blob: 50119a00885baf2253562894af16ebdf8467d85e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110034#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110042#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_rw.h"
48#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71
72#ifdef DEBUG
73/*
74 * Make sure that the extents in the given memory buffer
75 * are valid.
76 */
77STATIC void
78xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110079 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
83{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110084 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 xfs_bmbt_irec_t irec;
86 xfs_bmbt_rec_t rec;
87 int i;
88
89 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110090 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
92 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
93 if (disk)
94 xfs_bmbt_disk_get_all(&rec, &irec);
95 else
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099 }
100}
101#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100102#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#endif /* DEBUG */
104
105/*
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
108 */
109#if defined(DEBUG)
110void
111xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
114{
115 int i;
116 int j;
117 xfs_dinode_t *dip;
118
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_fs_cmn_err(CE_ALERT, mp,
126 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
129 }
130 }
131}
132#endif
133
134/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135 * This routine is called to map an inode number within a file
136 * system to the buffer containing the on-disk version of the
137 * inode. It returns a pointer to the buffer containing the
138 * on-disk inode in the bpp parameter, and in the dip parameter
139 * it returns a pointer to the on-disk inode within that buffer.
140 *
141 * If a non-zero error is returned, then the contents of bpp and
142 * dipp are undefined.
143 *
144 * Use xfs_imap() to determine the size and location of the
145 * buffer to read from disk.
146 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000147STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148xfs_inotobp(
149 xfs_mount_t *mp,
150 xfs_trans_t *tp,
151 xfs_ino_t ino,
152 xfs_dinode_t **dipp,
153 xfs_buf_t **bpp,
154 int *offset)
155{
156 int di_ok;
157 xfs_imap_t imap;
158 xfs_buf_t *bp;
159 int error;
160 xfs_dinode_t *dip;
161
162 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000163 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 * inode on disk.
165 */
166 imap.im_blkno = 0;
167 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 if (error != 0) {
169 cmn_err(CE_WARN,
170 "xfs_inotobp: xfs_imap() returned an "
171 "error %d on %s. Returning error.", error, mp->m_fsname);
172 return error;
173 }
174
175 /*
176 * If the inode number maps to a block outside the bounds of the
177 * file system then return NULL rather than calling read_buf
178 * and panicing when we get an error from the driver.
179 */
180 if ((imap.im_blkno + imap.im_len) >
181 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100185 (unsigned long long)imap.im_blkno,
186 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187 return XFS_ERROR(EINVAL);
188 }
189
190 /*
191 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
192 * default to just a read_buf() call.
193 */
194 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
195 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196
197 if (error) {
198 cmn_err(CE_WARN,
199 "xfs_inotobp: xfs_trans_read_buf() returned an "
200 "error %d on %s. Returning error.", error, mp->m_fsname);
201 return error;
202 }
203 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 di_ok =
205 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
206 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
207 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
208 XFS_RANDOM_ITOBP_INOTOBP))) {
209 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
210 xfs_trans_brelse(tp, bp);
211 cmn_err(CE_WARN,
212 "xfs_inotobp: XFS_TEST_ERROR() returned an "
213 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
214 return XFS_ERROR(EFSCORRUPTED);
215 }
216
217 xfs_inobp_check(mp, bp);
218
219 /*
220 * Set *dipp to point to the on-disk inode in the buffer.
221 */
222 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *bpp = bp;
224 *offset = imap.im_boffset;
225 return 0;
226}
227
228
229/*
230 * This routine is called to map an inode to the buffer containing
231 * the on-disk version of the inode. It returns a pointer to the
232 * buffer containing the on-disk inode in the bpp parameter, and in
233 * the dip parameter it returns a pointer to the on-disk inode within
234 * that buffer.
235 *
236 * If a non-zero error is returned, then the contents of bpp and
237 * dipp are undefined.
238 *
239 * If the inode is new and has not yet been initialized, use xfs_imap()
240 * to determine the size and location of the buffer to read from disk.
241 * If the inode has already been mapped to its buffer and read in once,
242 * then use the mapping information stored in the inode rather than
243 * calling xfs_imap(). This allows us to avoid the overhead of looking
244 * at the inode btree for small block file systems (see xfs_dilocate()).
245 * We can tell whether the inode has been mapped in before by comparing
246 * its disk block address to 0. Only uninitialized inodes will have
247 * 0 for the disk block address.
248 */
249int
250xfs_itobp(
251 xfs_mount_t *mp,
252 xfs_trans_t *tp,
253 xfs_inode_t *ip,
254 xfs_dinode_t **dipp,
255 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100256 xfs_daddr_t bno,
257 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258{
259 xfs_buf_t *bp;
260 int error;
261 xfs_imap_t imap;
262#ifdef __KERNEL__
263 int i;
264 int ni;
265#endif
266
267 if (ip->i_blkno == (xfs_daddr_t)0) {
268 /*
269 * Call the space management code to find the location of the
270 * inode on disk.
271 */
272 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100273 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
274 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
277 /*
278 * If the inode number maps to a block outside the bounds
279 * of the file system then return NULL rather than calling
280 * read_buf and panicing when we get an error from the
281 * driver.
282 */
283 if ((imap.im_blkno + imap.im_len) >
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285#ifdef DEBUG
286 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
287 "(imap.im_blkno (0x%llx) "
288 "+ imap.im_len (0x%llx)) > "
289 " XFS_FSB_TO_BB(mp, "
290 "mp->m_sb.sb_dblocks) (0x%llx)",
291 (unsigned long long) imap.im_blkno,
292 (unsigned long long) imap.im_len,
293 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294#endif /* DEBUG */
295 return XFS_ERROR(EINVAL);
296 }
297
298 /*
299 * Fill in the fields in the inode that will be used to
300 * map the inode to its buffer from now on.
301 */
302 ip->i_blkno = imap.im_blkno;
303 ip->i_len = imap.im_len;
304 ip->i_boffset = imap.im_boffset;
305 } else {
306 /*
307 * We've already mapped the inode once, so just use the
308 * mapping that we saved the first time.
309 */
310 imap.im_blkno = ip->i_blkno;
311 imap.im_len = ip->i_len;
312 imap.im_boffset = ip->i_boffset;
313 }
314 ASSERT(bno == 0 || bno == imap.im_blkno);
315
316 /*
317 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
318 * default to just a read_buf() call.
319 */
320 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
321 (int)imap.im_len, XFS_BUF_LOCK, &bp);
322
323 if (error) {
324#ifdef DEBUG
325 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
326 "xfs_trans_read_buf() returned error %d, "
327 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
328 error, (unsigned long long) imap.im_blkno,
329 (unsigned long long) imap.im_len);
330#endif /* DEBUG */
331 return error;
332 }
333#ifdef __KERNEL__
334 /*
335 * Validate the magic number and version of every inode in the buffer
336 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
337 */
338#ifdef DEBUG
Nathan Scottb12dd342006-03-17 17:26:04 +1100339 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
340 (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#else
Nathan Scottb12dd342006-03-17 17:26:04 +1100342 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343#endif
344 for (i = 0; i < ni; i++) {
345 int di_ok;
346 xfs_dinode_t *dip;
347
348 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
349 (i << mp->m_sb.sb_inodelog));
350 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
351 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
352 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354#ifdef DEBUG
Nathan Scottb6574522006-06-09 15:29:40 +1000355 cmn_err(CE_ALERT, "Device %s - bad inode magic/vsn "
356 "daddr %lld #%d (magic=%x)",
357 XFS_BUFTARG_NAME(mp->m_ddev_targp),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358 (unsigned long long)imap.im_blkno, i,
359 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
360#endif
361 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
362 mp, dip);
363 xfs_trans_brelse(tp, bp);
364 return XFS_ERROR(EFSCORRUPTED);
365 }
366 }
367#endif /* __KERNEL__ */
368
369 xfs_inobp_check(mp, bp);
370
371 /*
372 * Mark the buffer as an inode buffer now that it looks good
373 */
374 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
375
376 /*
377 * Set *dipp to point to the on-disk inode in the buffer.
378 */
379 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
380 *bpp = bp;
381 return 0;
382}
383
384/*
385 * Move inode type and inode format specific information from the
386 * on-disk inode to the in-core inode. For fifos, devs, and sockets
387 * this means set if_rdev to the proper value. For files, directories,
388 * and symlinks this means to bring in the in-line data or extent
389 * pointers. For a file in B-tree format, only the root is immediately
390 * brought in-core. The rest will be in-lined in if_extents when it
391 * is first referenced (see xfs_iread_extents()).
392 */
393STATIC int
394xfs_iformat(
395 xfs_inode_t *ip,
396 xfs_dinode_t *dip)
397{
398 xfs_attr_shortform_t *atp;
399 int size;
400 int error;
401 xfs_fsize_t di_size;
402 ip->i_df.if_ext_max =
403 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
404 error = 0;
405
406 if (unlikely(
407 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
408 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
409 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100410 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
411 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412 (unsigned long long)ip->i_ino,
413 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
414 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
415 (unsigned long long)
416 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
417 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
418 ip->i_mount, dip);
419 return XFS_ERROR(EFSCORRUPTED);
420 }
421
422 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100423 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
424 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 (unsigned long long)ip->i_ino,
426 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
427 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
428 ip->i_mount, dip);
429 return XFS_ERROR(EFSCORRUPTED);
430 }
431
432 switch (ip->i_d.di_mode & S_IFMT) {
433 case S_IFIFO:
434 case S_IFCHR:
435 case S_IFBLK:
436 case S_IFSOCK:
437 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
438 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
439 ip->i_mount, dip);
440 return XFS_ERROR(EFSCORRUPTED);
441 }
442 ip->i_d.di_size = 0;
443 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
444 break;
445
446 case S_IFREG:
447 case S_IFLNK:
448 case S_IFDIR:
449 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
450 case XFS_DINODE_FMT_LOCAL:
451 /*
452 * no local regular files yet
453 */
454 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100455 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
456 "corrupt inode %Lu "
457 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 (unsigned long long) ip->i_ino);
459 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
460 XFS_ERRLEVEL_LOW,
461 ip->i_mount, dip);
462 return XFS_ERROR(EFSCORRUPTED);
463 }
464
465 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
466 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100467 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
468 "corrupt inode %Lu "
469 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470 (unsigned long long) ip->i_ino,
471 (long long) di_size);
472 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
473 XFS_ERRLEVEL_LOW,
474 ip->i_mount, dip);
475 return XFS_ERROR(EFSCORRUPTED);
476 }
477
478 size = (int)di_size;
479 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
480 break;
481 case XFS_DINODE_FMT_EXTENTS:
482 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
483 break;
484 case XFS_DINODE_FMT_BTREE:
485 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
486 break;
487 default:
488 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
489 ip->i_mount);
490 return XFS_ERROR(EFSCORRUPTED);
491 }
492 break;
493
494 default:
495 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
496 return XFS_ERROR(EFSCORRUPTED);
497 }
498 if (error) {
499 return error;
500 }
501 if (!XFS_DFORK_Q(dip))
502 return 0;
503 ASSERT(ip->i_afp == NULL);
504 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
505 ip->i_afp->if_ext_max =
506 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
507 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
508 case XFS_DINODE_FMT_LOCAL:
509 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100510 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
512 break;
513 case XFS_DINODE_FMT_EXTENTS:
514 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
515 break;
516 case XFS_DINODE_FMT_BTREE:
517 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
518 break;
519 default:
520 error = XFS_ERROR(EFSCORRUPTED);
521 break;
522 }
523 if (error) {
524 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
525 ip->i_afp = NULL;
526 xfs_idestroy_fork(ip, XFS_DATA_FORK);
527 }
528 return error;
529}
530
531/*
532 * The file is in-lined in the on-disk inode.
533 * If it fits into if_inline_data, then copy
534 * it there, otherwise allocate a buffer for it
535 * and copy the data there. Either way, set
536 * if_data to point at the data.
537 * If we allocate a buffer for the data, make
538 * sure that its size is a multiple of 4 and
539 * record the real size in i_real_bytes.
540 */
541STATIC int
542xfs_iformat_local(
543 xfs_inode_t *ip,
544 xfs_dinode_t *dip,
545 int whichfork,
546 int size)
547{
548 xfs_ifork_t *ifp;
549 int real_size;
550
551 /*
552 * If the size is unreasonable, then something
553 * is wrong and we just bail out rather than crash in
554 * kmem_alloc() or memcpy() below.
555 */
556 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100557 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
558 "corrupt inode %Lu "
559 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700560 (unsigned long long) ip->i_ino, size,
561 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
562 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
563 ip->i_mount, dip);
564 return XFS_ERROR(EFSCORRUPTED);
565 }
566 ifp = XFS_IFORK_PTR(ip, whichfork);
567 real_size = 0;
568 if (size == 0)
569 ifp->if_u1.if_data = NULL;
570 else if (size <= sizeof(ifp->if_u2.if_inline_data))
571 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
572 else {
573 real_size = roundup(size, 4);
574 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
575 }
576 ifp->if_bytes = size;
577 ifp->if_real_bytes = real_size;
578 if (size)
579 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
580 ifp->if_flags &= ~XFS_IFEXTENTS;
581 ifp->if_flags |= XFS_IFINLINE;
582 return 0;
583}
584
585/*
586 * The file consists of a set of extents all
587 * of which fit into the on-disk inode.
588 * If there are few enough extents to fit into
589 * the if_inline_ext, then copy them there.
590 * Otherwise allocate a buffer for them and copy
591 * them into it. Either way, set if_extents
592 * to point at the extents.
593 */
594STATIC int
595xfs_iformat_extents(
596 xfs_inode_t *ip,
597 xfs_dinode_t *dip,
598 int whichfork)
599{
600 xfs_bmbt_rec_t *ep, *dp;
601 xfs_ifork_t *ifp;
602 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700603 int size;
604 int i;
605
606 ifp = XFS_IFORK_PTR(ip, whichfork);
607 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
608 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
609
610 /*
611 * If the number of extents is unreasonable, then something
612 * is wrong and we just bail out rather than crash in
613 * kmem_alloc() or memcpy() below.
614 */
615 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100616 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
617 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700618 (unsigned long long) ip->i_ino, nex);
619 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
620 ip->i_mount, dip);
621 return XFS_ERROR(EFSCORRUPTED);
622 }
623
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100624 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625 if (nex == 0)
626 ifp->if_u1.if_extents = NULL;
627 else if (nex <= XFS_INLINE_EXTS)
628 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100629 else
630 xfs_iext_add(ifp, 0, nex);
631
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633 if (size) {
634 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100635 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
636 for (i = 0; i < nex; i++, dp++) {
637 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
639 ARCH_CONVERT);
640 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
641 ARCH_CONVERT);
642 }
643 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
644 whichfork);
645 if (whichfork != XFS_DATA_FORK ||
646 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
647 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100648 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700649 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
650 XFS_ERRLEVEL_LOW,
651 ip->i_mount);
652 return XFS_ERROR(EFSCORRUPTED);
653 }
654 }
655 ifp->if_flags |= XFS_IFEXTENTS;
656 return 0;
657}
658
659/*
660 * The file has too many extents to fit into
661 * the inode, so they are in B-tree format.
662 * Allocate a buffer for the root of the B-tree
663 * and copy the root into it. The i_extents
664 * field will remain NULL until all of the
665 * extents are read in (when they are needed).
666 */
667STATIC int
668xfs_iformat_btree(
669 xfs_inode_t *ip,
670 xfs_dinode_t *dip,
671 int whichfork)
672{
673 xfs_bmdr_block_t *dfp;
674 xfs_ifork_t *ifp;
675 /* REFERENCED */
676 int nrecs;
677 int size;
678
679 ifp = XFS_IFORK_PTR(ip, whichfork);
680 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
681 size = XFS_BMAP_BROOT_SPACE(dfp);
682 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
683
684 /*
685 * blow out if -- fork has less extents than can fit in
686 * fork (fork shouldn't be a btree format), root btree
687 * block has more records than can fit into the fork,
688 * or the number of extents is greater than the number of
689 * blocks.
690 */
691 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
692 || XFS_BMDR_SPACE_CALC(nrecs) >
693 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
694 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100695 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
696 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697 (unsigned long long) ip->i_ino);
698 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
699 ip->i_mount);
700 return XFS_ERROR(EFSCORRUPTED);
701 }
702
703 ifp->if_broot_bytes = size;
704 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
705 ASSERT(ifp->if_broot != NULL);
706 /*
707 * Copy and convert from the on-disk structure
708 * to the in-memory structure.
