blob: eacd614791121c720e09340a51ec49856011cdd9 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * random.c -- A strong random number generator
3 *
Matt Mackall9e95ce22005-04-16 15:25:56 -07004 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
Linus Torvaldsa2080a62012-07-04 11:16:01 -0400128 * void add_device_randomness(const void *buf, unsigned int size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400131 * void add_interrupt_randomness(int irq, int irq_flags);
Jarod Wilson442a4ff2011-02-21 21:43:10 +1100132 * void add_disk_randomness(struct gendisk *disk);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700133 *
Linus Torvaldsa2080a62012-07-04 11:16:01 -0400134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
Jarod Wilson442a4ff2011-02-21 21:43:10 +1100148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
Andrea Righi27ac7922008-07-23 21:28:13 -0700251#include <linux/mm.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
Neil Horman5b739ef2009-06-18 19:50:21 +0800255#include <linux/fips.h>
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400256#include <linux/ptrace.h>
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400257#include <linux/kmemcheck.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258
Yinghai Lud178a1e2009-01-11 00:35:42 -0800259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400266#include <asm/irq_regs.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267#include <asm/io.h>
268
269/*
270 * Configuration information
271 */
272#define INPUT_POOL_WORDS 128
273#define OUTPUT_POOL_WORDS 32
274#define SEC_XFER_SIZE 512
Matt Mackalle954bc92010-05-20 19:55:01 +1000275#define EXTRACT_SIZE 10
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
277/*
278 * The minimum number of bits of entropy before we wake up a read on
279 * /dev/random. Should be enough to do a significant reseed.
280 */
281static int random_read_wakeup_thresh = 64;
282
283/*
284 * If the entropy count falls under this number of bits, then we
285 * should wake up processes which are selecting or polling on write
286 * access to /dev/random.
287 */
288static int random_write_wakeup_thresh = 128;
289
290/*
291 * When the input pool goes over trickle_thresh, start dropping most
292 * samples to avoid wasting CPU time and reduce lock contention.
293 */
294
Christoph Lameter6c036522005-07-07 17:56:59 -0700295static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700296
Matt Mackall90b75ee2008-04-29 01:02:55 -0700297static DEFINE_PER_CPU(int, trickle_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298
299/*
300 * A pool of size .poolwords is stirred with a primitive polynomial
301 * of degree .poolwords over GF(2). The taps for various sizes are
302 * defined below. They are chosen to be evenly spaced (minimum RMS
303 * distance from evenly spaced; the numbers in the comments are a
304 * scaled squared error sum) except for the last tap, which is 1 to
305 * get the twisting happening as fast as possible.
306 */
307static struct poolinfo {
308 int poolwords;
309 int tap1, tap2, tap3, tap4, tap5;
310} poolinfo_table[] = {
311 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
312 { 128, 103, 76, 51, 25, 1 },
313 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
314 { 32, 26, 20, 14, 7, 1 },
315#if 0
316 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
317 { 2048, 1638, 1231, 819, 411, 1 },
318
319 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
320 { 1024, 817, 615, 412, 204, 1 },
321
322 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
323 { 1024, 819, 616, 410, 207, 2 },
324
325 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
326 { 512, 411, 308, 208, 104, 1 },
327
328 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
329 { 512, 409, 307, 206, 102, 2 },
330 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
331 { 512, 409, 309, 205, 103, 2 },
332
333 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
334 { 256, 205, 155, 101, 52, 1 },
335
336 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
337 { 128, 103, 78, 51, 27, 2 },
338
339 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
340 { 64, 52, 39, 26, 14, 1 },
341#endif
342};
343
344#define POOLBITS poolwords*32
345#define POOLBYTES poolwords*4
346
347/*
348 * For the purposes of better mixing, we use the CRC-32 polynomial as
349 * well to make a twisted Generalized Feedback Shift Reigster
350 *
351 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
352 * Transactions on Modeling and Computer Simulation 2(3):179-194.
353 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
354 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
355 *
356 * Thanks to Colin Plumb for suggesting this.
357 *
358 * We have not analyzed the resultant polynomial to prove it primitive;
359 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
360 * of a random large-degree polynomial over GF(2) are more than large enough
361 * that periodicity is not a concern.
362 *
363 * The input hash is much less sensitive than the output hash. All
364 * that we want of it is that it be a good non-cryptographic hash;
365 * i.e. it not produce collisions when fed "random" data of the sort
366 * we expect to see. As long as the pool state differs for different
367 * inputs, we have preserved the input entropy and done a good job.
368 * The fact that an intelligent attacker can construct inputs that
369 * will produce controlled alterations to the pool's state is not
370 * important because we don't consider such inputs to contribute any
371 * randomness. The only property we need with respect to them is that
372 * the attacker can't increase his/her knowledge of the pool's state.
373 * Since all additions are reversible (knowing the final state and the
374 * input, you can reconstruct the initial state), if an attacker has
375 * any uncertainty about the initial state, he/she can only shuffle
376 * that uncertainty about, but never cause any collisions (which would
377 * decrease the uncertainty).
378 *
379 * The chosen system lets the state of the pool be (essentially) the input
380 * modulo the generator polymnomial. Now, for random primitive polynomials,
381 * this is a universal class of hash functions, meaning that the chance
382 * of a collision is limited by the attacker's knowledge of the generator
383 * polynomail, so if it is chosen at random, an attacker can never force
384 * a collision. Here, we use a fixed polynomial, but we *can* assume that
385 * ###--> it is unknown to the processes generating the input entropy. <-###
386 * Because of this important property, this is a good, collision-resistant
387 * hash; hash collisions will occur no more often than chance.
388 */
389
390/*
391 * Static global variables
392 */
393static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
394static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700395static struct fasync_struct *fasync;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396
397#if 0
Rusty Russell90ab5ee2012-01-13 09:32:20 +1030398static bool debug;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399module_param(debug, bool, 0644);
Matt Mackall90b75ee2008-04-29 01:02:55 -0700400#define DEBUG_ENT(fmt, arg...) do { \
401 if (debug) \
402 printk(KERN_DEBUG "random %04d %04d %04d: " \
403 fmt,\
404 input_pool.entropy_count,\
405 blocking_pool.entropy_count,\
406 nonblocking_pool.entropy_count,\
407 ## arg); } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408#else
409#define DEBUG_ENT(fmt, arg...) do {} while (0)
410#endif
411
412/**********************************************************************
413 *
414 * OS independent entropy store. Here are the functions which handle
415 * storing entropy in an entropy pool.
