 * Objects left in the slab. If it
1615 * was not on the partial list before
1616 * then add it.
1617 */
1618 if (unlikely(!prior))
Christoph Lametere95eed52007-05-06 14:49:44 -07001619 add_partial(get_node(s, page_to_nid(page)), page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001620
1621out_unlock:
1622 slab_unlock(page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001623 return;
1624
1625slab_empty:
1626 if (prior)
1627 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07001628 * Slab still on the partial list.
Christoph Lameter81819f02007-05-06 14:49:36 -07001629 */
1630 remove_partial(s, page);
1631
1632 slab_unlock(page);
1633 discard_slab(s, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001634 return;
1635
1636debug:
Christoph Lameter3ec09742007-05-16 22:11:00 -07001637 if (!free_debug_processing(s, page, x, addr))
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001638 goto out_unlock;
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001639 goto checks_ok;
Christoph Lameter81819f02007-05-06 14:49:36 -07001640}
1641
Christoph Lameter894b8782007-05-10 03:15:16 -07001642/*
1643 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1644 * can perform fastpath freeing without additional function calls.
1645 *
1646 * The fastpath is only possible if we are freeing to the current cpu slab
1647 * of this processor. This typically the case if we have just allocated
1648 * the item before.
1649 *
1650 * If fastpath is not possible then fall back to __slab_free where we deal
1651 * with all sorts of special processing.
1652 */
1653static void __always_inline slab_free(struct kmem_cache *s,
1654 struct page *page, void *x, void *addr)
1655{
1656 void **object = (void *)x;
1657 unsigned long flags;
1658
1659 local_irq_save(flags);
Peter Zijlstra02febdf2007-07-26 20:01:38 +02001660 debug_check_no_locks_freed(object, s->objsize);
Christoph Lameter894b8782007-05-10 03:15:16 -07001661 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1662 !SlabDebug(page))) {
1663 object[page->offset] = page->lockless_freelist;
1664 page->lockless_freelist = object;
1665 } else
1666 __slab_free(s, page, x, addr);
1667
1668 local_irq_restore(flags);
1669}
1670
Christoph Lameter81819f02007-05-06 14:49:36 -07001671void kmem_cache_free(struct kmem_cache *s, void *x)
1672{
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001673 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07001674
Christoph Lameterb49af682007-05-06 14:49:41 -07001675 page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07001676
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001677 slab_free(s, page, x, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001678}
1679EXPORT_SYMBOL(kmem_cache_free);
1680
1681/* Figure out on which slab object the object resides */
1682static struct page *get_object_page(const void *x)
1683{
Christoph Lameterb49af682007-05-06 14:49:41 -07001684 struct page *page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07001685
1686 if (!PageSlab(page))
1687 return NULL;
1688
1689 return page;
1690}
1691
1692/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001693 * Object placement in a slab is made very easy because we always start at
1694 * offset 0. If we tune the size of the object to the alignment then we can
1695 * get the required alignment by putting one properly sized object after
1696 * another.
Christoph Lameter81819f02007-05-06 14:49:36 -07001697 *
1698 * Notice that the allocation order determines the sizes of the per cpu
1699 * caches. Each processor has always one slab available for allocations.
1700 * Increasing the allocation order reduces the number of times that slabs
Christoph Lameter672bba32007-05-09 02:32:39 -07001701 * must be moved on and off the partial lists and is therefore a factor in
Christoph Lameter81819f02007-05-06 14:49:36 -07001702 * locking overhead.
Christoph Lameter81819f02007-05-06 14:49:36 -07001703 */
1704
1705/*
1706 * Mininum / Maximum order of slab pages. This influences locking overhead
1707 * and slab fragmentation. A higher order reduces the number of partial slabs
1708 * and increases the number of allocations possible without having to
1709 * take the list_lock.
1710 */
1711static int slub_min_order;
1712static int slub_max_order = DEFAULT_MAX_ORDER;
Christoph Lameter81819f02007-05-06 14:49:36 -07001713static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1714
1715/*
1716 * Merge control. If this is set then no merging of slab caches will occur.
Christoph Lameter672bba32007-05-09 02:32:39 -07001717 * (Could be removed. This was introduced to pacify the merge skeptics.)
Christoph Lameter81819f02007-05-06 14:49:36 -07001718 */
1719static int slub_nomerge;
1720
1721/*
Christoph Lameter81819f02007-05-06 14:49:36 -07001722 * Calculate the order of allocation given an slab object size.
1723 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001724 * The order of allocation has significant impact on performance and other
1725 * system components. Generally order 0 allocations should be preferred since
1726 * order 0 does not cause fragmentation in the page allocator. Larger objects
1727 * be problematic to put into order 0 slabs because there may be too much
1728 * unused space left. We go to a higher order if more than 1/8th of the slab
1729 * would be wasted.
Christoph Lameter81819f02007-05-06 14:49:36 -07001730 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001731 * In order to reach satisfactory performance we must ensure that a minimum
1732 * number of objects is in one slab. Otherwise we may generate too much
1733 * activity on the partial lists which requires taking the list_lock. This is
1734 * less a concern for large slabs though which are rarely used.
Christoph Lameter81819f02007-05-06 14:49:36 -07001735 *
Christoph Lameter672bba32007-05-09 02:32:39 -07001736 * slub_max_order specifies the order where we begin to stop considering the
1737 * number of objects in a slab as critical. If we reach slub_max_order then
1738 * we try to keep the page order as low as possible. So we accept more waste
1739 * of space in favor of a small page order.
1740 *
1741 * Higher order allocations also allow the placement of more objects in a
1742 * slab and thereby reduce object handling overhead. If the user has
1743 * requested a higher mininum order then we start with that one instead of
1744 * the smallest order which will fit the object.
Christoph Lameter81819f02007-05-06 14:49:36 -07001745 */
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001746static inline int slab_order(int size, int min_objects,
1747 int max_order, int fract_leftover)
Christoph Lameter81819f02007-05-06 14:49:36 -07001748{
1749 int order;
1750 int rem;
Christoph Lameter6300ea72007-07-17 04:03:20 -07001751 int min_order = slub_min_order;
Christoph Lameter81819f02007-05-06 14:49:36 -07001752
Christoph Lameter6300ea72007-07-17 04:03:20 -07001753 /*
1754 * If we would create too many object per slab then reduce
1755 * the slab order even if it goes below slub_min_order.
1756 */
1757 while (min_order > 0 &&
1758 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1759 min_order--;
1760
1761 for (order = max(min_order,
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001762 fls(min_objects * size - 1) - PAGE_SHIFT);
1763 order <= max_order; order++) {
1764
Christoph Lameter81819f02007-05-06 14:49:36 -07001765 unsigned long slab_size = PAGE_SIZE << order;
1766
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001767 if (slab_size < min_objects * size)
Christoph Lameter81819f02007-05-06 14:49:36 -07001768 continue;
1769
Christoph Lameter81819f02007-05-06 14:49:36 -07001770 rem = slab_size % size;
1771
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001772 if (rem <= slab_size / fract_leftover)
Christoph Lameter81819f02007-05-06 14:49:36 -07001773 break;
1774
Christoph Lameter6300ea72007-07-17 04:03:20 -07001775 /* If the next size is too high then exit now */
1776 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1777 break;
Christoph Lameter81819f02007-05-06 14:49:36 -07001778 }
Christoph Lameter672bba32007-05-09 02:32:39 -07001779
Christoph Lameter81819f02007-05-06 14:49:36 -07001780 return order;
1781}
1782
Christoph Lameter5e6d4442007-05-09 02:32:46 -07001783static inline int calculate_order(int size)
1784{
1785 int order;
1786 int min_objects;
1787 int fraction;
1788
1789 /*
1790 * Attempt to find best configuration for a slab. This
1791 * works by first attempting to generate a layout with
1792 * the best configuration and backing off gradually.
1793 *
1794 * First we reduce the acceptable waste in a slab. Then
1795 * we reduce the minimum objects required in a slab.
1796 */
1797 min_objects = slub_min_objects;
1798 while (min_objects > 1) {
1799 fraction = 8;
1800 while (fraction >= 4) {
1801 order = slab_order(size, min_objects,
1802 slub_max_order, fraction);
1803 if (order <= slub_max_order)
1804 return order;
1805 fraction /= 2;
1806 }
1807 min_objects /= 2;
1808 }
1809
1810 /*
1811 * We were unable to place multiple objects in a slab. Now
1812 * lets see if we can place a single object there.
1813 */
1814 order = slab_order(size, 1, slub_max_order, 1);
1815 if (order <= slub_max_order)
1816 return order;
1817
1818 /*
1819 * Doh this slab cannot be placed using slub_max_order.
1820 */
1821 order = slab_order(size, 1, MAX_ORDER, 1);
1822 if (order <= MAX_ORDER)
1823 return order;
1824 return -ENOSYS;
1825}
1826
Christoph Lameter81819f02007-05-06 14:49:36 -07001827/*
Christoph Lameter672bba32007-05-09 02:32:39 -07001828 * Figure out what the alignment of the objects will be.
Christoph Lameter81819f02007-05-06 14:49:36 -07001829 */
1830static unsigned long calculate_alignment(unsigned long flags,
1831 unsigned long align, unsigned long size)
1832{
1833 /*
1834 * If the user wants hardware cache aligned objects then
1835 * follow that suggestion if the object is sufficiently
1836 * large.
1837 *
1838 * The hardware cache alignment cannot override the
1839 * specified alignment though. If that is greater
1840 * then use it.
1841 */
Christoph Lameter5af60832007-05-06 14:49:56 -07001842 if ((flags & SLAB_HWCACHE_ALIGN) &&
Christoph Lameter65c02d42007-05-09 02:32:35 -07001843 size > cache_line_size() / 2)
1844 return max_t(unsigned long, align, cache_line_size());
Christoph Lameter81819f02007-05-06 14:49:36 -07001845
1846 if (align < ARCH_SLAB_MINALIGN)
1847 return ARCH_SLAB_MINALIGN;
1848
1849 return ALIGN(align, sizeof(void *));
1850}
1851
1852static void init_kmem_cache_node(struct kmem_cache_node *n)
1853{
1854 n->nr_partial = 0;
1855 atomic_long_set(&n->nr_slabs, 0);
1856 spin_lock_init(&n->list_lock);
1857 INIT_LIST_HEAD(&n->partial);
Christoph Lameter8ab13722007-07-17 04:03:32 -07001858#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter643b1132007-05-06 14:49:42 -07001859 INIT_LIST_HEAD(&n->full);
Christoph Lameter8ab13722007-07-17 04:03:32 -07001860#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07001861}
1862
1863#ifdef CONFIG_NUMA
1864/*
1865 * No kmalloc_node yet so do it by hand. We know that this is the first
1866 * slab on the node for this slabcache. There are no concurrent accesses
1867 * possible.
