blob: d156c1e610d660bfd1083f2c91325af9f32fe4a2 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
Robin Murphy9adb9592016-01-26 18:06:36 +000024#include <linux/dma-iommu.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010025#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/iommu.h>
28#include <linux/iopoll.h>
29#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010030#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010031#include <linux/of.h>
32#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010033#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010034#include <linux/pci.h>
35#include <linux/platform_device.h>
36
37#include "io-pgtable.h"
38
39/* MMIO registers */
40#define ARM_SMMU_IDR0 0x0
41#define IDR0_ST_LVL_SHIFT 27
42#define IDR0_ST_LVL_MASK 0x3
43#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
Prem Mallappa6380be02015-12-14 22:01:23 +053044#define IDR0_STALL_MODEL_SHIFT 24
45#define IDR0_STALL_MODEL_MASK 0x3
46#define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47#define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010048#define IDR0_TTENDIAN_SHIFT 21
49#define IDR0_TTENDIAN_MASK 0x3
50#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53#define IDR0_CD2L (1 << 19)
54#define IDR0_VMID16 (1 << 18)
55#define IDR0_PRI (1 << 16)
56#define IDR0_SEV (1 << 14)
57#define IDR0_MSI (1 << 13)
58#define IDR0_ASID16 (1 << 12)
59#define IDR0_ATS (1 << 10)
60#define IDR0_HYP (1 << 9)
61#define IDR0_COHACC (1 << 4)
62#define IDR0_TTF_SHIFT 2
63#define IDR0_TTF_MASK 0x3
64#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010065#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010066#define IDR0_S1P (1 << 1)
67#define IDR0_S2P (1 << 0)
68
69#define ARM_SMMU_IDR1 0x4
70#define IDR1_TABLES_PRESET (1 << 30)
71#define IDR1_QUEUES_PRESET (1 << 29)
72#define IDR1_REL (1 << 28)
73#define IDR1_CMDQ_SHIFT 21
74#define IDR1_CMDQ_MASK 0x1f
75#define IDR1_EVTQ_SHIFT 16
76#define IDR1_EVTQ_MASK 0x1f
77#define IDR1_PRIQ_SHIFT 11
78#define IDR1_PRIQ_MASK 0x1f
79#define IDR1_SSID_SHIFT 6
80#define IDR1_SSID_MASK 0x1f
81#define IDR1_SID_SHIFT 0
82#define IDR1_SID_MASK 0x3f
83
84#define ARM_SMMU_IDR5 0x14
85#define IDR5_STALL_MAX_SHIFT 16
86#define IDR5_STALL_MAX_MASK 0xffff
87#define IDR5_GRAN64K (1 << 6)
88#define IDR5_GRAN16K (1 << 5)
89#define IDR5_GRAN4K (1 << 4)
90#define IDR5_OAS_SHIFT 0
91#define IDR5_OAS_MASK 0x7
92#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
98
99#define ARM_SMMU_CR0 0x20
100#define CR0_CMDQEN (1 << 3)
101#define CR0_EVTQEN (1 << 2)
102#define CR0_PRIQEN (1 << 1)
103#define CR0_SMMUEN (1 << 0)
104
105#define ARM_SMMU_CR0ACK 0x24
106
107#define ARM_SMMU_CR1 0x28
108#define CR1_SH_NSH 0
109#define CR1_SH_OSH 2
110#define CR1_SH_ISH 3
111#define CR1_CACHE_NC 0
112#define CR1_CACHE_WB 1
113#define CR1_CACHE_WT 2
114#define CR1_TABLE_SH_SHIFT 10
115#define CR1_TABLE_OC_SHIFT 8
116#define CR1_TABLE_IC_SHIFT 6
117#define CR1_QUEUE_SH_SHIFT 4
118#define CR1_QUEUE_OC_SHIFT 2
119#define CR1_QUEUE_IC_SHIFT 0
120
121#define ARM_SMMU_CR2 0x2c
122#define CR2_PTM (1 << 2)
123#define CR2_RECINVSID (1 << 1)
124#define CR2_E2H (1 << 0)
125
126#define ARM_SMMU_IRQ_CTRL 0x50
127#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100128#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100129#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
130
131#define ARM_SMMU_IRQ_CTRLACK 0x54
132
133#define ARM_SMMU_GERROR 0x60
134#define GERROR_SFM_ERR (1 << 8)
135#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139#define GERROR_PRIQ_ABT_ERR (1 << 3)
140#define GERROR_EVTQ_ABT_ERR (1 << 2)
141#define GERROR_CMDQ_ERR (1 << 0)
142#define GERROR_ERR_MASK 0xfd
143
144#define ARM_SMMU_GERRORN 0x64
145
146#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
149
150#define ARM_SMMU_STRTAB_BASE 0x80
151#define STRTAB_BASE_RA (1UL << 62)
152#define STRTAB_BASE_ADDR_SHIFT 6
153#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
154
155#define ARM_SMMU_STRTAB_BASE_CFG 0x88
156#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160#define STRTAB_BASE_CFG_FMT_SHIFT 16
161#define STRTAB_BASE_CFG_FMT_MASK 0x3
162#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165#define ARM_SMMU_CMDQ_BASE 0x90
166#define ARM_SMMU_CMDQ_PROD 0x98
167#define ARM_SMMU_CMDQ_CONS 0x9c
168
169#define ARM_SMMU_EVTQ_BASE 0xa0
170#define ARM_SMMU_EVTQ_PROD 0x100a8
171#define ARM_SMMU_EVTQ_CONS 0x100ac
172#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
175
176#define ARM_SMMU_PRIQ_BASE 0xc0
177#define ARM_SMMU_PRIQ_PROD 0x100c8
178#define ARM_SMMU_PRIQ_CONS 0x100cc
179#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
182
183/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100184#define MSI_CFG0_ADDR_SHIFT 2
185#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100186#define MSI_CFG2_SH_SHIFT 4
187#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190#define MSI_CFG2_MEMATTR_SHIFT 0
191#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100192
193#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195#define Q_OVERFLOW_FLAG (1 << 31)
196#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197#define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
199
200#define Q_BASE_RWA (1UL << 62)
201#define Q_BASE_ADDR_SHIFT 5
202#define Q_BASE_ADDR_MASK 0xfffffffffffUL
203#define Q_BASE_LOG2SIZE_SHIFT 0
204#define Q_BASE_LOG2SIZE_MASK 0x1fUL
205
206/*
207 * Stream table.
208 *
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100212 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100213#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100214#define STRTAB_SPLIT 8
215
216#define STRTAB_L1_DESC_DWORDS 1
217#define STRTAB_L1_DESC_SPAN_SHIFT 0
218#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219#define STRTAB_L1_DESC_L2PTR_SHIFT 6
220#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
221
222#define STRTAB_STE_DWORDS 8
223#define STRTAB_STE_0_V (1UL << 0)
224#define STRTAB_STE_0_CFG_SHIFT 1
225#define STRTAB_STE_0_CFG_MASK 0x7UL
226#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231#define STRTAB_STE_0_S1FMT_SHIFT 4
232#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235#define STRTAB_STE_0_S1CDMAX_SHIFT 59
236#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
237
238#define STRTAB_STE_1_S1C_CACHE_NC 0UL
239#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240#define STRTAB_STE_1_S1C_CACHE_WT 2UL
241#define STRTAB_STE_1_S1C_CACHE_WB 3UL
242#define STRTAB_STE_1_S1C_SH_NSH 0UL
243#define STRTAB_STE_1_S1C_SH_OSH 2UL
244#define STRTAB_STE_1_S1C_SH_ISH 3UL
245#define STRTAB_STE_1_S1CIR_SHIFT 2
246#define STRTAB_STE_1_S1COR_SHIFT 4
247#define STRTAB_STE_1_S1CSH_SHIFT 6
248
249#define STRTAB_STE_1_S1STALLD (1UL << 27)
250
251#define STRTAB_STE_1_EATS_ABT 0UL
252#define STRTAB_STE_1_EATS_TRANS 1UL
253#define STRTAB_STE_1_EATS_S1CHK 2UL
254#define STRTAB_STE_1_EATS_SHIFT 28
255
256#define STRTAB_STE_1_STRW_NSEL1 0UL
257#define STRTAB_STE_1_STRW_EL2 2UL
258#define STRTAB_STE_1_STRW_SHIFT 30
259
Will Deacona0eacd82015-11-18 18:15:51 +0000260#define STRTAB_STE_1_SHCFG_INCOMING 1UL
261#define STRTAB_STE_1_SHCFG_SHIFT 44
262
Will Deacon48ec83b2015-05-27 17:25:59 +0100263#define STRTAB_STE_2_S2VMID_SHIFT 0
264#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265#define STRTAB_STE_2_VTCR_SHIFT 32
266#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267#define STRTAB_STE_2_S2AA64 (1UL << 51)
268#define STRTAB_STE_2_S2ENDI (1UL << 52)
269#define STRTAB_STE_2_S2PTW (1UL << 54)
270#define STRTAB_STE_2_S2R (1UL << 58)
271
272#define STRTAB_STE_3_S2TTB_SHIFT 4
273#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
274
275/* Context descriptor (stage-1 only) */
276#define CTXDESC_CD_DWORDS 8
277#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278#define ARM64_TCR_T0SZ_SHIFT 0
279#define ARM64_TCR_T0SZ_MASK 0x1fUL
280#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281#define ARM64_TCR_TG0_SHIFT 14
282#define ARM64_TCR_TG0_MASK 0x3UL
283#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100284#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100285#define ARM64_TCR_IRGN0_MASK 0x3UL
286#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100287#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100288#define ARM64_TCR_ORGN0_MASK 0x3UL
289#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290#define ARM64_TCR_SH0_SHIFT 12
291#define ARM64_TCR_SH0_MASK 0x3UL
292#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293#define ARM64_TCR_EPD0_SHIFT 7
294#define ARM64_TCR_EPD0_MASK 0x1UL
295#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296#define ARM64_TCR_EPD1_SHIFT 23
297#define ARM64_TCR_EPD1_MASK 0x1UL
298
299#define CTXDESC_CD_0_ENDI (1UL << 15)
300#define CTXDESC_CD_0_V (1UL << 31)
301
302#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303#define ARM64_TCR_IPS_SHIFT 32
304#define ARM64_TCR_IPS_MASK 0x7UL
305#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306#define ARM64_TCR_TBI0_SHIFT 37
307#define ARM64_TCR_TBI0_MASK 0x1UL
308
309#define CTXDESC_CD_0_AA64 (1UL << 41)
310#define CTXDESC_CD_0_R (1UL << 45)
311#define CTXDESC_CD_0_A (1UL << 46)
312#define CTXDESC_CD_0_ASET_SHIFT 47
313#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315#define CTXDESC_CD_0_ASID_SHIFT 48
316#define CTXDESC_CD_0_ASID_MASK 0xffffUL
317
318#define CTXDESC_CD_1_TTB0_SHIFT 4
319#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
320
321#define CTXDESC_CD_3_MAIR_SHIFT 0
322
323/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324#define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328/* Command queue */
329#define CMDQ_ENT_DWORDS 2
330#define CMDQ_MAX_SZ_SHIFT 8
331
332#define CMDQ_ERR_SHIFT 24
333#define CMDQ_ERR_MASK 0x7f
334#define CMDQ_ERR_CERROR_NONE_IDX 0
335#define CMDQ_ERR_CERROR_ILL_IDX 1
336#define CMDQ_ERR_CERROR_ABT_IDX 2
337
338#define CMDQ_0_OP_SHIFT 0
339#define CMDQ_0_OP_MASK 0xffUL
340#define CMDQ_0_SSV (1UL << 11)
341
342#define CMDQ_PREFETCH_0_SID_SHIFT 32
343#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
345
346#define CMDQ_CFGI_0_SID_SHIFT 32
347#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348#define CMDQ_CFGI_1_LEAF (1UL << 0)