416 *
417 **********************************************************************/
418
419struct entropy_store;
420struct entropy_store {
Matt Mackall43358202008-04-29 01:03:01 -0700421 /* read-only data: */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700422 struct poolinfo *poolinfo;
423 __u32 *pool;
424 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 struct entropy_store *pull;
Richard Kennedy4015d9a2010-07-31 19:58:00 +0800426 int limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427
428 /* read-write data: */
Matt Mackall43358202008-04-29 01:03:01 -0700429 spinlock_t lock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430 unsigned add_ptr;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400431 unsigned input_rotate;
Matt Mackallcda796a2009-01-06 14:42:55 -0800432 int entropy_count;
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400433 int entropy_total;
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400434 unsigned int initialized:1;
Matt Mackalle954bc92010-05-20 19:55:01 +1000435 __u8 last_data[EXTRACT_SIZE];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436};
437
438static __u32 input_pool_data[INPUT_POOL_WORDS];
439static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
440static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
441
442static struct entropy_store input_pool = {
443 .poolinfo = &poolinfo_table[0],
444 .name = "input",
445 .limit = 1,
Ingo Molnare4d91912006-07-03 00:24:34 -0700446 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 .pool = input_pool_data
448};
449
450static struct entropy_store blocking_pool = {
451 .poolinfo = &poolinfo_table[1],
452 .name = "blocking",
453 .limit = 1,
454 .pull = &input_pool,
Ingo Molnare4d91912006-07-03 00:24:34 -0700455 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 .pool = blocking_pool_data
457};
458
459static struct entropy_store nonblocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "nonblocking",
462 .pull = &input_pool,
Ingo Molnare4d91912006-07-03 00:24:34 -0700463 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464 .pool = nonblocking_pool_data
465};
466
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400467static __u32 const twist_table[8] = {
468 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
469 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
470
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471/*
Matt Mackalle68e5b62008-04-29 01:03:05 -0700472 * This function adds bytes into the entropy "pool". It does not
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473 * update the entropy estimate. The caller should call
Matt Mackalladc782d2008-04-29 01:03:07 -0700474 * credit_entropy_bits if this is appropriate.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475 *
476 * The pool is stirred with a primitive polynomial of the appropriate
477 * degree, and then twisted. We twist by three bits at a time because
478 * it's cheap to do so and helps slightly in the expected case where
479 * the entropy is concentrated in the low-order bits.
480 */
Theodore Ts'o902c0982012-07-04 10:38:30 -0400481static void __mix_pool_bytes(struct entropy_store *r, const void *in,
482 int nbytes, __u8 out[64])
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483{
Matt Mackall993ba212008-04-29 01:03:04 -0700484 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
Matt Mackallfeee7692008-04-29 01:03:02 -0700485 int input_rotate;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486 int wordmask = r->poolinfo->poolwords - 1;
Matt Mackalle68e5b62008-04-29 01:03:05 -0700487 const char *bytes = in;
Matt Mackall6d38b822008-04-29 01:03:03 -0700488 __u32 w;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700489
Linus Torvalds1da177e2005-04-16 15:20:36 -0700490 tap1 = r->poolinfo->tap1;
491 tap2 = r->poolinfo->tap2;
492 tap3 = r->poolinfo->tap3;
493 tap4 = r->poolinfo->tap4;
494 tap5 = r->poolinfo->tap5;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495
Theodore Ts'o902c0982012-07-04 10:38:30 -0400496 smp_rmb();
497 input_rotate = ACCESS_ONCE(r->input_rotate);
498 i = ACCESS_ONCE(r->add_ptr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499
Matt Mackalle68e5b62008-04-29 01:03:05 -0700500 /* mix one byte at a time to simplify size handling and churn faster */
501 while (nbytes--) {
502 w = rol32(*bytes++, input_rotate & 31);
Matt Mackall993ba212008-04-29 01:03:04 -0700503 i = (i - 1) & wordmask;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504
505 /* XOR in the various taps */
Matt Mackall993ba212008-04-29 01:03:04 -0700506 w ^= r->pool[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 w ^= r->pool[(i + tap1) & wordmask];
508 w ^= r->pool[(i + tap2) & wordmask];
509 w ^= r->pool[(i + tap3) & wordmask];
510 w ^= r->pool[(i + tap4) & wordmask];
511 w ^= r->pool[(i + tap5) & wordmask];
Matt Mackall993ba212008-04-29 01:03:04 -0700512
513 /* Mix the result back in with a twist */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
Matt Mackallfeee7692008-04-29 01:03:02 -0700515
516 /*
517 * Normally, we add 7 bits of rotation to the pool.
518 * At the beginning of the pool, add an extra 7 bits
519 * rotation, so that successive passes spread the
520 * input bits across the pool evenly.
521 */
522 input_rotate += i ? 7 : 14;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523 }
524
Theodore Ts'o902c0982012-07-04 10:38:30 -0400525 ACCESS_ONCE(r->input_rotate) = input_rotate;
526 ACCESS_ONCE(r->add_ptr) = i;
527 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
Matt Mackall993ba212008-04-29 01:03:04 -0700529 if (out)
530 for (j = 0; j < 16; j++)
Matt Mackalle68e5b62008-04-29 01:03:05 -0700531 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Theodore Ts'o902c0982012-07-04 10:38:30 -0400534static void mix_pool_bytes(struct entropy_store *r, const void *in,
535 int nbytes, __u8 out[64])
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536{
Theodore Ts'o902c0982012-07-04 10:38:30 -0400537 unsigned long flags;
538
539 spin_lock_irqsave(&r->lock, flags);
540 __mix_pool_bytes(r, in, nbytes, out);
541 spin_unlock_irqrestore(&r->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542}
543
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400544struct fast_pool {
545 __u32 pool[4];
546 unsigned long last;
547 unsigned short count;
548 unsigned char rotate;
549 unsigned char last_timer_intr;
550};
551
552/*
553 * This is a fast mixing routine used by the interrupt randomness
554 * collector. It's hardcoded for an 128 bit pool and assumes that any
555 * locks that might be needed are taken by the caller.
