blob: a8e8413ca2bcb4a78140ea6c77fd53a91c5fc776 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
franse6cf5df2008-08-15 23:14:31 +02002 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
David Woodhouseccbcd6c2008-08-16 11:01:31 +01007 * Copyright © 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
franse6cf5df2008-08-15 23:14:31 +020010 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
David Woodhouseccbcd6c2008-08-16 11:01:31 +010015 * can be found in Documentation/mtd/nand_ecc.txt
Thomas Gleixner819d6a32006-05-23 11:32:45 +020016 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000021 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000026 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070027 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000030 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070031 */
32
franse6cf5df2008-08-15 23:14:31 +020033/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
David Woodhouseccbcd6c2008-08-16 11:01:31 +010038 * Instead a private definition of mtd_info is given to satisfy the compiler
franse6cf5df2008-08-15 23:14:31 +020039 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
Linus Torvalds1da177e2005-04-16 15:20:36 -070042#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/mtd/nand_ecc.h>
franse6cf5df2008-08-15 23:14:31 +020046#else
David Woodhouseccbcd6c2008-08-16 11:01:31 +010047#include <stdint.h>
48struct mtd_info;
franse6cf5df2008-08-15 23:14:31 +020049#define EXPORT_SYMBOL(x) /* x */
50
51#define MODULE_LICENSE(x) /* x */
52#define MODULE_AUTHOR(x) /* x */
53#define MODULE_DESCRIPTION(x) /* x */
54#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070055
56/*
franse6cf5df2008-08-15 23:14:31 +020057 * invparity is a 256 byte table that contains the odd parity
58 * for each byte. So if the number of bits in a byte is even,
59 * the array element is 1, and when the number of bits is odd
60 * the array eleemnt is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -070061 */
franse6cf5df2008-08-15 23:14:31 +020062static const char invparity[256] = {
63 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
64 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
65 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
66 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
67 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
68 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
69 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
70 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
72 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
73 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
74 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
75 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
78 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
79};
80
81/*
82 * bitsperbyte contains the number of bits per byte
83 * this is only used for testing and repairing parity
84 * (a precalculated value slightly improves performance)
85 */
86static const char bitsperbyte[256] = {
87 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
88 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
89 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
90 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
91 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
92 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
93 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
94 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
95 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
96 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
97 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
98 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
99 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
102 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
103};
104
105/*
106 * addressbits is a lookup table to filter out the bits from the xor-ed
107 * ecc data that identify the faulty location.
108 * this is only used for repairing parity
109 * see the comments in nand_correct_data for more details
110 */
111static const char addressbits[256] = {
112 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
113 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
114 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
115 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
116 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
117 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
118 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
119 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
120 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
121 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
122 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
123 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
124 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
125 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
126 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
127 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
128 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
129 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
130 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
131 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
132 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
133 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
134 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
135 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
136 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
137 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
138 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
139 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
140 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
141 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
142 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
143 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
Linus Torvalds1da177e2005-04-16 15:20:36 -0700144};
145
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146/**
Randy Dunlap844d3b42006-06-28 21:48:27 -0700147 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
franse6cf5df2008-08-15 23:14:31 +0200148 * @mtd: MTD block structure (unused)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149 * @dat: raw data
150 * @ecc_code: buffer for ECC
151 */
franse6cf5df2008-08-15 23:14:31 +0200152int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
153 unsigned char *code)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154{
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200155 int i;
franse6cf5df2008-08-15 23:14:31 +0200156 const uint32_t *bp = (uint32_t *)buf;
157 uint32_t cur; /* current value in buffer */
158 /* rp0..rp15 are the various accumulated parities (per byte) */
159 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
160 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
161 uint32_t par; /* the cumulative parity for all data */
162 uint32_t tmppar; /* the cumulative parity for this iteration;
163 for rp12 and rp14 at the end of the loop */
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000164
franse6cf5df2008-08-15 23:14:31 +0200165 par = 0;
166 rp4 = 0;
167 rp6 = 0;
168 rp8 = 0;
169 rp10 = 0;
170 rp12 = 0;
171 rp14 = 0;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000172
franse6cf5df2008-08-15 23:14:31 +0200173 /*
174 * The loop is unrolled a number of times;
175 * This avoids if statements to decide on which rp value to update
176 * Also we process the data by longwords.