349#define CMDQ_CFGI_1_RANGE_SHIFT 0
350#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
351
352#define CMDQ_TLBI_0_VMID_SHIFT 32
353#define CMDQ_TLBI_0_ASID_SHIFT 48
354#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100355#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100357
358#define CMDQ_PRI_0_SSID_SHIFT 12
359#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360#define CMDQ_PRI_0_SID_SHIFT 32
361#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362#define CMDQ_PRI_1_GRPID_SHIFT 0
363#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364#define CMDQ_PRI_1_RESP_SHIFT 12
365#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369#define CMDQ_SYNC_0_CS_SHIFT 12
370#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373/* Event queue */
374#define EVTQ_ENT_DWORDS 4
375#define EVTQ_MAX_SZ_SHIFT 7
376
377#define EVTQ_0_ID_SHIFT 0
378#define EVTQ_0_ID_MASK 0xffUL
379
380/* PRI queue */
381#define PRIQ_ENT_DWORDS 2
382#define PRIQ_MAX_SZ_SHIFT 8
383
384#define PRIQ_0_SID_SHIFT 0
385#define PRIQ_0_SID_MASK 0xffffffffUL
386#define PRIQ_0_SSID_SHIFT 32
387#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100388#define PRIQ_0_PERM_PRIV (1UL << 58)
389#define PRIQ_0_PERM_EXEC (1UL << 59)
390#define PRIQ_0_PERM_READ (1UL << 60)
391#define PRIQ_0_PERM_WRITE (1UL << 61)
392#define PRIQ_0_PRG_LAST (1UL << 62)
393#define PRIQ_0_SSID_V (1UL << 63)
394
395#define PRIQ_1_PRG_IDX_SHIFT 0
396#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397#define PRIQ_1_ADDR_SHIFT 12
398#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
399
400/* High-level queue structures */
401#define ARM_SMMU_POLL_TIMEOUT_US 100
402
403static bool disable_bypass;
404module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
412};
413
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100414enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
419};
420
421static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
426 },
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
431 },
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
436 },
437};
438
Will Deacon48ec83b2015-05-27 17:25:59 +0100439struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
443
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
452
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
460 };
461 } cfgi;
462
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
475
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
483
484 #define CMDQ_OP_CMD_SYNC 0x46
485 };
486};
487
488struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
490
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
494
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
499
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
502};
503
504struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
507};
508
509struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
512};
513
514struct arm_smmu_priq {
515 struct arm_smmu_queue q;
516};
517
518/* High-level stream table and context descriptor structures */
519struct arm_smmu_strtab_l1_desc {
520 u8 span;
521
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
524};
525
526struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
529
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
536};
537
538struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
542};
543
544struct arm_smmu_strtab_ent {
545 bool valid;
546
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
550};
551
552struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
557
558 u64 strtab_base;
559 u32 strtab_base_cfg;
560};
561
562/* An SMMUv3 instance */
563struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
566
567#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569#define ARM_SMMU_FEAT_TT_LE (1 << 2)
570#define ARM_SMMU_FEAT_TT_BE (1 << 3)
571#define ARM_SMMU_FEAT_PRI (1 << 4)
572#define ARM_SMMU_FEAT_ATS (1 << 5)
573#define ARM_SMMU_FEAT_SEV (1 << 6)
574#define ARM_SMMU_FEAT_MSI (1 << 7)
575#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578#define ARM_SMMU_FEAT_STALLS (1 << 11)
579#define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
581
Zhen Lei5e929462015-07-07 04:30:18 +0100582#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
584
Will Deacon48ec83b2015-05-27 17:25:59 +0100585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
588
589 int gerr_irq;
590
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
Robin Murphyd5466352016-05-09 17:20:09 +0100593 unsigned long pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +0100594
595#define ARM_SMMU_MAX_ASIDS (1 << 16)
596 unsigned int asid_bits;
597 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
598
599#define ARM_SMMU_MAX_VMIDS (1 << 16)
600 unsigned int vmid_bits;
601 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
602
603 unsigned int ssid_bits;
604 unsigned int sid_bits;
605
606 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100607};
608
609/* SMMU private data for an IOMMU group */
610struct arm_smmu_group {
611 struct arm_smmu_device *smmu;
612 struct arm_smmu_domain *domain;
613 int num_sids;
614 u32 *sids;
615 struct arm_smmu_strtab_ent ste;
616};
617
618/* SMMU private data for an IOMMU domain */
619enum arm_smmu_domain_stage {
620 ARM_SMMU_DOMAIN_S1 = 0,
621 ARM_SMMU_DOMAIN_S2,
622 ARM_SMMU_DOMAIN_NESTED,
623};
624
625struct arm_smmu_domain {
626 struct arm_smmu_device *smmu;
627 struct mutex init_mutex; /* Protects smmu pointer */
628
629 struct io_pgtable_ops *pgtbl_ops;
630 spinlock_t pgtbl_lock;
631
632 enum arm_smmu_domain_stage stage;
633 union {
634 struct arm_smmu_s1_cfg s1_cfg;
635 struct arm_smmu_s2_cfg s2_cfg;
636 };
637
638 struct iommu_domain domain;
639};
640
Zhen Lei5e929462015-07-07 04:30:18 +0100641struct arm_smmu_option_prop {
642 u32 opt;
643 const char *prop;
644};
645
646static struct arm_smmu_option_prop arm_smmu_options[] = {
647 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
648 { 0, NULL},
649};
650
Will Deacon48ec83b2015-05-27 17:25:59 +0100651static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
652{
653 return container_of(dom, struct arm_smmu_domain, domain);
654}
655
Zhen Lei5e929462015-07-07 04:30:18 +0100656static void parse_driver_options(struct arm_smmu_device *smmu)
657{
658 int i = 0;
659
660 do {
661 if (of_property_read_bool(smmu->dev->of_node,
662 arm_smmu_options[i].prop)) {
663 smmu->options |= arm_smmu_options[i].opt;
664 dev_notice(smmu->dev, "option %s\n",
665 arm_smmu_options[i].prop);
666 }
667 } while (arm_smmu_options[++i].opt);
668}
669
Will Deacon48ec83b2015-05-27 17:25:59 +0100670/* Low-level queue manipulation functions */
671static bool queue_full(struct arm_smmu_queue *q)
672{
673 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
674 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
675}
676
677static bool queue_empty(struct arm_smmu_queue *q)
678{
679 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
680 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
681}
682
683static void queue_sync_cons(struct arm_smmu_queue *q)
684{
685 q->cons = readl_relaxed(q->cons_reg);
686}
687
688static void queue_inc_cons(struct arm_smmu_queue *q)
689{
690 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
691
692 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
693 writel(q->cons, q->cons_reg);
694}
695
696static int queue_sync_prod(struct arm_smmu_queue *q)
697{
698 int ret = 0;
699 u32 prod = readl_relaxed(q->prod_reg);
700
701 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
702 ret = -EOVERFLOW;
703
704 q->prod = prod;
705 return ret;
706}
707
708static void queue_inc_prod(struct arm_smmu_queue *q)
709{
710 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
711
712 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
713 writel(q->prod, q->prod_reg);
714}
715
716static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
717{
718 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
719 return Q_IDX(q, q->cons) < Q_IDX(q, until);
720
721 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
722}
723
724static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
725{
726 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
727
728 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
729 if (ktime_compare(ktime_get(), timeout) > 0)
730 return -ETIMEDOUT;
731
732 if (wfe) {
733 wfe();
734 } else {
735 cpu_relax();
736 udelay(1);
737 }
738 }
739
740 return 0;
741}
742
743static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
744{
745 int i;
746
747 for (i = 0; i < n_dwords; ++i)
748 *dst++ = cpu_to_le64(*src++);
749}
750
751static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
752{
753 if (queue_full(q))
754 return -ENOSPC;
755
756 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
757 queue_inc_prod(q);
758 return 0;
759}
760
761static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
762{
763 int i;
764
765 for (i = 0; i < n_dwords; ++i)
766 *dst++ = le64_to_cpu(*src++);
767}
768
769static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
770{
771 if (queue_empty(q))
772 return -EAGAIN;
773
774 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
775 queue_inc_cons(q);
776 return 0;
777}
778
779/* High-level queue accessors */
780static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
781{
782 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
783 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
784
785 switch (ent->opcode) {
786 case CMDQ_OP_TLBI_EL2_ALL:
787 case CMDQ_OP_TLBI_NSNH_ALL:
788 break;
789 case CMDQ_OP_PREFETCH_CFG:
790 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
791 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
792 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
793 break;
794 case CMDQ_OP_CFGI_STE:
795 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
796 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
797 break;
798 case CMDQ_OP_CFGI_ALL:
799 /* Cover the entire SID range */
800 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
801 break;
802 case CMDQ_OP_TLBI_NH_VA:
803 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100804 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
805 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