556 */
557static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
558{
559 const char *bytes = in;
560 __u32 w;
561 unsigned i = f->count;
562 unsigned input_rotate = f->rotate;
563
564 while (nbytes--) {
565 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
566 f->pool[(i + 1) & 3];
567 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
568 input_rotate += (i++ & 3) ? 7 : 14;
569 }
570 f->count = i;
571 f->rotate = input_rotate;
572}
573
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574/*
575 * Credit (or debit) the entropy store with n bits of entropy
576 */
Matt Mackalladc782d2008-04-29 01:03:07 -0700577static void credit_entropy_bits(struct entropy_store *r, int nbits)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578{
Theodore Ts'o902c0982012-07-04 10:38:30 -0400579 int entropy_count, orig;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700580
Matt Mackalladc782d2008-04-29 01:03:07 -0700581 if (!nbits)
582 return;
583
Matt Mackalladc782d2008-04-29 01:03:07 -0700584 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
Theodore Ts'o902c0982012-07-04 10:38:30 -0400585retry:
586 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
Andrew Morton8b76f462008-09-02 14:36:14 -0700587 entropy_count += nbits;
588 if (entropy_count < 0) {
Matt Mackalladc782d2008-04-29 01:03:07 -0700589 DEBUG_ENT("negative entropy/overflow\n");
Andrew Morton8b76f462008-09-02 14:36:14 -0700590 entropy_count = 0;
591 } else if (entropy_count > r->poolinfo->POOLBITS)
592 entropy_count = r->poolinfo->POOLBITS;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400593 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
594 goto retry;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400596 if (!r->initialized && nbits > 0) {
597 r->entropy_total += nbits;
598 if (r->entropy_total > 128)
599 r->initialized = 1;
600 }
601
Matt Mackall88c730d2008-04-29 01:02:56 -0700602 /* should we wake readers? */
Andrew Morton8b76f462008-09-02 14:36:14 -0700603 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
Matt Mackall88c730d2008-04-29 01:02:56 -0700604 wake_up_interruptible(&random_read_wait);
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700605 kill_fasync(&fasync, SIGIO, POLL_IN);
606 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607}
608
609/*********************************************************************
610 *
611 * Entropy input management
612 *
613 *********************************************************************/
614
615/* There is one of these per entropy source */
616struct timer_rand_state {
617 cycles_t last_time;
Matt Mackall90b75ee2008-04-29 01:02:55 -0700618 long last_delta, last_delta2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619 unsigned dont_count_entropy:1;
620};
621
Yinghai Lud7e51e62009-01-07 15:03:13 -0800622#ifndef CONFIG_GENERIC_HARDIRQS
Yinghai Lu2f983572009-01-03 00:06:34 -0800623
624static struct timer_rand_state *irq_timer_state[NR_IRQS];
625
626static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
627{
628 return irq_timer_state[irq];
629}
630
631static void set_timer_rand_state(unsigned int irq,
632 struct timer_rand_state *state)
633{
634 irq_timer_state[irq] = state;
635}
636
637#else
638
639static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
640{
641 struct irq_desc *desc;
642
643 desc = irq_to_desc(irq);
644
645 return desc->timer_rand_state;
646}
647
648static void set_timer_rand_state(unsigned int irq,
649 struct timer_rand_state *state)
650{
651 struct irq_desc *desc;
652
653 desc = irq_to_desc(irq);
654
655 desc->timer_rand_state = state;
656}
Yinghai Lu0b8f1ef2008-12-05 18:58:31 -0800657#endif
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700658
Linus Torvaldsa2080a62012-07-04 11:16:01 -0400659/*
660 * Add device- or boot-specific data to the input and nonblocking
661 * pools to help initialize them to unique values.
662 *
663 * None of this adds any entropy, it is meant to avoid the
664 * problem of the nonblocking pool having similar initial state
665 * across largely identical devices.
666 */
667void add_device_randomness(const void *buf, unsigned int size)
668{
669 unsigned long time = get_cycles() ^ jiffies;
670
671 mix_pool_bytes(&input_pool, buf, size, NULL);
672 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
673 mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
674 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
675}
676EXPORT_SYMBOL(add_device_randomness);
677
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700678static struct timer_rand_state input_timer_state;
679
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680/*
681 * This function adds entropy to the entropy "pool" by using timing
682 * delays. It uses the timer_rand_state structure to make an estimate
683 * of how many bits of entropy this call has added to the pool.
684 *
685 * The number "num" is also added to the pool - it should somehow describe
686 * the type of event which just happened. This is currently 0-255 for
687 * keyboard scan codes, and 256 upwards for interrupts.
688 *
689 */
690static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
691{
692 struct {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700693 long jiffies;
Linus Torvaldscf833d02011-12-22 11:36:22 -0800694 unsigned cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695 unsigned num;
696 } sample;
697 long delta, delta2, delta3;
698
699 preempt_disable();
700 /* if over the trickle threshold, use only 1 in 4096 samples */
701 if (input_pool.entropy_count > trickle_thresh &&
Christoph Lameterb29c6172010-12-06 11:40:06 -0600702 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700703 goto out;
704
705 sample.jiffies = jiffies;
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400706 sample.cycles = get_cycles();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707 sample.num = num;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400708 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709
710 /*
711 * Calculate number of bits of randomness we probably added.
712 * We take into account the first, second and third-order deltas
713 * in order to make our estimate.