1868 *
1869 * Note that this function only works on the kmalloc_node_cache
1870 * when allocating for the kmalloc_node_cache.
1871 */
1872static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1873 int node)
1874{
1875 struct page *page;
1876 struct kmem_cache_node *n;
1877
1878 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1879
Christoph Lametera2f92ee2007-08-22 14:01:57 -07001880 page = new_slab(kmalloc_caches, gfpflags, node);
Christoph Lameter81819f02007-05-06 14:49:36 -07001881
1882 BUG_ON(!page);
Christoph Lametera2f92ee2007-08-22 14:01:57 -07001883 if (page_to_nid(page) != node) {
1884 printk(KERN_ERR "SLUB: Unable to allocate memory from "
1885 "node %d\n", node);
1886 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1887 "in order to be able to continue\n");
1888 }
1889
Christoph Lameter81819f02007-05-06 14:49:36 -07001890 n = page->freelist;
1891 BUG_ON(!n);
1892 page->freelist = get_freepointer(kmalloc_caches, n);
1893 page->inuse++;
1894 kmalloc_caches->node[node] = n;
Christoph Lameter8ab13722007-07-17 04:03:32 -07001895#ifdef CONFIG_SLUB_DEBUG
Christoph Lameterd45f39c2007-07-17 04:03:21 -07001896 init_object(kmalloc_caches, n, 1);
1897 init_tracking(kmalloc_caches, n);
Christoph Lameter8ab13722007-07-17 04:03:32 -07001898#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07001899 init_kmem_cache_node(n);
1900 atomic_long_inc(&n->nr_slabs);
Christoph Lametere95eed52007-05-06 14:49:44 -07001901 add_partial(n, page);
Christoph Lameterdbc55fa2007-07-03 09:31:04 -07001902
1903 /*
1904 * new_slab() disables interupts. If we do not reenable interrupts here
1905 * then bootup would continue with interrupts disabled.
1906 */
1907 local_irq_enable();
Christoph Lameter81819f02007-05-06 14:49:36 -07001908 return n;
1909}
1910
1911static void free_kmem_cache_nodes(struct kmem_cache *s)
1912{
1913 int node;
1914
1915 for_each_online_node(node) {
1916 struct kmem_cache_node *n = s->node[node];
1917 if (n && n != &s->local_node)
1918 kmem_cache_free(kmalloc_caches, n);
1919 s->node[node] = NULL;
1920 }
1921}
1922
1923static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1924{
1925 int node;
1926 int local_node;
1927
1928 if (slab_state >= UP)
1929 local_node = page_to_nid(virt_to_page(s));
1930 else
1931 local_node = 0;
1932
1933 for_each_online_node(node) {
1934 struct kmem_cache_node *n;
1935
1936 if (local_node == node)
1937 n = &s->local_node;
1938 else {
1939 if (slab_state == DOWN) {
1940 n = early_kmem_cache_node_alloc(gfpflags,
1941 node);
1942 continue;
1943 }
1944 n = kmem_cache_alloc_node(kmalloc_caches,
1945 gfpflags, node);
1946
1947 if (!n) {
1948 free_kmem_cache_nodes(s);
1949 return 0;
1950 }
1951
1952 }
1953 s->node[node] = n;
1954 init_kmem_cache_node(n);
1955 }
1956 return 1;
1957}
1958#else
1959static void free_kmem_cache_nodes(struct kmem_cache *s)
1960{
1961}
1962
1963static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1964{
1965 init_kmem_cache_node(&s->local_node);
1966 return 1;
1967}
1968#endif
1969
1970/*
1971 * calculate_sizes() determines the order and the distribution of data within
1972 * a slab object.
1973 */
1974static int calculate_sizes(struct kmem_cache *s)
1975{
1976 unsigned long flags = s->flags;
1977 unsigned long size = s->objsize;
1978 unsigned long align = s->align;
1979
1980 /*
1981 * Determine if we can poison the object itself. If the user of
1982 * the slab may touch the object after free or before allocation
1983 * then we should never poison the object itself.
1984 */
1985 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
Christoph Lameterc59def92007-05-16 22:10:50 -07001986 !s->ctor)
Christoph Lameter81819f02007-05-06 14:49:36 -07001987 s->flags |= __OBJECT_POISON;
1988 else
1989 s->flags &= ~__OBJECT_POISON;
1990
1991 /*
1992 * Round up object size to the next word boundary. We can only
1993 * place the free pointer at word boundaries and this determines
1994 * the possible location of the free pointer.
1995 */
1996 size = ALIGN(size, sizeof(void *));
1997
Christoph Lameter41ecc552007-05-09 02:32:44 -07001998#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter81819f02007-05-06 14:49:36 -07001999 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002000 * If we are Redzoning then check if there is some space between the
Christoph Lameter81819f02007-05-06 14:49:36 -07002001 * end of the object and the free pointer. If not then add an
Christoph Lameter672bba32007-05-09 02:32:39 -07002002 * additional word to have some bytes to store Redzone information.
Christoph Lameter81819f02007-05-06 14:49:36 -07002003 */
2004 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2005 size += sizeof(void *);
Christoph Lameter41ecc552007-05-09 02:32:44 -07002006#endif
Christoph Lameter81819f02007-05-06 14:49:36 -07002007
2008 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002009 * With that we have determined the number of bytes in actual use
2010 * by the object. This is the potential offset to the free pointer.
Christoph Lameter81819f02007-05-06 14:49:36 -07002011 */
2012 s->inuse = size;
2013
2014 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
Christoph Lameterc59def92007-05-16 22:10:50 -07002015 s->ctor)) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002016 /*
2017 * Relocate free pointer after the object if it is not
2018 * permitted to overwrite the first word of the object on
2019 * kmem_cache_free.
2020 *
2021 * This is the case if we do RCU, have a constructor or
2022 * destructor or are poisoning the objects.
2023 */
2024 s->offset = size;
2025 size += sizeof(void *);
2026 }
2027
Christoph Lameterc12b3c62007-05-23 13:57:31 -07002028#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter81819f02007-05-06 14:49:36 -07002029 if (flags & SLAB_STORE_USER)
2030 /*
2031 * Need to store information about allocs and frees after
2032 * the object.
2033 */
2034 size += 2 * sizeof(struct track);
2035
Christoph Lameterbe7b3fb2007-05-09 02:32:36 -07002036 if (flags & SLAB_RED_ZONE)
Christoph Lameter81819f02007-05-06 14:49:36 -07002037 /*
2038 * Add some empty padding so that we can catch
2039 * overwrites from earlier objects rather than let
2040 * tracking information or the free pointer be
2041 * corrupted if an user writes before the start
2042 * of the object.
2043 */
2044 size += sizeof(void *);
Christoph Lameter41ecc552007-05-09 02:32:44 -07002045#endif
Christoph Lameter672bba32007-05-09 02:32:39 -07002046
Christoph Lameter81819f02007-05-06 14:49:36 -07002047 /*
2048 * Determine the alignment based on various parameters that the
Christoph Lameter65c02d42007-05-09 02:32:35 -07002049 * user specified and the dynamic determination of cache line size
2050 * on bootup.
Christoph Lameter81819f02007-05-06 14:49:36 -07002051 */
2052 align = calculate_alignment(flags, align, s->objsize);
2053
2054 /*
2055 * SLUB stores one object immediately after another beginning from
2056 * offset 0. In order to align the objects we have to simply size
2057 * each object to conform to the alignment.
2058 */
2059 size = ALIGN(size, align);
2060 s->size = size;
2061
2062 s->order = calculate_order(size);
2063 if (s->order < 0)
2064 return 0;
2065
2066 /*
2067 * Determine the number of objects per slab
2068 */
2069 s->objects = (PAGE_SIZE << s->order) / size;
2070
2071 /*
2072 * Verify that the number of objects is within permitted limits.
2073 * The page->inuse field is only 16 bit wide! So we cannot have
2074 * more than 64k objects per slab.
2075 */
Christoph Lameter6300ea72007-07-17 04:03:20 -07002076 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
Christoph Lameter81819f02007-05-06 14:49:36 -07002077 return 0;
2078 return 1;
2079
2080}
2081
Christoph Lameter81819f02007-05-06 14:49:36 -07002082static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2083 const char *name, size_t size,
2084 size_t align, unsigned long flags,
Christoph Lameterc59def92007-05-16 22:10:50 -07002085 void (*ctor)(void *, struct kmem_cache *, unsigned long))
Christoph Lameter81819f02007-05-06 14:49:36 -07002086{
2087 memset(s, 0, kmem_size);
2088 s->name = name;
2089 s->ctor = ctor;
Christoph Lameter81819f02007-05-06 14:49:36 -07002090 s->objsize = size;
2091 s->flags = flags;
2092 s->align = align;
Christoph Lameter41ecc552007-05-09 02:32:44 -07002093 kmem_cache_open_debug_check(s);
Christoph Lameter81819f02007-05-06 14:49:36 -07002094
2095 if (!calculate_sizes(s))
2096 goto error;
2097
2098 s->refcount = 1;
2099#ifdef CONFIG_NUMA
2100 s->defrag_ratio = 100;
2101#endif
2102
2103 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2104 return 1;
2105error:
2106 if (flags & SLAB_PANIC)
2107 panic("Cannot create slab %s size=%lu realsize=%u "
2108 "order=%u offset=%u flags=%lx\n",
2109 s->name, (unsigned long)size, s->size, s->order,
2110 s->offset, flags);
2111 return 0;
2112}
Christoph Lameter81819f02007-05-06 14:49:36 -07002113
2114/*
2115 * Check if a given pointer is valid
2116 */
2117int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2118{
2119 struct page * page;
Christoph Lameter81819f02007-05-06 14:49:36 -07002120
2121 page = get_object_page(object);
2122
2123 if (!page || s != page->slab)
2124 /* No slab or wrong slab */
2125 return 0;
2126
Christoph Lameterabcd08a2007-05-09 02:32:37 -07002127 if (!check_valid_pointer(s, page, object))
Christoph Lameter81819f02007-05-06 14:49:36 -07002128 return 0;
2129
2130 /*
2131 * We could also check if the object is on the slabs freelist.