806 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100807 case CMDQ_OP_TLBI_S2_IPA:
808 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
809 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100810 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100811 break;
812 case CMDQ_OP_TLBI_NH_ASID:
813 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
814 /* Fallthrough */
815 case CMDQ_OP_TLBI_S12_VMALL:
816 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817 break;
818 case CMDQ_OP_PRI_RESP:
819 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
820 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
821 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
822 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
823 switch (ent->pri.resp) {
824 case PRI_RESP_DENY:
825 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
826 break;
827 case PRI_RESP_FAIL:
828 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
829 break;
830 case PRI_RESP_SUCC:
831 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
832 break;
833 default:
834 return -EINVAL;
835 }
836 break;
837 case CMDQ_OP_CMD_SYNC:
838 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
839 break;
840 default:
841 return -ENOENT;
842 }
843
844 return 0;
845}
846
847static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
848{
849 static const char *cerror_str[] = {
850 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
851 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
852 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
853 };
854
855 int i;
856 u64 cmd[CMDQ_ENT_DWORDS];
857 struct arm_smmu_queue *q = &smmu->cmdq.q;
858 u32 cons = readl_relaxed(q->cons_reg);
859 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
860 struct arm_smmu_cmdq_ent cmd_sync = {
861 .opcode = CMDQ_OP_CMD_SYNC,
862 };
863
864 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
Will Deacona0d5c042015-12-04 12:00:29 +0000865 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
Will Deacon48ec83b2015-05-27 17:25:59 +0100866
867 switch (idx) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100868 case CMDQ_ERR_CERROR_ABT_IDX:
869 dev_err(smmu->dev, "retrying command fetch\n");
870 case CMDQ_ERR_CERROR_NONE_IDX:
871 return;
Will Deacona0d5c042015-12-04 12:00:29 +0000872 case CMDQ_ERR_CERROR_ILL_IDX:
873 /* Fallthrough */
874 default:
875 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100876 }
877
878 /*
879 * We may have concurrent producers, so we need to be careful
880 * not to touch any of the shadow cmdq state.
881 */
Will Deaconaea20372016-07-29 11:15:37 +0100882 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
Will Deacon48ec83b2015-05-27 17:25:59 +0100883 dev_err(smmu->dev, "skipping command in error state:\n");
884 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
885 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
886
887 /* Convert the erroneous command into a CMD_SYNC */
888 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
889 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
890 return;
891 }
892
Will Deaconaea20372016-07-29 11:15:37 +0100893 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
Will Deacon48ec83b2015-05-27 17:25:59 +0100894}
895
896static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
897 struct arm_smmu_cmdq_ent *ent)
898{
899 u32 until;
900 u64 cmd[CMDQ_ENT_DWORDS];
901 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
902 struct arm_smmu_queue *q = &smmu->cmdq.q;
903
904 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
905 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
906 ent->opcode);
907 return;
908 }
909
910 spin_lock(&smmu->cmdq.lock);
911 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
912 /*
913 * Keep the queue locked, otherwise the producer could wrap
914 * twice and we could see a future consumer pointer that looks
915 * like it's behind us.
916 */
917 if (queue_poll_cons(q, until, wfe))
918 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
919 }
920
921 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
922 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923 spin_unlock(&smmu->cmdq.lock);
924}
925
926/* Context descriptor manipulation functions */
927static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928{
929 u64 val = 0;
930
931 /* Repack the TCR. Just care about TTBR0 for now */
932 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933 val |= ARM_SMMU_TCR2CD(tcr, TG0);
934 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936 val |= ARM_SMMU_TCR2CD(tcr, SH0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939 val |= ARM_SMMU_TCR2CD(tcr, IPS);
940 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941
942 return val;
943}
944
945static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946 struct arm_smmu_s1_cfg *cfg)
947{
948 u64 val;
949
950 /*
951 * We don't need to issue any invalidation here, as we'll invalidate
952 * the STE when installing the new entry anyway.
953 */
954 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
955#ifdef __BIG_ENDIAN
956 CTXDESC_CD_0_ENDI |
957#endif
958 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
960 CTXDESC_CD_0_V;
961 cfg->cdptr[0] = cpu_to_le64(val);
962
963 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964 cfg->cdptr[1] = cpu_to_le64(val);
965
966 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
967}
968
969/* Stream table manipulation functions */
970static void
971arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972{
973 u64 val = 0;
974
975 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976 << STRTAB_L1_DESC_SPAN_SHIFT;
977 val |= desc->l2ptr_dma &
978 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979
980 *dst = cpu_to_le64(val);
981}
982
983static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984{
985 struct arm_smmu_cmdq_ent cmd = {
986 .opcode = CMDQ_OP_CFGI_STE,
987 .cfgi = {
988 .sid = sid,
989 .leaf = true,
990 },
991 };
992
993 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 cmd.opcode = CMDQ_OP_CMD_SYNC;
995 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
996}
997
998static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1000{
1001 /*
1002 * This is hideously complicated, but we only really care about
1003 * three cases at the moment:
1004 *
1005 * 1. Invalid (all zero) -> bypass (init)
1006 * 2. Bypass -> translation (attach)
1007 * 3. Translation -> bypass (detach)
1008 *
1009 * Given that we can't update the STE atomically and the SMMU
1010 * doesn't read the thing in a defined order, that leaves us
1011 * with the following maintenance requirements:
1012 *
1013 * 1. Update Config, return (init time STEs aren't live)
1014 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015 * 3. Update Config, sync
1016 */
1017 u64 val = le64_to_cpu(dst[0]);
1018 bool ste_live = false;
1019 struct arm_smmu_cmdq_ent prefetch_cmd = {
1020 .opcode = CMDQ_OP_PREFETCH_CFG,
1021 .prefetch = {
1022 .sid = sid,
1023 },
1024 };
1025
1026 if (val & STRTAB_STE_0_V) {
1027 u64 cfg;
1028
1029 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1030 switch (cfg) {
1031 case STRTAB_STE_0_CFG_BYPASS:
1032 break;
1033 case STRTAB_STE_0_CFG_S1_TRANS:
1034 case STRTAB_STE_0_CFG_S2_TRANS:
1035 ste_live = true;
1036 break;
Will Deacon5bc0a112016-08-16 14:29:16 +01001037 case STRTAB_STE_0_CFG_ABORT:
1038 if (disable_bypass)
1039 break;
Will Deacon48ec83b2015-05-27 17:25:59 +01001040 default:
1041 BUG(); /* STE corruption */
1042 }
1043 }
1044
1045 /* Nuke the existing Config, as we're going to rewrite it */
1046 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1047
1048 if (ste->valid)
1049 val |= STRTAB_STE_0_V;
1050 else
1051 val &= ~STRTAB_STE_0_V;
1052
1053 if (ste->bypass) {
1054 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1055 : STRTAB_STE_0_CFG_BYPASS;
1056 dst[0] = cpu_to_le64(val);
Will Deacona0eacd82015-11-18 18:15:51 +00001057 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1058 << STRTAB_STE_1_SHCFG_SHIFT);
Will Deacon48ec83b2015-05-27 17:25:59 +01001059 dst[2] = 0; /* Nuke the VMID */
1060 if (ste_live)
1061 arm_smmu_sync_ste_for_sid(smmu, sid);
1062 return;
1063 }
1064
1065 if (ste->s1_cfg) {
1066 BUG_ON(ste_live);
1067 dst[1] = cpu_to_le64(
1068 STRTAB_STE_1_S1C_CACHE_WBRA
1069 << STRTAB_STE_1_S1CIR_SHIFT |
1070 STRTAB_STE_1_S1C_CACHE_WBRA
1071 << STRTAB_STE_1_S1COR_SHIFT |
1072 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
Will Deacon48ec83b2015-05-27 17:25:59 +01001073#ifdef CONFIG_PCI_ATS
1074 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1075#endif
1076 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1077
Prem Mallappa6380be02015-12-14 22:01:23 +05301078 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1079 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1080
Will Deacon48ec83b2015-05-27 17:25:59 +01001081 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1082 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1083 STRTAB_STE_0_CFG_S1_TRANS;
1084
1085 }
1086
1087 if (ste->s2_cfg) {
1088 BUG_ON(ste_live);
1089 dst[2] = cpu_to_le64(
1090 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1091 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1092 << STRTAB_STE_2_VTCR_SHIFT |
1093#ifdef __BIG_ENDIAN
1094 STRTAB_STE_2_S2ENDI |
1095#endif
1096 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1097 STRTAB_STE_2_S2R);
1098
1099 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1100 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1101
1102 val |= STRTAB_STE_0_CFG_S2_TRANS;
1103 }
1104
1105 arm_smmu_sync_ste_for_sid(smmu, sid);
1106 dst[0] = cpu_to_le64(val);
1107 arm_smmu_sync_ste_for_sid(smmu, sid);
1108
1109 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001110 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1111 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001112}
1113
1114static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1115{
1116 unsigned int i;
1117 struct arm_smmu_strtab_ent ste = {
1118 .valid = true,
1119 .bypass = true,
1120 };
1121
1122 for (i = 0; i < nent; ++i) {
1123 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1124 strtab += STRTAB_STE_DWORDS;