709 */
710 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
711 ifp->if_broot, size);
712 ifp->if_flags &= ~XFS_IFEXTENTS;
713 ifp->if_flags |= XFS_IFBROOT;
714
715 return 0;
716}
717
718/*
719 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
720 * and native format
721 *
722 * buf = on-disk representation
723 * dip = native representation
724 * dir = direction - +ve -> disk to native
725 * -ve -> native to disk
726 */
727void
728xfs_xlate_dinode_core(
729 xfs_caddr_t buf,
730 xfs_dinode_core_t *dip,
731 int dir)
732{
733 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
734 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
735 xfs_arch_t arch = ARCH_CONVERT;
736
737 ASSERT(dir);
738
739 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
740 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
741 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
742 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
743 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
744 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
745 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
746 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
747 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
748
749 if (dir > 0) {
750 memcpy(mem_core->di_pad, buf_core->di_pad,
751 sizeof(buf_core->di_pad));
752 } else {
753 memcpy(buf_core->di_pad, mem_core->di_pad,
754 sizeof(buf_core->di_pad));
755 }
756
757 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
758
759 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
760 dir, arch);
761 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
762 dir, arch);
763 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
772 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
773 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
774 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
775 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
776 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
777 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
778 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
779 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
780 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
781 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
782}
783
784STATIC uint
785_xfs_dic2xflags(
786 xfs_dinode_core_t *dic,
787 __uint16_t di_flags)
788{
789 uint flags = 0;
790
791 if (di_flags & XFS_DIFLAG_ANY) {
792 if (di_flags & XFS_DIFLAG_REALTIME)
793 flags |= XFS_XFLAG_REALTIME;
794 if (di_flags & XFS_DIFLAG_PREALLOC)
795 flags |= XFS_XFLAG_PREALLOC;
796 if (di_flags & XFS_DIFLAG_IMMUTABLE)
797 flags |= XFS_XFLAG_IMMUTABLE;
798 if (di_flags & XFS_DIFLAG_APPEND)
799 flags |= XFS_XFLAG_APPEND;
800 if (di_flags & XFS_DIFLAG_SYNC)
801 flags |= XFS_XFLAG_SYNC;
802 if (di_flags & XFS_DIFLAG_NOATIME)
803 flags |= XFS_XFLAG_NOATIME;
804 if (di_flags & XFS_DIFLAG_NODUMP)
805 flags |= XFS_XFLAG_NODUMP;
806 if (di_flags & XFS_DIFLAG_RTINHERIT)
807 flags |= XFS_XFLAG_RTINHERIT;
808 if (di_flags & XFS_DIFLAG_PROJINHERIT)
809 flags |= XFS_XFLAG_PROJINHERIT;
810 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
811 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100812 if (di_flags & XFS_DIFLAG_EXTSIZE)
813 flags |= XFS_XFLAG_EXTSIZE;
814 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
815 flags |= XFS_XFLAG_EXTSZINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +1000816 if (di_flags & XFS_DIFLAG_NODEFRAG)
817 flags |= XFS_XFLAG_NODEFRAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 }
819
820 return flags;
821}
822
823uint
824xfs_ip2xflags(
825 xfs_inode_t *ip)
826{
827 xfs_dinode_core_t *dic = &ip->i_d;
828
829 return _xfs_dic2xflags(dic, dic->di_flags) |
830 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
831}
832
833uint
834xfs_dic2xflags(
835 xfs_dinode_core_t *dic)
836{
837 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
838 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
839}
840
841/*
842 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000843 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844 * inode number.
845 *
846 * Initialize the inode's attributes and extent pointers if it
847 * already has them (it will not if the inode has no links).
848 */
849int
850xfs_iread(
851 xfs_mount_t *mp,
852 xfs_trans_t *tp,
853 xfs_ino_t ino,
854 xfs_inode_t **ipp,
855 xfs_daddr_t bno)
856{
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
861
862 ASSERT(xfs_inode_zone != NULL);
863
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
867
868 /*
869 * Get pointer's to the on-disk inode and the buffer containing it.
870 * If the inode number refers to a block outside the file system
871 * then xfs_itobp() will return NULL. In this case we should
872 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
873 * know that this is a new incore inode.
874 */
Nathan Scottb12dd342006-03-17 17:26:04 +1100875 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
876 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877 kmem_zone_free(xfs_inode_zone, ip);
878 return error;
879 }
880
881 /*
882 * Initialize inode's trace buffers.
883 * Do this before xfs_iformat in case it adds entries.
884 */
885#ifdef XFS_BMAP_TRACE
886 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
887#endif
888#ifdef XFS_BMBT_TRACE
889 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
890#endif
891#ifdef XFS_RW_TRACE
892 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
893#endif
894#ifdef XFS_ILOCK_TRACE
895 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
896#endif
897#ifdef XFS_DIR2_TRACE
898 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
899#endif
900
901 /*
902 * If we got something that isn't an inode it means someone
903 * (nfs or dmi) has a stale handle.
904 */
905 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
906 kmem_zone_free(xfs_inode_zone, ip);
907 xfs_trans_brelse(tp, bp);
908#ifdef DEBUG
909 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
910 "dip->di_core.di_magic (0x%x) != "
911 "XFS_DINODE_MAGIC (0x%x)",
912 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
913 XFS_DINODE_MAGIC);
914#endif /* DEBUG */
915 return XFS_ERROR(EINVAL);
916 }
917
918 /*
919 * If the on-disk inode is already linked to a directory
920 * entry, copy all of the inode into the in-core inode.
921 * xfs_iformat() handles copying in the inode format
922 * specific information.
923 * Otherwise, just get the truly permanent information.
924 */
925 if (dip->di_core.di_mode) {
926 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
927 &(ip->i_d), 1);
928 error = xfs_iformat(ip, dip);
929 if (error) {
930 kmem_zone_free(xfs_inode_zone, ip);
931 xfs_trans_brelse(tp, bp);
932#ifdef DEBUG
933 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
934 "xfs_iformat() returned error %d",
935 error);
936#endif /* DEBUG */
937 return error;
938 }
939 } else {
940 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
941 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
942 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
943 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
944 /*
945 * Make sure to pull in the mode here as well in
946 * case the inode is released without being used.
947 * This ensures that xfs_inactive() will see that
948 * the inode is already free and not try to mess
949 * with the uninitialized part of it.
950 */
951 ip->i_d.di_mode = 0;
952 /*
953 * Initialize the per-fork minima and maxima for a new
954 * inode here. xfs_iformat will do it for old inodes.
955 */
956 ip->i_df.if_ext_max =
957 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
958 }
959
960 INIT_LIST_HEAD(&ip->i_reclaim);
961
962 /*
963 * The inode format changed when we moved the link count and
964 * made it 32 bits long. If this is an old format inode,
965 * convert it in memory to look like a new one. If it gets
966 * flushed to disk we will convert back before flushing or
967 * logging it. We zero out the new projid field and the old link
968 * count field. We'll handle clearing the pad field (the remains
969 * of the old uuid field) when we actually convert the inode to
970 * the new format. We don't change the version number so that we
971 * can distinguish this from a real new format inode.
972 */
973 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
974 ip->i_d.di_nlink = ip->i_d.di_onlink;
975 ip->i_d.di_onlink = 0;
976 ip->i_d.di_projid = 0;
977 }
978
979 ip->i_delayed_blks = 0;
980
981 /*
982 * Mark the buffer containing the inode as something to keep
983 * around for a while. This helps to keep recently accessed
984 * meta-data in-core longer.
985 */
986 XFS_BUF_SET_REF(bp, XFS_INO_REF);
987
988 /*
989 * Use xfs_trans_brelse() to release the buffer containing the
990 * on-disk inode, because it was acquired with xfs_trans_read_buf()
991 * in xfs_itobp() above. If tp is NULL, this is just a normal
992 * brelse(). If we're within a transaction, then xfs_trans_brelse()
993 * will only release the buffer if it is not dirty within the
994 * transaction. It will be OK to release the buffer in this case,
995 * because inodes on disk are never destroyed and we will be
996 * locking the new in-core inode before putting it in the hash
997 * table where other processes can find it. Thus we don't have
998 * to worry about the inode being changed just because we released
999 * the buffer.
1000 */
1001 xfs_trans_brelse(tp, bp);
1002 *ipp = ip;
1003 return 0;
1004}
1005
1006/*
1007 * Read in extents from a btree-format inode.
1008 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1009 */
1010int
1011xfs_iread_extents(
1012 xfs_trans_t *tp,
1013 xfs_inode_t *ip,
1014 int whichfork)
1015{
1016 int error;
1017 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001018 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 size_t size;
1020
1021 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1022 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1023 ip->i_mount);
1024 return XFS_ERROR(EFSCORRUPTED);
1025 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001026 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1027 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001029
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 /*
1031 * We know that the size is valid (it's checked in iformat_btree)
1032 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001034 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001036 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 error = xfs_bmap_read_extents(tp, ip, whichfork);
1038 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001039 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040 ifp->if_flags &= ~XFS_IFEXTENTS;
1041 return error;
1042 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001043 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044 return 0;
1045}
1046
1047/*
1048 * Allocate an inode on disk and return a copy of its in-core version.
1049 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1050 * appropriately within the inode. The uid and gid for the inode are
1051 * set according to the contents of the given cred structure.
1052 *
1053 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1054 * has a free inode available, call xfs_iget()
1055 * to obtain the in-core version of the allocated inode. Finally,
1056 * fill in the inode and log its initial contents. In this case,
1057 * ialloc_context would be set to NULL and call_again set to false.
1058 *
1059 * If xfs_dialloc() does not have an available inode,
1060 * it will replenish its supply by doing an allocation. Since we can
1061 * only do one allocation within a transaction without deadlocks, we
1062 * must commit the current transaction before returning the inode itself.
1063 * In this case, therefore, we will set call_again to true and return.
1064 * The caller should then commit the current transaction, start a new
1065 * transaction, and call xfs_ialloc() again to actually get the inode.
1066 *
1067 * To ensure that some other process does not grab the inode that
1068 * was allocated during the first call to xfs_ialloc(), this routine
1069 * also returns the [locked] bp pointing to the head of the freelist
1070 * as ialloc_context. The caller should hold this buffer across
1071 * the commit and pass it back into this routine on the second call.
1072 */
1073int
1074xfs_ialloc(
1075 xfs_trans_t *tp,
1076 xfs_inode_t *pip,
1077 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001078 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079 xfs_dev_t rdev,
1080 cred_t *cr,
1081 xfs_prid_t prid,
1082 int okalloc,
1083 xfs_buf_t **ialloc_context,
1084 boolean_t *call_again,
1085 xfs_inode_t **ipp)
1086{
1087 xfs_ino_t ino;
1088 xfs_inode_t *ip;
1089 vnode_t *vp;
1090 uint flags;
1091 int error;
1092
1093 /*
1094 * Call the space management code to pick
1095 * the on-disk inode to be allocated.
1096 */
1097 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1098 ialloc_context, call_again, &ino);
1099 if (error != 0) {
1100 return error;
1101 }
1102 if (*call_again || ino == NULLFSINO) {
1103 *ipp = NULL;
1104 return 0;
1105 }
1106 ASSERT(*ialloc_context == NULL);
1107
1108 /*
1109 * Get the in-core inode with the lock held exclusively.
1110 * This is because we're setting fields here we need
1111 * to prevent others from looking at until we're done.
1112 */
1113 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1114 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1115 if (error != 0) {
1116 return error;
1117 }
1118 ASSERT(ip != NULL);
1119
1120 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 ip->i_d.di_mode = (__uint16_t)mode;
1122 ip->i_d.di_onlink = 0;
1123 ip->i_d.di_nlink = nlink;
1124 ASSERT(ip->i_d.di_nlink == nlink);
1125 ip->i_d.di_uid = current_fsuid(cr);
1126 ip->i_d.di_gid = current_fsgid(cr);
1127 ip->i_d.di_projid = prid;
1128 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1129
1130 /*
1131 * If the superblock version is up to where we support new format
1132 * inodes and this is currently an old format inode, then change
1133 * the inode version number now. This way we only do the conversion
1134 * here rather than here and in the flush/logging code.
1135 */
1136 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1137 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1138 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1139 /*
1140 * We've already zeroed the old link count, the projid field,
1141 * and the pad field.
1142 */
1143 }
1144
1145 /*
1146 * Project ids won't be stored on disk if we are using a version 1 inode.
1147 */
1148 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1149 xfs_bump_ino_vers2(tp, ip);
1150
1151 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1152 ip->i_d.di_gid = pip->i_d.di_gid;
1153 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1154 ip->i_d.di_mode |= S_ISGID;
1155 }
1156 }
1157
1158 /*
1159 * If the group ID of the new file does not match the effective group
1160 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1161 * (and only if the irix_sgid_inherit compatibility variable is set).
1162 */
1163 if ((irix_sgid_inherit) &&
1164 (ip->i_d.di_mode & S_ISGID) &&
1165 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1166 ip->i_d.di_mode &= ~S_ISGID;
1167 }
1168
1169 ip->i_d.di_size = 0;
1170 ip->i_d.di_nextents = 0;
1171 ASSERT(ip->i_d.di_nblocks == 0);
1172 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1173 /*
1174 * di_gen will have been taken care of in xfs_iread.
1175 */
1176 ip->i_d.di_extsize = 0;
1177 ip->i_d.di_dmevmask = 0;
1178 ip->i_d.di_dmstate = 0;
1179 ip->i_d.di_flags = 0;
1180 flags = XFS_ILOG_CORE;
1181 switch (mode & S_IFMT) {
1182 case S_IFIFO:
1183 case S_IFCHR:
1184 case S_IFBLK:
1185 case S_IFSOCK:
1186 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1187 ip->i_df.if_u2.if_rdev = rdev;
1188 ip->i_df.if_flags = 0;
1189 flags |= XFS_ILOG_DEV;
1190 break;
1191 case S_IFREG:
1192 case S_IFDIR:
1193 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001194 uint di_flags = 0;
1195
1196 if ((mode & S_IFMT) == S_IFDIR) {
1197 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1198 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001199 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1200 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1201 ip->i_d.di_extsize = pip->i_d.di_extsize;
1202 }
1203 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001204 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1205 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1207 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001208 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1209 di_flags |= XFS_DIFLAG_EXTSIZE;
1210 ip->i_d.di_extsize = pip->i_d.di_extsize;
1211 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001212 }
1213 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1214 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001215 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1217 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001218 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1220 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001221 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1223 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001224 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1225 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1226 di_flags |= XFS_DIFLAG_PROJINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +10001227 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1228 xfs_inherit_nodefrag)
1229 di_flags |= XFS_DIFLAG_NODEFRAG;
Nathan Scott365ca832005-06-21 15:39:12 +10001230 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231 }
1232 /* FALLTHROUGH */
1233 case S_IFLNK:
1234 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1235 ip->i_df.if_flags = XFS_IFEXTENTS;
1236 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1237 ip->i_df.if_u1.if_extents = NULL;
1238 break;
1239 default:
1240 ASSERT(0);
1241 }
1242 /*
1243 * Attribute fork settings for new inode.
1244 */
1245 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1246 ip->i_d.di_anextents = 0;
1247
1248 /*
1249 * Log the new values stuffed into the inode.
1250 */
1251 xfs_trans_log_inode(tp, ip, flags);
1252
Christoph Hellwig0432dab2005-09-02 16:46:51 +10001253 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1255
1256 *ipp = ip;
1257 return 0;
1258}
1259
1260/*
1261 * Check to make sure that there are no blocks allocated to the
1262 * file beyond the size of the file. We don't check this for
1263 * files with fixed size extents or real time extents, but we
1264 * at least do it for regular files.
1265 */
1266#ifdef DEBUG
1267void
1268xfs_isize_check(
1269 xfs_mount_t *mp,
1270 xfs_inode_t *ip,
1271 xfs_fsize_t isize)
1272{
1273 xfs_fileoff_t map_first;
1274 int nimaps;
1275 xfs_bmbt_irec_t imaps[2];
1276
1277 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1278 return;
1279
Nathan Scottdd9f4382006-01-11 15:28:28 +11001280 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281 return;
1282
1283 nimaps = 2;
1284 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1285 /*
1286 * The filesystem could be shutting down, so bmapi may return
1287 * an error.
1288 */
1289 if (xfs_bmapi(NULL, ip, map_first,
1290 (XFS_B_TO_FSB(mp,
1291 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1292 map_first),
1293 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001294 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 return;
1296 ASSERT(nimaps == 1);
1297 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1298}
1299#endif /* DEBUG */
1300
1301/*
1302 * Calculate the last possible buffered byte in a file. This must
1303 * include data that was buffered beyond the EOF by the write code.
1304 * This also needs to deal with overflowing the xfs_fsize_t type
1305 * which can happen for sizes near the limit.
1306 *
1307 * We also need to take into account any blocks beyond the EOF. It
1308 * may be the case that they were buffered by a write which failed.
1309 * In that case the pages will still be in memory, but the inode size
1310 * will never have been updated.
1311 */
1312xfs_fsize_t
1313xfs_file_last_byte(
1314 xfs_inode_t *ip)
1315{
1316 xfs_mount_t *mp;
1317 xfs_fsize_t last_byte;
1318 xfs_fileoff_t last_block;
1319 xfs_fileoff_t size_last_block;
1320 int error;
1321
1322 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1323
1324 mp = ip->i_mount;
1325 /*
1326 * Only check for blocks beyond the EOF if the extents have
1327 * been read in. This eliminates the need for the inode lock,
1328 * and it also saves us from looking when it really isn't
1329 * necessary.