2132 * But this would be too expensive and it seems that the main
2133 * purpose of kmem_ptr_valid is to check if the object belongs
2134 * to a certain slab.
2135 */
2136 return 1;
2137}
2138EXPORT_SYMBOL(kmem_ptr_validate);
2139
2140/*
2141 * Determine the size of a slab object
2142 */
2143unsigned int kmem_cache_size(struct kmem_cache *s)
2144{
2145 return s->objsize;
2146}
2147EXPORT_SYMBOL(kmem_cache_size);
2148
2149const char *kmem_cache_name(struct kmem_cache *s)
2150{
2151 return s->name;
2152}
2153EXPORT_SYMBOL(kmem_cache_name);
2154
2155/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002156 * Attempt to free all slabs on a node. Return the number of slabs we
2157 * were unable to free.
Christoph Lameter81819f02007-05-06 14:49:36 -07002158 */
2159static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2160 struct list_head *list)
2161{
2162 int slabs_inuse = 0;
2163 unsigned long flags;
2164 struct page *page, *h;
2165
2166 spin_lock_irqsave(&n->list_lock, flags);
2167 list_for_each_entry_safe(page, h, list, lru)
2168 if (!page->inuse) {
2169 list_del(&page->lru);
2170 discard_slab(s, page);
2171 } else
2172 slabs_inuse++;
2173 spin_unlock_irqrestore(&n->list_lock, flags);
2174 return slabs_inuse;
2175}
2176
2177/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002178 * Release all resources used by a slab cache.
Christoph Lameter81819f02007-05-06 14:49:36 -07002179 */
Christoph Lameter0c710012007-07-17 04:03:24 -07002180static inline int kmem_cache_close(struct kmem_cache *s)
Christoph Lameter81819f02007-05-06 14:49:36 -07002181{
2182 int node;
2183
2184 flush_all(s);
2185
2186 /* Attempt to free all objects */
2187 for_each_online_node(node) {
2188 struct kmem_cache_node *n = get_node(s, node);
2189
Christoph Lameter2086d262007-05-06 14:49:46 -07002190 n->nr_partial -= free_list(s, n, &n->partial);
Christoph Lameter81819f02007-05-06 14:49:36 -07002191 if (atomic_long_read(&n->nr_slabs))
2192 return 1;
2193 }
2194 free_kmem_cache_nodes(s);
2195 return 0;
2196}
2197
2198/*
2199 * Close a cache and release the kmem_cache structure
2200 * (must be used for caches created using kmem_cache_create)
2201 */
2202void kmem_cache_destroy(struct kmem_cache *s)
2203{
2204 down_write(&slub_lock);
2205 s->refcount--;
2206 if (!s->refcount) {
2207 list_del(&s->list);
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002208 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002209 if (kmem_cache_close(s))
2210 WARN_ON(1);
2211 sysfs_slab_remove(s);
2212 kfree(s);
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002213 } else
2214 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002215}
2216EXPORT_SYMBOL(kmem_cache_destroy);
2217
2218/********************************************************************
2219 * Kmalloc subsystem
2220 *******************************************************************/
2221
2222struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2223EXPORT_SYMBOL(kmalloc_caches);
2224
2225#ifdef CONFIG_ZONE_DMA
2226static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2227#endif
2228
2229static int __init setup_slub_min_order(char *str)
2230{
2231 get_option (&str, &slub_min_order);
2232
2233 return 1;
2234}
2235
2236__setup("slub_min_order=", setup_slub_min_order);
2237
2238static int __init setup_slub_max_order(char *str)
2239{
2240 get_option (&str, &slub_max_order);
2241
2242 return 1;
2243}
2244
2245__setup("slub_max_order=", setup_slub_max_order);
2246
2247static int __init setup_slub_min_objects(char *str)
2248{
2249 get_option (&str, &slub_min_objects);
2250
2251 return 1;
2252}
2253
2254__setup("slub_min_objects=", setup_slub_min_objects);
2255
2256static int __init setup_slub_nomerge(char *str)
2257{
2258 slub_nomerge = 1;
2259 return 1;
2260}
2261
2262__setup("slub_nomerge", setup_slub_nomerge);
2263
Christoph Lameter81819f02007-05-06 14:49:36 -07002264static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2265 const char *name, int size, gfp_t gfp_flags)
2266{
2267 unsigned int flags = 0;
2268
2269 if (gfp_flags & SLUB_DMA)
2270 flags = SLAB_CACHE_DMA;
2271
2272 down_write(&slub_lock);
2273 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
Christoph Lameterc59def92007-05-16 22:10:50 -07002274 flags, NULL))
Christoph Lameter81819f02007-05-06 14:49:36 -07002275 goto panic;
2276
2277 list_add(&s->list, &slab_caches);
2278 up_write(&slub_lock);
2279 if (sysfs_slab_add(s))
2280 goto panic;
2281 return s;
2282
2283panic:
2284 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2285}
2286
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002287#ifdef CONFIG_ZONE_DMA
Christoph Lameter1ceef402007-08-07 15:11:48 -07002288
2289static void sysfs_add_func(struct work_struct *w)
2290{
2291 struct kmem_cache *s;
2292
2293 down_write(&slub_lock);
2294 list_for_each_entry(s, &slab_caches, list) {
2295 if (s->flags & __SYSFS_ADD_DEFERRED) {
2296 s->flags &= ~__SYSFS_ADD_DEFERRED;
2297 sysfs_slab_add(s);
2298 }
2299 }
2300 up_write(&slub_lock);
2301}
2302
2303static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2304
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002305static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2306{
2307 struct kmem_cache *s;
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002308 char *text;
2309 size_t realsize;
2310
2311 s = kmalloc_caches_dma[index];
2312 if (s)
2313 return s;
2314
2315 /* Dynamically create dma cache */
Christoph Lameter1ceef402007-08-07 15:11:48 -07002316 if (flags & __GFP_WAIT)
2317 down_write(&slub_lock);
2318 else {
2319 if (!down_write_trylock(&slub_lock))
2320 goto out;
2321 }
2322
2323 if (kmalloc_caches_dma[index])
2324 goto unlock_out;
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002325
Christoph Lameter7b55f622007-07-17 04:03:27 -07002326 realsize = kmalloc_caches[index].objsize;
Christoph Lameter1ceef402007-08-07 15:11:48 -07002327 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2328 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2329
2330 if (!s || !text || !kmem_cache_open(s, flags, text,
2331 realsize, ARCH_KMALLOC_MINALIGN,
2332 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2333 kfree(s);
2334 kfree(text);
2335 goto unlock_out;
Christoph Lameterdfce8642007-07-17 04:03:25 -07002336 }
Christoph Lameter1ceef402007-08-07 15:11:48 -07002337
2338 list_add(&s->list, &slab_caches);
2339 kmalloc_caches_dma[index] = s;
2340
2341 schedule_work(&sysfs_add_work);
2342
2343unlock_out:
Christoph Lameterdfce8642007-07-17 04:03:25 -07002344 up_write(&slub_lock);
Christoph Lameter1ceef402007-08-07 15:11:48 -07002345out:
Christoph Lameterdfce8642007-07-17 04:03:25 -07002346 return kmalloc_caches_dma[index];
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002347}
2348#endif
2349
Christoph Lameterf1b26332007-07-17 04:03:26 -07002350/*
2351 * Conversion table for small slabs sizes / 8 to the index in the
2352 * kmalloc array. This is necessary for slabs < 192 since we have non power
2353 * of two cache sizes there. The size of larger slabs can be determined using
2354 * fls.
2355 */
2356static s8 size_index[24] = {
2357 3, /* 8 */
2358 4, /* 16 */
2359 5, /* 24 */
2360 5, /* 32 */
2361 6, /* 40 */
2362 6, /* 48 */
2363 6, /* 56 */
2364 6, /* 64 */
2365 1, /* 72 */
2366 1, /* 80 */
2367 1, /* 88 */
2368 1, /* 96 */
2369 7, /* 104 */
2370 7, /* 112 */
2371 7, /* 120 */
2372 7, /* 128 */
2373 2, /* 136 */
2374 2, /* 144 */
2375 2, /* 152 */
2376 2, /* 160 */
2377 2, /* 168 */
2378 2, /* 176 */
2379 2, /* 184 */
2380 2 /* 192 */
2381};
2382
Christoph Lameter81819f02007-05-06 14:49:36 -07002383static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2384{
Christoph Lameterf1b26332007-07-17 04:03:26 -07002385 int index;
Christoph Lameter81819f02007-05-06 14:49:36 -07002386
Christoph Lameterf1b26332007-07-17 04:03:26 -07002387 if (size <= 192) {
2388 if (!size)
2389 return ZERO_SIZE_PTR;
Christoph Lameter81819f02007-05-06 14:49:36 -07002390
Christoph Lameterf1b26332007-07-17 04:03:26 -07002391 index = size_index[(size - 1) / 8];
2392 } else {
2393 if (size > KMALLOC_MAX_SIZE)
2394 return NULL;
2395
2396 index = fls(size - 1);
2397 }
Christoph Lameter81819f02007-05-06 14:49:36 -07002398
2399#ifdef CONFIG_ZONE_DMA
Christoph Lameterf1b26332007-07-17 04:03:26 -07002400 if (unlikely((flags & SLUB_DMA)))
Christoph Lameter2e443fd2007-07-17 04:03:24 -07002401 return dma_kmalloc_cache(index, flags);
Christoph Lameterf1b26332007-07-17 04:03:26 -07002402
Christoph Lameter81819f02007-05-06 14:49:36 -07002403#endif
2404 return &kmalloc_caches[index];
2405}
2406
2407void *__kmalloc(size_t size, gfp_t flags)
2408{
2409 struct kmem_cache *s = get_slab(size, flags);
2410
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002411 if (ZERO_OR_NULL_PTR(s))
2412 return s;
2413
Christoph Lameterce15fea2007-07-17 04:03:28 -07002414 return slab_alloc(s, flags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002415}
2416EXPORT_SYMBOL(__kmalloc);
2417
2418#ifdef CONFIG_NUMA
2419void *__kmalloc_node(size_t size, gfp_t flags, int node)
2420{
2421 struct kmem_cache *s = get_slab(size, flags);
2422
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002423 if (ZERO_OR_NULL_PTR(s))
2424 return s;
2425
Christoph Lameterce15fea2007-07-17 04:03:28 -07002426 return slab_alloc(s, flags, node, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002427}
2428EXPORT_SYMBOL(__kmalloc_node);
2429#endif
2430
2431size_t ksize(const void *object)
2432{
Christoph Lameter272c1d22007-06-08 13:46:49 -07002433 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07002434 struct kmem_cache *s;
2435
Linus Torvalds9550b102007-07-19 13:21:34 -07002436 if (ZERO_OR_NULL_PTR(object))
Christoph Lameter272c1d22007-06-08 13:46:49 -07002437 return 0;
2438
2439 page = get_object_page(object);
Christoph Lameter81819f02007-05-06 14:49:36 -07002440 BUG_ON(!page);
2441 s = page->slab;
2442 BUG_ON(!s);
2443
2444 /*
2445 * Debugging requires use of the padding between object
2446 * and whatever may come after it.