714 */
715
716 if (!state->dont_count_entropy) {
717 delta = sample.jiffies - state->last_time;
718 state->last_time = sample.jiffies;
719
720 delta2 = delta - state->last_delta;
721 state->last_delta = delta;
722
723 delta3 = delta2 - state->last_delta2;
724 state->last_delta2 = delta2;
725
726 if (delta < 0)
727 delta = -delta;
728 if (delta2 < 0)
729 delta2 = -delta2;
730 if (delta3 < 0)
731 delta3 = -delta3;
732 if (delta > delta2)
733 delta = delta2;
734 if (delta > delta3)
735 delta = delta3;
736
737 /*
738 * delta is now minimum absolute delta.
739 * Round down by 1 bit on general principles,
740 * and limit entropy entimate to 12 bits.
741 */
Matt Mackalladc782d2008-04-29 01:03:07 -0700742 credit_entropy_bits(&input_pool,
743 min_t(int, fls(delta>>1), 11));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700745out:
746 preempt_enable();
747}
748
Stephen Hemmingerd2515752006-01-11 12:17:38 -0800749void add_input_randomness(unsigned int type, unsigned int code,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700750 unsigned int value)
751{
752 static unsigned char last_value;
753
754 /* ignore autorepeat and the like */
755 if (value == last_value)
756 return;
757
758 DEBUG_ENT("input event\n");
759 last_value = value;
760 add_timer_randomness(&input_timer_state,
761 (type << 4) ^ code ^ (code >> 4) ^ value);
762}
Dmitry Torokhov80fc9f52006-10-11 01:43:58 -0400763EXPORT_SYMBOL_GPL(add_input_randomness);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700764
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400765static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
766
767void add_interrupt_randomness(int irq, int irq_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768{
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400769 struct entropy_store *r;
770 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
771 struct pt_regs *regs = get_irq_regs();
772 unsigned long now = jiffies;
773 __u32 input[4], cycles = get_cycles();
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700774
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400775 input[0] = cycles ^ jiffies;
776 input[1] = irq;
777 if (regs) {
778 __u64 ip = instruction_pointer(regs);
779 input[2] = ip;
780 input[3] = ip >> 32;
781 }
Yinghai Lu3060d6f2008-08-19 20:50:08 -0700782
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400783 fast_mix(fast_pool, input, sizeof(input));
784
785 if ((fast_pool->count & 1023) &&
786 !time_after(now, fast_pool->last + HZ))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787 return;
788
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400789 fast_pool->last = now;
790
791 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
Theodore Ts'o902c0982012-07-04 10:38:30 -0400792 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
Theodore Ts'o775f4b22012-07-02 07:52:16 -0400793 /*
794 * If we don't have a valid cycle counter, and we see
795 * back-to-back timer interrupts, then skip giving credit for
796 * any entropy.
797 */
798 if (cycles == 0) {
799 if (irq_flags & __IRQF_TIMER) {
800 if (fast_pool->last_timer_intr)
801 return;
802 fast_pool->last_timer_intr = 1;
803 } else
804 fast_pool->last_timer_intr = 0;
805 }
806 credit_entropy_bits(r, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700807}
808
David Howells93614012006-09-30 20:45:40 +0200809#ifdef CONFIG_BLOCK
Linus Torvalds1da177e2005-04-16 15:20:36 -0700810void add_disk_randomness(struct gendisk *disk)
811{
812 if (!disk || !disk->random)
813 return;
814 /* first major is 1, so we get >= 0x200 here */
Tejun Heof331c022008-09-03 09:01:48 +0200815 DEBUG_ENT("disk event %d:%d\n",
816 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817
Tejun Heof331c022008-09-03 09:01:48 +0200818 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700819}
David Howells93614012006-09-30 20:45:40 +0200820#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822/*********************************************************************
823 *
824 * Entropy extraction routines
825 *
826 *********************************************************************/
827
Matt Mackall90b75ee2008-04-29 01:02:55 -0700828static ssize_t extract_entropy(struct entropy_store *r, void *buf,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700829 size_t nbytes, int min, int rsvd);
830
831/*
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300832 * This utility inline function is responsible for transferring entropy
Linus Torvalds1da177e2005-04-16 15:20:36 -0700833 * from the primary pool to the secondary extraction pool. We make
834 * sure we pull enough for a 'catastrophic reseed'.
835 */
836static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
837{
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400838 union {
839 __u32 tmp[OUTPUT_POOL_WORDS];
840 long hwrand[4];
841 } u;
842 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843
844 if (r->pull && r->entropy_count < nbytes * 8 &&
845 r->entropy_count < r->poolinfo->POOLBITS) {
Matt Mackall5a021e92007-07-19 11:30:14 -0700846 /* If we're limited, always leave two wakeup worth's BITS */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700847 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
Matt Mackall5a021e92007-07-19 11:30:14 -0700848 int bytes = nbytes;
849
850 /* pull at least as many as BYTES as wakeup BITS */
851 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
852 /* but never more than the buffer size */
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400853 bytes = min_t(int, bytes, sizeof(u.tmp));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854
855 DEBUG_ENT("going to reseed %s with %d bits "
856 "(%d of %d requested)\n",
857 r->name, bytes * 8, nbytes * 8, r->entropy_count);
858
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400859 bytes = extract_entropy(r->pull, u.tmp, bytes,
Matt Mackall90b75ee2008-04-29 01:02:55 -0700860 random_read_wakeup_thresh / 8, rsvd);
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400861 mix_pool_bytes(r, u.tmp, bytes, NULL);
Matt Mackalladc782d2008-04-29 01:03:07 -0700862 credit_entropy_bits(r, bytes*8);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863 }
Theodore Ts'oe6d49472012-07-05 10:21:01 -0400864 kmemcheck_mark_initialized(&u.hwrand, sizeof(u.hwrand));
865 for (i = 0; i < 4; i++)
866 if (arch_get_random_long(&u.hwrand[i]))
867 break;
868 if (i)
869 mix_pool_bytes(r, &u.hwrand, sizeof(u.hwrand), 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870}
871
872/*
873 * These functions extracts randomness from the "entropy pool", and
874 * returns it in a buffer.
875 *
876 * The min parameter specifies the minimum amount we can pull before
877 * failing to avoid races that defeat catastrophic reseeding while the
878 * reserved parameter indicates how much entropy we must leave in the
879 * pool after each pull to avoid starving other readers.