1330 */
1331 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1332 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1333 XFS_DATA_FORK);
1334 if (error) {
1335 last_block = 0;
1336 }
1337 } else {
1338 last_block = 0;
1339 }
1340 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1341 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1342
1343 last_byte = XFS_FSB_TO_B(mp, last_block);
1344 if (last_byte < 0) {
1345 return XFS_MAXIOFFSET(mp);
1346 }
1347 last_byte += (1 << mp->m_writeio_log);
1348 if (last_byte < 0) {
1349 return XFS_MAXIOFFSET(mp);
1350 }
1351 return last_byte;
1352}
1353
1354#if defined(XFS_RW_TRACE)
1355STATIC void
1356xfs_itrunc_trace(
1357 int tag,
1358 xfs_inode_t *ip,
1359 int flag,
1360 xfs_fsize_t new_size,
1361 xfs_off_t toss_start,
1362 xfs_off_t toss_finish)
1363{
1364 if (ip->i_rwtrace == NULL) {
1365 return;
1366 }
1367
1368 ktrace_enter(ip->i_rwtrace,
1369 (void*)((long)tag),
1370 (void*)ip,
1371 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1372 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1373 (void*)((long)flag),
1374 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1375 (void*)(unsigned long)(new_size & 0xffffffff),
1376 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1377 (void*)(unsigned long)(toss_start & 0xffffffff),
1378 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1379 (void*)(unsigned long)(toss_finish & 0xffffffff),
1380 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001381 (void*)(unsigned long)current_pid(),
1382 (void*)NULL,
1383 (void*)NULL,
1384 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385}
1386#else
1387#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1388#endif
1389
1390/*
1391 * Start the truncation of the file to new_size. The new size
1392 * must be smaller than the current size. This routine will
1393 * clear the buffer and page caches of file data in the removed
1394 * range, and xfs_itruncate_finish() will remove the underlying
1395 * disk blocks.
1396 *
1397 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1398 * must NOT have the inode lock held at all. This is because we're
1399 * calling into the buffer/page cache code and we can't hold the
1400 * inode lock when we do so.
1401 *
David Chinner38e22992006-03-22 12:47:15 +11001402 * We need to wait for any direct I/Os in flight to complete before we
1403 * proceed with the truncate. This is needed to prevent the extents
1404 * being read or written by the direct I/Os from being removed while the
1405 * I/O is in flight as there is no other method of synchronising
1406 * direct I/O with the truncate operation. Also, because we hold
1407 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1408 * started until the truncate completes and drops the lock. Essentially,
1409 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1410 * between direct I/Os and the truncate operation.
1411 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1413 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1414 * in the case that the caller is locking things out of order and
1415 * may not be able to call xfs_itruncate_finish() with the inode lock
1416 * held without dropping the I/O lock. If the caller must drop the
1417 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1418 * must be called again with all the same restrictions as the initial
1419 * call.
1420 */
1421void
1422xfs_itruncate_start(
1423 xfs_inode_t *ip,
1424 uint flags,
1425 xfs_fsize_t new_size)
1426{
1427 xfs_fsize_t last_byte;
1428 xfs_off_t toss_start;
1429 xfs_mount_t *mp;
1430 vnode_t *vp;
1431
1432 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1433 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1434 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1435 (flags == XFS_ITRUNC_MAYBE));
1436
1437 mp = ip->i_mount;
1438 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001439
1440 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1441
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442 /*
1443 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1444 * overlapping the region being removed. We have to use
1445 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1446 * caller may not be able to finish the truncate without
1447 * dropping the inode's I/O lock. Make sure
1448 * to catch any pages brought in by buffers overlapping
1449 * the EOF by searching out beyond the isize by our
1450 * block size. We round new_size up to a block boundary
1451 * so that we don't toss things on the same block as
1452 * new_size but before it.
1453 *
1454 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1455 * call remapf() over the same region if the file is mapped.
1456 * This frees up mapped file references to the pages in the
1457 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1458 * that we get the latest mapped changes flushed out.
1459 */
1460 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1461 toss_start = XFS_FSB_TO_B(mp, toss_start);
1462 if (toss_start < 0) {
1463 /*
1464 * The place to start tossing is beyond our maximum
1465 * file size, so there is no way that the data extended
1466 * out there.
1467 */
1468 return;
1469 }
1470 last_byte = xfs_file_last_byte(ip);
1471 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1472 last_byte);
1473 if (last_byte > toss_start) {
1474 if (flags & XFS_ITRUNC_DEFINITE) {
1475 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1476 } else {
1477 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1478 }
1479 }
1480
1481#ifdef DEBUG
1482 if (new_size == 0) {
1483 ASSERT(VN_CACHED(vp) == 0);
1484 }
1485#endif
1486}
1487
1488/*
1489 * Shrink the file to the given new_size. The new
1490 * size must be smaller than the current size.
1491 * This will free up the underlying blocks
1492 * in the removed range after a call to xfs_itruncate_start()
1493 * or xfs_atruncate_start().
1494 *
1495 * The transaction passed to this routine must have made
1496 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1497 * This routine may commit the given transaction and
1498 * start new ones, so make sure everything involved in
1499 * the transaction is tidy before calling here.
1500 * Some transaction will be returned to the caller to be
1501 * committed. The incoming transaction must already include
1502 * the inode, and both inode locks must be held exclusively.
1503 * The inode must also be "held" within the transaction. On
1504 * return the inode will be "held" within the returned transaction.
1505 * This routine does NOT require any disk space to be reserved
1506 * for it within the transaction.
1507 *
1508 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1509 * and it indicates the fork which is to be truncated. For the
1510 * attribute fork we only support truncation to size 0.
1511 *
1512 * We use the sync parameter to indicate whether or not the first
1513 * transaction we perform might have to be synchronous. For the attr fork,
1514 * it needs to be so if the unlink of the inode is not yet known to be
1515 * permanent in the log. This keeps us from freeing and reusing the
1516 * blocks of the attribute fork before the unlink of the inode becomes
1517 * permanent.
1518 *
1519 * For the data fork, we normally have to run synchronously if we're
1520 * being called out of the inactive path or we're being called
1521 * out of the create path where we're truncating an existing file.
1522 * Either way, the truncate needs to be sync so blocks don't reappear
1523 * in the file with altered data in case of a crash. wsync filesystems
1524 * can run the first case async because anything that shrinks the inode
1525 * has to run sync so by the time we're called here from inactive, the
1526 * inode size is permanently set to 0.
1527 *
1528 * Calls from the truncate path always need to be sync unless we're
1529 * in a wsync filesystem and the file has already been unlinked.
1530 *
1531 * The caller is responsible for correctly setting the sync parameter.
1532 * It gets too hard for us to guess here which path we're being called
1533 * out of just based on inode state.
1534 */
1535int
1536xfs_itruncate_finish(
1537 xfs_trans_t **tp,
1538 xfs_inode_t *ip,
1539 xfs_fsize_t new_size,
1540 int fork,
1541 int sync)
1542{
1543 xfs_fsblock_t first_block;
1544 xfs_fileoff_t first_unmap_block;
1545 xfs_fileoff_t last_block;
1546 xfs_filblks_t unmap_len=0;
1547 xfs_mount_t *mp;
1548 xfs_trans_t *ntp;
1549 int done;
1550 int committed;
1551 xfs_bmap_free_t free_list;
1552 int error;
1553
1554 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1555 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1556 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1557 ASSERT(*tp != NULL);
1558 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1559 ASSERT(ip->i_transp == *tp);
1560 ASSERT(ip->i_itemp != NULL);
1561 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1562
1563
1564 ntp = *tp;
1565 mp = (ntp)->t_mountp;
1566 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1567
1568 /*
1569 * We only support truncating the entire attribute fork.
1570 */
1571 if (fork == XFS_ATTR_FORK) {
1572 new_size = 0LL;
1573 }
1574 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1575 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1576 /*
1577 * The first thing we do is set the size to new_size permanently
1578 * on disk. This way we don't have to worry about anyone ever
1579 * being able to look at the data being freed even in the face
1580 * of a crash. What we're getting around here is the case where
1581 * we free a block, it is allocated to another file, it is written
1582 * to, and then we crash. If the new data gets written to the
1583 * file but the log buffers containing the free and reallocation
1584 * don't, then we'd end up with garbage in the blocks being freed.
1585 * As long as we make the new_size permanent before actually
1586 * freeing any blocks it doesn't matter if they get writtten to.
1587 *
1588 * The callers must signal into us whether or not the size
1589 * setting here must be synchronous. There are a few cases
1590 * where it doesn't have to be synchronous. Those cases
1591 * occur if the file is unlinked and we know the unlink is
1592 * permanent or if the blocks being truncated are guaranteed
1593 * to be beyond the inode eof (regardless of the link count)
1594 * and the eof value is permanent. Both of these cases occur
1595 * only on wsync-mounted filesystems. In those cases, we're
1596 * guaranteed that no user will ever see the data in the blocks
1597 * that are being truncated so the truncate can run async.
1598 * In the free beyond eof case, the file may wind up with
1599 * more blocks allocated to it than it needs if we crash
1600 * and that won't get fixed until the next time the file
1601 * is re-opened and closed but that's ok as that shouldn't
1602 * be too many blocks.
1603 *
1604 * However, we can't just make all wsync xactions run async
1605 * because there's one call out of the create path that needs
1606 * to run sync where it's truncating an existing file to size
1607 * 0 whose size is > 0.
1608 *
1609 * It's probably possible to come up with a test in this
1610 * routine that would correctly distinguish all the above
1611 * cases from the values of the function parameters and the
1612 * inode state but for sanity's sake, I've decided to let the
1613 * layers above just tell us. It's simpler to correctly figure
1614 * out in the layer above exactly under what conditions we
1615 * can run async and I think it's easier for others read and
1616 * follow the logic in case something has to be changed.
1617 * cscope is your friend -- rcc.
1618 *
1619 * The attribute fork is much simpler.
1620 *
1621 * For the attribute fork we allow the caller to tell us whether
1622 * the unlink of the inode that led to this call is yet permanent
1623 * in the on disk log. If it is not and we will be freeing extents
1624 * in this inode then we make the first transaction synchronous
1625 * to make sure that the unlink is permanent by the time we free
1626 * the blocks.
1627 */
1628 if (fork == XFS_DATA_FORK) {
1629 if (ip->i_d.di_nextents > 0) {
1630 ip->i_d.di_size = new_size;
1631 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1632 }
1633 } else if (sync) {
1634 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1635 if (ip->i_d.di_anextents > 0)
1636 xfs_trans_set_sync(ntp);
1637 }
1638 ASSERT(fork == XFS_DATA_FORK ||
1639 (fork == XFS_ATTR_FORK &&
1640 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1641 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1642
1643 /*
1644 * Since it is possible for space to become allocated beyond
1645 * the end of the file (in a crash where the space is allocated
1646 * but the inode size is not yet updated), simply remove any
1647 * blocks which show up between the new EOF and the maximum
1648 * possible file size. If the first block to be removed is
1649 * beyond the maximum file size (ie it is the same as last_block),
1650 * then there is nothing to do.
1651 */
1652 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1653 ASSERT(first_unmap_block <= last_block);
1654 done = 0;
1655 if (last_block == first_unmap_block) {
1656 done = 1;
1657 } else {
1658 unmap_len = last_block - first_unmap_block + 1;
1659 }
1660 while (!done) {
1661 /*
1662 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1663 * will tell us whether it freed the entire range or
1664 * not. If this is a synchronous mount (wsync),
1665 * then we can tell bunmapi to keep all the
1666 * transactions asynchronous since the unlink
1667 * transaction that made this inode inactive has
1668 * already hit the disk. There's no danger of
1669 * the freed blocks being reused, there being a
1670 * crash, and the reused blocks suddenly reappearing
1671 * in this file with garbage in them once recovery
1672 * runs.
1673 */
1674 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001675 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1676 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677 XFS_BMAPI_AFLAG(fork) |
1678 (sync ? 0 : XFS_BMAPI_ASYNC),
1679 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001680 &first_block, &free_list,
1681 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682 if (error) {
1683 /*
1684 * If the bunmapi call encounters an error,
1685 * return to the caller where the transaction
1686 * can be properly aborted. We just need to
1687 * make sure we're not holding any resources
1688 * that we were not when we came in.
1689 */
1690 xfs_bmap_cancel(&free_list);
1691 return error;
1692 }
1693
1694 /*
1695 * Duplicate the transaction that has the permanent
1696 * reservation and commit the old transaction.
1697 */
1698 error = xfs_bmap_finish(tp, &free_list, first_block,
1699 &committed);
1700 ntp = *tp;
1701 if (error) {
1702 /*
1703 * If the bmap finish call encounters an error,
1704 * return to the caller where the transaction
1705 * can be properly aborted. We just need to
1706 * make sure we're not holding any resources
1707 * that we were not when we came in.
1708 *
1709 * Aborting from this point might lose some
1710 * blocks in the file system, but oh well.
1711 */
1712 xfs_bmap_cancel(&free_list);
1713 if (committed) {
1714 /*
1715 * If the passed in transaction committed
1716 * in xfs_bmap_finish(), then we want to
1717 * add the inode to this one before returning.
1718 * This keeps things simple for the higher
1719 * level code, because it always knows that
1720 * the inode is locked and held in the
1721 * transaction that returns to it whether
1722 * errors occur or not. We don't mark the
1723 * inode dirty so that this transaction can
1724 * be easily aborted if possible.
1725 */
1726 xfs_trans_ijoin(ntp, ip,
1727 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1728 xfs_trans_ihold(ntp, ip);
1729 }
1730 return error;
1731 }
1732
1733 if (committed) {
1734 /*
1735 * The first xact was committed,
1736 * so add the inode to the new one.
1737 * Mark it dirty so it will be logged
1738 * and moved forward in the log as
1739 * part of every commit.
1740 */
1741 xfs_trans_ijoin(ntp, ip,
1742 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1743 xfs_trans_ihold(ntp, ip);
1744 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1745 }
1746 ntp = xfs_trans_dup(ntp);
1747 (void) xfs_trans_commit(*tp, 0, NULL);
1748 *tp = ntp;
1749 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1750 XFS_TRANS_PERM_LOG_RES,
1751 XFS_ITRUNCATE_LOG_COUNT);
1752 /*
1753 * Add the inode being truncated to the next chained
1754 * transaction.
1755 */
1756 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1757 xfs_trans_ihold(ntp, ip);
1758 if (error)
1759 return (error);
1760 }
1761 /*
1762 * Only update the size in the case of the data fork, but
1763 * always re-log the inode so that our permanent transaction
1764 * can keep on rolling it forward in the log.
1765 */
1766 if (fork == XFS_DATA_FORK) {
1767 xfs_isize_check(mp, ip, new_size);
1768 ip->i_d.di_size = new_size;
1769 }
1770 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1771 ASSERT((new_size != 0) ||
1772 (fork == XFS_ATTR_FORK) ||
1773 (ip->i_delayed_blks == 0));
1774 ASSERT((new_size != 0) ||
1775 (fork == XFS_ATTR_FORK) ||
1776 (ip->i_d.di_nextents == 0));
1777 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1778 return 0;
1779}
1780
1781
1782/*
1783 * xfs_igrow_start
1784 *
1785 * Do the first part of growing a file: zero any data in the last
1786 * block that is beyond the old EOF. We need to do this before
1787 * the inode is joined to the transaction to modify the i_size.
1788 * That way we can drop the inode lock and call into the buffer
1789 * cache to get the buffer mapping the EOF.
1790 */
1791int
1792xfs_igrow_start(
1793 xfs_inode_t *ip,
1794 xfs_fsize_t new_size,
1795 cred_t *credp)
1796{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 int error;
1798
1799 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1800 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1801 ASSERT(new_size > ip->i_d.di_size);
1802
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803 /*
1804 * Zero any pages that may have been created by
1805 * xfs_write_file() beyond the end of the file
1806 * and any blocks between the old and new file sizes.
1807 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001808 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1809 ip->i_d.di_size, new_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 return error;
1811}
1812
1813/*
1814 * xfs_igrow_finish
1815 *
1816 * This routine is called to extend the size of a file.
1817 * The inode must have both the iolock and the ilock locked
1818 * for update and it must be a part of the current transaction.
1819 * The xfs_igrow_start() function must have been called previously.
1820 * If the change_flag is not zero, the inode change timestamp will
1821 * be updated.
1822 */
1823void
1824xfs_igrow_finish(
1825 xfs_trans_t *tp,
1826 xfs_inode_t *ip,
1827 xfs_fsize_t new_size,
1828 int change_flag)
1829{
1830 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1831 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1832 ASSERT(ip->i_transp == tp);
1833 ASSERT(new_size > ip->i_d.di_size);
1834
1835 /*
1836 * Update the file size. Update the inode change timestamp
1837 * if change_flag set.
1838 */
1839 ip->i_d.di_size = new_size;
1840 if (change_flag)
1841 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1842 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1843
1844}
1845
1846
1847/*
1848 * This is called when the inode's link count goes to 0.
1849 * We place the on-disk inode on a list in the AGI. It
1850 * will be pulled from this list when the inode is freed.
1851 */
1852int
1853xfs_iunlink(
1854 xfs_trans_t *tp,
1855 xfs_inode_t *ip)
1856{
1857 xfs_mount_t *mp;
1858 xfs_agi_t *agi;
1859 xfs_dinode_t *dip;
1860 xfs_buf_t *agibp;
1861 xfs_buf_t *ibp;
1862 xfs_agnumber_t agno;
1863 xfs_daddr_t agdaddr;
1864 xfs_agino_t agino;
1865 short bucket_index;
1866 int offset;
1867 int error;
1868 int agi_ok;
1869
1870 ASSERT(ip->i_d.di_nlink == 0);
1871 ASSERT(ip->i_d.di_mode != 0);
1872 ASSERT(ip->i_transp == tp);
1873
1874 mp = tp->t_mountp;
1875
1876 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1877 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1878
1879 /*
1880 * Get the agi buffer first. It ensures lock ordering
1881 * on the list.
1882 */
1883 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1884 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1885 if (error) {
1886 return error;
1887 }
1888 /*
1889 * Validate the magic number of the agi block.