2447 */
2448 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2449 return s->objsize;
2450
2451 /*
2452 * If we have the need to store the freelist pointer
2453 * back there or track user information then we can
2454 * only use the space before that information.
2455 */
2456 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2457 return s->inuse;
2458
2459 /*
2460 * Else we can use all the padding etc for the allocation
2461 */
2462 return s->size;
2463}
2464EXPORT_SYMBOL(ksize);
2465
2466void kfree(const void *x)
2467{
2468 struct kmem_cache *s;
2469 struct page *page;
2470
Christoph Lameter272c1d22007-06-08 13:46:49 -07002471 /*
2472 * This has to be an unsigned comparison. According to Linus
2473 * some gcc version treat a pointer as a signed entity. Then
2474 * this comparison would be true for all "negative" pointers
2475 * (which would cover the whole upper half of the address space).
2476 */
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002477 if (ZERO_OR_NULL_PTR(x))
Christoph Lameter81819f02007-05-06 14:49:36 -07002478 return;
2479
Christoph Lameterb49af682007-05-06 14:49:41 -07002480 page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07002481 s = page->slab;
2482
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002483 slab_free(s, page, (void *)x, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002484}
2485EXPORT_SYMBOL(kfree);
2486
Christoph Lameter2086d262007-05-06 14:49:46 -07002487/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002488 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2489 * the remaining slabs by the number of items in use. The slabs with the
2490 * most items in use come first. New allocations will then fill those up
2491 * and thus they can be removed from the partial lists.
2492 *
2493 * The slabs with the least items are placed last. This results in them
2494 * being allocated from last increasing the chance that the last objects
2495 * are freed in them.
Christoph Lameter2086d262007-05-06 14:49:46 -07002496 */
2497int kmem_cache_shrink(struct kmem_cache *s)
2498{
2499 int node;
2500 int i;
2501 struct kmem_cache_node *n;
2502 struct page *page;
2503 struct page *t;
2504 struct list_head *slabs_by_inuse =
2505 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2506 unsigned long flags;
2507
2508 if (!slabs_by_inuse)
2509 return -ENOMEM;
2510
2511 flush_all(s);
2512 for_each_online_node(node) {
2513 n = get_node(s, node);
2514
2515 if (!n->nr_partial)
2516 continue;
2517
2518 for (i = 0; i < s->objects; i++)
2519 INIT_LIST_HEAD(slabs_by_inuse + i);
2520
2521 spin_lock_irqsave(&n->list_lock, flags);
2522
2523 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002524 * Build lists indexed by the items in use in each slab.
Christoph Lameter2086d262007-05-06 14:49:46 -07002525 *
Christoph Lameter672bba32007-05-09 02:32:39 -07002526 * Note that concurrent frees may occur while we hold the
2527 * list_lock. page->inuse here is the upper limit.
Christoph Lameter2086d262007-05-06 14:49:46 -07002528 */
2529 list_for_each_entry_safe(page, t, &n->partial, lru) {
2530 if (!page->inuse && slab_trylock(page)) {
2531 /*
2532 * Must hold slab lock here because slab_free
2533 * may have freed the last object and be
2534 * waiting to release the slab.
2535 */
2536 list_del(&page->lru);
2537 n->nr_partial--;
2538 slab_unlock(page);
2539 discard_slab(s, page);
2540 } else {
Christoph Lameterfcda3d82007-07-30 13:06:46 -07002541 list_move(&page->lru,
2542 slabs_by_inuse + page->inuse);
Christoph Lameter2086d262007-05-06 14:49:46 -07002543 }
2544 }
2545
Christoph Lameter2086d262007-05-06 14:49:46 -07002546 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07002547 * Rebuild the partial list with the slabs filled up most
2548 * first and the least used slabs at the end.
Christoph Lameter2086d262007-05-06 14:49:46 -07002549 */
2550 for (i = s->objects - 1; i >= 0; i--)
2551 list_splice(slabs_by_inuse + i, n->partial.prev);
2552
Christoph Lameter2086d262007-05-06 14:49:46 -07002553 spin_unlock_irqrestore(&n->list_lock, flags);
2554 }
2555
2556 kfree(slabs_by_inuse);
2557 return 0;
2558}
2559EXPORT_SYMBOL(kmem_cache_shrink);
2560
Christoph Lameter81819f02007-05-06 14:49:36 -07002561/********************************************************************
2562 * Basic setup of slabs
2563 *******************************************************************/
2564
2565void __init kmem_cache_init(void)
2566{
2567 int i;
Christoph Lameter4b356be2007-06-16 10:16:13 -07002568 int caches = 0;
Christoph Lameter81819f02007-05-06 14:49:36 -07002569
2570#ifdef CONFIG_NUMA
2571 /*
2572 * Must first have the slab cache available for the allocations of the
Christoph Lameter672bba32007-05-09 02:32:39 -07002573 * struct kmem_cache_node's. There is special bootstrap code in
Christoph Lameter81819f02007-05-06 14:49:36 -07002574 * kmem_cache_open for slab_state == DOWN.
2575 */
2576 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2577 sizeof(struct kmem_cache_node), GFP_KERNEL);
Christoph Lameter8ffa6872007-05-31 00:40:51 -07002578 kmalloc_caches[0].refcount = -1;
Christoph Lameter4b356be2007-06-16 10:16:13 -07002579 caches++;
Christoph Lameter81819f02007-05-06 14:49:36 -07002580#endif
2581
2582 /* Able to allocate the per node structures */
2583 slab_state = PARTIAL;
2584
2585 /* Caches that are not of the two-to-the-power-of size */
Christoph Lameter4b356be2007-06-16 10:16:13 -07002586 if (KMALLOC_MIN_SIZE <= 64) {
2587 create_kmalloc_cache(&kmalloc_caches[1],
Christoph Lameter81819f02007-05-06 14:49:36 -07002588 "kmalloc-96", 96, GFP_KERNEL);
Christoph Lameter4b356be2007-06-16 10:16:13 -07002589 caches++;
2590 }
2591 if (KMALLOC_MIN_SIZE <= 128) {
2592 create_kmalloc_cache(&kmalloc_caches[2],
Christoph Lameter81819f02007-05-06 14:49:36 -07002593 "kmalloc-192", 192, GFP_KERNEL);
Christoph Lameter4b356be2007-06-16 10:16:13 -07002594 caches++;
2595 }
Christoph Lameter81819f02007-05-06 14:49:36 -07002596
Christoph Lameter4b356be2007-06-16 10:16:13 -07002597 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002598 create_kmalloc_cache(&kmalloc_caches[i],
2599 "kmalloc", 1 << i, GFP_KERNEL);
Christoph Lameter4b356be2007-06-16 10:16:13 -07002600 caches++;
2601 }
Christoph Lameter81819f02007-05-06 14:49:36 -07002602
Christoph Lameterf1b26332007-07-17 04:03:26 -07002603
2604 /*
2605 * Patch up the size_index table if we have strange large alignment
2606 * requirements for the kmalloc array. This is only the case for
2607 * mips it seems. The standard arches will not generate any code here.
2608 *
2609 * Largest permitted alignment is 256 bytes due to the way we
2610 * handle the index determination for the smaller caches.
2611 *
2612 * Make sure that nothing crazy happens if someone starts tinkering
2613 * around with ARCH_KMALLOC_MINALIGN
2614 */
2615 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2616 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2617
Christoph Lameter12ad6842007-07-17 04:03:28 -07002618 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
Christoph Lameterf1b26332007-07-17 04:03:26 -07002619 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2620
Christoph Lameter81819f02007-05-06 14:49:36 -07002621 slab_state = UP;
2622
2623 /* Provide the correct kmalloc names now that the caches are up */
2624 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2625 kmalloc_caches[i]. name =
2626 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2627
2628#ifdef CONFIG_SMP
2629 register_cpu_notifier(&slab_notifier);
2630#endif
2631
Christoph Lameterbcf889f2007-05-10 03:15:44 -07002632 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2633 nr_cpu_ids * sizeof(struct page *);
Christoph Lameter81819f02007-05-06 14:49:36 -07002634
2635 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
Christoph Lameter4b356be2007-06-16 10:16:13 -07002636 " CPUs=%d, Nodes=%d\n",
2637 caches, cache_line_size(),
Christoph Lameter81819f02007-05-06 14:49:36 -07002638 slub_min_order, slub_max_order, slub_min_objects,
2639 nr_cpu_ids, nr_node_ids);
2640}
2641
2642/*
2643 * Find a mergeable slab cache
2644 */
2645static int slab_unmergeable(struct kmem_cache *s)
2646{
2647 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2648 return 1;
2649
Christoph Lameterc59def92007-05-16 22:10:50 -07002650 if (s->ctor)
Christoph Lameter81819f02007-05-06 14:49:36 -07002651 return 1;
2652
Christoph Lameter8ffa6872007-05-31 00:40:51 -07002653 /*
2654 * We may have set a slab to be unmergeable during bootstrap.