880 *
881 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
882 */
883
884static size_t account(struct entropy_store *r, size_t nbytes, int min,
885 int reserved)
886{
887 unsigned long flags;
888
Linus Torvalds1da177e2005-04-16 15:20:36 -0700889 /* Hold lock while accounting */
890 spin_lock_irqsave(&r->lock, flags);
891
Matt Mackallcda796a2009-01-06 14:42:55 -0800892 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893 DEBUG_ENT("trying to extract %d bits from %s\n",
894 nbytes * 8, r->name);
895
896 /* Can we pull enough? */
897 if (r->entropy_count / 8 < min + reserved) {
898 nbytes = 0;
899 } else {
900 /* If limited, never pull more than available */
901 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
902 nbytes = r->entropy_count/8 - reserved;
903
Matt Mackall90b75ee2008-04-29 01:02:55 -0700904 if (r->entropy_count / 8 >= nbytes + reserved)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905 r->entropy_count -= nbytes*8;
906 else
907 r->entropy_count = reserved;
908
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700909 if (r->entropy_count < random_write_wakeup_thresh) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910 wake_up_interruptible(&random_write_wait);
Jeff Dike9a6f70b2008-04-29 01:03:08 -0700911 kill_fasync(&fasync, SIGIO, POLL_OUT);
912 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700913 }
914
915 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
916 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
917
918 spin_unlock_irqrestore(&r->lock, flags);
919
920 return nbytes;
921}
922
923static void extract_buf(struct entropy_store *r, __u8 *out)
924{
Matt Mackall602b6ae2007-05-29 21:54:27 -0500925 int i;
Matt Mackalle68e5b62008-04-29 01:03:05 -0700926 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
927 __u8 extract[64];
Theodore Ts'o902c0982012-07-04 10:38:30 -0400928 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700930 /* Generate a hash across the pool, 16 words (512 bits) at a time */
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700931 sha_init(hash);
Theodore Ts'o902c0982012-07-04 10:38:30 -0400932 spin_lock_irqsave(&r->lock, flags);
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700933 for (i = 0; i < r->poolinfo->poolwords; i += 16)
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700934 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700935
936 /*
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700937 * We mix the hash back into the pool to prevent backtracking
938 * attacks (where the attacker knows the state of the pool
939 * plus the current outputs, and attempts to find previous
940 * ouputs), unless the hash function can be inverted. By
941 * mixing at least a SHA1 worth of hash data back, we make
942 * brute-forcing the feedback as hard as brute-forcing the
943 * hash.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 */
Theodore Ts'o902c0982012-07-04 10:38:30 -0400945 __mix_pool_bytes(r, hash, sizeof(hash), extract);
946 spin_unlock_irqrestore(&r->lock, flags);
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700947
948 /*
949 * To avoid duplicates, we atomically extract a portion of the
950 * pool while mixing, and hash one final time.
951 */
Matt Mackalle68e5b62008-04-29 01:03:05 -0700952 sha_transform(hash, extract, workspace);
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700953 memset(extract, 0, sizeof(extract));
954 memset(workspace, 0, sizeof(workspace));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700955
956 /*
Matt Mackall1c0ad3d2008-04-29 01:03:00 -0700957 * In case the hash function has some recognizable output
958 * pattern, we fold it in half. Thus, we always feed back
959 * twice as much data as we output.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960 */
Matt Mackallffd8d3f2008-04-29 01:02:59 -0700961 hash[0] ^= hash[3];
962 hash[1] ^= hash[4];
963 hash[2] ^= rol32(hash[2], 16);
964 memcpy(out, hash, EXTRACT_SIZE);
965 memset(hash, 0, sizeof(hash));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966}
967
Matt Mackall90b75ee2008-04-29 01:02:55 -0700968static ssize_t extract_entropy(struct entropy_store *r, void *buf,
Theodore Ts'o902c0982012-07-04 10:38:30 -0400969 size_t nbytes, int min, int reserved)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970{
971 ssize_t ret = 0, i;
972 __u8 tmp[EXTRACT_SIZE];
973
974 xfer_secondary_pool(r, nbytes);
975 nbytes = account(r, nbytes, min, reserved);
976
977 while (nbytes) {
978 extract_buf(r, tmp);
Neil Horman5b739ef2009-06-18 19:50:21 +0800979
Matt Mackalle954bc92010-05-20 19:55:01 +1000980 if (fips_enabled) {
Theodore Ts'o902c0982012-07-04 10:38:30 -0400981 unsigned long flags;
982
Neil Horman5b739ef2009-06-18 19:50:21 +0800983 spin_lock_irqsave(&r->lock, flags);
984 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
985 panic("Hardware RNG duplicated output!\n");
986 memcpy(r->last_data, tmp, EXTRACT_SIZE);
987 spin_unlock_irqrestore(&r->lock, flags);
988 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989 i = min_t(int, nbytes, EXTRACT_SIZE);
990 memcpy(buf, tmp, i);
991 nbytes -= i;
992 buf += i;
993 ret += i;
994 }
995
996 /* Wipe data just returned from memory */
997 memset(tmp, 0, sizeof(tmp));
998
999 return ret;
1000}
1001
1002static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1003 size_t nbytes)
1004{
1005 ssize_t ret = 0, i;
1006 __u8 tmp[EXTRACT_SIZE];
1007
1008 xfer_secondary_pool(r, nbytes);
1009 nbytes = account(r, nbytes, 0, 0);
1010
1011 while (nbytes) {
1012 if (need_resched()) {
1013 if (signal_pending(current)) {
1014 if (ret == 0)
1015 ret = -ERESTARTSYS;
1016 break;
1017 }
1018 schedule();
1019 }
1020
1021 extract_buf(r, tmp);
1022 i = min_t(int, nbytes, EXTRACT_SIZE);
1023 if (copy_to_user(buf, tmp, i)) {
1024 ret = -EFAULT;
1025 break;
1026 }
1027
1028 nbytes -= i;
1029 buf += i;
1030 ret += i;
1031 }
1032
1033 /* Wipe data just returned from memory */
1034 memset(tmp, 0, sizeof(tmp));
1035
1036 return ret;
1037}
1038
1039/*
1040 * This function is the exported kernel interface. It returns some
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001041 * number of good random numbers, suitable for key generation, seeding
1042 * TCP sequence numbers, etc. It does not use the hw random number
1043 * generator, if available; use get_random_bytes_arch() for that.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044 */
1045void get_random_bytes(void *buf, int nbytes)
1046{
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001047 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1048}
1049EXPORT_SYMBOL(get_random_bytes);
1050
1051/*
1052 * This function will use the architecture-specific hardware random
1053 * number generator if it is available. The arch-specific hw RNG will
1054 * almost certainly be faster than what we can do in software, but it
1055 * is impossible to verify that it is implemented securely (as
1056 * opposed, to, say, the AES encryption of a sequence number using a
1057 * key known by the NSA). So it's useful if we need the speed, but
1058 * only if we're willing to trust the hardware manufacturer not to
1059 * have put in a back door.