1890 */
1891 agi = XFS_BUF_TO_AGI(agibp);
1892 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001893 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1894 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1896 XFS_RANDOM_IUNLINK))) {
1897 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1898 xfs_trans_brelse(tp, agibp);
1899 return XFS_ERROR(EFSCORRUPTED);
1900 }
1901 /*
1902 * Get the index into the agi hash table for the
1903 * list this inode will go on.
1904 */
1905 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1906 ASSERT(agino != 0);
1907 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1908 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001909 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001910
Christoph Hellwig16259e72005-11-02 15:11:25 +11001911 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 /*
1913 * There is already another inode in the bucket we need
1914 * to add ourselves to. Add us at the front of the list.
1915 * Here we put the head pointer into our next pointer,
1916 * and then we fall through to point the head at us.
1917 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001918 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 if (error) {
1920 return error;
1921 }
1922 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1923 ASSERT(dip->di_next_unlinked);
1924 /* both on-disk, don't endian flip twice */
1925 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1926 offset = ip->i_boffset +
1927 offsetof(xfs_dinode_t, di_next_unlinked);
1928 xfs_trans_inode_buf(tp, ibp);
1929 xfs_trans_log_buf(tp, ibp, offset,
1930 (offset + sizeof(xfs_agino_t) - 1));
1931 xfs_inobp_check(mp, ibp);
1932 }
1933
1934 /*
1935 * Point the bucket head pointer at the inode being inserted.
1936 */
1937 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001938 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939 offset = offsetof(xfs_agi_t, agi_unlinked) +
1940 (sizeof(xfs_agino_t) * bucket_index);
1941 xfs_trans_log_buf(tp, agibp, offset,
1942 (offset + sizeof(xfs_agino_t) - 1));
1943 return 0;
1944}
1945
1946/*
1947 * Pull the on-disk inode from the AGI unlinked list.
1948 */
1949STATIC int
1950xfs_iunlink_remove(
1951 xfs_trans_t *tp,
1952 xfs_inode_t *ip)
1953{
1954 xfs_ino_t next_ino;
1955 xfs_mount_t *mp;
1956 xfs_agi_t *agi;
1957 xfs_dinode_t *dip;
1958 xfs_buf_t *agibp;
1959 xfs_buf_t *ibp;
1960 xfs_agnumber_t agno;
1961 xfs_daddr_t agdaddr;
1962 xfs_agino_t agino;
1963 xfs_agino_t next_agino;
1964 xfs_buf_t *last_ibp;
1965 xfs_dinode_t *last_dip;
1966 short bucket_index;
1967 int offset, last_offset;
1968 int error;
1969 int agi_ok;
1970
1971 /*
1972 * First pull the on-disk inode from the AGI unlinked list.
1973 */
1974 mp = tp->t_mountp;
1975
1976 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1977 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1978
1979 /*
1980 * Get the agi buffer first. It ensures lock ordering
1981 * on the list.
1982 */
1983 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1984 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1985 if (error) {
1986 cmn_err(CE_WARN,
1987 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1988 error, mp->m_fsname);
1989 return error;
1990 }
1991 /*
1992 * Validate the magic number of the agi block.
1993 */
1994 agi = XFS_BUF_TO_AGI(agibp);
1995 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001996 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1997 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001998 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1999 XFS_RANDOM_IUNLINK_REMOVE))) {
2000 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2001 mp, agi);
2002 xfs_trans_brelse(tp, agibp);
2003 cmn_err(CE_WARN,
2004 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2005 mp->m_fsname);
2006 return XFS_ERROR(EFSCORRUPTED);
2007 }
2008 /*
2009 * Get the index into the agi hash table for the
2010 * list this inode will go on.
2011 */
2012 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2013 ASSERT(agino != 0);
2014 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002015 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 ASSERT(agi->agi_unlinked[bucket_index]);
2017
Christoph Hellwig16259e72005-11-02 15:11:25 +11002018 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 /*
2020 * We're at the head of the list. Get the inode's
2021 * on-disk buffer to see if there is anyone after us
2022 * on the list. Only modify our next pointer if it
2023 * is not already NULLAGINO. This saves us the overhead
2024 * of dealing with the buffer when there is no need to
2025 * change it.
2026 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002027 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028 if (error) {
2029 cmn_err(CE_WARN,
2030 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2031 error, mp->m_fsname);
2032 return error;
2033 }
2034 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2035 ASSERT(next_agino != 0);
2036 if (next_agino != NULLAGINO) {
2037 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2038 offset = ip->i_boffset +
2039 offsetof(xfs_dinode_t, di_next_unlinked);
2040 xfs_trans_inode_buf(tp, ibp);
2041 xfs_trans_log_buf(tp, ibp, offset,
2042 (offset + sizeof(xfs_agino_t) - 1));
2043 xfs_inobp_check(mp, ibp);
2044 } else {
2045 xfs_trans_brelse(tp, ibp);
2046 }
2047 /*
2048 * Point the bucket head pointer at the next inode.
2049 */
2050 ASSERT(next_agino != 0);
2051 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002052 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002053 offset = offsetof(xfs_agi_t, agi_unlinked) +
2054 (sizeof(xfs_agino_t) * bucket_index);
2055 xfs_trans_log_buf(tp, agibp, offset,
2056 (offset + sizeof(xfs_agino_t) - 1));
2057 } else {
2058 /*
2059 * We need to search the list for the inode being freed.
2060 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002061 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002062 last_ibp = NULL;
2063 while (next_agino != agino) {
2064 /*
2065 * If the last inode wasn't the one pointing to
2066 * us, then release its buffer since we're not
2067 * going to do anything with it.
2068 */
2069 if (last_ibp != NULL) {
2070 xfs_trans_brelse(tp, last_ibp);
2071 }
2072 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2073 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2074 &last_ibp, &last_offset);
2075 if (error) {
2076 cmn_err(CE_WARN,
2077 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2078 error, mp->m_fsname);
2079 return error;
2080 }
2081 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2082 ASSERT(next_agino != NULLAGINO);
2083 ASSERT(next_agino != 0);
2084 }
2085 /*
2086 * Now last_ibp points to the buffer previous to us on
2087 * the unlinked list. Pull us from the list.
2088 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002089 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 if (error) {
2091 cmn_err(CE_WARN,
2092 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2093 error, mp->m_fsname);
2094 return error;
2095 }
2096 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2097 ASSERT(next_agino != 0);
2098 ASSERT(next_agino != agino);
2099 if (next_agino != NULLAGINO) {
2100 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2101 offset = ip->i_boffset +
2102 offsetof(xfs_dinode_t, di_next_unlinked);
2103 xfs_trans_inode_buf(tp, ibp);
2104 xfs_trans_log_buf(tp, ibp, offset,
2105 (offset + sizeof(xfs_agino_t) - 1));
2106 xfs_inobp_check(mp, ibp);
2107 } else {
2108 xfs_trans_brelse(tp, ibp);
2109 }
2110 /*
2111 * Point the previous inode on the list to the next inode.
2112 */
2113 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2114 ASSERT(next_agino != 0);
2115 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2116 xfs_trans_inode_buf(tp, last_ibp);
2117 xfs_trans_log_buf(tp, last_ibp, offset,
2118 (offset + sizeof(xfs_agino_t) - 1));
2119 xfs_inobp_check(mp, last_ibp);
2120 }
2121 return 0;
2122}
2123
2124static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2125{
2126 return (((ip->i_itemp == NULL) ||
2127 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2128 (ip->i_update_core == 0));
2129}
2130
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002131STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132xfs_ifree_cluster(
2133 xfs_inode_t *free_ip,
2134 xfs_trans_t *tp,
2135 xfs_ino_t inum)
2136{
2137 xfs_mount_t *mp = free_ip->i_mount;
2138 int blks_per_cluster;
2139 int nbufs;
2140 int ninodes;
2141 int i, j, found, pre_flushed;
2142 xfs_daddr_t blkno;
2143 xfs_buf_t *bp;
2144 xfs_ihash_t *ih;
2145 xfs_inode_t *ip, **ip_found;
2146 xfs_inode_log_item_t *iip;
2147 xfs_log_item_t *lip;
2148 SPLDECL(s);
2149
2150 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2151 blks_per_cluster = 1;
2152 ninodes = mp->m_sb.sb_inopblock;
2153 nbufs = XFS_IALLOC_BLOCKS(mp);
2154 } else {
2155 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2156 mp->m_sb.sb_blocksize;
2157 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2158 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2159 }
2160
2161 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2162
2163 for (j = 0; j < nbufs; j++, inum += ninodes) {
2164 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2165 XFS_INO_TO_AGBNO(mp, inum));
2166
2167
2168 /*
2169 * Look for each inode in memory and attempt to lock it,
2170 * we can be racing with flush and tail pushing here.
2171 * any inode we get the locks on, add to an array of
2172 * inode items to process later.
2173 *
2174 * The get the buffer lock, we could beat a flush
2175 * or tail pushing thread to the lock here, in which
2176 * case they will go looking for the inode buffer
2177 * and fail, we need some other form of interlock
2178 * here.
2179 */
2180 found = 0;
2181 for (i = 0; i < ninodes; i++) {
2182 ih = XFS_IHASH(mp, inum + i);
2183 read_lock(&ih->ih_lock);
2184 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2185 if (ip->i_ino == inum + i)
2186 break;
2187 }
2188
2189 /* Inode not in memory or we found it already,
2190 * nothing to do
2191 */
2192 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2193 read_unlock(&ih->ih_lock);
2194 continue;
2195 }
2196
2197 if (xfs_inode_clean(ip)) {
2198 read_unlock(&ih->ih_lock);
2199 continue;
2200 }
2201
2202 /* If we can get the locks then add it to the
2203 * list, otherwise by the time we get the bp lock
2204 * below it will already be attached to the
2205 * inode buffer.
2206 */
2207
2208 /* This inode will already be locked - by us, lets
2209 * keep it that way.
2210 */
2211
2212 if (ip == free_ip) {
2213 if (xfs_iflock_nowait(ip)) {
2214 ip->i_flags |= XFS_ISTALE;
2215
2216 if (xfs_inode_clean(ip)) {
2217 xfs_ifunlock(ip);
2218 } else {
2219 ip_found[found++] = ip;
2220 }
2221 }
2222 read_unlock(&ih->ih_lock);
2223 continue;
2224 }
2225
2226 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2227 if (xfs_iflock_nowait(ip)) {
2228 ip->i_flags |= XFS_ISTALE;
2229
2230 if (xfs_inode_clean(ip)) {
2231 xfs_ifunlock(ip);
2232 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2233 } else {
2234 ip_found[found++] = ip;
2235 }
2236 } else {
2237 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2238 }
2239 }
2240
2241 read_unlock(&ih->ih_lock);
2242 }
2243
2244 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2245 mp->m_bsize * blks_per_cluster,
2246 XFS_BUF_LOCK);
2247
2248 pre_flushed = 0;
2249 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2250 while (lip) {
2251 if (lip->li_type == XFS_LI_INODE) {
2252 iip = (xfs_inode_log_item_t *)lip;
2253 ASSERT(iip->ili_logged == 1);
2254 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2255 AIL_LOCK(mp,s);
2256 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2257 AIL_UNLOCK(mp, s);
2258 iip->ili_inode->i_flags |= XFS_ISTALE;
2259 pre_flushed++;
2260 }
2261 lip = lip->li_bio_list;
2262 }
2263
2264 for (i = 0; i < found; i++) {
2265 ip = ip_found[i];
2266 iip = ip->i_itemp;
2267
2268 if (!iip) {
2269 ip->i_update_core = 0;
2270 xfs_ifunlock(ip);
2271 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2272 continue;
2273 }
2274
2275 iip->ili_last_fields = iip->ili_format.ilf_fields;
2276 iip->ili_format.ilf_fields = 0;
2277 iip->ili_logged = 1;
2278 AIL_LOCK(mp,s);
2279 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2280 AIL_UNLOCK(mp, s);
2281
2282 xfs_buf_attach_iodone(bp,
2283 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2284 xfs_istale_done, (xfs_log_item_t *)iip);
2285 if (ip != free_ip) {
2286 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2287 }
2288 }
2289
2290 if (found || pre_flushed)
2291 xfs_trans_stale_inode_buf(tp, bp);
2292 xfs_trans_binval(tp, bp);
2293 }
2294
2295 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2296}
2297
2298/*
2299 * This is called to return an inode to the inode free list.
2300 * The inode should already be truncated to 0 length and have
2301 * no pages associated with it. This routine also assumes that
2302 * the inode is already a part of the transaction.
2303 *
2304 * The on-disk copy of the inode will have been added to the list
2305 * of unlinked inodes in the AGI. We need to remove the inode from
2306 * that list atomically with respect to freeing it here.
2307 */
2308int
2309xfs_ifree(
2310 xfs_trans_t *tp,
2311 xfs_inode_t *ip,
2312 xfs_bmap_free_t *flist)
2313{
2314 int error;
2315 int delete;
2316 xfs_ino_t first_ino;
2317
2318 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2319 ASSERT(ip->i_transp == tp);
2320 ASSERT(ip->i_d.di_nlink == 0);
2321 ASSERT(ip->i_d.di_nextents == 0);
2322 ASSERT(ip->i_d.di_anextents == 0);
2323 ASSERT((ip->i_d.di_size == 0) ||
2324 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2325 ASSERT(ip->i_d.di_nblocks == 0);
2326
2327 /*
2328 * Pull the on-disk inode from the AGI unlinked list.
2329 */
2330 error = xfs_iunlink_remove(tp, ip);
2331 if (error != 0) {
2332 return error;
2333 }
2334
2335 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2336 if (error != 0) {
2337 return error;
2338 }
2339 ip->i_d.di_mode = 0; /* mark incore inode as free */
2340 ip->i_d.di_flags = 0;
2341 ip->i_d.di_dmevmask = 0;
2342 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2343 ip->i_df.if_ext_max =
2344 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2345 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2346 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2347 /*
2348 * Bump the generation count so no one will be confused
2349 * by reincarnations of this inode.
2350 */
2351 ip->i_d.di_gen++;
2352 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2353
2354 if (delete) {
2355 xfs_ifree_cluster(ip, tp, first_ino);
2356 }
2357
2358 return 0;
2359}
2360
2361/*
2362 * Reallocate the space for if_broot based on the number of records
2363 * being added or deleted as indicated in rec_diff. Move the records
2364 * and pointers in if_broot to fit the new size. When shrinking this
2365 * will eliminate holes between the records and pointers created by
2366 * the caller. When growing this will create holes to be filled in
2367 * by the caller.
2368 *
2369 * The caller must not request to add more records than would fit in
2370 * the on-disk inode root. If the if_broot is currently NULL, then
2371 * if we adding records one will be allocated. The caller must also
2372 * not request that the number of records go below zero, although
2373 * it can go to zero.
2374 *
2375 * ip -- the inode whose if_broot area is changing
2376 * ext_diff -- the change in the number of records, positive or negative,
2377 * requested for the if_broot array.
2378 */
2379void
2380xfs_iroot_realloc(
2381 xfs_inode_t *ip,
2382 int rec_diff,
2383 int whichfork)
2384{
2385 int cur_max;
2386 xfs_ifork_t *ifp;
2387 xfs_bmbt_block_t *new_broot;
2388 int new_max;
2389 size_t new_size;
2390 char *np;
2391 char *op;
2392
2393 /*
2394 * Handle the degenerate case quietly.
2395 */
2396 if (rec_diff == 0) {
2397 return;
2398 }
2399
2400 ifp = XFS_IFORK_PTR(ip, whichfork);
2401 if (rec_diff > 0) {
2402 /*
2403 * If there wasn't any memory allocated before, just
2404 * allocate it now and get out.
2405 */
2406 if (ifp->if_broot_bytes == 0) {
2407 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2408 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2409 KM_SLEEP);
2410 ifp->if_broot_bytes = (int)new_size;
2411 return;
2412 }
2413
2414 /*
2415 * If there is already an existing if_broot, then we need
2416 * to realloc() it and shift the pointers to their new
2417 * location. The records don't change location because
2418 * they are kept butted up against the btree block header.
2419 */
2420 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2421 new_max = cur_max + rec_diff;
2422 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2423 ifp->if_broot = (xfs_bmbt_block_t *)
2424 kmem_realloc(ifp->if_broot,
2425 new_size,
2426 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2427 KM_SLEEP);
2428 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2429 ifp->if_broot_bytes);
2430 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2431 (int)new_size);
2432 ifp->if_broot_bytes = (int)new_size;
2433 ASSERT(ifp->if_broot_bytes <=
2434 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2435 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2436 return;
2437 }
2438
2439 /*
2440 * rec_diff is less than 0. In this case, we are shrinking the
2441 * if_broot buffer. It must already exist. If we go to zero
2442 * records, just get rid of the root and clear the status bit.
2443 */
2444 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2445 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2446 new_max = cur_max + rec_diff;
2447 ASSERT(new_max >= 0);
2448 if (new_max > 0)
2449 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2450 else
2451 new_size = 0;
2452 if (new_size > 0) {
2453 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2454 /*
2455 * First copy over the btree block header.
2456 */
2457 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2458 } else {
2459 new_broot = NULL;
2460 ifp->if_flags &= ~XFS_IFBROOT;
2461 }
2462
2463 /*
2464 * Only copy the records and pointers if there are any.
2465 */
2466 if (new_max > 0) {
2467 /*
2468 * First copy the records.