1125 }
1126}
1127
1128static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1129{
1130 size_t size;
1131 void *strtab;
1132 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1133 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1134
1135 if (desc->l2ptr)
1136 return 0;
1137
1138 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001139 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001140
1141 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001142 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1143 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001144 if (!desc->l2ptr) {
1145 dev_err(smmu->dev,
1146 "failed to allocate l2 stream table for SID %u\n",
1147 sid);
1148 return -ENOMEM;
1149 }
1150
1151 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1152 arm_smmu_write_strtab_l1_desc(strtab, desc);
1153 return 0;
1154}
1155
1156/* IRQ and event handlers */
1157static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1158{
1159 int i;
1160 struct arm_smmu_device *smmu = dev;
1161 struct arm_smmu_queue *q = &smmu->evtq.q;
1162 u64 evt[EVTQ_ENT_DWORDS];
1163
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001164 do {
1165 while (!queue_remove_raw(q, evt)) {
1166 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +01001167
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001168 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1169 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1170 dev_info(smmu->dev, "\t0x%016llx\n",
1171 (unsigned long long)evt[i]);
1172
1173 }
1174
1175 /*
1176 * Not much we can do on overflow, so scream and pretend we're
1177 * trying harder.
1178 */
1179 if (queue_sync_prod(q) == -EOVERFLOW)
1180 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1181 } while (!queue_empty(q));
Will Deacon48ec83b2015-05-27 17:25:59 +01001182
1183 /* Sync our overflow flag, as we believe we're up to speed */
1184 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1185 return IRQ_HANDLED;
1186}
1187
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001188static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
Will Deacon48ec83b2015-05-27 17:25:59 +01001189{
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001190 u32 sid, ssid;
1191 u16 grpid;
1192 bool ssv, last;
Will Deacon48ec83b2015-05-27 17:25:59 +01001193
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001194 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1195 ssv = evt[0] & PRIQ_0_SSID_V;
1196 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1197 last = evt[0] & PRIQ_0_PRG_LAST;
1198 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +01001199
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001200 dev_info(smmu->dev, "unexpected PRI request received:\n");
1201 dev_info(smmu->dev,
1202 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1203 sid, ssid, grpid, last ? "L" : "",
1204 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1205 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1206 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1207 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1208 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1209
1210 if (last) {
1211 struct arm_smmu_cmdq_ent cmd = {
1212 .opcode = CMDQ_OP_PRI_RESP,
1213 .substream_valid = ssv,
1214 .pri = {
1215 .sid = sid,
1216 .ssid = ssid,
1217 .grpid = grpid,
1218 .resp = PRI_RESP_DENY,
1219 },
1220 };
1221
1222 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1223 }
Will Deacon48ec83b2015-05-27 17:25:59 +01001224}
1225
1226static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1227{
1228 struct arm_smmu_device *smmu = dev;
1229 struct arm_smmu_queue *q = &smmu->priq.q;
1230 u64 evt[PRIQ_ENT_DWORDS];
1231
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001232 do {
1233 while (!queue_remove_raw(q, evt))
1234 arm_smmu_handle_ppr(smmu, evt);
Will Deacon48ec83b2015-05-27 17:25:59 +01001235
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001236 if (queue_sync_prod(q) == -EOVERFLOW)
1237 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1238 } while (!queue_empty(q));
Will Deacon48ec83b2015-05-27 17:25:59 +01001239
1240 /* Sync our overflow flag, as we believe we're up to speed */
1241 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1242 return IRQ_HANDLED;
1243}
1244
Will Deacon48ec83b2015-05-27 17:25:59 +01001245static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1246{
1247 /* We don't actually use CMD_SYNC interrupts for anything */
1248 return IRQ_HANDLED;
1249}
1250
1251static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1252
1253static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1254{
Prem Mallappa324ba102015-12-14 22:01:14 +05301255 u32 gerror, gerrorn, active;
Will Deacon48ec83b2015-05-27 17:25:59 +01001256 struct arm_smmu_device *smmu = dev;
1257
1258 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1259 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1260
Prem Mallappa324ba102015-12-14 22:01:14 +05301261 active = gerror ^ gerrorn;
1262 if (!(active & GERROR_ERR_MASK))
Will Deacon48ec83b2015-05-27 17:25:59 +01001263 return IRQ_NONE; /* No errors pending */
1264
1265 dev_warn(smmu->dev,
1266 "unexpected global error reported (0x%08x), this could be serious\n",
Prem Mallappa324ba102015-12-14 22:01:14 +05301267 active);
Will Deacon48ec83b2015-05-27 17:25:59 +01001268
Prem Mallappa324ba102015-12-14 22:01:14 +05301269 if (active & GERROR_SFM_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001270 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1271 arm_smmu_device_disable(smmu);
1272 }
1273
Prem Mallappa324ba102015-12-14 22:01:14 +05301274 if (active & GERROR_MSI_GERROR_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001275 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1276
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001277 if (active & GERROR_MSI_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001278 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
Will Deacon48ec83b2015-05-27 17:25:59 +01001279
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001280 if (active & GERROR_MSI_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001281 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
Will Deacon48ec83b2015-05-27 17:25:59 +01001282
Prem Mallappa324ba102015-12-14 22:01:14 +05301283 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001284 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1285 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1286 }
1287
Prem Mallappa324ba102015-12-14 22:01:14 +05301288 if (active & GERROR_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001289 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1290
Prem Mallappa324ba102015-12-14 22:01:14 +05301291 if (active & GERROR_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001292 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1293
Prem Mallappa324ba102015-12-14 22:01:14 +05301294 if (active & GERROR_CMDQ_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001295 arm_smmu_cmdq_skip_err(smmu);
1296
1297 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1298 return IRQ_HANDLED;
1299}
1300
1301/* IO_PGTABLE API */
1302static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1303{
1304 struct arm_smmu_cmdq_ent cmd;
1305
1306 cmd.opcode = CMDQ_OP_CMD_SYNC;
1307 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1308}
1309
1310static void arm_smmu_tlb_sync(void *cookie)
1311{
1312 struct arm_smmu_domain *smmu_domain = cookie;
1313 __arm_smmu_tlb_sync(smmu_domain->smmu);
1314}
1315
1316static void arm_smmu_tlb_inv_context(void *cookie)
1317{
1318 struct arm_smmu_domain *smmu_domain = cookie;
1319 struct arm_smmu_device *smmu = smmu_domain->smmu;
1320 struct arm_smmu_cmdq_ent cmd;
1321
1322 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1323 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1324 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1325 cmd.tlbi.vmid = 0;
1326 } else {
1327 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1328 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1329 }
1330
1331 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1332 __arm_smmu_tlb_sync(smmu);
1333}
1334
1335static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
Robin Murphy06c610e2015-12-07 18:18:53 +00001336 size_t granule, bool leaf, void *cookie)
Will Deacon48ec83b2015-05-27 17:25:59 +01001337{
1338 struct arm_smmu_domain *smmu_domain = cookie;
1339 struct arm_smmu_device *smmu = smmu_domain->smmu;
1340 struct arm_smmu_cmdq_ent cmd = {
1341 .tlbi = {
1342 .leaf = leaf,
1343 .addr = iova,
1344 },
1345 };
1346
1347 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1348 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1349 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1350 } else {
1351 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1352 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1353 }
1354
Robin Murphy75df1382015-12-07 18:18:52 +00001355 do {
1356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1357 cmd.tlbi.addr += granule;
1358 } while (size -= granule);
Will Deacon48ec83b2015-05-27 17:25:59 +01001359}
1360
Will Deacon48ec83b2015-05-27 17:25:59 +01001361static struct iommu_gather_ops arm_smmu_gather_ops = {
1362 .tlb_flush_all = arm_smmu_tlb_inv_context,
1363 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1364 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001365};
1366
1367/* IOMMU API */
1368static bool arm_smmu_capable(enum iommu_cap cap)
1369{
1370 switch (cap) {
1371 case IOMMU_CAP_CACHE_COHERENCY:
1372 return true;
1373 case IOMMU_CAP_INTR_REMAP:
1374 return true; /* MSIs are just memory writes */
1375 case IOMMU_CAP_NOEXEC:
1376 return true;
1377 default:
1378 return false;
1379 }
1380}
1381
1382static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1383{
1384 struct arm_smmu_domain *smmu_domain;
1385
Robin Murphy9adb9592016-01-26 18:06:36 +00001386 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
Will Deacon48ec83b2015-05-27 17:25:59 +01001387 return NULL;
1388
1389 /*
1390 * Allocate the domain and initialise some of its data structures.