1060 */
1061void get_random_bytes_arch(void *buf, int nbytes)
1062{
H. Peter Anvin63d77172011-07-31 13:54:50 -07001063 char *p = buf;
1064
1065 while (nbytes) {
1066 unsigned long v;
1067 int chunk = min(nbytes, (int)sizeof(unsigned long));
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001068
H. Peter Anvin63d77172011-07-31 13:54:50 -07001069 if (!arch_get_random_long(&v))
1070 break;
1071
Luck, Tonybd29e562011-11-16 10:50:56 -08001072 memcpy(p, &v, chunk);
H. Peter Anvin63d77172011-07-31 13:54:50 -07001073 p += chunk;
1074 nbytes -= chunk;
1075 }
1076
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001077 if (nbytes)
1078 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079}
Theodore Ts'oc2557a32012-07-05 10:35:23 -04001080EXPORT_SYMBOL(get_random_bytes_arch);
1081
Linus Torvalds1da177e2005-04-16 15:20:36 -07001082
1083/*
1084 * init_std_data - initialize pool with system data
1085 *
1086 * @r: pool to initialize
1087 *
1088 * This function clears the pool's entropy count and mixes some system
1089 * data into the pool to prepare it for use. The pool is not cleared
1090 * as that can only decrease the entropy in the pool.
1091 */
1092static void init_std_data(struct entropy_store *r)
1093{
Theodore Ts'o3e88bdf2011-12-22 16:28:01 -05001094 int i;
Theodore Ts'o902c0982012-07-04 10:38:30 -04001095 ktime_t now = ktime_get_real();
1096 unsigned long rv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098 r->entropy_count = 0;
Theodore Ts'o775f4b22012-07-02 07:52:16 -04001099 r->entropy_total = 0;
Theodore Ts'o902c0982012-07-04 10:38:30 -04001100 mix_pool_bytes(r, &now, sizeof(now), NULL);
1101 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1102 if (!arch_get_random_long(&rv))
Theodore Ts'o3e88bdf2011-12-22 16:28:01 -05001103 break;
Theodore Ts'o902c0982012-07-04 10:38:30 -04001104 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
Theodore Ts'o3e88bdf2011-12-22 16:28:01 -05001105 }
Theodore Ts'o902c0982012-07-04 10:38:30 -04001106 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001107}
1108
Matt Mackall53c3f632008-04-29 01:02:58 -07001109static int rand_initialize(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110{
1111 init_std_data(&input_pool);
1112 init_std_data(&blocking_pool);
1113 init_std_data(&nonblocking_pool);
1114 return 0;
1115}
1116module_init(rand_initialize);
1117
1118void rand_initialize_irq(int irq)
1119{
1120 struct timer_rand_state *state;
1121
Yinghai Lu3060d6f2008-08-19 20:50:08 -07001122 state = get_timer_rand_state(irq);
1123
1124 if (state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125 return;
1126
1127 /*
Eric Dumazetf8595812007-03-28 14:22:33 -07001128 * If kzalloc returns null, we just won't use that entropy
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129 * source.
1130 */
Eric Dumazetf8595812007-03-28 14:22:33 -07001131 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1132 if (state)
Yinghai Lu3060d6f2008-08-19 20:50:08 -07001133 set_timer_rand_state(irq, state);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134}
1135
David Howells93614012006-09-30 20:45:40 +02001136#ifdef CONFIG_BLOCK
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137void rand_initialize_disk(struct gendisk *disk)
1138{
1139 struct timer_rand_state *state;
1140
1141 /*
Eric Dumazetf8595812007-03-28 14:22:33 -07001142 * If kzalloc returns null, we just won't use that entropy
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143 * source.