2469 */
2470 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2471 ifp->if_broot_bytes);
2472 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2473 (int)new_size);
2474 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2475
2476 /*
2477 * Then copy the pointers.
2478 */
2479 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2480 ifp->if_broot_bytes);
2481 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2482 (int)new_size);
2483 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2484 }
2485 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2486 ifp->if_broot = new_broot;
2487 ifp->if_broot_bytes = (int)new_size;
2488 ASSERT(ifp->if_broot_bytes <=
2489 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2490 return;
2491}
2492
2493
2494/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002495 * This is called when the amount of space needed for if_data
2496 * is increased or decreased. The change in size is indicated by
2497 * the number of bytes that need to be added or deleted in the
2498 * byte_diff parameter.
2499 *
2500 * If the amount of space needed has decreased below the size of the
2501 * inline buffer, then switch to using the inline buffer. Otherwise,
2502 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2503 * to what is needed.
2504 *
2505 * ip -- the inode whose if_data area is changing
2506 * byte_diff -- the change in the number of bytes, positive or negative,
2507 * requested for the if_data array.
2508 */
2509void
2510xfs_idata_realloc(
2511 xfs_inode_t *ip,
2512 int byte_diff,
2513 int whichfork)
2514{
2515 xfs_ifork_t *ifp;
2516 int new_size;
2517 int real_size;
2518
2519 if (byte_diff == 0) {
2520 return;
2521 }
2522
2523 ifp = XFS_IFORK_PTR(ip, whichfork);
2524 new_size = (int)ifp->if_bytes + byte_diff;
2525 ASSERT(new_size >= 0);
2526
2527 if (new_size == 0) {
2528 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2529 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2530 }
2531 ifp->if_u1.if_data = NULL;
2532 real_size = 0;
2533 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2534 /*
2535 * If the valid extents/data can fit in if_inline_ext/data,
2536 * copy them from the malloc'd vector and free it.
2537 */
2538 if (ifp->if_u1.if_data == NULL) {
2539 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2540 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2541 ASSERT(ifp->if_real_bytes != 0);
2542 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2543 new_size);
2544 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2545 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2546 }
2547 real_size = 0;
2548 } else {
2549 /*
2550 * Stuck with malloc/realloc.
2551 * For inline data, the underlying buffer must be
2552 * a multiple of 4 bytes in size so that it can be
2553 * logged and stay on word boundaries. We enforce
2554 * that here.
2555 */
2556 real_size = roundup(new_size, 4);
2557 if (ifp->if_u1.if_data == NULL) {
2558 ASSERT(ifp->if_real_bytes == 0);
2559 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2560 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2561 /*
2562 * Only do the realloc if the underlying size
2563 * is really changing.
2564 */
2565 if (ifp->if_real_bytes != real_size) {
2566 ifp->if_u1.if_data =
2567 kmem_realloc(ifp->if_u1.if_data,
2568 real_size,
2569 ifp->if_real_bytes,
2570 KM_SLEEP);
2571 }
2572 } else {
2573 ASSERT(ifp->if_real_bytes == 0);
2574 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2575 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2576 ifp->if_bytes);
2577 }
2578 }
2579 ifp->if_real_bytes = real_size;
2580 ifp->if_bytes = new_size;
2581 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2582}
2583
2584
2585
2586
2587/*
2588 * Map inode to disk block and offset.
2589 *
2590 * mp -- the mount point structure for the current file system
2591 * tp -- the current transaction
2592 * ino -- the inode number of the inode to be located
2593 * imap -- this structure is filled in with the information necessary
2594 * to retrieve the given inode from disk
2595 * flags -- flags to pass to xfs_dilocate indicating whether or not
2596 * lookups in the inode btree were OK or not
2597 */
2598int
2599xfs_imap(
2600 xfs_mount_t *mp,
2601 xfs_trans_t *tp,
2602 xfs_ino_t ino,
2603 xfs_imap_t *imap,
2604 uint flags)
2605{
2606 xfs_fsblock_t fsbno;
2607 int len;
2608 int off;
2609 int error;
2610
2611 fsbno = imap->im_blkno ?
2612 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2613 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2614 if (error != 0) {
2615 return error;
2616 }
2617 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2618 imap->im_len = XFS_FSB_TO_BB(mp, len);
2619 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2620 imap->im_ioffset = (ushort)off;
2621 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2622 return 0;
2623}
2624
2625void
2626xfs_idestroy_fork(
2627 xfs_inode_t *ip,
2628 int whichfork)
2629{
2630 xfs_ifork_t *ifp;
2631
2632 ifp = XFS_IFORK_PTR(ip, whichfork);
2633 if (ifp->if_broot != NULL) {
2634 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2635 ifp->if_broot = NULL;
2636 }
2637
2638 /*
2639 * If the format is local, then we can't have an extents
2640 * array so just look for an inline data array. If we're
2641 * not local then we may or may not have an extents list,
2642 * so check and free it up if we do.
2643 */
2644 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2645 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2646 (ifp->if_u1.if_data != NULL)) {
2647 ASSERT(ifp->if_real_bytes != 0);
2648 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2649 ifp->if_u1.if_data = NULL;
2650 ifp->if_real_bytes = 0;
2651 }
2652 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002653 ((ifp->if_flags & XFS_IFEXTIREC) ||
2654 ((ifp->if_u1.if_extents != NULL) &&
2655 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002656 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002657 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658 }
2659 ASSERT(ifp->if_u1.if_extents == NULL ||
2660 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2661 ASSERT(ifp->if_real_bytes == 0);
2662 if (whichfork == XFS_ATTR_FORK) {
2663 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2664 ip->i_afp = NULL;
2665 }
2666}
2667
2668/*
2669 * This is called free all the memory associated with an inode.
2670 * It must free the inode itself and any buffers allocated for
2671 * if_extents/if_data and if_broot. It must also free the lock
2672 * associated with the inode.
2673 */
2674void
2675xfs_idestroy(
2676 xfs_inode_t *ip)
2677{
2678
2679 switch (ip->i_d.di_mode & S_IFMT) {
2680 case S_IFREG:
2681 case S_IFDIR:
2682 case S_IFLNK:
2683 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2684 break;
2685 }
2686 if (ip->i_afp)
2687 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2688 mrfree(&ip->i_lock);
2689 mrfree(&ip->i_iolock);
2690 freesema(&ip->i_flock);
2691#ifdef XFS_BMAP_TRACE
2692 ktrace_free(ip->i_xtrace);
2693#endif
2694#ifdef XFS_BMBT_TRACE
2695 ktrace_free(ip->i_btrace);
2696#endif
2697#ifdef XFS_RW_TRACE
2698 ktrace_free(ip->i_rwtrace);
2699#endif
2700#ifdef XFS_ILOCK_TRACE
2701 ktrace_free(ip->i_lock_trace);
2702#endif
2703#ifdef XFS_DIR2_TRACE
2704 ktrace_free(ip->i_dir_trace);
2705#endif
2706 if (ip->i_itemp) {
2707 /* XXXdpd should be able to assert this but shutdown
2708 * is leaving the AIL behind. */
2709 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2710 XFS_FORCED_SHUTDOWN(ip->i_mount));
2711 xfs_inode_item_destroy(ip);
2712 }
2713 kmem_zone_free(xfs_inode_zone, ip);
2714}
2715
2716
2717/*
2718 * Increment the pin count of the given buffer.
2719 * This value is protected by ipinlock spinlock in the mount structure.
2720 */
2721void
2722xfs_ipin(
2723 xfs_inode_t *ip)
2724{
2725 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2726
2727 atomic_inc(&ip->i_pincount);
2728}
2729
2730/*
2731 * Decrement the pin count of the given inode, and wake up
2732 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002733 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734 */
2735void
2736xfs_iunpin(
2737 xfs_inode_t *ip)
2738{
2739 ASSERT(atomic_read(&ip->i_pincount) > 0);
2740
2741 if (atomic_dec_and_test(&ip->i_pincount)) {
David Chinner58829e42006-04-11 15:11:20 +10002742 /*
2743 * If the inode is currently being reclaimed, the
2744 * linux inode _and_ the xfs vnode may have been
2745 * freed so we cannot reference either of them safely.
2746 * Hence we should not try to do anything to them
2747 * if the xfs inode is currently in the reclaim
2748 * path.
2749 *
2750 * However, we still need to issue the unpin wakeup
2751 * call as the inode reclaim may be blocked waiting for
2752 * the inode to become unpinned.
2753 */
2754 if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
2755 vnode_t *vp = XFS_ITOV_NULL(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756
David Chinner58829e42006-04-11 15:11:20 +10002757 /* make sync come back and flush this inode */
2758 if (vp) {
2759 struct inode *inode = vn_to_inode(vp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760
David Chinner71425082006-06-09 14:55:52 +10002761 if (!(inode->i_state &
2762 (I_NEW|I_FREEING|I_CLEAR)))
David Chinner58829e42006-04-11 15:11:20 +10002763 mark_inode_dirty_sync(inode);
2764 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766 wake_up(&ip->i_ipin_wait);
2767 }
2768}
2769
2770/*
2771 * This is called to wait for the given inode to be unpinned.
2772 * It will sleep until this happens. The caller must have the
2773 * inode locked in at least shared mode so that the buffer cannot
2774 * be subsequently pinned once someone is waiting for it to be
2775 * unpinned.
2776 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002777STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002778xfs_iunpin_wait(
2779 xfs_inode_t *ip)
2780{
2781 xfs_inode_log_item_t *iip;
2782 xfs_lsn_t lsn;
2783
2784 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2785
2786 if (atomic_read(&ip->i_pincount) == 0) {
2787 return;
2788 }
2789
2790 iip = ip->i_itemp;
2791 if (iip && iip->ili_last_lsn) {
2792 lsn = iip->ili_last_lsn;
2793 } else {
2794 lsn = (xfs_lsn_t)0;
2795 }
2796
2797 /*
2798 * Give the log a push so we don't wait here too long.
2799 */
2800 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2801
2802 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2803}
2804
2805
2806/*
2807 * xfs_iextents_copy()
2808 *
2809 * This is called to copy the REAL extents (as opposed to the delayed
2810 * allocation extents) from the inode into the given buffer. It
2811 * returns the number of bytes copied into the buffer.
2812 *
2813 * If there are no delayed allocation extents, then we can just
2814 * memcpy() the extents into the buffer. Otherwise, we need to
2815 * examine each extent in turn and skip those which are delayed.
2816 */
2817int
2818xfs_iextents_copy(
2819 xfs_inode_t *ip,
2820 xfs_bmbt_rec_t *buffer,
2821 int whichfork)
2822{
2823 int copied;
2824 xfs_bmbt_rec_t *dest_ep;
2825 xfs_bmbt_rec_t *ep;
2826#ifdef XFS_BMAP_TRACE
2827 static char fname[] = "xfs_iextents_copy";
2828#endif
2829 int i;
2830 xfs_ifork_t *ifp;
2831 int nrecs;
2832 xfs_fsblock_t start_block;
2833
2834 ifp = XFS_IFORK_PTR(ip, whichfork);
2835 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2836 ASSERT(ifp->if_bytes > 0);
2837
2838 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2839 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2840 ASSERT(nrecs > 0);
2841
2842 /*
2843 * There are some delayed allocation extents in the
2844 * inode, so copy the extents one at a time and skip
2845 * the delayed ones. There must be at least one
2846 * non-delayed extent.
2847 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002848 dest_ep = buffer;
2849 copied = 0;
2850 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002851 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852 start_block = xfs_bmbt_get_startblock(ep);
2853 if (ISNULLSTARTBLOCK(start_block)) {
2854 /*
2855 * It's a delayed allocation extent, so skip it.
2856 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002857 continue;
2858 }
2859
2860 /* Translate to on disk format */
2861 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2862 (__uint64_t*)&dest_ep->l0);
2863 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2864 (__uint64_t*)&dest_ep->l1);
2865 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866 copied++;
2867 }
2868 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002869 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002870
2871 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2872}
2873
2874/*
2875 * Each of the following cases stores data into the same region
2876 * of the on-disk inode, so only one of them can be valid at
2877 * any given time. While it is possible to have conflicting formats
2878 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2879 * in EXTENTS format, this can only happen when the fork has
2880 * changed formats after being modified but before being flushed.
2881 * In these cases, the format always takes precedence, because the
2882 * format indicates the current state of the fork.
2883 */
2884/*ARGSUSED*/
2885STATIC int
2886xfs_iflush_fork(
2887 xfs_inode_t *ip,
2888 xfs_dinode_t *dip,
2889 xfs_inode_log_item_t *iip,
2890 int whichfork,
2891 xfs_buf_t *bp)
2892{
2893 char *cp;
2894 xfs_ifork_t *ifp;
2895 xfs_mount_t *mp;
2896#ifdef XFS_TRANS_DEBUG
2897 int first;
2898#endif
2899 static const short brootflag[2] =
2900 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2901 static const short dataflag[2] =
2902 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2903 static const short extflag[2] =
2904 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2905
2906 if (iip == NULL)
2907 return 0;
2908 ifp = XFS_IFORK_PTR(ip, whichfork);
2909 /*
2910 * This can happen if we gave up in iformat in an error path,
2911 * for the attribute fork.
2912 */
2913 if (ifp == NULL) {
2914 ASSERT(whichfork == XFS_ATTR_FORK);
2915 return 0;
2916 }
2917 cp = XFS_DFORK_PTR(dip, whichfork);
2918 mp = ip->i_mount;
2919 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2920 case XFS_DINODE_FMT_LOCAL:
2921 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2922 (ifp->if_bytes > 0)) {
2923 ASSERT(ifp->if_u1.if_data != NULL);
2924 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2925 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2926 }
2927 if (whichfork == XFS_DATA_FORK) {
2928 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2929 XFS_ERROR_REPORT("xfs_iflush_fork",
2930 XFS_ERRLEVEL_LOW, mp);
2931 return XFS_ERROR(EFSCORRUPTED);
2932 }
2933 }
2934 break;
2935
2936 case XFS_DINODE_FMT_EXTENTS:
2937 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2938 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002939 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2940 (ifp->if_bytes == 0));
2941 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2942 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2944 (ifp->if_bytes > 0)) {
2945 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2946 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2947 whichfork);
2948 }
2949 break;
2950
2951 case XFS_DINODE_FMT_BTREE:
2952 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2953 (ifp->if_broot_bytes > 0)) {
2954 ASSERT(ifp->if_broot != NULL);
2955 ASSERT(ifp->if_broot_bytes <=
2956 (XFS_IFORK_SIZE(ip, whichfork) +
2957 XFS_BROOT_SIZE_ADJ));
2958 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2959 (xfs_bmdr_block_t *)cp,
2960 XFS_DFORK_SIZE(dip, mp, whichfork));
2961 }
2962 break;
2963
2964 case XFS_DINODE_FMT_DEV:
2965 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2966 ASSERT(whichfork == XFS_DATA_FORK);
2967 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2968 }
2969 break;
2970
2971 case XFS_DINODE_FMT_UUID:
2972 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2973 ASSERT(whichfork == XFS_DATA_FORK);
2974 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2975 sizeof(uuid_t));
2976 }
2977 break;
2978
2979 default:
2980 ASSERT(0);
2981 break;
2982 }
2983
2984 return 0;
2985}
2986
2987/*
2988 * xfs_iflush() will write a modified inode's changes out to the
2989 * inode's on disk home. The caller must have the inode lock held
2990 * in at least shared mode and the inode flush semaphore must be
2991 * held as well. The inode lock will still be held upon return from
2992 * the call and the caller is free to unlock it.
2993 * The inode flush lock will be unlocked when the inode reaches the disk.
2994 * The flags indicate how the inode's buffer should be written out.
2995 */
2996int
2997xfs_iflush(
2998 xfs_inode_t *ip,
2999 uint flags)
3000{
3001 xfs_inode_log_item_t *iip;
3002 xfs_buf_t *bp;
3003 xfs_dinode_t *dip;
3004 xfs_mount_t *mp;
3005 int error;
3006 /* REFERENCED */
3007 xfs_chash_t *ch;
3008 xfs_inode_t *iq;
3009 int clcount; /* count of inodes clustered */
3010 int bufwasdelwri;
3011 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3012 SPLDECL(s);
3013
3014 XFS_STATS_INC(xs_iflush_count);
3015
3016 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3017 ASSERT(valusema(&ip->i_flock) <= 0);
3018 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3019 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3020
3021 iip = ip->i_itemp;
3022 mp = ip->i_mount;
3023
3024 /*
3025 * If the inode isn't dirty, then just release the inode
3026 * flush lock and do nothing.
3027 */
3028 if ((ip->i_update_core == 0) &&
3029 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3030 ASSERT((iip != NULL) ?
3031 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3032 xfs_ifunlock(ip);
3033 return 0;
3034 }
3035
3036 /*
3037 * We can't flush the inode until it is unpinned, so
3038 * wait for it. We know noone new can pin it, because
3039 * we are holding the inode lock shared and you need
3040 * to hold it exclusively to pin the inode.
3041 */
3042 xfs_iunpin_wait(ip);
3043
3044 /*
3045 * This may have been unpinned because the filesystem is shutting
3046 * down forcibly. If that's the case we must not write this inode
3047 * to disk, because the log record didn't make it to disk!
3048 */
3049 if (XFS_FORCED_SHUTDOWN(mp)) {
3050 ip->i_update_core = 0;
3051 if (iip)
3052 iip->ili_format.ilf_fields = 0;
3053 xfs_ifunlock(ip);
3054 return XFS_ERROR(EIO);
3055 }
3056
3057 /*
3058 * Get the buffer containing the on-disk inode.