2655 */
2656 if (s->refcount < 0)
2657 return 1;
2658
Christoph Lameter81819f02007-05-06 14:49:36 -07002659 return 0;
2660}
2661
2662static struct kmem_cache *find_mergeable(size_t size,
2663 size_t align, unsigned long flags,
Christoph Lameterc59def92007-05-16 22:10:50 -07002664 void (*ctor)(void *, struct kmem_cache *, unsigned long))
Christoph Lameter81819f02007-05-06 14:49:36 -07002665{
Christoph Lameter5b95a4ac2007-07-17 04:03:19 -07002666 struct kmem_cache *s;
Christoph Lameter81819f02007-05-06 14:49:36 -07002667
2668 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2669 return NULL;
2670
Christoph Lameterc59def92007-05-16 22:10:50 -07002671 if (ctor)
Christoph Lameter81819f02007-05-06 14:49:36 -07002672 return NULL;
2673
2674 size = ALIGN(size, sizeof(void *));
2675 align = calculate_alignment(flags, align, size);
2676 size = ALIGN(size, align);
2677
Christoph Lameter5b95a4ac2007-07-17 04:03:19 -07002678 list_for_each_entry(s, &slab_caches, list) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002679 if (slab_unmergeable(s))
2680 continue;
2681
2682 if (size > s->size)
2683 continue;
2684
2685 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2686 (s->flags & SLUB_MERGE_SAME))
2687 continue;
2688 /*
2689 * Check if alignment is compatible.
2690 * Courtesy of Adrian Drzewiecki
2691 */
2692 if ((s->size & ~(align -1)) != s->size)
2693 continue;
2694
2695 if (s->size - size >= sizeof(void *))
2696 continue;
2697
2698 return s;
2699 }
2700 return NULL;
2701}
2702
2703struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2704 size_t align, unsigned long flags,
Paul Mundt20c2df82007-07-20 10:11:58 +09002705 void (*ctor)(void *, struct kmem_cache *, unsigned long))
Christoph Lameter81819f02007-05-06 14:49:36 -07002706{
2707 struct kmem_cache *s;
2708
2709 down_write(&slub_lock);
Christoph Lameterc59def92007-05-16 22:10:50 -07002710 s = find_mergeable(size, align, flags, ctor);
Christoph Lameter81819f02007-05-06 14:49:36 -07002711 if (s) {
2712 s->refcount++;
2713 /*
2714 * Adjust the object sizes so that we clear
2715 * the complete object on kzalloc.
2716 */
2717 s->objsize = max(s->objsize, (int)size);
2718 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002719 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002720 if (sysfs_slab_alias(s, name))
2721 goto err;
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002722 return s;
2723 }
2724 s = kmalloc(kmem_size, GFP_KERNEL);
2725 if (s) {
2726 if (kmem_cache_open(s, GFP_KERNEL, name,
Christoph Lameterc59def92007-05-16 22:10:50 -07002727 size, align, flags, ctor)) {
Christoph Lameter81819f02007-05-06 14:49:36 -07002728 list_add(&s->list, &slab_caches);
Christoph Lametera0e1d1b2007-07-17 04:03:31 -07002729 up_write(&slub_lock);
2730 if (sysfs_slab_add(s))
2731 goto err;
2732 return s;
2733 }
2734 kfree(s);
Christoph Lameter81819f02007-05-06 14:49:36 -07002735 }
2736 up_write(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002737
2738err:
Christoph Lameter81819f02007-05-06 14:49:36 -07002739 if (flags & SLAB_PANIC)
2740 panic("Cannot create slabcache %s\n", name);
2741 else
2742 s = NULL;
2743 return s;
2744}
2745EXPORT_SYMBOL(kmem_cache_create);
2746
Christoph Lameter81819f02007-05-06 14:49:36 -07002747#ifdef CONFIG_SMP
Christoph Lameter27390bc2007-06-01 00:47:09 -07002748/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002749 * Use the cpu notifier to insure that the cpu slabs are flushed when
2750 * necessary.
Christoph Lameter81819f02007-05-06 14:49:36 -07002751 */
2752static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2753 unsigned long action, void *hcpu)
2754{
2755 long cpu = (long)hcpu;
Christoph Lameter5b95a4ac2007-07-17 04:03:19 -07002756 struct kmem_cache *s;
2757 unsigned long flags;
Christoph Lameter81819f02007-05-06 14:49:36 -07002758
2759 switch (action) {
2760 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07002761 case CPU_UP_CANCELED_FROZEN:
Christoph Lameter81819f02007-05-06 14:49:36 -07002762 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07002763 case CPU_DEAD_FROZEN:
Christoph Lameter5b95a4ac2007-07-17 04:03:19 -07002764 down_read(&slub_lock);
2765 list_for_each_entry(s, &slab_caches, list) {
2766 local_irq_save(flags);
2767 __flush_cpu_slab(s, cpu);
2768 local_irq_restore(flags);
2769 }
2770 up_read(&slub_lock);
Christoph Lameter81819f02007-05-06 14:49:36 -07002771 break;
2772 default:
2773 break;
2774 }
2775 return NOTIFY_OK;
2776}
2777
2778static struct notifier_block __cpuinitdata slab_notifier =
2779 { &slab_cpuup_callback, NULL, 0 };
2780
2781#endif
2782
Christoph Lameter81819f02007-05-06 14:49:36 -07002783void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2784{
2785 struct kmem_cache *s = get_slab(size, gfpflags);
Christoph Lameter81819f02007-05-06 14:49:36 -07002786
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002787 if (ZERO_OR_NULL_PTR(s))
2788 return s;
Christoph Lameter81819f02007-05-06 14:49:36 -07002789
Christoph Lameterce15fea2007-07-17 04:03:28 -07002790 return slab_alloc(s, gfpflags, -1, caller);
Christoph Lameter81819f02007-05-06 14:49:36 -07002791}
2792
2793void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2794 int node, void *caller)
2795{
2796 struct kmem_cache *s = get_slab(size, gfpflags);
Christoph Lameter81819f02007-05-06 14:49:36 -07002797
Christoph Lameter6cb8f912007-07-17 04:03:22 -07002798 if (ZERO_OR_NULL_PTR(s))
2799 return s;
Christoph Lameter81819f02007-05-06 14:49:36 -07002800
Christoph Lameterce15fea2007-07-17 04:03:28 -07002801 return slab_alloc(s, gfpflags, node, caller);
Christoph Lameter81819f02007-05-06 14:49:36 -07002802}
2803
Christoph Lameter41ecc552007-05-09 02:32:44 -07002804#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
Christoph Lameter434e2452007-07-17 04:03:30 -07002805static int validate_slab(struct kmem_cache *s, struct page *page,
2806 unsigned long *map)
Christoph Lameter53e15af2007-05-06 14:49:43 -07002807{
2808 void *p;
2809 void *addr = page_address(page);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002810
2811 if (!check_slab(s, page) ||
2812 !on_freelist(s, page, NULL))
2813 return 0;
2814
2815 /* Now we know that a valid freelist exists */
2816 bitmap_zero(map, s->objects);
2817
Christoph Lameter7656c722007-05-09 02:32:40 -07002818 for_each_free_object(p, s, page->freelist) {
2819 set_bit(slab_index(p, s, addr), map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002820 if (!check_object(s, page, p, 0))
2821 return 0;
2822 }
2823
Christoph Lameter7656c722007-05-09 02:32:40 -07002824 for_each_object(p, s, addr)
2825 if (!test_bit(slab_index(p, s, addr), map))
Christoph Lameter53e15af2007-05-06 14:49:43 -07002826 if (!check_object(s, page, p, 1))
2827 return 0;
2828 return 1;
2829}
2830
Christoph Lameter434e2452007-07-17 04:03:30 -07002831static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2832 unsigned long *map)
Christoph Lameter53e15af2007-05-06 14:49:43 -07002833{
2834 if (slab_trylock(page)) {
Christoph Lameter434e2452007-07-17 04:03:30 -07002835 validate_slab(s, page, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002836 slab_unlock(page);
2837 } else
2838 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2839 s->name, page);
2840
2841 if (s->flags & DEBUG_DEFAULT_FLAGS) {
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07002842 if (!SlabDebug(page))
2843 printk(KERN_ERR "SLUB %s: SlabDebug not set "
Christoph Lameter53e15af2007-05-06 14:49:43 -07002844 "on slab 0x%p\n", s->name, page);
2845 } else {
Christoph Lameter35e5d7e2007-05-09 02:32:42 -07002846 if (SlabDebug(page))
2847 printk(KERN_ERR "SLUB %s: SlabDebug set on "
Christoph Lameter53e15af2007-05-06 14:49:43 -07002848 "slab 0x%p\n", s->name, page);
2849 }
2850}
2851
Christoph Lameter434e2452007-07-17 04:03:30 -07002852static int validate_slab_node(struct kmem_cache *s,
2853 struct kmem_cache_node *n, unsigned long *map)
Christoph Lameter53e15af2007-05-06 14:49:43 -07002854{
2855 unsigned long count = 0;
2856 struct page *page;
2857 unsigned long flags;
2858
2859 spin_lock_irqsave(&n->list_lock, flags);
2860
2861 list_for_each_entry(page, &n->partial, lru) {
Christoph Lameter434e2452007-07-17 04:03:30 -07002862 validate_slab_slab(s, page, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002863 count++;
2864 }
2865 if (count != n->nr_partial)
2866 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2867 "counter=%ld\n", s->name, count, n->nr_partial);
2868
2869 if (!(s->flags & SLAB_STORE_USER))
2870 goto out;
2871
2872 list_for_each_entry(page, &n->full, lru) {
Christoph Lameter434e2452007-07-17 04:03:30 -07002873 validate_slab_slab(s, page, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002874 count++;
2875 }
2876 if (count != atomic_long_read(&n->nr_slabs))
2877 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2878 "counter=%ld\n", s->name, count,
2879 atomic_long_read(&n->nr_slabs));
2880
2881out:
2882 spin_unlock_irqrestore(&n->list_lock, flags);
2883 return count;
2884}
2885
Christoph Lameter434e2452007-07-17 04:03:30 -07002886static long validate_slab_cache(struct kmem_cache *s)
Christoph Lameter53e15af2007-05-06 14:49:43 -07002887{
2888 int node;
2889 unsigned long count = 0;
Christoph Lameter434e2452007-07-17 04:03:30 -07002890 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2891 sizeof(unsigned long), GFP_KERNEL);
2892
2893 if (!map)
2894 return -ENOMEM;
Christoph Lameter53e15af2007-05-06 14:49:43 -07002895
2896 flush_all(s);
2897 for_each_online_node(node) {
2898 struct kmem_cache_node *n = get_node(s, node);
2899
Christoph Lameter434e2452007-07-17 04:03:30 -07002900 count += validate_slab_node(s, n, map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002901 }
Christoph Lameter434e2452007-07-17 04:03:30 -07002902 kfree(map);
Christoph Lameter53e15af2007-05-06 14:49:43 -07002903 return count;
2904}
2905
Christoph Lameterb3459702007-05-09 02:32:41 -07002906#ifdef SLUB_RESILIENCY_TEST
2907static void resiliency_test(void)
2908{
2909 u8 *p;
2910
2911 printk(KERN_ERR "SLUB resiliency testing\n");
2912 printk(KERN_ERR "-----------------------\n");
2913 printk(KERN_ERR "A. Corruption after allocation\n");
2914
2915 p = kzalloc(16, GFP_KERNEL);
2916 p[16] = 0x12;
2917 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2918 " 0x12->0x%p\n\n", p + 16);
2919
2920 validate_slab_cache(kmalloc_caches + 4);
2921
2922 /* Hmmm... The next two are dangerous */
2923 p = kzalloc(32, GFP_KERNEL);
2924 p[32 + sizeof(void *)] = 0x34;
2925 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2926 " 0x34 -> -0x%p\n", p);
2927 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2928
2929 validate_slab_cache(kmalloc_caches + 5);
2930 p = kzalloc(64, GFP_KERNEL);
2931 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2932 *p = 0x56;
2933 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2934 p);
2935 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2936 validate_slab_cache(kmalloc_caches + 6);
2937
2938 printk(KERN_ERR "\nB. Corruption after free\n");
2939 p = kzalloc(128, GFP_KERNEL);
2940 kfree(p);
2941 *p = 0x78;
2942 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2943 validate_slab_cache(kmalloc_caches + 7);
2944
2945 p = kzalloc(256, GFP_KERNEL);
2946 kfree(p);
2947 p[50] = 0x9a;
2948 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2949 validate_slab_cache(kmalloc_caches + 8);
2950
2951 p = kzalloc(512, GFP_KERNEL);
2952 kfree(p);
2953 p[512] = 0xab;
2954 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2955 validate_slab_cache(kmalloc_caches + 9);
2956}
2957#else
2958static void resiliency_test(void) {};
2959#endif
2960
Christoph Lameter88a420e2007-05-06 14:49:45 -07002961/*
Christoph Lameter672bba32007-05-09 02:32:39 -07002962 * Generate lists of code addresses where slabcache objects are allocated
Christoph Lameter88a420e2007-05-06 14:49:45 -07002963 * and freed.