1391 * We can't really do anything meaningful until we've added a
1392 * master.
1393 */
1394 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1395 if (!smmu_domain)
1396 return NULL;
1397
Robin Murphy9adb9592016-01-26 18:06:36 +00001398 if (type == IOMMU_DOMAIN_DMA &&
1399 iommu_get_dma_cookie(&smmu_domain->domain)) {
1400 kfree(smmu_domain);
1401 return NULL;
1402 }
1403
Will Deacon48ec83b2015-05-27 17:25:59 +01001404 mutex_init(&smmu_domain->init_mutex);
1405 spin_lock_init(&smmu_domain->pgtbl_lock);
1406 return &smmu_domain->domain;
1407}
1408
1409static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1410{
1411 int idx, size = 1 << span;
1412
1413 do {
1414 idx = find_first_zero_bit(map, size);
1415 if (idx == size)
1416 return -ENOSPC;
1417 } while (test_and_set_bit(idx, map));
1418
1419 return idx;
1420}
1421
1422static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1423{
1424 clear_bit(idx, map);
1425}
1426
1427static void arm_smmu_domain_free(struct iommu_domain *domain)
1428{
1429 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1430 struct arm_smmu_device *smmu = smmu_domain->smmu;
1431
Robin Murphy9adb9592016-01-26 18:06:36 +00001432 iommu_put_dma_cookie(domain);
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001433 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001434
1435 /* Free the CD and ASID, if we allocated them */
1436 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1437 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1438
1439 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001440 dmam_free_coherent(smmu_domain->smmu->dev,
1441 CTXDESC_CD_DWORDS << 3,
1442 cfg->cdptr,
1443 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001444
1445 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1446 }
1447 } else {
1448 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1449 if (cfg->vmid)
1450 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1451 }
1452
1453 kfree(smmu_domain);
1454}
1455
1456static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1457 struct io_pgtable_cfg *pgtbl_cfg)
1458{
1459 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001460 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001461 struct arm_smmu_device *smmu = smmu_domain->smmu;
1462 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1463
1464 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001465 if (asid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001466 return asid;
1467
Will Deacon04fa26c2015-10-30 18:12:41 +00001468 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1469 &cfg->cdptr_dma,
1470 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001471 if (!cfg->cdptr) {
1472 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001473 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001474 goto out_free_asid;
1475 }
1476
Will Deaconc0733a22015-10-13 17:51:14 +01001477 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001478 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1479 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1480 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1481 return 0;
1482
1483out_free_asid:
1484 arm_smmu_bitmap_free(smmu->asid_map, asid);
1485 return ret;
1486}
1487
1488static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1489 struct io_pgtable_cfg *pgtbl_cfg)
1490{
Will Deaconc0733a22015-10-13 17:51:14 +01001491 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001492 struct arm_smmu_device *smmu = smmu_domain->smmu;
1493 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1494
1495 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001496 if (vmid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001497 return vmid;
1498
Will Deaconc0733a22015-10-13 17:51:14 +01001499 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001500 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1501 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1502 return 0;
1503}
1504
Will Deacon48ec83b2015-05-27 17:25:59 +01001505static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1506{
1507 int ret;
1508 unsigned long ias, oas;
1509 enum io_pgtable_fmt fmt;
1510 struct io_pgtable_cfg pgtbl_cfg;
1511 struct io_pgtable_ops *pgtbl_ops;
1512 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1513 struct io_pgtable_cfg *);
1514 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1515 struct arm_smmu_device *smmu = smmu_domain->smmu;
1516
1517 /* Restrict the stage to what we can actually support */
1518 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1519 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1520 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1521 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1522
1523 switch (smmu_domain->stage) {
1524 case ARM_SMMU_DOMAIN_S1:
1525 ias = VA_BITS;
1526 oas = smmu->ias;
1527 fmt = ARM_64_LPAE_S1;
1528 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1529 break;
1530 case ARM_SMMU_DOMAIN_NESTED:
1531 case ARM_SMMU_DOMAIN_S2:
1532 ias = smmu->ias;
1533 oas = smmu->oas;
1534 fmt = ARM_64_LPAE_S2;
1535 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1536 break;
1537 default:
1538 return -EINVAL;
1539 }
1540
1541 pgtbl_cfg = (struct io_pgtable_cfg) {
Robin Murphyd5466352016-05-09 17:20:09 +01001542 .pgsize_bitmap = smmu->pgsize_bitmap,
Will Deacon48ec83b2015-05-27 17:25:59 +01001543 .ias = ias,
1544 .oas = oas,
1545 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001546 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001547 };
1548
1549 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1550 if (!pgtbl_ops)
1551 return -ENOMEM;
1552
Robin Murphyd5466352016-05-09 17:20:09 +01001553 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01001554 smmu_domain->pgtbl_ops = pgtbl_ops;
1555
1556 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001557 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001558 free_io_pgtable_ops(pgtbl_ops);
1559
1560 return ret;
1561}
1562
1563static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1564{
1565 struct iommu_group *group;
1566 struct arm_smmu_group *smmu_group;
1567
1568 group = iommu_group_get(dev);
1569 if (!group)
1570 return NULL;
1571
1572 smmu_group = iommu_group_get_iommudata(group);
1573 iommu_group_put(group);
1574 return smmu_group;
1575}
1576
1577static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1578{
1579 __le64 *step;
1580 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1581
1582 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1583 struct arm_smmu_strtab_l1_desc *l1_desc;
1584 int idx;
1585
1586 /* Two-level walk */
1587 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1588 l1_desc = &cfg->l1_desc[idx];
1589 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1590 step = &l1_desc->l2ptr[idx];
1591 } else {
1592 /* Simple linear lookup */
1593 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1594 }
1595
1596 return step;
1597}
1598
1599static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1600{
1601 int i;
1602 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1603 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1604 struct arm_smmu_device *smmu = smmu_group->smmu;
1605
1606 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1607 ste->s1_cfg = &smmu_domain->s1_cfg;
1608 ste->s2_cfg = NULL;
1609 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1610 } else {
1611 ste->s1_cfg = NULL;
1612 ste->s2_cfg = &smmu_domain->s2_cfg;
1613 }
1614
1615 for (i = 0; i < smmu_group->num_sids; ++i) {
1616 u32 sid = smmu_group->sids[i];
1617 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1618
1619 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1620 }
1621
1622 return 0;
1623}
1624
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001625static void arm_smmu_detach_dev(struct device *dev)
1626{
1627 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1628
1629 smmu_group->ste.bypass = true;
Arnd Bergmann287980e2016-05-27 23:23:25 +02001630 if (arm_smmu_install_ste_for_group(smmu_group) < 0)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001631 dev_warn(dev, "failed to install bypass STE\n");
1632
1633 smmu_group->domain = NULL;
1634}
1635
Will Deacon48ec83b2015-05-27 17:25:59 +01001636static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1637{
1638 int ret = 0;
1639 struct arm_smmu_device *smmu;
1640 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1641 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1642
1643 if (!smmu_group)
1644 return -ENOENT;
1645
1646 /* Already attached to a different domain? */
1647 if (smmu_group->domain && smmu_group->domain != smmu_domain)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001648 arm_smmu_detach_dev(dev);
Will Deacon48ec83b2015-05-27 17:25:59 +01001649
1650 smmu = smmu_group->smmu;
1651 mutex_lock(&smmu_domain->init_mutex);
1652
1653 if (!smmu_domain->smmu) {
1654 smmu_domain->smmu = smmu;
1655 ret = arm_smmu_domain_finalise(domain);
1656 if (ret) {
1657 smmu_domain->smmu = NULL;
1658 goto out_unlock;
1659 }
1660 } else if (smmu_domain->smmu != smmu) {
1661 dev_err(dev,
1662 "cannot attach to SMMU %s (upstream of %s)\n",
1663 dev_name(smmu_domain->smmu->dev),
1664 dev_name(smmu->dev));
1665 ret = -ENXIO;
1666 goto out_unlock;
1667 }
1668
1669 /* Group already attached to this domain? */
1670 if (smmu_group->domain)
1671 goto out_unlock;
1672
1673 smmu_group->domain = smmu_domain;
Will Deaconcbf82772016-02-18 12:05:57 +00001674
1675 /*
1676 * FIXME: This should always be "false" once we have IOMMU-backed
1677 * DMA ops for all devices behind the SMMU.