3059 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003060 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3061 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062 xfs_ifunlock(ip);
3063 return error;
3064 }
3065
3066 /*
3067 * Decide how buffer will be flushed out. This is done before
3068 * the call to xfs_iflush_int because this field is zeroed by it.
3069 */
3070 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3071 /*
3072 * Flush out the inode buffer according to the directions
3073 * of the caller. In the cases where the caller has given
3074 * us a choice choose the non-delwri case. This is because
3075 * the inode is in the AIL and we need to get it out soon.
3076 */
3077 switch (flags) {
3078 case XFS_IFLUSH_SYNC:
3079 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3080 flags = 0;
3081 break;
3082 case XFS_IFLUSH_ASYNC:
3083 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3084 flags = INT_ASYNC;
3085 break;
3086 case XFS_IFLUSH_DELWRI:
3087 flags = INT_DELWRI;
3088 break;
3089 default:
3090 ASSERT(0);
3091 flags = 0;
3092 break;
3093 }
3094 } else {
3095 switch (flags) {
3096 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3097 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3098 case XFS_IFLUSH_DELWRI:
3099 flags = INT_DELWRI;
3100 break;
3101 case XFS_IFLUSH_ASYNC:
3102 flags = INT_ASYNC;
3103 break;
3104 case XFS_IFLUSH_SYNC:
3105 flags = 0;
3106 break;
3107 default:
3108 ASSERT(0);
3109 flags = 0;
3110 break;
3111 }
3112 }
3113
3114 /*
3115 * First flush out the inode that xfs_iflush was called with.
3116 */
3117 error = xfs_iflush_int(ip, bp);
3118 if (error) {
3119 goto corrupt_out;
3120 }
3121
3122 /*
3123 * inode clustering:
3124 * see if other inodes can be gathered into this write
3125 */
3126
3127 ip->i_chash->chl_buf = bp;
3128
3129 ch = XFS_CHASH(mp, ip->i_blkno);
3130 s = mutex_spinlock(&ch->ch_lock);
3131
3132 clcount = 0;
3133 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3134 /*
3135 * Do an un-protected check to see if the inode is dirty and
3136 * is a candidate for flushing. These checks will be repeated
3137 * later after the appropriate locks are acquired.
3138 */
3139 iip = iq->i_itemp;
3140 if ((iq->i_update_core == 0) &&
3141 ((iip == NULL) ||
3142 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3143 xfs_ipincount(iq) == 0) {
3144 continue;
3145 }
3146
3147 /*
3148 * Try to get locks. If any are unavailable,
3149 * then this inode cannot be flushed and is skipped.
3150 */
3151
3152 /* get inode locks (just i_lock) */
3153 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3154 /* get inode flush lock */
3155 if (xfs_iflock_nowait(iq)) {
3156 /* check if pinned */
3157 if (xfs_ipincount(iq) == 0) {
3158 /* arriving here means that
3159 * this inode can be flushed.
3160 * first re-check that it's
3161 * dirty
3162 */
3163 iip = iq->i_itemp;
3164 if ((iq->i_update_core != 0)||
3165 ((iip != NULL) &&
3166 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3167 clcount++;
3168 error = xfs_iflush_int(iq, bp);
3169 if (error) {
3170 xfs_iunlock(iq,
3171 XFS_ILOCK_SHARED);
3172 goto cluster_corrupt_out;
3173 }
3174 } else {
3175 xfs_ifunlock(iq);
3176 }
3177 } else {
3178 xfs_ifunlock(iq);
3179 }
3180 }
3181 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3182 }
3183 }
3184 mutex_spinunlock(&ch->ch_lock, s);
3185
3186 if (clcount) {
3187 XFS_STATS_INC(xs_icluster_flushcnt);
3188 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3189 }
3190
3191 /*
3192 * If the buffer is pinned then push on the log so we won't
3193 * get stuck waiting in the write for too long.
3194 */
3195 if (XFS_BUF_ISPINNED(bp)){
3196 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3197 }
3198
3199 if (flags & INT_DELWRI) {
3200 xfs_bdwrite(mp, bp);
3201 } else if (flags & INT_ASYNC) {
3202 xfs_bawrite(mp, bp);
3203 } else {
3204 error = xfs_bwrite(mp, bp);
3205 }
3206 return error;
3207
3208corrupt_out:
3209 xfs_buf_relse(bp);
Nathan Scott7d04a332006-06-09 14:58:38 +10003210 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003211 xfs_iflush_abort(ip);
3212 /*
3213 * Unlocks the flush lock
3214 */
3215 return XFS_ERROR(EFSCORRUPTED);
3216
3217cluster_corrupt_out:
3218 /* Corruption detected in the clustering loop. Invalidate the
3219 * inode buffer and shut down the filesystem.
3220 */
3221 mutex_spinunlock(&ch->ch_lock, s);
3222
3223 /*
3224 * Clean up the buffer. If it was B_DELWRI, just release it --
3225 * brelse can handle it with no problems. If not, shut down the
3226 * filesystem before releasing the buffer.
3227 */
3228 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3229 xfs_buf_relse(bp);
3230 }
3231
Nathan Scott7d04a332006-06-09 14:58:38 +10003232 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233
3234 if(!bufwasdelwri) {
3235 /*
3236 * Just like incore_relse: if we have b_iodone functions,
3237 * mark the buffer as an error and call them. Otherwise
3238 * mark it as stale and brelse.
3239 */
3240 if (XFS_BUF_IODONE_FUNC(bp)) {
3241 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3242 XFS_BUF_UNDONE(bp);
3243 XFS_BUF_STALE(bp);
3244 XFS_BUF_SHUT(bp);
3245 XFS_BUF_ERROR(bp,EIO);
3246 xfs_biodone(bp);
3247 } else {
3248 XFS_BUF_STALE(bp);
3249 xfs_buf_relse(bp);
3250 }
3251 }
3252
3253 xfs_iflush_abort(iq);
3254 /*
3255 * Unlocks the flush lock
3256 */
3257 return XFS_ERROR(EFSCORRUPTED);
3258}
3259
3260
3261STATIC int
3262xfs_iflush_int(
3263 xfs_inode_t *ip,
3264 xfs_buf_t *bp)
3265{
3266 xfs_inode_log_item_t *iip;
3267 xfs_dinode_t *dip;
3268 xfs_mount_t *mp;
3269#ifdef XFS_TRANS_DEBUG
3270 int first;
3271#endif
3272 SPLDECL(s);
3273
3274 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3275 ASSERT(valusema(&ip->i_flock) <= 0);
3276 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3277 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3278
3279 iip = ip->i_itemp;
3280 mp = ip->i_mount;
3281
3282
3283 /*
3284 * If the inode isn't dirty, then just release the inode
3285 * flush lock and do nothing.
3286 */
3287 if ((ip->i_update_core == 0) &&
3288 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3289 xfs_ifunlock(ip);
3290 return 0;
3291 }
3292
3293 /* set *dip = inode's place in the buffer */
3294 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3295
3296 /*
3297 * Clear i_update_core before copying out the data.
3298 * This is for coordination with our timestamp updates
3299 * that don't hold the inode lock. They will always
3300 * update the timestamps BEFORE setting i_update_core,
3301 * so if we clear i_update_core after they set it we
3302 * are guaranteed to see their updates to the timestamps.
3303 * I believe that this depends on strongly ordered memory
3304 * semantics, but we have that. We use the SYNCHRONIZE
3305 * macro to make sure that the compiler does not reorder
3306 * the i_update_core access below the data copy below.
3307 */
3308 ip->i_update_core = 0;
3309 SYNCHRONIZE();
3310
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003311 /*
3312 * Make sure to get the latest atime from the Linux inode.
3313 */
3314 xfs_synchronize_atime(ip);
3315
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3317 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3318 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3319 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3320 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3321 goto corrupt_out;
3322 }
3323 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3324 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3325 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3326 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3327 ip->i_ino, ip, ip->i_d.di_magic);
3328 goto corrupt_out;
3329 }
3330 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3331 if (XFS_TEST_ERROR(
3332 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3333 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3334 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3335 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3336 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3337 ip->i_ino, ip);
3338 goto corrupt_out;
3339 }
3340 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3341 if (XFS_TEST_ERROR(
3342 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3343 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3344 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3345 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3346 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3347 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3348 ip->i_ino, ip);
3349 goto corrupt_out;
3350 }
3351 }
3352 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3353 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3354 XFS_RANDOM_IFLUSH_5)) {
3355 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3356 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3357 ip->i_ino,
3358 ip->i_d.di_nextents + ip->i_d.di_anextents,
3359 ip->i_d.di_nblocks,
3360 ip);
3361 goto corrupt_out;
3362 }
3363 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3364 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3365 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3366 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3367 ip->i_ino, ip->i_d.di_forkoff, ip);
3368 goto corrupt_out;
3369 }
3370 /*
3371 * bump the flush iteration count, used to detect flushes which
3372 * postdate a log record during recovery.
3373 */
3374
3375 ip->i_d.di_flushiter++;
3376
3377 /*
3378 * Copy the dirty parts of the inode into the on-disk
3379 * inode. We always copy out the core of the inode,
3380 * because if the inode is dirty at all the core must
3381 * be.
3382 */
3383 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3384
3385 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3386 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3387 ip->i_d.di_flushiter = 0;
3388
3389 /*
3390 * If this is really an old format inode and the superblock version
3391 * has not been updated to support only new format inodes, then
3392 * convert back to the old inode format. If the superblock version
3393 * has been updated, then make the conversion permanent.
3394 */
3395 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3396 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3397 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3398 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3399 /*
3400 * Convert it back.
3401 */
3402 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3403 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3404 } else {
3405 /*
3406 * The superblock version has already been bumped,
3407 * so just make the conversion to the new inode
3408 * format permanent.
3409 */
3410 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3411 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3412 ip->i_d.di_onlink = 0;
3413 dip->di_core.di_onlink = 0;
3414 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3415 memset(&(dip->di_core.di_pad[0]), 0,
3416 sizeof(dip->di_core.di_pad));
3417 ASSERT(ip->i_d.di_projid == 0);
3418 }
3419 }
3420
3421 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3422 goto corrupt_out;
3423 }
3424
3425 if (XFS_IFORK_Q(ip)) {
3426 /*
3427 * The only error from xfs_iflush_fork is on the data fork.
3428 */
3429 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3430 }
3431 xfs_inobp_check(mp, bp);
3432
3433 /*
3434 * We've recorded everything logged in the inode, so we'd
3435 * like to clear the ilf_fields bits so we don't log and
3436 * flush things unnecessarily. However, we can't stop
3437 * logging all this information until the data we've copied
3438 * into the disk buffer is written to disk. If we did we might
3439 * overwrite the copy of the inode in the log with all the
3440 * data after re-logging only part of it, and in the face of
3441 * a crash we wouldn't have all the data we need to recover.
3442 *
3443 * What we do is move the bits to the ili_last_fields field.
3444 * When logging the inode, these bits are moved back to the
3445 * ilf_fields field. In the xfs_iflush_done() routine we
3446 * clear ili_last_fields, since we know that the information
3447 * those bits represent is permanently on disk. As long as
3448 * the flush completes before the inode is logged again, then
3449 * both ilf_fields and ili_last_fields will be cleared.
3450 *
3451 * We can play with the ilf_fields bits here, because the inode
3452 * lock must be held exclusively in order to set bits there
3453 * and the flush lock protects the ili_last_fields bits.
3454 * Set ili_logged so the flush done
3455 * routine can tell whether or not to look in the AIL.
3456 * Also, store the current LSN of the inode so that we can tell
3457 * whether the item has moved in the AIL from xfs_iflush_done().
3458 * In order to read the lsn we need the AIL lock, because
3459 * it is a 64 bit value that cannot be read atomically.
3460 */
3461 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3462 iip->ili_last_fields = iip->ili_format.ilf_fields;
3463 iip->ili_format.ilf_fields = 0;
3464 iip->ili_logged = 1;
3465
3466 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3467 AIL_LOCK(mp,s);
3468 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3469 AIL_UNLOCK(mp, s);
3470
3471 /*
3472 * Attach the function xfs_iflush_done to the inode's
3473 * buffer. This will remove the inode from the AIL
3474 * and unlock the inode's flush lock when the inode is
3475 * completely written to disk.
3476 */
3477 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3478 xfs_iflush_done, (xfs_log_item_t *)iip);
3479
3480 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3481 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3482 } else {
3483 /*
3484 * We're flushing an inode which is not in the AIL and has
3485 * not been logged but has i_update_core set. For this
3486 * case we can use a B_DELWRI flush and immediately drop
3487 * the inode flush lock because we can avoid the whole
3488 * AIL state thing. It's OK to drop the flush lock now,
3489 * because we've already locked the buffer and to do anything
3490 * you really need both.
3491 */
3492 if (iip != NULL) {
3493 ASSERT(iip->ili_logged == 0);
3494 ASSERT(iip->ili_last_fields == 0);
3495 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3496 }
3497 xfs_ifunlock(ip);
3498 }
3499
3500 return 0;
3501
3502corrupt_out:
3503 return XFS_ERROR(EFSCORRUPTED);
3504}
3505
3506
3507/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003508 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003509 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003510void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003512 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003514 xfs_inode_t *ip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515 vnode_t *vp;
3516
Christoph Hellwigefa80272005-06-21 15:37:17 +10003517 again:
3518 XFS_MOUNT_ILOCK(mp);
3519 ip = mp->m_inodes;
3520 if (ip == NULL)
3521 goto out;
3522
3523 do {
3524 /* Make sure we skip markers inserted by sync */
3525 if (ip->i_mount == NULL) {
3526 ip = ip->i_mnext;
3527 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003528 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003529
Christoph Hellwigefa80272005-06-21 15:37:17 +10003530 vp = XFS_ITOV_NULL(ip);
3531 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003533 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3534 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003536
Christoph Hellwigefa80272005-06-21 15:37:17 +10003537 ASSERT(vn_count(vp) == 0);
3538
3539 ip = ip->i_mnext;
3540 } while (ip != mp->m_inodes);
3541 out:
3542 XFS_MOUNT_IUNLOCK(mp);
3543}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544
3545/*
3546 * xfs_iaccess: check accessibility of inode for mode.
3547 */
3548int
3549xfs_iaccess(
3550 xfs_inode_t *ip,
3551 mode_t mode,
3552 cred_t *cr)
3553{
3554 int error;
3555 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003556 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557
3558 if (mode & S_IWUSR) {
3559 umode_t imode = inode->i_mode;
3560
3561 if (IS_RDONLY(inode) &&
3562 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3563 return XFS_ERROR(EROFS);
3564
3565 if (IS_IMMUTABLE(inode))
3566 return XFS_ERROR(EACCES);
3567 }
3568
3569 /*
3570 * If there's an Access Control List it's used instead of
3571 * the mode bits.
3572 */
3573 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3574 return error ? XFS_ERROR(error) : 0;
3575
3576 if (current_fsuid(cr) != ip->i_d.di_uid) {
3577 mode >>= 3;
3578 if (!in_group_p((gid_t)ip->i_d.di_gid))
3579 mode >>= 3;
3580 }
3581
3582 /*
3583 * If the DACs are ok we don't need any capability check.
3584 */
3585 if ((ip->i_d.di_mode & mode) == mode)
3586 return 0;
3587 /*
3588 * Read/write DACs are always overridable.
3589 * Executable DACs are overridable if at least one exec bit is set.
3590 */
3591 if (!(orgmode & S_IXUSR) ||
3592 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3593 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3594 return 0;
3595
3596 if ((orgmode == S_IRUSR) ||
3597 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3598 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3599 return 0;
3600#ifdef NOISE
3601 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3602#endif /* NOISE */
3603 return XFS_ERROR(EACCES);
3604 }
3605 return XFS_ERROR(EACCES);
3606}
3607
3608/*
3609 * xfs_iroundup: round up argument to next power of two
3610 */
3611uint
3612xfs_iroundup(
3613 uint v)
3614{
3615 int i;
3616 uint m;
3617
3618 if ((v & (v - 1)) == 0)
3619 return v;
3620 ASSERT((v & 0x80000000) == 0);
3621 if ((v & (v + 1)) == 0)
3622 return v + 1;
3623 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3624 if (v & m)
3625 continue;
3626 v |= m;
3627 if ((v & (v + 1)) == 0)
3628 return v + 1;
3629 }
3630 ASSERT(0);
3631 return( 0 );
3632}
3633
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634#ifdef XFS_ILOCK_TRACE
3635ktrace_t *xfs_ilock_trace_buf;
3636
3637void
3638xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3639{
3640 ktrace_enter(ip->i_lock_trace,
3641 (void *)ip,
3642 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3643 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3644 (void *)ra, /* caller of ilock */
3645 (void *)(unsigned long)current_cpu(),
3646 (void *)(unsigned long)current_pid(),
3647 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3648}
3649#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003650
3651/*
3652 * Return a pointer to the extent record at file index idx.