2964 */
2965
2966struct location {
2967 unsigned long count;
2968 void *addr;
Christoph Lameter45edfa52007-05-09 02:32:45 -07002969 long long sum_time;
2970 long min_time;
2971 long max_time;
2972 long min_pid;
2973 long max_pid;
2974 cpumask_t cpus;
2975 nodemask_t nodes;
Christoph Lameter88a420e2007-05-06 14:49:45 -07002976};
2977
2978struct loc_track {
2979 unsigned long max;
2980 unsigned long count;
2981 struct location *loc;
2982};
2983
2984static void free_loc_track(struct loc_track *t)
2985{
2986 if (t->max)
2987 free_pages((unsigned long)t->loc,
2988 get_order(sizeof(struct location) * t->max));
2989}
2990
Christoph Lameter68dff6a2007-07-17 04:03:20 -07002991static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
Christoph Lameter88a420e2007-05-06 14:49:45 -07002992{
2993 struct location *l;
2994 int order;
2995
Christoph Lameter88a420e2007-05-06 14:49:45 -07002996 order = get_order(sizeof(struct location) * max);
2997
Christoph Lameter68dff6a2007-07-17 04:03:20 -07002998 l = (void *)__get_free_pages(flags, order);
Christoph Lameter88a420e2007-05-06 14:49:45 -07002999 if (!l)
3000 return 0;
3001
3002 if (t->count) {
3003 memcpy(l, t->loc, sizeof(struct location) * t->count);
3004 free_loc_track(t);
3005 }
3006 t->max = max;
3007 t->loc = l;
3008 return 1;
3009}
3010
3011static int add_location(struct loc_track *t, struct kmem_cache *s,
Christoph Lameter45edfa52007-05-09 02:32:45 -07003012 const struct track *track)
Christoph Lameter88a420e2007-05-06 14:49:45 -07003013{
3014 long start, end, pos;
3015 struct location *l;
3016 void *caddr;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003017 unsigned long age = jiffies - track->when;
Christoph Lameter88a420e2007-05-06 14:49:45 -07003018
3019 start = -1;
3020 end = t->count;
3021
3022 for ( ; ; ) {
3023 pos = start + (end - start + 1) / 2;
3024
3025 /*
3026 * There is nothing at "end". If we end up there
3027 * we need to add something to before end.
3028 */
3029 if (pos == end)
3030 break;
3031
3032 caddr = t->loc[pos].addr;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003033 if (track->addr == caddr) {
3034
3035 l = &t->loc[pos];
3036 l->count++;
3037 if (track->when) {
3038 l->sum_time += age;
3039 if (age < l->min_time)
3040 l->min_time = age;
3041 if (age > l->max_time)
3042 l->max_time = age;
3043
3044 if (track->pid < l->min_pid)
3045 l->min_pid = track->pid;
3046 if (track->pid > l->max_pid)
3047 l->max_pid = track->pid;
3048
3049 cpu_set(track->cpu, l->cpus);
3050 }
3051 node_set(page_to_nid(virt_to_page(track)), l->nodes);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003052 return 1;
3053 }
3054
Christoph Lameter45edfa52007-05-09 02:32:45 -07003055 if (track->addr < caddr)
Christoph Lameter88a420e2007-05-06 14:49:45 -07003056 end = pos;
3057 else
3058 start = pos;
3059 }
3060
3061 /*
Christoph Lameter672bba32007-05-09 02:32:39 -07003062 * Not found. Insert new tracking element.
Christoph Lameter88a420e2007-05-06 14:49:45 -07003063 */
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003064 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
Christoph Lameter88a420e2007-05-06 14:49:45 -07003065 return 0;
3066
3067 l = t->loc + pos;
3068 if (pos < t->count)
3069 memmove(l + 1, l,
3070 (t->count - pos) * sizeof(struct location));
3071 t->count++;
3072 l->count = 1;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003073 l->addr = track->addr;
3074 l->sum_time = age;
3075 l->min_time = age;
3076 l->max_time = age;
3077 l->min_pid = track->pid;
3078 l->max_pid = track->pid;
3079 cpus_clear(l->cpus);
3080 cpu_set(track->cpu, l->cpus);
3081 nodes_clear(l->nodes);
3082 node_set(page_to_nid(virt_to_page(track)), l->nodes);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003083 return 1;
3084}
3085
3086static void process_slab(struct loc_track *t, struct kmem_cache *s,
3087 struct page *page, enum track_item alloc)
3088{
3089 void *addr = page_address(page);
Christoph Lameter7656c722007-05-09 02:32:40 -07003090 DECLARE_BITMAP(map, s->objects);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003091 void *p;
3092
3093 bitmap_zero(map, s->objects);
Christoph Lameter7656c722007-05-09 02:32:40 -07003094 for_each_free_object(p, s, page->freelist)
3095 set_bit(slab_index(p, s, addr), map);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003096
Christoph Lameter7656c722007-05-09 02:32:40 -07003097 for_each_object(p, s, addr)
Christoph Lameter45edfa52007-05-09 02:32:45 -07003098 if (!test_bit(slab_index(p, s, addr), map))
3099 add_location(t, s, get_track(s, p, alloc));
Christoph Lameter88a420e2007-05-06 14:49:45 -07003100}
3101
3102static int list_locations(struct kmem_cache *s, char *buf,
3103 enum track_item alloc)
3104{
3105 int n = 0;
3106 unsigned long i;
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003107 struct loc_track t = { 0, 0, NULL };
Christoph Lameter88a420e2007-05-06 14:49:45 -07003108 int node;
3109
Christoph Lameter68dff6a2007-07-17 04:03:20 -07003110 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3111 GFP_KERNEL))
3112 return sprintf(buf, "Out of memory\n");
Christoph Lameter88a420e2007-05-06 14:49:45 -07003113
3114 /* Push back cpu slabs */
3115 flush_all(s);
3116
3117 for_each_online_node(node) {
3118 struct kmem_cache_node *n = get_node(s, node);
3119 unsigned long flags;
3120 struct page *page;
3121
Christoph Lameter9e869432007-08-22 14:01:56 -07003122 if (!atomic_long_read(&n->nr_slabs))
Christoph Lameter88a420e2007-05-06 14:49:45 -07003123 continue;
3124
3125 spin_lock_irqsave(&n->list_lock, flags);
3126 list_for_each_entry(page, &n->partial, lru)
3127 process_slab(&t, s, page, alloc);
3128 list_for_each_entry(page, &n->full, lru)
3129 process_slab(&t, s, page, alloc);
3130 spin_unlock_irqrestore(&n->list_lock, flags);
3131 }
3132
3133 for (i = 0; i < t.count; i++) {
Christoph Lameter45edfa52007-05-09 02:32:45 -07003134 struct location *l = &t.loc[i];
Christoph Lameter88a420e2007-05-06 14:49:45 -07003135
3136 if (n > PAGE_SIZE - 100)
3137 break;
Christoph Lameter45edfa52007-05-09 02:32:45 -07003138 n += sprintf(buf + n, "%7ld ", l->count);
3139
3140 if (l->addr)
3141 n += sprint_symbol(buf + n, (unsigned long)l->addr);
Christoph Lameter88a420e2007-05-06 14:49:45 -07003142 else
3143 n += sprintf(buf + n, "<not-available>");
Christoph Lameter45edfa52007-05-09 02:32:45 -07003144
3145 if (l->sum_time != l->min_time) {
3146 unsigned long remainder;
3147
3148 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3149 l->min_time,
3150 div_long_long_rem(l->sum_time, l->count, &remainder),
3151 l->max_time);
3152 } else
3153 n += sprintf(buf + n, " age=%ld",
3154 l->min_time);
3155
3156 if (l->min_pid != l->max_pid)
3157 n += sprintf(buf + n, " pid=%ld-%ld",
3158 l->min_pid, l->max_pid);
3159 else
3160 n += sprintf(buf + n, " pid=%ld",
3161 l->min_pid);
3162
Christoph Lameter84966342007-06-23 17:16:32 -07003163 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3164 n < PAGE_SIZE - 60) {
Christoph Lameter45edfa52007-05-09 02:32:45 -07003165 n += sprintf(buf + n, " cpus=");
3166 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3167 l->cpus);
3168 }
3169
Christoph Lameter84966342007-06-23 17:16:32 -07003170 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3171 n < PAGE_SIZE - 60) {
Christoph Lameter45edfa52007-05-09 02:32:45 -07003172 n += sprintf(buf + n, " nodes=");
3173 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3174 l->nodes);
3175 }
3176
Christoph Lameter88a420e2007-05-06 14:49:45 -07003177 n += sprintf(buf + n, "\n");
3178 }
3179
3180 free_loc_track(&t);
3181 if (!t.count)
3182 n += sprintf(buf, "No data\n");
3183 return n;
3184}
3185
Christoph Lameter81819f02007-05-06 14:49:36 -07003186static unsigned long count_partial(struct kmem_cache_node *n)
3187{
3188 unsigned long flags;
3189 unsigned long x = 0;
3190 struct page *page;
3191
3192 spin_lock_irqsave(&n->list_lock, flags);
3193 list_for_each_entry(page, &n->partial, lru)
3194 x += page->inuse;
3195 spin_unlock_irqrestore(&n->list_lock, flags);
3196 return x;
3197}
3198
3199enum slab_stat_type {
3200 SL_FULL,
3201 SL_PARTIAL,
3202 SL_CPU,
3203 SL_OBJECTS
3204};
3205
3206#define SO_FULL (1 << SL_FULL)
3207#define SO_PARTIAL (1 << SL_PARTIAL)
3208#define SO_CPU (1 << SL_CPU)
3209#define SO_OBJECTS (1 << SL_OBJECTS)
3210
3211static unsigned long slab_objects(struct kmem_cache *s,