1678 */
1679 smmu_group->ste.bypass = domain->type == IOMMU_DOMAIN_DMA;
Will Deacon48ec83b2015-05-27 17:25:59 +01001680
1681 ret = arm_smmu_install_ste_for_group(smmu_group);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001682 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001683 smmu_group->domain = NULL;
1684
1685out_unlock:
1686 mutex_unlock(&smmu_domain->init_mutex);
1687 return ret;
1688}
1689
Will Deacon48ec83b2015-05-27 17:25:59 +01001690static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1691 phys_addr_t paddr, size_t size, int prot)
1692{
1693 int ret;
1694 unsigned long flags;
1695 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1696 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1697
1698 if (!ops)
1699 return -ENODEV;
1700
1701 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1702 ret = ops->map(ops, iova, paddr, size, prot);
1703 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1704 return ret;
1705}
1706
1707static size_t
1708arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1709{
1710 size_t ret;
1711 unsigned long flags;
1712 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1713 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1714
1715 if (!ops)
1716 return 0;
1717
1718 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1719 ret = ops->unmap(ops, iova, size);
1720 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1721 return ret;
1722}
1723
1724static phys_addr_t
1725arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1726{
1727 phys_addr_t ret;
1728 unsigned long flags;
1729 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1730 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1731
1732 if (!ops)
1733 return 0;
1734
1735 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1736 ret = ops->iova_to_phys(ops, iova);
1737 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1738
1739 return ret;
1740}
1741
1742static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1743{
1744 *(u32 *)sidp = alias;
1745 return 0; /* Continue walking */
1746}
1747
1748static void __arm_smmu_release_pci_iommudata(void *data)
1749{
1750 kfree(data);
1751}
1752
1753static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1754{
1755 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001756 struct platform_device *smmu_pdev;
1757 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001758 struct pci_bus *bus = pdev->bus;
1759
1760 /* Walk up to the root bus */
1761 while (!pci_is_root_bus(bus))
1762 bus = bus->parent;
1763
1764 /* Follow the "iommus" phandle from the host controller */
1765 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1766 if (!of_node)
1767 return NULL;
1768
1769 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001770 smmu_pdev = of_find_device_by_node(of_node);
1771 if (smmu_pdev)
1772 smmu = platform_get_drvdata(smmu_pdev);
1773
Will Deacon48ec83b2015-05-27 17:25:59 +01001774 of_node_put(of_node);
1775 return smmu;
1776}
1777
1778static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1779{
1780 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1781
1782 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1783 limit *= 1UL << STRTAB_SPLIT;
1784
1785 return sid < limit;
1786}
1787
1788static int arm_smmu_add_device(struct device *dev)
1789{
1790 int i, ret;
1791 u32 sid, *sids;
1792 struct pci_dev *pdev;
1793 struct iommu_group *group;
1794 struct arm_smmu_group *smmu_group;
1795 struct arm_smmu_device *smmu;
1796
1797 /* We only support PCI, for now */
1798 if (!dev_is_pci(dev))
1799 return -ENODEV;
1800
1801 pdev = to_pci_dev(dev);
1802 group = iommu_group_get_for_dev(dev);
1803 if (IS_ERR(group))
1804 return PTR_ERR(group);
1805
1806 smmu_group = iommu_group_get_iommudata(group);
1807 if (!smmu_group) {
1808 smmu = arm_smmu_get_for_pci_dev(pdev);
1809 if (!smmu) {
1810 ret = -ENOENT;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001811 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001812 }
1813
1814 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1815 if (!smmu_group) {
1816 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001817 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001818 }
1819
1820 smmu_group->ste.valid = true;
1821 smmu_group->smmu = smmu;
1822 iommu_group_set_iommudata(group, smmu_group,
1823 __arm_smmu_release_pci_iommudata);
1824 } else {
1825 smmu = smmu_group->smmu;
1826 }
1827
1828 /* Assume SID == RID until firmware tells us otherwise */
1829 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1830 for (i = 0; i < smmu_group->num_sids; ++i) {
1831 /* If we already know about this SID, then we're done */
1832 if (smmu_group->sids[i] == sid)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001833 goto out_put_group;
Will Deacon48ec83b2015-05-27 17:25:59 +01001834 }
1835
1836 /* Check the SID is in range of the SMMU and our stream table */
1837 if (!arm_smmu_sid_in_range(smmu, sid)) {
1838 ret = -ERANGE;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001839 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001840 }
1841
1842 /* Ensure l2 strtab is initialised */
1843 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1844 ret = arm_smmu_init_l2_strtab(smmu, sid);
1845 if (ret)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001846 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001847 }
1848
1849 /* Resize the SID array for the group */
1850 smmu_group->num_sids++;
1851 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1852 GFP_KERNEL);
1853 if (!sids) {
1854 smmu_group->num_sids--;
1855 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001856 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001857 }
1858
1859 /* Add the new SID */
1860 sids[smmu_group->num_sids - 1] = sid;
1861 smmu_group->sids = sids;
Will Deacon48ec83b2015-05-27 17:25:59 +01001862
1863out_put_group:
1864 iommu_group_put(group);
Peng Fan9a4a9d82015-11-20 16:56:18 +08001865 return 0;
1866
1867out_remove_dev:
1868 iommu_group_remove_device(dev);
1869 iommu_group_put(group);
Will Deacon48ec83b2015-05-27 17:25:59 +01001870 return ret;
1871}
1872
1873static void arm_smmu_remove_device(struct device *dev)
1874{
1875 iommu_group_remove_device(dev);
1876}
1877
1878static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1879 enum iommu_attr attr, void *data)
1880{
1881 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1882
1883 switch (attr) {
1884 case DOMAIN_ATTR_NESTING:
1885 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1886 return 0;
1887 default:
1888 return -ENODEV;
1889 }
1890}
1891
1892static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1893 enum iommu_attr attr, void *data)
1894{
1895 int ret = 0;
1896 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1897
1898 mutex_lock(&smmu_domain->init_mutex);
1899
1900 switch (attr) {
1901 case DOMAIN_ATTR_NESTING:
1902 if (smmu_domain->smmu) {
1903 ret = -EPERM;
1904 goto out_unlock;
1905 }
1906
1907 if (*(int *)data)
1908 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1909 else
1910 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1911
1912 break;
1913 default:
1914 ret = -ENODEV;
1915 }
1916
1917out_unlock:
1918 mutex_unlock(&smmu_domain->init_mutex);
1919 return ret;
1920}
1921
1922static struct iommu_ops arm_smmu_ops = {
1923 .capable = arm_smmu_capable,
1924 .domain_alloc = arm_smmu_domain_alloc,
1925 .domain_free = arm_smmu_domain_free,
1926 .attach_dev = arm_smmu_attach_dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001927 .map = arm_smmu_map,
1928 .unmap = arm_smmu_unmap,
Jean-Philippe Brucker9aeb26c2016-06-03 11:50:30 +01001929 .map_sg = default_iommu_map_sg,
Will Deacon48ec83b2015-05-27 17:25:59 +01001930 .iova_to_phys = arm_smmu_iova_to_phys,
1931 .add_device = arm_smmu_add_device,
1932 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001933 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001934 .domain_get_attr = arm_smmu_domain_get_attr,
1935 .domain_set_attr = arm_smmu_domain_set_attr,
1936 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1937};
1938
1939/* Probing and initialisation functions */
1940static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1941 struct arm_smmu_queue *q,
1942 unsigned long prod_off,
1943 unsigned long cons_off,
1944 size_t dwords)
1945{
1946 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1947
Will Deacon04fa26c2015-10-30 18:12:41 +00001948 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001949 if (!q->base) {
1950 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1951 qsz);
1952 return -ENOMEM;
1953 }
1954
1955 q->prod_reg = smmu->base + prod_off;
1956 q->cons_reg = smmu->base + cons_off;
1957 q->ent_dwords = dwords;
1958
1959 q->q_base = Q_BASE_RWA;
1960 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1961 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1962 << Q_BASE_LOG2SIZE_SHIFT;
1963
1964 q->prod = q->cons = 0;
1965 return 0;
1966}
1967
Will Deacon48ec83b2015-05-27 17:25:59 +01001968static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1969{
1970 int ret;
1971
1972 /* cmdq */
1973 spin_lock_init(&smmu->cmdq.lock);
1974 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1975 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1976 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001977 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001978
1979 /* evtq */
1980 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1981 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1982 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001983 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001984
1985 /* priq */
1986 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1987 return 0;
1988
Will Deacon04fa26c2015-10-30 18:12:41 +00001989 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1990 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01001991}
1992
1993static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1994{
1995 unsigned int i;
1996 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1997 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1998 void *strtab = smmu->strtab_cfg.strtab;
1999
2000 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2001 if (!cfg->l1_desc) {
2002 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2003 return -ENOMEM;
2004 }
2005
2006 for (i = 0; i < cfg->num_l1_ents; ++i) {
2007 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2008 strtab += STRTAB_L1_DESC_DWORDS << 3;
2009 }
2010
2011 return 0;
2012}
2013
2014static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2015{
2016 void *strtab;
2017 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002018 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002019 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2020
Will Deacon28c8b402015-07-16 17:50:12 +01002021 /*
2022 * If we can resolve everything with a single L2 table, then we
2023 * just need a single L1 descriptor. Otherwise, calculate the L1
2024 * size, capped to the SIDSIZE.