3653 */
3654xfs_bmbt_rec_t *
3655xfs_iext_get_ext(
3656 xfs_ifork_t *ifp, /* inode fork pointer */
3657 xfs_extnum_t idx) /* index of target extent */
3658{
3659 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003660 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3661 return ifp->if_u1.if_ext_irec->er_extbuf;
3662 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3663 xfs_ext_irec_t *erp; /* irec pointer */
3664 int erp_idx = 0; /* irec index */
3665 xfs_extnum_t page_idx = idx; /* ext index in target list */
3666
3667 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3668 return &erp->er_extbuf[page_idx];
3669 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003670 return &ifp->if_u1.if_extents[idx];
3671 } else {
3672 return NULL;
3673 }
3674}
3675
3676/*
3677 * Insert new item(s) into the extent records for incore inode
3678 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3679 */
3680void
3681xfs_iext_insert(
3682 xfs_ifork_t *ifp, /* inode fork pointer */
3683 xfs_extnum_t idx, /* starting index of new items */
3684 xfs_extnum_t count, /* number of inserted items */
3685 xfs_bmbt_irec_t *new) /* items to insert */
3686{
3687 xfs_bmbt_rec_t *ep; /* extent record pointer */
3688 xfs_extnum_t i; /* extent record index */
3689
3690 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3691 xfs_iext_add(ifp, idx, count);
3692 for (i = idx; i < idx + count; i++, new++) {
3693 ep = xfs_iext_get_ext(ifp, i);
3694 xfs_bmbt_set_all(ep, new);
3695 }
3696}
3697
3698/*
3699 * This is called when the amount of space required for incore file
3700 * extents needs to be increased. The ext_diff parameter stores the
3701 * number of new extents being added and the idx parameter contains
3702 * the extent index where the new extents will be added. If the new
3703 * extents are being appended, then we just need to (re)allocate and
3704 * initialize the space. Otherwise, if the new extents are being
3705 * inserted into the middle of the existing entries, a bit more work
3706 * is required to make room for the new extents to be inserted. The
3707 * caller is responsible for filling in the new extent entries upon
3708 * return.
3709 */
3710void
3711xfs_iext_add(
3712 xfs_ifork_t *ifp, /* inode fork pointer */
3713 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003714 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003715{
3716 int byte_diff; /* new bytes being added */
3717 int new_size; /* size of extents after adding */
3718 xfs_extnum_t nextents; /* number of extents in file */
3719
3720 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3721 ASSERT((idx >= 0) && (idx <= nextents));
3722 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3723 new_size = ifp->if_bytes + byte_diff;
3724 /*
3725 * If the new number of extents (nextents + ext_diff)
3726 * fits inside the inode, then continue to use the inline
3727 * extent buffer.
3728 */
3729 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3730 if (idx < nextents) {
3731 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3732 &ifp->if_u2.if_inline_ext[idx],
3733 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3734 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3735 }
3736 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3737 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003738 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003739 }
3740 /*
3741 * Otherwise use a linear (direct) extent list.
3742 * If the extents are currently inside the inode,
3743 * xfs_iext_realloc_direct will switch us from
3744 * inline to direct extent allocation mode.
3745 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003746 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003747 xfs_iext_realloc_direct(ifp, new_size);
3748 if (idx < nextents) {
3749 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3750 &ifp->if_u1.if_extents[idx],
3751 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3752 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3753 }
3754 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003755 /* Indirection array */
3756 else {
3757 xfs_ext_irec_t *erp;
3758 int erp_idx = 0;
3759 int page_idx = idx;
3760
3761 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3762 if (ifp->if_flags & XFS_IFEXTIREC) {
3763 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3764 } else {
3765 xfs_iext_irec_init(ifp);
3766 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3767 erp = ifp->if_u1.if_ext_irec;
3768 }
3769 /* Extents fit in target extent page */
3770 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3771 if (page_idx < erp->er_extcount) {
3772 memmove(&erp->er_extbuf[page_idx + ext_diff],
3773 &erp->er_extbuf[page_idx],
3774 (erp->er_extcount - page_idx) *
3775 sizeof(xfs_bmbt_rec_t));
3776 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3777 }
3778 erp->er_extcount += ext_diff;
3779 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3780 }
3781 /* Insert a new extent page */
3782 else if (erp) {
3783 xfs_iext_add_indirect_multi(ifp,
3784 erp_idx, page_idx, ext_diff);
3785 }
3786 /*
3787 * If extent(s) are being appended to the last page in
3788 * the indirection array and the new extent(s) don't fit
3789 * in the page, then erp is NULL and erp_idx is set to
3790 * the next index needed in the indirection array.
3791 */
3792 else {
3793 int count = ext_diff;
3794
3795 while (count) {
3796 erp = xfs_iext_irec_new(ifp, erp_idx);
3797 erp->er_extcount = count;
3798 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3799 if (count) {
3800 erp_idx++;
3801 }
3802 }
3803 }
3804 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003805 ifp->if_bytes = new_size;
3806}
3807
3808/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003809 * This is called when incore extents are being added to the indirection
3810 * array and the new extents do not fit in the target extent list. The
3811 * erp_idx parameter contains the irec index for the target extent list
3812 * in the indirection array, and the idx parameter contains the extent
3813 * index within the list. The number of extents being added is stored
3814 * in the count parameter.
3815 *
3816 * |-------| |-------|
3817 * | | | | idx - number of extents before idx
3818 * | idx | | count |
3819 * | | | | count - number of extents being inserted at idx
3820 * |-------| |-------|
3821 * | count | | nex2 | nex2 - number of extents after idx + count
3822 * |-------| |-------|
3823 */
3824void
3825xfs_iext_add_indirect_multi(
3826 xfs_ifork_t *ifp, /* inode fork pointer */
3827 int erp_idx, /* target extent irec index */
3828 xfs_extnum_t idx, /* index within target list */
3829 int count) /* new extents being added */
3830{
3831 int byte_diff; /* new bytes being added */
3832 xfs_ext_irec_t *erp; /* pointer to irec entry */
3833 xfs_extnum_t ext_diff; /* number of extents to add */
3834 xfs_extnum_t ext_cnt; /* new extents still needed */
3835 xfs_extnum_t nex2; /* extents after idx + count */
3836 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3837 int nlists; /* number of irec's (lists) */
3838
3839 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3840 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3841 nex2 = erp->er_extcount - idx;
3842 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3843
3844 /*
3845 * Save second part of target extent list
3846 * (all extents past */
3847 if (nex2) {
3848 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3849 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3850 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3851 erp->er_extcount -= nex2;
3852 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3853 memset(&erp->er_extbuf[idx], 0, byte_diff);
3854 }
3855
3856 /*
3857 * Add the new extents to the end of the target
3858 * list, then allocate new irec record(s) and
3859 * extent buffer(s) as needed to store the rest
3860 * of the new extents.
3861 */
3862 ext_cnt = count;
3863 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3864 if (ext_diff) {
3865 erp->er_extcount += ext_diff;
3866 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3867 ext_cnt -= ext_diff;
3868 }
3869 while (ext_cnt) {
3870 erp_idx++;
3871 erp = xfs_iext_irec_new(ifp, erp_idx);
3872 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3873 erp->er_extcount = ext_diff;
3874 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3875 ext_cnt -= ext_diff;
3876 }
3877
3878 /* Add nex2 extents back to indirection array */
3879 if (nex2) {
3880 xfs_extnum_t ext_avail;
3881 int i;
3882
3883 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3884 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3885 i = 0;
3886 /*
3887 * If nex2 extents fit in the current page, append
3888 * nex2_ep after the new extents.
3889 */
3890 if (nex2 <= ext_avail) {
3891 i = erp->er_extcount;
3892 }
3893 /*
3894 * Otherwise, check if space is available in the
3895 * next page.
3896 */
3897 else if ((erp_idx < nlists - 1) &&
3898 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3899 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3900 erp_idx++;
3901 erp++;
3902 /* Create a hole for nex2 extents */
3903 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3904 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3905 }
3906 /*
3907 * Final choice, create a new extent page for
3908 * nex2 extents.
3909 */
3910 else {
3911 erp_idx++;
3912 erp = xfs_iext_irec_new(ifp, erp_idx);
3913 }
3914 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3915 kmem_free(nex2_ep, byte_diff);
3916 erp->er_extcount += nex2;
3917 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3918 }
3919}
3920
3921/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003922 * This is called when the amount of space required for incore file
3923 * extents needs to be decreased. The ext_diff parameter stores the
3924 * number of extents to be removed and the idx parameter contains
3925 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003926 *
3927 * If the amount of space needed has decreased below the linear
3928 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3929 * extent array. Otherwise, use kmem_realloc() to adjust the
3930 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003931 */
3932void
3933xfs_iext_remove(
3934 xfs_ifork_t *ifp, /* inode fork pointer */
3935 xfs_extnum_t idx, /* index to begin removing exts */
3936 int ext_diff) /* number of extents to remove */
3937{
3938 xfs_extnum_t nextents; /* number of extents in file */
3939 int new_size; /* size of extents after removal */
3940
3941 ASSERT(ext_diff > 0);
3942 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3943 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3944
3945 if (new_size == 0) {
3946 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003947 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3948 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003949 } else if (ifp->if_real_bytes) {
3950 xfs_iext_remove_direct(ifp, idx, ext_diff);
3951 } else {
3952 xfs_iext_remove_inline(ifp, idx, ext_diff);
3953 }
3954 ifp->if_bytes = new_size;
3955}
3956
3957/*
3958 * This removes ext_diff extents from the inline buffer, beginning
3959 * at extent index idx.
3960 */
3961void
3962xfs_iext_remove_inline(
3963 xfs_ifork_t *ifp, /* inode fork pointer */
3964 xfs_extnum_t idx, /* index to begin removing exts */
3965 int ext_diff) /* number of extents to remove */
3966{
3967 int nextents; /* number of extents in file */
3968
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003969 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003970 ASSERT(idx < XFS_INLINE_EXTS);
3971 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3972 ASSERT(((nextents - ext_diff) > 0) &&
3973 (nextents - ext_diff) < XFS_INLINE_EXTS);
3974
3975 if (idx + ext_diff < nextents) {
3976 memmove(&ifp->if_u2.if_inline_ext[idx],
3977 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3978 (nextents - (idx + ext_diff)) *
3979 sizeof(xfs_bmbt_rec_t));
3980 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3981 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3982 } else {
3983 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3984 ext_diff * sizeof(xfs_bmbt_rec_t));
3985 }
3986}
3987
3988/*
3989 * This removes ext_diff extents from a linear (direct) extent list,
3990 * beginning at extent index idx. If the extents are being removed
3991 * from the end of the list (ie. truncate) then we just need to re-
3992 * allocate the list to remove the extra space. Otherwise, if the
3993 * extents are being removed from the middle of the existing extent
3994 * entries, then we first need to move the extent records beginning
3995 * at idx + ext_diff up in the list to overwrite the records being
3996 * removed, then remove the extra space via kmem_realloc.
3997 */
3998void
3999xfs_iext_remove_direct(
4000 xfs_ifork_t *ifp, /* inode fork pointer */
4001 xfs_extnum_t idx, /* index to begin removing exts */
4002 int ext_diff) /* number of extents to remove */
4003{
4004 xfs_extnum_t nextents; /* number of extents in file */
4005 int new_size; /* size of extents after removal */
4006
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004007 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004008 new_size = ifp->if_bytes -
4009 (ext_diff * sizeof(xfs_bmbt_rec_t));
4010 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4011
4012 if (new_size == 0) {
4013 xfs_iext_destroy(ifp);
4014 return;
4015 }
4016 /* Move extents up in the list (if needed) */
4017 if (idx + ext_diff < nextents) {
4018 memmove(&ifp->if_u1.if_extents[idx],
4019 &ifp->if_u1.if_extents[idx + ext_diff],
4020 (nextents - (idx + ext_diff)) *
4021 sizeof(xfs_bmbt_rec_t));
4022 }
4023 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4024 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4025 /*
4026 * Reallocate the direct extent list. If the extents
4027 * will fit inside the inode then xfs_iext_realloc_direct
4028 * will switch from direct to inline extent allocation
4029 * mode for us.
4030 */
4031 xfs_iext_realloc_direct(ifp, new_size);
4032 ifp->if_bytes = new_size;
4033}
4034
4035/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004036 * This is called when incore extents are being removed from the
4037 * indirection array and the extents being removed span multiple extent
4038 * buffers. The idx parameter contains the file extent index where we
4039 * want to begin removing extents, and the count parameter contains
4040 * how many extents need to be removed.
4041 *
4042 * |-------| |-------|
4043 * | nex1 | | | nex1 - number of extents before idx
4044 * |-------| | count |
4045 * | | | | count - number of extents being removed at idx
4046 * | count | |-------|
4047 * | | | nex2 | nex2 - number of extents after idx + count
4048 * |-------| |-------|
4049 */
4050void
4051xfs_iext_remove_indirect(
4052 xfs_ifork_t *ifp, /* inode fork pointer */
4053 xfs_extnum_t idx, /* index to begin removing extents */
4054 int count) /* number of extents to remove */
4055{
4056 xfs_ext_irec_t *erp; /* indirection array pointer */
4057 int erp_idx = 0; /* indirection array index */
4058 xfs_extnum_t ext_cnt; /* extents left to remove */
4059 xfs_extnum_t ext_diff; /* extents to remove in current list */
4060 xfs_extnum_t nex1; /* number of extents before idx */
4061 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004062 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004063 int page_idx = idx; /* index in target extent list */
4064
4065 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4066 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4067 ASSERT(erp != NULL);
4068 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4069 nex1 = page_idx;
4070 ext_cnt = count;
4071 while (ext_cnt) {
4072 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4073 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4074 /*
4075 * Check for deletion of entire list;
4076 * xfs_iext_irec_remove() updates extent offsets.
4077 */
4078 if (ext_diff == erp->er_extcount) {
4079 xfs_iext_irec_remove(ifp, erp_idx);
4080 ext_cnt -= ext_diff;
4081 nex1 = 0;
4082 if (ext_cnt) {
4083 ASSERT(erp_idx < ifp->if_real_bytes /
4084 XFS_IEXT_BUFSZ);
4085 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4086 nex1 = 0;
4087 continue;
4088 } else {
4089 break;
4090 }
4091 }
4092 /* Move extents up (if needed) */
4093 if (nex2) {
4094 memmove(&erp->er_extbuf[nex1],
4095 &erp->er_extbuf[nex1 + ext_diff],
4096 nex2 * sizeof(xfs_bmbt_rec_t));
4097 }
4098 /* Zero out rest of page */
4099 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4100 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4101 /* Update remaining counters */
4102 erp->er_extcount -= ext_diff;
4103 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4104 ext_cnt -= ext_diff;
4105 nex1 = 0;
4106 erp_idx++;
4107 erp++;
4108 }
4109 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4110 xfs_iext_irec_compact(ifp);
4111}
4112
4113/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004114 * Create, destroy, or resize a linear (direct) block of extents.
4115 */
4116void
4117xfs_iext_realloc_direct(
4118 xfs_ifork_t *ifp, /* inode fork pointer */
4119 int new_size) /* new size of extents */
4120{
4121 int rnew_size; /* real new size of extents */
4122
4123 rnew_size = new_size;
4124
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004125 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4126 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4127 (new_size != ifp->if_real_bytes)));
4128
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004129 /* Free extent records */
4130 if (new_size == 0) {
4131 xfs_iext_destroy(ifp);
4132 }
4133 /* Resize direct extent list and zero any new bytes */
4134 else if (ifp->if_real_bytes) {
4135 /* Check if extents will fit inside the inode */
4136 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4137 xfs_iext_direct_to_inline(ifp, new_size /
4138 (uint)sizeof(xfs_bmbt_rec_t));
4139 ifp->if_bytes = new_size;
4140 return;
4141 }
4142 if ((new_size & (new_size - 1)) != 0) {
4143 rnew_size = xfs_iroundup(new_size);
4144 }
4145 if (rnew_size != ifp->if_real_bytes) {
4146 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4147 kmem_realloc(ifp->if_u1.if_extents,
4148 rnew_size,
4149 ifp->if_real_bytes,
4150 KM_SLEEP);
4151 }
4152 if (rnew_size > ifp->if_real_bytes) {
4153 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4154 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4155 rnew_size - ifp->if_real_bytes);
4156 }
4157 }
4158 /*
4159 * Switch from the inline extent buffer to a direct
4160 * extent list. Be sure to include the inline extent
4161 * bytes in new_size.
4162 */
4163 else {
4164 new_size += ifp->if_bytes;
4165 if ((new_size & (new_size - 1)) != 0) {
4166 rnew_size = xfs_iroundup(new_size);
4167 }
4168 xfs_iext_inline_to_direct(ifp, rnew_size);
4169 }
4170 ifp->if_real_bytes = rnew_size;
4171 ifp->if_bytes = new_size;
4172}
4173
4174/*
4175 * Switch from linear (direct) extent records to inline buffer.
4176 */
4177void
4178xfs_iext_direct_to_inline(
4179 xfs_ifork_t *ifp, /* inode fork pointer */
4180 xfs_extnum_t nextents) /* number of extents in file */
4181{
4182 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4183 ASSERT(nextents <= XFS_INLINE_EXTS);
4184 /*
4185 * The inline buffer was zeroed when we switched
4186 * from inline to direct extent allocation mode,
4187 * so we don't need to clear it here.
4188 */
4189 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4190 nextents * sizeof(xfs_bmbt_rec_t));
Mandy Kirkconnellfe6c1e72006-06-09 14:51:25 +10004191 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004192 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4193 ifp->if_real_bytes = 0;
4194}
4195
4196/*
4197 * Switch from inline buffer to linear (direct) extent records.