3212 char *buf, unsigned long flags)
3213{
3214 unsigned long total = 0;
3215 int cpu;
3216 int node;
3217 int x;
3218 unsigned long *nodes;
3219 unsigned long *per_cpu;
3220
3221 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3222 per_cpu = nodes + nr_node_ids;
3223
3224 for_each_possible_cpu(cpu) {
3225 struct page *page = s->cpu_slab[cpu];
3226 int node;
3227
3228 if (page) {
3229 node = page_to_nid(page);
3230 if (flags & SO_CPU) {
3231 int x = 0;
3232
3233 if (flags & SO_OBJECTS)
3234 x = page->inuse;
3235 else
3236 x = 1;
3237 total += x;
3238 nodes[node] += x;
3239 }
3240 per_cpu[node]++;
3241 }
3242 }
3243
3244 for_each_online_node(node) {
3245 struct kmem_cache_node *n = get_node(s, node);
3246
3247 if (flags & SO_PARTIAL) {
3248 if (flags & SO_OBJECTS)
3249 x = count_partial(n);
3250 else
3251 x = n->nr_partial;
3252 total += x;
3253 nodes[node] += x;
3254 }
3255
3256 if (flags & SO_FULL) {
Christoph Lameter9e869432007-08-22 14:01:56 -07003257 int full_slabs = atomic_long_read(&n->nr_slabs)
Christoph Lameter81819f02007-05-06 14:49:36 -07003258 - per_cpu[node]
3259 - n->nr_partial;
3260
3261 if (flags & SO_OBJECTS)
3262 x = full_slabs * s->objects;
3263 else
3264 x = full_slabs;
3265 total += x;
3266 nodes[node] += x;
3267 }
3268 }
3269
3270 x = sprintf(buf, "%lu", total);
3271#ifdef CONFIG_NUMA
3272 for_each_online_node(node)
3273 if (nodes[node])
3274 x += sprintf(buf + x, " N%d=%lu",
3275 node, nodes[node]);
3276#endif
3277 kfree(nodes);
3278 return x + sprintf(buf + x, "\n");
3279}
3280
3281static int any_slab_objects(struct kmem_cache *s)
3282{
3283 int node;
3284 int cpu;
3285
3286 for_each_possible_cpu(cpu)
3287 if (s->cpu_slab[cpu])
3288 return 1;
3289
3290 for_each_node(node) {
3291 struct kmem_cache_node *n = get_node(s, node);
3292
Christoph Lameter9e869432007-08-22 14:01:56 -07003293 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
Christoph Lameter81819f02007-05-06 14:49:36 -07003294 return 1;
3295 }
3296 return 0;
3297}
3298
3299#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3300#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3301
3302struct slab_attribute {
3303 struct attribute attr;
3304 ssize_t (*show)(struct kmem_cache *s, char *buf);
3305 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3306};
3307
3308#define SLAB_ATTR_RO(_name) \
3309 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3310
3311#define SLAB_ATTR(_name) \
3312 static struct slab_attribute _name##_attr = \
3313 __ATTR(_name, 0644, _name##_show, _name##_store)
3314
Christoph Lameter81819f02007-05-06 14:49:36 -07003315static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3316{
3317 return sprintf(buf, "%d\n", s->size);
3318}
3319SLAB_ATTR_RO(slab_size);
3320
3321static ssize_t align_show(struct kmem_cache *s, char *buf)
3322{
3323 return sprintf(buf, "%d\n", s->align);
3324}
3325SLAB_ATTR_RO(align);
3326
3327static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3328{
3329 return sprintf(buf, "%d\n", s->objsize);
3330}
3331SLAB_ATTR_RO(object_size);
3332
3333static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3334{
3335 return sprintf(buf, "%d\n", s->objects);
3336}
3337SLAB_ATTR_RO(objs_per_slab);
3338
3339static ssize_t order_show(struct kmem_cache *s, char *buf)
3340{
3341 return sprintf(buf, "%d\n", s->order);
3342}
3343SLAB_ATTR_RO(order);
3344
3345static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3346{
3347 if (s->ctor) {
3348 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3349
3350 return n + sprintf(buf + n, "\n");
3351 }
3352 return 0;
3353}
3354SLAB_ATTR_RO(ctor);
3355
Christoph Lameter81819f02007-05-06 14:49:36 -07003356static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3357{
3358 return sprintf(buf, "%d\n", s->refcount - 1);
3359}
3360SLAB_ATTR_RO(aliases);
3361
3362static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3363{
3364 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3365}
3366SLAB_ATTR_RO(slabs);
3367
3368static ssize_t partial_show(struct kmem_cache *s, char *buf)
3369{
3370 return slab_objects(s, buf, SO_PARTIAL);
3371}
3372SLAB_ATTR_RO(partial);
3373
3374static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3375{
3376 return slab_objects(s, buf, SO_CPU);
3377}
3378SLAB_ATTR_RO(cpu_slabs);
3379
3380static ssize_t objects_show(struct kmem_cache *s, char *buf)
3381{
3382 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3383}
3384SLAB_ATTR_RO(objects);
3385
3386static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3387{
3388 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3389}
3390
3391static ssize_t sanity_checks_store(struct kmem_cache *s,
3392 const char *buf, size_t length)
3393{
3394 s->flags &= ~SLAB_DEBUG_FREE;
3395 if (buf[0] == '1')
3396 s->flags |= SLAB_DEBUG_FREE;
3397 return length;
3398}
3399SLAB_ATTR(sanity_checks);
3400
3401static ssize_t trace_show(struct kmem_cache *s, char *buf)
3402{
3403 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3404}
3405
3406static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3407 size_t length)
3408{
3409 s->flags &= ~SLAB_TRACE;
3410 if (buf[0] == '1')
3411 s->flags |= SLAB_TRACE;
3412 return length;
3413}
3414SLAB_ATTR(trace);
3415
3416static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3417{
3418 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3419}
3420
3421static ssize_t reclaim_account_store(struct kmem_cache *s,
3422 const char *buf, size_t length)
3423{
3424 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3425 if (buf[0] == '1')
3426 s->flags |= SLAB_RECLAIM_ACCOUNT;
3427 return length;
3428}
3429SLAB_ATTR(reclaim_account);
3430
3431static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3432{
Christoph Lameter5af60832007-05-06 14:49:56 -07003433 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
Christoph Lameter81819f02007-05-06 14:49:36 -07003434}
3435SLAB_ATTR_RO(hwcache_align);
3436
3437#ifdef CONFIG_ZONE_DMA
3438static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3439{
3440 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3441}
3442SLAB_ATTR_RO(cache_dma);
3443#endif
3444
3445static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3446{
3447 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3448}
3449SLAB_ATTR_RO(destroy_by_rcu);
3450
3451static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3452{
3453 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3454}
3455
3456static ssize_t red_zone_store(struct kmem_cache *s,
3457 const char *buf, size_t length)
3458{
3459 if (any_slab_objects(s))
3460 return -EBUSY;
3461
3462 s->flags &= ~SLAB_RED_ZONE;
3463 if (buf[0] == '1')
3464 s->flags |= SLAB_RED_ZONE;
3465 calculate_sizes(s);
3466 return length;
3467}
3468SLAB_ATTR(red_zone);
3469
3470static ssize_t poison_show(struct kmem_cache *s, char *buf)
3471{
3472 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3473}
3474
3475static ssize_t poison_store(struct kmem_cache *s,
3476 const char *buf, size_t length)
3477{
3478 if (any_slab_objects(s))
3479 return -EBUSY;
3480
3481 s->flags &= ~SLAB_POISON;
3482 if (buf[0] == '1')
3483 s->flags |= SLAB_POISON;
3484 calculate_sizes(s);
3485 return length;
3486}
3487SLAB_ATTR(poison);
3488
3489static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3490{
3491 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3492}
3493
3494static ssize_t store_user_store(struct kmem_cache *s,
3495 const char *buf, size_t length)
3496{
3497 if (any_slab_objects(s))
3498 return -EBUSY;
3499
3500 s->flags &= ~SLAB_STORE_USER;
3501 if (buf[0] == '1')
3502 s->flags |= SLAB_STORE_USER;
3503 calculate_sizes(s);
3504 return length;
3505}
3506SLAB_ATTR(store_user);
3507
Christoph Lameter53e15af2007-05-06 14:49:43 -07003508static ssize_t validate_show(struct kmem_cache *s, char *buf)
3509{
3510 return 0;
3511}
3512
3513static ssize_t validate_store(struct kmem_cache *s,
3514 const char *buf, size_t length)
3515{
Christoph Lameter434e2452007-07-17 04:03:30 -07003516 int ret = -EINVAL;
3517
3518 if (buf[0] == '1') {
3519 ret = validate_slab_cache(s);
3520 if (ret >= 0)
3521 ret = length;
3522 }
3523 return ret;
Christoph Lameter53e15af2007-05-06 14:49:43 -07003524}
3525SLAB_ATTR(validate);
3526
Christoph Lameter2086d262007-05-06 14:49:46 -07003527static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3528{