2025 */
2026 if (smmu->sid_bits < STRTAB_SPLIT) {
2027 size = 0;
2028 } else {
2029 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2030 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2031 }
Will Deacond2e88e72015-06-30 10:02:28 +01002032 cfg->num_l1_ents = 1 << size;
2033
2034 size += STRTAB_SPLIT;
2035 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002036 dev_warn(smmu->dev,
2037 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002038 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002039
Will Deacond2e88e72015-06-30 10:02:28 +01002040 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002041 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2042 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002043 if (!strtab) {
2044 dev_err(smmu->dev,
2045 "failed to allocate l1 stream table (%u bytes)\n",
2046 size);
2047 return -ENOMEM;
2048 }
2049 cfg->strtab = strtab;
2050
2051 /* Configure strtab_base_cfg for 2 levels */
2052 reg = STRTAB_BASE_CFG_FMT_2LVL;
2053 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2054 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2055 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2056 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2057 cfg->strtab_base_cfg = reg;
2058
Will Deacon04fa26c2015-10-30 18:12:41 +00002059 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002060}
2061
2062static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2063{
2064 void *strtab;
2065 u64 reg;
2066 u32 size;
2067 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2068
2069 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002070 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2071 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002072 if (!strtab) {
2073 dev_err(smmu->dev,
2074 "failed to allocate linear stream table (%u bytes)\n",
2075 size);
2076 return -ENOMEM;
2077 }
2078 cfg->strtab = strtab;
2079 cfg->num_l1_ents = 1 << smmu->sid_bits;
2080
2081 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2082 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2083 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2084 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2085 cfg->strtab_base_cfg = reg;
2086
2087 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2088 return 0;
2089}
2090
2091static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2092{
2093 u64 reg;
2094 int ret;
2095
2096 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2097 ret = arm_smmu_init_strtab_2lvl(smmu);
2098 else
2099 ret = arm_smmu_init_strtab_linear(smmu);
2100
2101 if (ret)
2102 return ret;
2103
2104 /* Set the strtab base address */
2105 reg = smmu->strtab_cfg.strtab_dma &
2106 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2107 reg |= STRTAB_BASE_RA;
2108 smmu->strtab_cfg.strtab_base = reg;
2109
2110 /* Allocate the first VMID for stage-2 bypass STEs */
2111 set_bit(0, smmu->vmid_map);
2112 return 0;
2113}
2114
Will Deacon48ec83b2015-05-27 17:25:59 +01002115static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2116{
2117 int ret;
2118
2119 ret = arm_smmu_init_queues(smmu);
2120 if (ret)
2121 return ret;
2122
Will Deacon04fa26c2015-10-30 18:12:41 +00002123 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002124}
2125
2126static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2127 unsigned int reg_off, unsigned int ack_off)
2128{
2129 u32 reg;
2130
2131 writel_relaxed(val, smmu->base + reg_off);
2132 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2133 1, ARM_SMMU_POLL_TIMEOUT_US);
2134}
2135
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002136static void arm_smmu_free_msis(void *data)
2137{
2138 struct device *dev = data;
2139 platform_msi_domain_free_irqs(dev);
2140}
2141
2142static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2143{
2144 phys_addr_t doorbell;
2145 struct device *dev = msi_desc_to_dev(desc);
2146 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2147 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2148
2149 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2150 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2151
2152 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2153 writel_relaxed(msg->data, smmu->base + cfg[1]);
2154 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2155}
2156
2157static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2158{
2159 struct msi_desc *desc;
2160 int ret, nvec = ARM_SMMU_MAX_MSIS;
2161 struct device *dev = smmu->dev;
2162
2163 /* Clear the MSI address regs */
2164 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2165 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2166
2167 if (smmu->features & ARM_SMMU_FEAT_PRI)
2168 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2169 else
2170 nvec--;
2171
2172 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2173 return;
2174
2175 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2176 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2177 if (ret) {
2178 dev_warn(dev, "failed to allocate MSIs\n");
2179 return;
2180 }
2181
2182 for_each_msi_entry(desc, dev) {
2183 switch (desc->platform.msi_index) {
2184 case EVTQ_MSI_INDEX:
2185 smmu->evtq.q.irq = desc->irq;
2186 break;
2187 case GERROR_MSI_INDEX:
2188 smmu->gerr_irq = desc->irq;
2189 break;
2190 case PRIQ_MSI_INDEX:
2191 smmu->priq.q.irq = desc->irq;
2192 break;
2193 default: /* Unknown */
2194 continue;
2195 }
2196 }
2197
2198 /* Add callback to free MSIs on teardown */
2199 devm_add_action(dev, arm_smmu_free_msis, dev);
2200}
2201
Will Deacon48ec83b2015-05-27 17:25:59 +01002202static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2203{
2204 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002205 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002206
2207 /* Disable IRQs first */
2208 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2209 ARM_SMMU_IRQ_CTRLACK);
2210 if (ret) {
2211 dev_err(smmu->dev, "failed to disable irqs\n");
2212 return ret;
2213 }
2214
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002215 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002216
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002217 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002218 irq = smmu->evtq.q.irq;
2219 if (irq) {
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002220 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
Will Deacon48ec83b2015-05-27 17:25:59 +01002221 arm_smmu_evtq_thread,
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002222 IRQF_ONESHOT,
2223 "arm-smmu-v3-evtq", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002224 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002225 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2226 }
2227
2228 irq = smmu->cmdq.q.irq;
2229 if (irq) {
2230 ret = devm_request_irq(smmu->dev, irq,
2231 arm_smmu_cmdq_sync_handler, 0,
2232 "arm-smmu-v3-cmdq-sync", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002233 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002234 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2235 }
2236
2237 irq = smmu->gerr_irq;
2238 if (irq) {
2239 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2240 0, "arm-smmu-v3-gerror", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002241 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002242 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2243 }
2244
2245 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002246 irq = smmu->priq.q.irq;
2247 if (irq) {
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002248 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
Will Deacon48ec83b2015-05-27 17:25:59 +01002249 arm_smmu_priq_thread,
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002250 IRQF_ONESHOT,
2251 "arm-smmu-v3-priq",
Will Deacon48ec83b2015-05-27 17:25:59 +01002252 smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002253 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002254 dev_warn(smmu->dev,
2255 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002256 else
2257 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002258 }
2259 }
2260
2261 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002262 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002263 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2264 if (ret)
2265 dev_warn(smmu->dev, "failed to enable irqs\n");
2266
2267 return 0;
2268}
2269
2270static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2271{
2272 int ret;
2273
2274 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2275 if (ret)
2276 dev_err(smmu->dev, "failed to clear cr0\n");
2277
2278 return ret;
2279}
2280
2281static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2282{
2283 int ret;
2284 u32 reg, enables;
2285 struct arm_smmu_cmdq_ent cmd;
2286
2287 /* Clear CR0 and sync (disables SMMU and queue processing) */
2288 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2289 if (reg & CR0_SMMUEN)
2290 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2291
2292 ret = arm_smmu_device_disable(smmu);
2293 if (ret)
2294 return ret;
2295
2296 /* CR1 (table and queue memory attributes) */
2297 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2298 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2299 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2300 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2301 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2302 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2303 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2304
2305 /* CR2 (random crap) */
2306 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2307 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2308
2309 /* Stream table */
2310 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2311 smmu->base + ARM_SMMU_STRTAB_BASE);
2312 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2313 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2314
2315 /* Command queue */
2316 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2317 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2318 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2319
2320 enables = CR0_CMDQEN;
2321 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2322 ARM_SMMU_CR0ACK);
2323 if (ret) {
2324 dev_err(smmu->dev, "failed to enable command queue\n");
2325 return ret;
2326 }
2327
2328 /* Invalidate any cached configuration */
2329 cmd.opcode = CMDQ_OP_CFGI_ALL;
2330 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2331 cmd.opcode = CMDQ_OP_CMD_SYNC;
2332 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2333
2334 /* Invalidate any stale TLB entries */
2335 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2336 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2337 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2338 }
2339
2340 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2341 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2342 cmd.opcode = CMDQ_OP_CMD_SYNC;
2343 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2344
2345 /* Event queue */
2346 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2347 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2348 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2349
2350 enables |= CR0_EVTQEN;
2351 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2352 ARM_SMMU_CR0ACK);
2353 if (ret) {
2354 dev_err(smmu->dev, "failed to enable event queue\n");
2355 return ret;
2356 }
2357
2358 /* PRI queue */
2359 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2360 writeq_relaxed(smmu->priq.q.q_base,
2361 smmu->base + ARM_SMMU_PRIQ_BASE);
2362 writel_relaxed(smmu->priq.q.prod,
2363 smmu->base + ARM_SMMU_PRIQ_PROD);
2364 writel_relaxed(smmu->priq.q.cons,
2365 smmu->base + ARM_SMMU_PRIQ_CONS);
2366
2367 enables |= CR0_PRIQEN;
2368 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2369 ARM_SMMU_CR0ACK);
2370 if (ret) {
2371 dev_err(smmu->dev, "failed to enable PRI queue\n");
2372 return ret;
2373 }
2374 }
2375
2376 ret = arm_smmu_setup_irqs(smmu);
2377 if (ret) {
2378 dev_err(smmu->dev, "failed to setup irqs\n");
2379 return ret;
2380 }
2381
2382 /* Enable the SMMU interface */
2383 enables |= CR0_SMMUEN;
2384 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2385 ARM_SMMU_CR0ACK);
2386 if (ret) {
2387 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2388 return ret;
2389 }
2390
2391 return 0;
2392}
2393
2394static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2395{
2396 u32 reg;
2397 bool coherent;
Will Deacon48ec83b2015-05-27 17:25:59 +01002398
2399 /* IDR0 */
2400 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2401
2402 /* 2-level structures */
2403 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2404 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2405
2406 if (reg & IDR0_CD2L)
2407 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2408
2409 /*
2410 * Translation table endianness.