1144 */
Eric Dumazetf8595812007-03-28 14:22:33 -07001145 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1146 if (state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147 disk->random = state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148}
David Howells93614012006-09-30 20:45:40 +02001149#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150
1151static ssize_t
Matt Mackall90b75ee2008-04-29 01:02:55 -07001152random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153{
1154 ssize_t n, retval = 0, count = 0;
1155
1156 if (nbytes == 0)
1157 return 0;
1158
1159 while (nbytes > 0) {
1160 n = nbytes;
1161 if (n > SEC_XFER_SIZE)
1162 n = SEC_XFER_SIZE;
1163
1164 DEBUG_ENT("reading %d bits\n", n*8);
1165
1166 n = extract_entropy_user(&blocking_pool, buf, n);
1167
1168 DEBUG_ENT("read got %d bits (%d still needed)\n",
1169 n*8, (nbytes-n)*8);
1170
1171 if (n == 0) {
1172 if (file->f_flags & O_NONBLOCK) {
1173 retval = -EAGAIN;
1174 break;
1175 }
1176
1177 DEBUG_ENT("sleeping?\n");
1178
1179 wait_event_interruptible(random_read_wait,
1180 input_pool.entropy_count >=
1181 random_read_wakeup_thresh);
1182
1183 DEBUG_ENT("awake\n");
1184
1185 if (signal_pending(current)) {
1186 retval = -ERESTARTSYS;
1187 break;
1188 }
1189
1190 continue;
1191 }
1192
1193 if (n < 0) {
1194 retval = n;
1195 break;
1196 }
1197 count += n;
1198 buf += n;
1199 nbytes -= n;
1200 break; /* This break makes the device work */
1201 /* like a named pipe */
1202 }
1203
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204 return (count ? count : retval);
1205}
1206
1207static ssize_t
Matt Mackall90b75ee2008-04-29 01:02:55 -07001208urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209{
1210 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1211}
1212
1213static unsigned int
1214random_poll(struct file *file, poll_table * wait)
1215{
1216 unsigned int mask;
1217
1218 poll_wait(file, &random_read_wait, wait);
1219 poll_wait(file, &random_write_wait, wait);
1220 mask = 0;
1221 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1222 mask |= POLLIN | POLLRDNORM;
1223 if (input_pool.entropy_count < random_write_wakeup_thresh)
1224 mask |= POLLOUT | POLLWRNORM;
1225 return mask;
1226}
1227
Matt Mackall7f397dc2007-05-29 21:58:10 -05001228static int
1229write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1230{
1231 size_t bytes;
1232 __u32 buf[16];
1233 const char __user *p = buffer;
1234
1235 while (count > 0) {
1236 bytes = min(count, sizeof(buf));
1237 if (copy_from_user(&buf, p, bytes))
1238 return -EFAULT;
1239
1240 count -= bytes;
1241 p += bytes;
1242
Theodore Ts'o902c0982012-07-04 10:38:30 -04001243 mix_pool_bytes(r, buf, bytes, NULL);
Matt Mackall91f3f1e2008-02-06 01:37:20 -08001244 cond_resched();
Matt Mackall7f397dc2007-05-29 21:58:10 -05001245 }
1246
1247 return 0;
1248}
1249
Matt Mackall90b75ee2008-04-29 01:02:55 -07001250static ssize_t random_write(struct file *file, const char __user *buffer,
1251 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252{
Matt Mackall7f397dc2007-05-29 21:58:10 -05001253 size_t ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254
Matt Mackall7f397dc2007-05-29 21:58:10 -05001255 ret = write_pool(&blocking_pool, buffer, count);
1256 if (ret)
1257 return ret;
1258 ret = write_pool(&nonblocking_pool, buffer, count);
1259 if (ret)
1260 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001261
Matt Mackall7f397dc2007-05-29 21:58:10 -05001262 return (ssize_t)count;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001263}
1264
Matt Mackall43ae4862008-04-29 01:02:58 -07001265static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266{
1267 int size, ent_count;
1268 int __user *p = (int __user *)arg;
1269 int retval;
1270
1271 switch (cmd) {
1272 case RNDGETENTCNT:
Matt Mackall43ae4862008-04-29 01:02:58 -07001273 /* inherently racy, no point locking */
1274 if (put_user(input_pool.entropy_count, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 return -EFAULT;
1276 return 0;
1277 case RNDADDTOENTCNT:
1278 if (!capable(CAP_SYS_ADMIN))
1279 return -EPERM;
1280 if (get_user(ent_count, p))
1281 return -EFAULT;
Matt Mackalladc782d2008-04-29 01:03:07 -07001282 credit_entropy_bits(&input_pool, ent_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 return 0;
1284 case RNDADDENTROPY:
1285 if (!capable(CAP_SYS_ADMIN))
1286 return -EPERM;
1287 if (get_user(ent_count, p++))
1288 return -EFAULT;
1289 if (ent_count < 0)
1290 return -EINVAL;
1291 if (get_user(size, p++))
1292 return -EFAULT;
Matt Mackall7f397dc2007-05-29 21:58:10 -05001293 retval = write_pool(&input_pool, (const char __user *)p,
1294 size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 if (retval < 0)
1296 return retval;
Matt Mackalladc782d2008-04-29 01:03:07 -07001297 credit_entropy_bits(&input_pool, ent_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298 return 0;
1299 case RNDZAPENTCNT:
1300 case RNDCLEARPOOL:
1301 /* Clear the entropy pool counters. */
1302 if (!capable(CAP_SYS_ADMIN))
1303 return -EPERM;
Matt Mackall53c3f632008-04-29 01:02:58 -07001304 rand_initialize();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001305 return 0;
1306 default:
1307 return -EINVAL;
1308 }
1309}
1310
Jeff Dike9a6f70b2008-04-29 01:03:08 -07001311static int random_fasync(int fd, struct file *filp, int on)
1312{
1313 return fasync_helper(fd, filp, on, &fasync);
1314}
1315
Arjan van de Ven2b8693c2007-02-12 00:55:32 -08001316const struct file_operations random_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001317 .read = random_read,
1318 .write = random_write,
1319 .poll = random_poll,
Matt Mackall43ae4862008-04-29 01:02:58 -07001320 .unlocked_ioctl = random_ioctl,
Jeff Dike9a6f70b2008-04-29 01:03:08 -07001321 .fasync = random_fasync,
Arnd Bergmann6038f372010-08-15 18:52:59 +02001322 .llseek = noop_llseek,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323};
1324
Arjan van de Ven2b8693c2007-02-12 00:55:32 -08001325const struct file_operations urandom_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001326 .read = urandom_read,
1327 .write = random_write,
Matt Mackall43ae4862008-04-29 01:02:58 -07001328 .unlocked_ioctl = random_ioctl,
Jeff Dike9a6f70b2008-04-29 01:03:08 -07001329 .fasync = random_fasync,
Arnd Bergmann6038f372010-08-15 18:52:59 +02001330 .llseek = noop_llseek,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331};
1332
1333/***************************************************************
1334 * Random UUID interface
1335 *
1336 * Used here for a Boot ID, but can be useful for other kernel
1337 * drivers.