4198 * new_size should already be rounded up to the next power of 2
4199 * by the caller (when appropriate), so use new_size as it is.
4200 * However, since new_size may be rounded up, we can't update
4201 * if_bytes here. It is the caller's responsibility to update
4202 * if_bytes upon return.
4203 */
4204void
4205xfs_iext_inline_to_direct(
4206 xfs_ifork_t *ifp, /* inode fork pointer */
4207 int new_size) /* number of extents in file */
4208{
4209 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4210 kmem_alloc(new_size, KM_SLEEP);
4211 memset(ifp->if_u1.if_extents, 0, new_size);
4212 if (ifp->if_bytes) {
4213 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4214 ifp->if_bytes);
4215 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4216 sizeof(xfs_bmbt_rec_t));
4217 }
4218 ifp->if_real_bytes = new_size;
4219}
4220
4221/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004222 * Resize an extent indirection array to new_size bytes.
4223 */
4224void
4225xfs_iext_realloc_indirect(
4226 xfs_ifork_t *ifp, /* inode fork pointer */
4227 int new_size) /* new indirection array size */
4228{
4229 int nlists; /* number of irec's (ex lists) */
4230 int size; /* current indirection array size */
4231
4232 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4233 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4234 size = nlists * sizeof(xfs_ext_irec_t);
4235 ASSERT(ifp->if_real_bytes);
4236 ASSERT((new_size >= 0) && (new_size != size));
4237 if (new_size == 0) {
4238 xfs_iext_destroy(ifp);
4239 } else {
4240 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4241 kmem_realloc(ifp->if_u1.if_ext_irec,
4242 new_size, size, KM_SLEEP);
4243 }
4244}
4245
4246/*
4247 * Switch from indirection array to linear (direct) extent allocations.
4248 */
4249void
4250xfs_iext_indirect_to_direct(
4251 xfs_ifork_t *ifp) /* inode fork pointer */
4252{
4253 xfs_bmbt_rec_t *ep; /* extent record pointer */
4254 xfs_extnum_t nextents; /* number of extents in file */
4255 int size; /* size of file extents */
4256
4257 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4258 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4259 ASSERT(nextents <= XFS_LINEAR_EXTS);
4260 size = nextents * sizeof(xfs_bmbt_rec_t);
4261
4262 xfs_iext_irec_compact_full(ifp);
4263 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4264
4265 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4266 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4267 ifp->if_flags &= ~XFS_IFEXTIREC;
4268 ifp->if_u1.if_extents = ep;
4269 ifp->if_bytes = size;
4270 if (nextents < XFS_LINEAR_EXTS) {
4271 xfs_iext_realloc_direct(ifp, size);
4272 }
4273}
4274
4275/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004276 * Free incore file extents.
4277 */
4278void
4279xfs_iext_destroy(
4280 xfs_ifork_t *ifp) /* inode fork pointer */
4281{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004282 if (ifp->if_flags & XFS_IFEXTIREC) {
4283 int erp_idx;
4284 int nlists;
4285
4286 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4287 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4288 xfs_iext_irec_remove(ifp, erp_idx);
4289 }
4290 ifp->if_flags &= ~XFS_IFEXTIREC;
4291 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004292 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4293 } else if (ifp->if_bytes) {
4294 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4295 sizeof(xfs_bmbt_rec_t));
4296 }
4297 ifp->if_u1.if_extents = NULL;
4298 ifp->if_real_bytes = 0;
4299 ifp->if_bytes = 0;
4300}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004301
4302/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004303 * Return a pointer to the extent record for file system block bno.
4304 */
4305xfs_bmbt_rec_t * /* pointer to found extent record */
4306xfs_iext_bno_to_ext(
4307 xfs_ifork_t *ifp, /* inode fork pointer */
4308 xfs_fileoff_t bno, /* block number to search for */
4309 xfs_extnum_t *idxp) /* index of target extent */
4310{
4311 xfs_bmbt_rec_t *base; /* pointer to first extent */
4312 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4313 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4314 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004315 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004316 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004317 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004318 xfs_extnum_t nextents; /* number of file extents */
4319 xfs_fileoff_t startoff = 0; /* start offset of extent */
4320
4321 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4322 if (nextents == 0) {
4323 *idxp = 0;
4324 return NULL;
4325 }
4326 low = 0;
4327 if (ifp->if_flags & XFS_IFEXTIREC) {
4328 /* Find target extent list */
4329 int erp_idx = 0;
4330 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4331 base = erp->er_extbuf;
4332 high = erp->er_extcount - 1;
4333 } else {
4334 base = ifp->if_u1.if_extents;
4335 high = nextents - 1;
4336 }
4337 /* Binary search extent records */
4338 while (low <= high) {
4339 idx = (low + high) >> 1;
4340 ep = base + idx;
4341 startoff = xfs_bmbt_get_startoff(ep);
4342 blockcount = xfs_bmbt_get_blockcount(ep);
4343 if (bno < startoff) {
4344 high = idx - 1;
4345 } else if (bno >= startoff + blockcount) {
4346 low = idx + 1;
4347 } else {
4348 /* Convert back to file-based extent index */
4349 if (ifp->if_flags & XFS_IFEXTIREC) {
4350 idx += erp->er_extoff;
4351 }
4352 *idxp = idx;
4353 return ep;
4354 }
4355 }
4356 /* Convert back to file-based extent index */
4357 if (ifp->if_flags & XFS_IFEXTIREC) {
4358 idx += erp->er_extoff;
4359 }
4360 if (bno >= startoff + blockcount) {
4361 if (++idx == nextents) {
4362 ep = NULL;
4363 } else {
4364 ep = xfs_iext_get_ext(ifp, idx);
4365 }
4366 }
4367 *idxp = idx;
4368 return ep;
4369}
4370
4371/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004372 * Return a pointer to the indirection array entry containing the
4373 * extent record for filesystem block bno. Store the index of the
4374 * target irec in *erp_idxp.
4375 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004376xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004377xfs_iext_bno_to_irec(
4378 xfs_ifork_t *ifp, /* inode fork pointer */
4379 xfs_fileoff_t bno, /* block number to search for */
4380 int *erp_idxp) /* irec index of target ext list */
4381{
4382 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4383 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004384 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004385 int nlists; /* number of extent irec's (lists) */
4386 int high; /* binary search upper limit */
4387 int low; /* binary search lower limit */
4388
4389 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4390 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4391 erp_idx = 0;
4392 low = 0;
4393 high = nlists - 1;
4394 while (low <= high) {
4395 erp_idx = (low + high) >> 1;
4396 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4397 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4398 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4399 high = erp_idx - 1;
4400 } else if (erp_next && bno >=
4401 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4402 low = erp_idx + 1;
4403 } else {
4404 break;
4405 }
4406 }
4407 *erp_idxp = erp_idx;
4408 return erp;
4409}
4410
4411/*
4412 * Return a pointer to the indirection array entry containing the
4413 * extent record at file extent index *idxp. Store the index of the
4414 * target irec in *erp_idxp and store the page index of the target
4415 * extent record in *idxp.
4416 */
4417xfs_ext_irec_t *
4418xfs_iext_idx_to_irec(
4419 xfs_ifork_t *ifp, /* inode fork pointer */
4420 xfs_extnum_t *idxp, /* extent index (file -> page) */
4421 int *erp_idxp, /* pointer to target irec */
4422 int realloc) /* new bytes were just added */
4423{
4424 xfs_ext_irec_t *prev; /* pointer to previous irec */
4425 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4426 int erp_idx; /* indirection array index */
4427 int nlists; /* number of irec's (ex lists) */
4428 int high; /* binary search upper limit */
4429 int low; /* binary search lower limit */
4430 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4431
4432 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4433 ASSERT(page_idx >= 0 && page_idx <=
4434 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4435 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4436 erp_idx = 0;
4437 low = 0;
4438 high = nlists - 1;
4439
4440 /* Binary search extent irec's */
4441 while (low <= high) {
4442 erp_idx = (low + high) >> 1;
4443 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4444 prev = erp_idx > 0 ? erp - 1 : NULL;
4445 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4446 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4447 high = erp_idx - 1;
4448 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4449 (page_idx == erp->er_extoff + erp->er_extcount &&
4450 !realloc)) {
4451 low = erp_idx + 1;
4452 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4453 erp->er_extcount == XFS_LINEAR_EXTS) {
4454 ASSERT(realloc);
4455 page_idx = 0;
4456 erp_idx++;
4457 erp = erp_idx < nlists ? erp + 1 : NULL;
4458 break;
4459 } else {
4460 page_idx -= erp->er_extoff;
4461 break;
4462 }
4463 }
4464 *idxp = page_idx;
4465 *erp_idxp = erp_idx;
4466 return(erp);
4467}
4468
4469/*
4470 * Allocate and initialize an indirection array once the space needed
4471 * for incore extents increases above XFS_IEXT_BUFSZ.
4472 */
4473void
4474xfs_iext_irec_init(
4475 xfs_ifork_t *ifp) /* inode fork pointer */
4476{
4477 xfs_ext_irec_t *erp; /* indirection array pointer */
4478 xfs_extnum_t nextents; /* number of extents in file */
4479
4480 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4481 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4482 ASSERT(nextents <= XFS_LINEAR_EXTS);
4483
4484 erp = (xfs_ext_irec_t *)
4485 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4486
4487 if (nextents == 0) {
4488 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4489 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4490 } else if (!ifp->if_real_bytes) {
4491 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4492 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4493 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4494 }
4495 erp->er_extbuf = ifp->if_u1.if_extents;
4496 erp->er_extcount = nextents;
4497 erp->er_extoff = 0;
4498
4499 ifp->if_flags |= XFS_IFEXTIREC;
4500 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4501 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4502 ifp->if_u1.if_ext_irec = erp;
4503
4504 return;
4505}
4506
4507/*
4508 * Allocate and initialize a new entry in the indirection array.
4509 */
4510xfs_ext_irec_t *
4511xfs_iext_irec_new(
4512 xfs_ifork_t *ifp, /* inode fork pointer */
4513 int erp_idx) /* index for new irec */
4514{
4515 xfs_ext_irec_t *erp; /* indirection array pointer */
4516 int i; /* loop counter */
4517 int nlists; /* number of irec's (ex lists) */
4518
4519 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4520 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4521
4522 /* Resize indirection array */
4523 xfs_iext_realloc_indirect(ifp, ++nlists *
4524 sizeof(xfs_ext_irec_t));
4525 /*
4526 * Move records down in the array so the
4527 * new page can use erp_idx.
4528 */
4529 erp = ifp->if_u1.if_ext_irec;
4530 for (i = nlists - 1; i > erp_idx; i--) {
4531 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4532 }
4533 ASSERT(i == erp_idx);
4534
4535 /* Initialize new extent record */
4536 erp = ifp->if_u1.if_ext_irec;
4537 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4538 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4539 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4540 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4541 erp[erp_idx].er_extcount = 0;
4542 erp[erp_idx].er_extoff = erp_idx > 0 ?
4543 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4544 return (&erp[erp_idx]);
4545}
4546
4547/*
4548 * Remove a record from the indirection array.
4549 */
4550void
4551xfs_iext_irec_remove(
4552 xfs_ifork_t *ifp, /* inode fork pointer */
4553 int erp_idx) /* irec index to remove */
4554{
4555 xfs_ext_irec_t *erp; /* indirection array pointer */
4556 int i; /* loop counter */
4557 int nlists; /* number of irec's (ex lists) */
4558
4559 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4560 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4561 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4562 if (erp->er_extbuf) {
4563 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4564 -erp->er_extcount);
4565 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4566 }
4567 /* Compact extent records */
4568 erp = ifp->if_u1.if_ext_irec;
4569 for (i = erp_idx; i < nlists - 1; i++) {
4570 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4571 }
4572 /*
4573 * Manually free the last extent record from the indirection
4574 * array. A call to xfs_iext_realloc_indirect() with a size
4575 * of zero would result in a call to xfs_iext_destroy() which
4576 * would in turn call this function again, creating a nasty
4577 * infinite loop.
4578 */
4579 if (--nlists) {
4580 xfs_iext_realloc_indirect(ifp,
4581 nlists * sizeof(xfs_ext_irec_t));
4582 } else {
4583 kmem_free(ifp->if_u1.if_ext_irec,
4584 sizeof(xfs_ext_irec_t));
4585 }
4586 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4587}
4588
4589/*
4590 * This is called to clean up large amounts of unused memory allocated
4591 * by the indirection array. Before compacting anything though, verify
4592 * that the indirection array is still needed and switch back to the
4593 * linear extent list (or even the inline buffer) if possible. The
4594 * compaction policy is as follows:
4595 *
4596 * Full Compaction: Extents fit into a single page (or inline buffer)
4597 * Full Compaction: Extents occupy less than 10% of allocated space
4598 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4599 * No Compaction: Extents occupy at least 50% of allocated space
4600 */
4601void
4602xfs_iext_irec_compact(
4603 xfs_ifork_t *ifp) /* inode fork pointer */
4604{
4605 xfs_extnum_t nextents; /* number of extents in file */
4606 int nlists; /* number of irec's (ex lists) */
4607
4608 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4609 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4610 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4611
4612 if (nextents == 0) {
4613 xfs_iext_destroy(ifp);
4614 } else if (nextents <= XFS_INLINE_EXTS) {
4615 xfs_iext_indirect_to_direct(ifp);
4616 xfs_iext_direct_to_inline(ifp, nextents);
4617 } else if (nextents <= XFS_LINEAR_EXTS) {
4618 xfs_iext_indirect_to_direct(ifp);
4619 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4620 xfs_iext_irec_compact_full(ifp);
4621 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4622 xfs_iext_irec_compact_pages(ifp);
4623 }
4624}
4625
4626/*
4627 * Combine extents from neighboring extent pages.
4628 */
4629void
4630xfs_iext_irec_compact_pages(
4631 xfs_ifork_t *ifp) /* inode fork pointer */
4632{
4633 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4634 int erp_idx = 0; /* indirection array index */
4635 int nlists; /* number of irec's (ex lists) */
4636
4637 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4638 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4639 while (erp_idx < nlists - 1) {
4640 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4641 erp_next = erp + 1;
4642 if (erp_next->er_extcount <=
4643 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4644 memmove(&erp->er_extbuf[erp->er_extcount],
4645 erp_next->er_extbuf, erp_next->er_extcount *
4646 sizeof(xfs_bmbt_rec_t));
4647 erp->er_extcount += erp_next->er_extcount;
4648 /*
4649 * Free page before removing extent record
4650 * so er_extoffs don't get modified in
4651 * xfs_iext_irec_remove.
4652 */
4653 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4654 erp_next->er_extbuf = NULL;
4655 xfs_iext_irec_remove(ifp, erp_idx + 1);
4656 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4657 } else {
4658 erp_idx++;
4659 }
4660 }
4661}
4662
4663/*
4664 * Fully compact the extent records managed by the indirection array.
4665 */
4666void
4667xfs_iext_irec_compact_full(
4668 xfs_ifork_t *ifp) /* inode fork pointer */
4669{
4670 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4671 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4672 int erp_idx = 0; /* extent irec index */
4673 int ext_avail; /* empty entries in ex list */
4674 int ext_diff; /* number of exts to add */
4675 int nlists; /* number of irec's (ex lists) */
4676
4677 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4678 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4679 erp = ifp->if_u1.if_ext_irec;
4680 ep = &erp->er_extbuf[erp->er_extcount];
4681 erp_next = erp + 1;
4682 ep_next = erp_next->er_extbuf;
4683 while (erp_idx < nlists - 1) {
4684 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4685 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4686 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4687 erp->er_extcount += ext_diff;
4688 erp_next->er_extcount -= ext_diff;
4689 /* Remove next page */
4690 if (erp_next->er_extcount == 0) {
4691 /*
4692 * Free page before removing extent record
4693 * so er_extoffs don't get modified in
4694 * xfs_iext_irec_remove.
4695 */
4696 kmem_free(erp_next->er_extbuf,
4697 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4698 erp_next->er_extbuf = NULL;
4699 xfs_iext_irec_remove(ifp, erp_idx + 1);
4700 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4701 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4702 /* Update next page */
4703 } else {
4704 /* Move rest of page up to become next new page */
4705 memmove(erp_next->er_extbuf, ep_next,
4706 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4707 ep_next = erp_next->er_extbuf;
4708 memset(&ep_next[erp_next->er_extcount], 0,
4709 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4710 sizeof(xfs_bmbt_rec_t));
4711 }
4712 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4713 erp_idx++;
4714 if (erp_idx < nlists)
4715 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4716 else
4717 break;
4718 }
4719 ep = &erp->er_extbuf[erp->er_extcount];
4720 erp_next = erp + 1;
4721 ep_next = erp_next->er_extbuf;
4722 }
4723}
4724
4725/*
4726 * This is called to update the er_extoff field in the indirection
4727 * array when extents have been added or removed from one of the
4728 * extent lists. erp_idx contains the irec index to begin updating
4729 * at and ext_diff contains the number of extents that were added
4730 * or removed.
4731 */
4732void
4733xfs_iext_irec_update_extoffs(
4734 xfs_ifork_t *ifp, /* inode fork pointer */
4735 int erp_idx, /* irec index to update */
4736 int ext_diff) /* number of new extents */
4737{
4738 int i; /* loop counter */
4739 int nlists; /* number of irec's (ex lists */
4740
4741 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4742 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4743 for (i = erp_idx; i < nlists; i++) {
4744 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4745 }
4746}