2411 * We currently require the same endianness as the CPU, but this
2412 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2413 */
2414 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2415 case IDR0_TTENDIAN_MIXED:
2416 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2417 break;
2418#ifdef __BIG_ENDIAN
2419 case IDR0_TTENDIAN_BE:
2420 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2421 break;
2422#else
2423 case IDR0_TTENDIAN_LE:
2424 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2425 break;
2426#endif
2427 default:
2428 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2429 return -ENXIO;
2430 }
2431
2432 /* Boolean feature flags */
2433 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2434 smmu->features |= ARM_SMMU_FEAT_PRI;
2435
2436 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2437 smmu->features |= ARM_SMMU_FEAT_ATS;
2438
2439 if (reg & IDR0_SEV)
2440 smmu->features |= ARM_SMMU_FEAT_SEV;
2441
2442 if (reg & IDR0_MSI)
2443 smmu->features |= ARM_SMMU_FEAT_MSI;
2444
2445 if (reg & IDR0_HYP)
2446 smmu->features |= ARM_SMMU_FEAT_HYP;
2447
2448 /*
2449 * The dma-coherent property is used in preference to the ID
2450 * register, but warn on mismatch.
2451 */
2452 coherent = of_dma_is_coherent(smmu->dev->of_node);
2453 if (coherent)
2454 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2455
2456 if (!!(reg & IDR0_COHACC) != coherent)
2457 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2458 coherent ? "true" : "false");
2459
Prem Mallappa6380be02015-12-14 22:01:23 +05302460 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2461 case IDR0_STALL_MODEL_STALL:
2462 /* Fallthrough */
2463 case IDR0_STALL_MODEL_FORCE:
Will Deacon48ec83b2015-05-27 17:25:59 +01002464 smmu->features |= ARM_SMMU_FEAT_STALLS;
Prem Mallappa6380be02015-12-14 22:01:23 +05302465 }
Will Deacon48ec83b2015-05-27 17:25:59 +01002466
2467 if (reg & IDR0_S1P)
2468 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2469
2470 if (reg & IDR0_S2P)
2471 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2472
2473 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2474 dev_err(smmu->dev, "no translation support!\n");
2475 return -ENXIO;
2476 }
2477
2478 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002479 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2480 case IDR0_TTF_AARCH32_64:
2481 smmu->ias = 40;
2482 /* Fallthrough */
2483 case IDR0_TTF_AARCH64:
2484 break;
2485 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002486 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2487 return -ENXIO;
2488 }
2489
2490 /* ASID/VMID sizes */
2491 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2492 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2493
2494 /* IDR1 */
2495 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2496 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2497 dev_err(smmu->dev, "embedded implementation not supported\n");
2498 return -ENXIO;
2499 }
2500
2501 /* Queue sizes, capped at 4k */
2502 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2503 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2504 if (!smmu->cmdq.q.max_n_shift) {
2505 /* Odd alignment restrictions on the base, so ignore for now */
2506 dev_err(smmu->dev, "unit-length command queue not supported\n");
2507 return -ENXIO;
2508 }
2509
2510 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2511 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2512 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2513 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2514
2515 /* SID/SSID sizes */
2516 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2517 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2518
2519 /* IDR5 */
2520 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2521
2522 /* Maximum number of outstanding stalls */
2523 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2524 & IDR5_STALL_MAX_MASK;
2525
2526 /* Page sizes */
2527 if (reg & IDR5_GRAN64K)
Robin Murphyd5466352016-05-09 17:20:09 +01002528 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002529 if (reg & IDR5_GRAN16K)
Robin Murphyd5466352016-05-09 17:20:09 +01002530 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002531 if (reg & IDR5_GRAN4K)
Robin Murphyd5466352016-05-09 17:20:09 +01002532 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
Will Deacon48ec83b2015-05-27 17:25:59 +01002533
Robin Murphyd5466352016-05-09 17:20:09 +01002534 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2535 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2536 else
2537 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01002538
2539 /* Output address size */
2540 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2541 case IDR5_OAS_32_BIT:
2542 smmu->oas = 32;
2543 break;
2544 case IDR5_OAS_36_BIT:
2545 smmu->oas = 36;
2546 break;
2547 case IDR5_OAS_40_BIT:
2548 smmu->oas = 40;
2549 break;
2550 case IDR5_OAS_42_BIT:
2551 smmu->oas = 42;
2552 break;
2553 case IDR5_OAS_44_BIT:
2554 smmu->oas = 44;
2555 break;
Will Deacon85430962015-08-03 10:35:40 +01002556 default:
2557 dev_info(smmu->dev,
2558 "unknown output address size. Truncating to 48-bit\n");
2559 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002560 case IDR5_OAS_48_BIT:
2561 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002562 }
2563
2564 /* Set the DMA mask for our table walker */
2565 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2566 dev_warn(smmu->dev,
2567 "failed to set DMA mask for table walker\n");
2568
Will Deaconf0c453d2015-08-20 12:12:32 +01002569 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002570
2571 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2572 smmu->ias, smmu->oas, smmu->features);
2573 return 0;
2574}
2575
2576static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2577{
2578 int irq, ret;
2579 struct resource *res;
2580 struct arm_smmu_device *smmu;
2581 struct device *dev = &pdev->dev;
2582
2583 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2584 if (!smmu) {
2585 dev_err(dev, "failed to allocate arm_smmu_device\n");
2586 return -ENOMEM;
2587 }
2588 smmu->dev = dev;
2589
2590 /* Base address */
2591 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2592 if (resource_size(res) + 1 < SZ_128K) {
2593 dev_err(dev, "MMIO region too small (%pr)\n", res);
2594 return -EINVAL;
2595 }
2596
2597 smmu->base = devm_ioremap_resource(dev, res);
2598 if (IS_ERR(smmu->base))
2599 return PTR_ERR(smmu->base);
2600
2601 /* Interrupt lines */
2602 irq = platform_get_irq_byname(pdev, "eventq");
2603 if (irq > 0)
2604 smmu->evtq.q.irq = irq;
2605
2606 irq = platform_get_irq_byname(pdev, "priq");
2607 if (irq > 0)
2608 smmu->priq.q.irq = irq;
2609
2610 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2611 if (irq > 0)
2612 smmu->cmdq.q.irq = irq;
2613
2614 irq = platform_get_irq_byname(pdev, "gerror");
2615 if (irq > 0)
2616 smmu->gerr_irq = irq;
2617
Zhen Lei5e929462015-07-07 04:30:18 +01002618 parse_driver_options(smmu);
2619
Will Deacon48ec83b2015-05-27 17:25:59 +01002620 /* Probe the h/w */
2621 ret = arm_smmu_device_probe(smmu);
2622 if (ret)
2623 return ret;
2624
2625 /* Initialise in-memory data structures */
2626 ret = arm_smmu_init_structures(smmu);
2627 if (ret)
2628 return ret;
2629
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002630 /* Record our private device structure */
2631 platform_set_drvdata(pdev, smmu);
2632
Will Deacon48ec83b2015-05-27 17:25:59 +01002633 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002634 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002635}
2636
2637static int arm_smmu_device_remove(struct platform_device *pdev)
2638{
Will Deacon941a8022015-08-11 16:25:10 +01002639 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002640
2641 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002642 return 0;
2643}
2644
2645static struct of_device_id arm_smmu_of_match[] = {
2646 { .compatible = "arm,smmu-v3", },
2647 { },
2648};
2649MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2650
2651static struct platform_driver arm_smmu_driver = {
2652 .driver = {
2653 .name = "arm-smmu-v3",
2654 .of_match_table = of_match_ptr(arm_smmu_of_match),
2655 },
2656 .probe = arm_smmu_device_dt_probe,
2657 .remove = arm_smmu_device_remove,
2658};
2659
2660static int __init arm_smmu_init(void)
2661{
2662 struct device_node *np;
2663 int ret;
2664
2665 np = of_find_matching_node(NULL, arm_smmu_of_match);
2666 if (!np)
2667 return 0;
2668
2669 of_node_put(np);
2670
2671 ret = platform_driver_register(&arm_smmu_driver);
2672 if (ret)
2673 return ret;
2674
Wei Chen112c8982016-06-13 17:20:17 +08002675 pci_request_acs();
2676
Will Deacon48ec83b2015-05-27 17:25:59 +01002677 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2678}
2679
2680static void __exit arm_smmu_exit(void)
2681{
2682 return platform_driver_unregister(&arm_smmu_driver);
2683}
2684
2685subsys_initcall(arm_smmu_init);
2686module_exit(arm_smmu_exit);
2687
2688MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2689MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2690MODULE_LICENSE("GPL v2");