1338 ***************************************************************/
1339
1340/*
1341 * Generate random UUID
1342 */
1343void generate_random_uuid(unsigned char uuid_out[16])
1344{
1345 get_random_bytes(uuid_out, 16);
Adam Buchbinderc41b20e2009-12-11 16:35:39 -05001346 /* Set UUID version to 4 --- truly random generation */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001347 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1348 /* Set the UUID variant to DCE */
1349 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1350}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351EXPORT_SYMBOL(generate_random_uuid);
1352
1353/********************************************************************
1354 *
1355 * Sysctl interface
1356 *
1357 ********************************************************************/
1358
1359#ifdef CONFIG_SYSCTL
1360
1361#include <linux/sysctl.h>
1362
1363static int min_read_thresh = 8, min_write_thresh;
1364static int max_read_thresh = INPUT_POOL_WORDS * 32;
1365static int max_write_thresh = INPUT_POOL_WORDS * 32;
1366static char sysctl_bootid[16];
1367
1368/*
1369 * These functions is used to return both the bootid UUID, and random
1370 * UUID. The difference is in whether table->data is NULL; if it is,
1371 * then a new UUID is generated and returned to the user.
1372 *
1373 * If the user accesses this via the proc interface, it will be returned
1374 * as an ASCII string in the standard UUID format. If accesses via the
1375 * sysctl system call, it is returned as 16 bytes of binary data.
1376 */
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001377static int proc_do_uuid(ctl_table *table, int write,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 void __user *buffer, size_t *lenp, loff_t *ppos)
1379{
1380 ctl_table fake_table;
1381 unsigned char buf[64], tmp_uuid[16], *uuid;
1382
1383 uuid = table->data;
1384 if (!uuid) {
1385 uuid = tmp_uuid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386 generate_random_uuid(uuid);
Mathieu Desnoyers44e43602012-04-12 12:49:12 -07001387 } else {
1388 static DEFINE_SPINLOCK(bootid_spinlock);
1389
1390 spin_lock(&bootid_spinlock);
1391 if (!uuid[8])
1392 generate_random_uuid(uuid);
1393 spin_unlock(&bootid_spinlock);
1394 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395
Joe Perches35900772009-12-14 18:01:11 -08001396 sprintf(buf, "%pU", uuid);
1397
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398 fake_table.data = buf;
1399 fake_table.maxlen = sizeof(buf);
1400
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001401 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402}
1403
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
Theodore Ts'o74feec52012-07-06 14:03:18 -04001405extern ctl_table random_table[];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406ctl_table random_table[] = {
1407 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408 .procname = "poolsize",
1409 .data = &sysctl_poolsize,
1410 .maxlen = sizeof(int),
1411 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001412 .proc_handler = proc_dointvec,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413 },
1414 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 .procname = "entropy_avail",
1416 .maxlen = sizeof(int),
1417 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001418 .proc_handler = proc_dointvec,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419 .data = &input_pool.entropy_count,
1420 },
1421 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422 .procname = "read_wakeup_threshold",
1423 .data = &random_read_wakeup_thresh,
1424 .maxlen = sizeof(int),
1425 .mode = 0644,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001426 .proc_handler = proc_dointvec_minmax,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 .extra1 = &min_read_thresh,
1428 .extra2 = &max_read_thresh,
1429 },
1430 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 .procname = "write_wakeup_threshold",
1432 .data = &random_write_wakeup_thresh,
1433 .maxlen = sizeof(int),
1434 .mode = 0644,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001435 .proc_handler = proc_dointvec_minmax,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 .extra1 = &min_write_thresh,
1437 .extra2 = &max_write_thresh,
1438 },
1439 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 .procname = "boot_id",
1441 .data = &sysctl_bootid,
1442 .maxlen = 16,
1443 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001444 .proc_handler = proc_do_uuid,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 },
1446 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447 .procname = "uuid",
1448 .maxlen = 16,
1449 .mode = 0444,
Eric W. Biederman6d456112009-11-16 03:11:48 -08001450 .proc_handler = proc_do_uuid,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 },
Eric W. Biederman894d2492009-11-05 14:34:02 -08001452 { }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453};
1454#endif /* CONFIG_SYSCTL */
1455
David S. Miller6e5714e2011-08-03 20:50:44 -07001456static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457
David S. Miller6e5714e2011-08-03 20:50:44 -07001458static int __init random_int_secret_init(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459{
David S. Miller6e5714e2011-08-03 20:50:44 -07001460 get_random_bytes(random_int_secret, sizeof(random_int_secret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 return 0;
1462}
David S. Miller6e5714e2011-08-03 20:50:44 -07001463late_initcall(random_int_secret_init);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001464
1465/*
1466 * Get a random word for internal kernel use only. Similar to urandom but
1467 * with the goal of minimal entropy pool depletion. As a result, the random
1468 * value is not cryptographically secure but for several uses the cost of
1469 * depleting entropy is too high
1470 */
Theodore Ts'o74feec52012-07-06 14:03:18 -04001471static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472unsigned int get_random_int(void)
1473{
H. Peter Anvin63d77172011-07-31 13:54:50 -07001474 __u32 *hash;
David S. Miller6e5714e2011-08-03 20:50:44 -07001475 unsigned int ret;
Linus Torvalds8a0a9bd2009-05-05 08:17:43 -07001476
H. Peter Anvin63d77172011-07-31 13:54:50 -07001477 if (arch_get_random_int(&ret))
1478 return ret;
1479
1480 hash = get_cpu_var(get_random_int_hash);
Linus Torvalds8a0a9bd2009-05-05 08:17:43 -07001481
Linus Torvalds26a9a412009-05-19 11:25:35 -07001482 hash[0] += current->pid + jiffies + get_cycles();
David S. Miller6e5714e2011-08-03 20:50:44 -07001483 md5_transform(hash, random_int_secret);
1484 ret = hash[0];
Linus Torvalds8a0a9bd2009-05-05 08:17:43 -07001485 put_cpu_var(get_random_int_hash);
1486
1487 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001488}
1489
1490/*
1491 * randomize_range() returns a start address such that
1492 *
1493 * [...... <range> .....]
1494 * start end
1495 *
1496 * a <range> with size "len" starting at the return value is inside in the
1497 * area defined by [start, end], but is otherwise randomized.
1498 */
1499unsigned long
1500randomize_range(unsigned long start, unsigned long end, unsigned long len)
1501{
1502 unsigned long range = end - len - start;
1503
1504 if (end <= start + len)
1505 return 0;
1506 return PAGE_ALIGN(get_random_int() % range + start);
1507}