3529 return 0;
3530}
3531
3532static ssize_t shrink_store(struct kmem_cache *s,
3533 const char *buf, size_t length)
3534{
3535 if (buf[0] == '1') {
3536 int rc = kmem_cache_shrink(s);
3537
3538 if (rc)
3539 return rc;
3540 } else
3541 return -EINVAL;
3542 return length;
3543}
3544SLAB_ATTR(shrink);
3545
Christoph Lameter88a420e2007-05-06 14:49:45 -07003546static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3547{
3548 if (!(s->flags & SLAB_STORE_USER))
3549 return -ENOSYS;
3550 return list_locations(s, buf, TRACK_ALLOC);
3551}
3552SLAB_ATTR_RO(alloc_calls);
3553
3554static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3555{
3556 if (!(s->flags & SLAB_STORE_USER))
3557 return -ENOSYS;
3558 return list_locations(s, buf, TRACK_FREE);
3559}
3560SLAB_ATTR_RO(free_calls);
3561
Christoph Lameter81819f02007-05-06 14:49:36 -07003562#ifdef CONFIG_NUMA
3563static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3564{
3565 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3566}
3567
3568static ssize_t defrag_ratio_store(struct kmem_cache *s,
3569 const char *buf, size_t length)
3570{
3571 int n = simple_strtoul(buf, NULL, 10);
3572
3573 if (n < 100)
3574 s->defrag_ratio = n * 10;
3575 return length;
3576}
3577SLAB_ATTR(defrag_ratio);
3578#endif
3579
3580static struct attribute * slab_attrs[] = {
3581 &slab_size_attr.attr,
3582 &object_size_attr.attr,
3583 &objs_per_slab_attr.attr,
3584 &order_attr.attr,
3585 &objects_attr.attr,
3586 &slabs_attr.attr,
3587 &partial_attr.attr,
3588 &cpu_slabs_attr.attr,
3589 &ctor_attr.attr,
Christoph Lameter81819f02007-05-06 14:49:36 -07003590 &aliases_attr.attr,
3591 &align_attr.attr,
3592 &sanity_checks_attr.attr,
3593 &trace_attr.attr,
3594 &hwcache_align_attr.attr,
3595 &reclaim_account_attr.attr,
3596 &destroy_by_rcu_attr.attr,
3597 &red_zone_attr.attr,
3598 &poison_attr.attr,
3599 &store_user_attr.attr,
Christoph Lameter53e15af2007-05-06 14:49:43 -07003600 &validate_attr.attr,
Christoph Lameter2086d262007-05-06 14:49:46 -07003601 &shrink_attr.attr,
Christoph Lameter88a420e2007-05-06 14:49:45 -07003602 &alloc_calls_attr.attr,
3603 &free_calls_attr.attr,
Christoph Lameter81819f02007-05-06 14:49:36 -07003604#ifdef CONFIG_ZONE_DMA
3605 &cache_dma_attr.attr,
3606#endif
3607#ifdef CONFIG_NUMA
3608 &defrag_ratio_attr.attr,
3609#endif
3610 NULL
3611};
3612
3613static struct attribute_group slab_attr_group = {
3614 .attrs = slab_attrs,
3615};
3616
3617static ssize_t slab_attr_show(struct kobject *kobj,
3618 struct attribute *attr,
3619 char *buf)
3620{
3621 struct slab_attribute *attribute;
3622 struct kmem_cache *s;
3623 int err;
3624
3625 attribute = to_slab_attr(attr);
3626 s = to_slab(kobj);
3627
3628 if (!attribute->show)
3629 return -EIO;
3630
3631 err = attribute->show(s, buf);
3632
3633 return err;
3634}
3635
3636static ssize_t slab_attr_store(struct kobject *kobj,
3637 struct attribute *attr,
3638 const char *buf, size_t len)
3639{
3640 struct slab_attribute *attribute;
3641 struct kmem_cache *s;
3642 int err;
3643
3644 attribute = to_slab_attr(attr);
3645 s = to_slab(kobj);
3646
3647 if (!attribute->store)
3648 return -EIO;
3649
3650 err = attribute->store(s, buf, len);
3651
3652 return err;
3653}
3654
3655static struct sysfs_ops slab_sysfs_ops = {
3656 .show = slab_attr_show,
3657 .store = slab_attr_store,
3658};
3659
3660static struct kobj_type slab_ktype = {
3661 .sysfs_ops = &slab_sysfs_ops,
3662};
3663
3664static int uevent_filter(struct kset *kset, struct kobject *kobj)
3665{
3666 struct kobj_type *ktype = get_ktype(kobj);
3667
3668 if (ktype == &slab_ktype)
3669 return 1;
3670 return 0;
3671}
3672
3673static struct kset_uevent_ops slab_uevent_ops = {
3674 .filter = uevent_filter,
3675};
3676
Adrian Bunk5af328a2007-07-17 04:03:27 -07003677static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
Christoph Lameter81819f02007-05-06 14:49:36 -07003678
3679#define ID_STR_LENGTH 64
3680
3681/* Create a unique string id for a slab cache:
3682 * format
3683 * :[flags-]size:[memory address of kmemcache]
3684 */
3685static char *create_unique_id(struct kmem_cache *s)
3686{
3687 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3688 char *p = name;
3689
3690 BUG_ON(!name);
3691
3692 *p++ = ':';
3693 /*
3694 * First flags affecting slabcache operations. We will only
3695 * get here for aliasable slabs so we do not need to support
3696 * too many flags. The flags here must cover all flags that
3697 * are matched during merging to guarantee that the id is
3698 * unique.
3699 */
3700 if (s->flags & SLAB_CACHE_DMA)
3701 *p++ = 'd';
3702 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3703 *p++ = 'a';
3704 if (s->flags & SLAB_DEBUG_FREE)
3705 *p++ = 'F';
3706 if (p != name + 1)
3707 *p++ = '-';
3708 p += sprintf(p, "%07d", s->size);
3709 BUG_ON(p > name + ID_STR_LENGTH - 1);
3710 return name;
3711}
3712
3713static int sysfs_slab_add(struct kmem_cache *s)
3714{
3715 int err;
3716 const char *name;
3717 int unmergeable;
3718
3719 if (slab_state < SYSFS)
3720 /* Defer until later */
3721 return 0;
3722
3723 unmergeable = slab_unmergeable(s);
3724 if (unmergeable) {
3725 /*
3726 * Slabcache can never be merged so we can use the name proper.
3727 * This is typically the case for debug situations. In that
3728 * case we can catch duplicate names easily.
3729 */
Linus Torvalds0f9008e2007-05-07 12:31:58 -07003730 sysfs_remove_link(&slab_subsys.kobj, s->name);
Christoph Lameter81819f02007-05-06 14:49:36 -07003731 name = s->name;
3732 } else {
3733 /*
3734 * Create a unique name for the slab as a target
3735 * for the symlinks.
3736 */
3737 name = create_unique_id(s);
3738 }
3739
3740 kobj_set_kset_s(s, slab_subsys);
3741 kobject_set_name(&s->kobj, name);
3742 kobject_init(&s->kobj);
3743 err = kobject_add(&s->kobj);
3744 if (err)
3745 return err;
3746
3747 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3748 if (err)
3749 return err;
3750 kobject_uevent(&s->kobj, KOBJ_ADD);
3751 if (!unmergeable) {
3752 /* Setup first alias */
3753 sysfs_slab_alias(s, s->name);
3754 kfree(name);
3755 }
3756 return 0;
3757}
3758
3759static void sysfs_slab_remove(struct kmem_cache *s)
3760{
3761 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3762 kobject_del(&s->kobj);
3763}
3764
3765/*
3766 * Need to buffer aliases during bootup until sysfs becomes
3767 * available lest we loose that information.
3768 */
3769struct saved_alias {
3770 struct kmem_cache *s;
3771 const char *name;
3772 struct saved_alias *next;
3773};
3774
Adrian Bunk5af328a2007-07-17 04:03:27 -07003775static struct saved_alias *alias_list;
Christoph Lameter81819f02007-05-06 14:49:36 -07003776
3777static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3778{
3779 struct saved_alias *al;
3780
3781 if (slab_state == SYSFS) {
3782 /*
3783 * If we have a leftover link then remove it.
3784 */
Linus Torvalds0f9008e2007-05-07 12:31:58 -07003785 sysfs_remove_link(&slab_subsys.kobj, name);
3786 return sysfs_create_link(&slab_subsys.kobj,
Christoph Lameter81819f02007-05-06 14:49:36 -07003787 &s->kobj, name);
3788 }
3789
3790 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3791 if (!al)
3792 return -ENOMEM;
3793
3794 al->s = s;
3795 al->name = name;
3796 al->next = alias_list;
3797 alias_list = al;
3798 return 0;
3799}
3800
3801static int __init slab_sysfs_init(void)
3802{
Christoph Lameter5b95a4ac2007-07-17 04:03:19 -07003803 struct kmem_cache *s;
Christoph Lameter81819f02007-05-06 14:49:36 -07003804 int err;
3805
3806 err = subsystem_register(&slab_subsys);
3807 if (err) {
3808 printk(KERN_ERR "Cannot register slab subsystem.\n");
3809 return -ENOSYS;
3810 }
3811
Christoph Lameter26a7bd02007-05-09 02:32:39 -07003812 slab_state = SYSFS;
3813
Christoph Lameter5b95a4ac2007-07-17 04:03:19 -07003814 list_for_each_entry(s, &slab_caches, list) {
Christoph Lameter26a7bd02007-05-09 02:32:39 -07003815 err = sysfs_slab_add(s);
3816 BUG_ON(err);
3817 }
Christoph Lameter81819f02007-05-06 14:49:36 -07003818
3819 while (alias_list) {
3820 struct saved_alias *al = alias_list;
3821
3822 alias_list = alias_list->next;
3823 err = sysfs_slab_alias(al->s, al->name);
3824 BUG_ON(err);
3825 kfree(al);
3826 }
3827
3828 resiliency_test();
3829 return 0;
3830}
3831
3832__initcall(slab_sysfs_init);
Christoph Lameter81819f02007-05-06 14:49:36 -07003833#endif