177 * Note: passing unaligned data might give a performance penalty.
178 * It is assumed that the buffers are aligned.
179 * tmppar is the cumulative sum of this iteration.
180 * needed for calculating rp12, rp14 and par
181 * also used as a performance improvement for rp6, rp8 and rp10
182 */
183 for (i = 0; i < 4; i++) {
184 cur = *bp++;
185 tmppar = cur;
186 rp4 ^= cur;
187 cur = *bp++;
188 tmppar ^= cur;
189 rp6 ^= tmppar;
190 cur = *bp++;
191 tmppar ^= cur;
192 rp4 ^= cur;
193 cur = *bp++;
194 tmppar ^= cur;
195 rp8 ^= tmppar;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000196
franse6cf5df2008-08-15 23:14:31 +0200197 cur = *bp++;
198 tmppar ^= cur;
199 rp4 ^= cur;
200 rp6 ^= cur;
201 cur = *bp++;
202 tmppar ^= cur;
203 rp6 ^= cur;
204 cur = *bp++;
205 tmppar ^= cur;
206 rp4 ^= cur;
207 cur = *bp++;
208 tmppar ^= cur;
209 rp10 ^= tmppar;
210
211 cur = *bp++;
212 tmppar ^= cur;
213 rp4 ^= cur;
214 rp6 ^= cur;
215 rp8 ^= cur;
216 cur = *bp++;
217 tmppar ^= cur;
218 rp6 ^= cur;
219 rp8 ^= cur;
220 cur = *bp++;
221 tmppar ^= cur;
222 rp4 ^= cur;
223 rp8 ^= cur;
224 cur = *bp++;
225 tmppar ^= cur;
226 rp8 ^= cur;
227
228 cur = *bp++;
229 tmppar ^= cur;
230 rp4 ^= cur;
231 rp6 ^= cur;
232 cur = *bp++;
233 tmppar ^= cur;
234 rp6 ^= cur;
235 cur = *bp++;
236 tmppar ^= cur;
237 rp4 ^= cur;
238 cur = *bp++;
239 tmppar ^= cur;
240
241 par ^= tmppar;
242 if ((i & 0x1) == 0)
243 rp12 ^= tmppar;
244 if ((i & 0x2) == 0)
245 rp14 ^= tmppar;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246 }
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000247
franse6cf5df2008-08-15 23:14:31 +0200248 /*
249 * handle the fact that we use longword operations
250 * we'll bring rp4..rp14 back to single byte entities by shifting and
251 * xoring first fold the upper and lower 16 bits,
252 * then the upper and lower 8 bits.
253 */
254 rp4 ^= (rp4 >> 16);
255 rp4 ^= (rp4 >> 8);
256 rp4 &= 0xff;
257 rp6 ^= (rp6 >> 16);
258 rp6 ^= (rp6 >> 8);
259 rp6 &= 0xff;
260 rp8 ^= (rp8 >> 16);
261 rp8 ^= (rp8 >> 8);
262 rp8 &= 0xff;
263 rp10 ^= (rp10 >> 16);
264 rp10 ^= (rp10 >> 8);
265 rp10 &= 0xff;
266 rp12 ^= (rp12 >> 16);
267 rp12 ^= (rp12 >> 8);
268 rp12 &= 0xff;
269 rp14 ^= (rp14 >> 16);
270 rp14 ^= (rp14 >> 8);
271 rp14 &= 0xff;
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200272
franse6cf5df2008-08-15 23:14:31 +0200273 /*
274 * we also need to calculate the row parity for rp0..rp3
275 * This is present in par, because par is now
276 * rp3 rp3 rp2 rp2
277 * as well as
278 * rp1 rp0 rp1 rp0
279 * First calculate rp2 and rp3
280 * (and yes: rp2 = (par ^ rp3) & 0xff; but doing that did not
281 * give a performance improvement)
282 */
283 rp3 = (par >> 16);
284 rp3 ^= (rp3 >> 8);
285 rp3 &= 0xff;
286 rp2 = par & 0xffff;
287 rp2 ^= (rp2 >> 8);
288 rp2 &= 0xff;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000289
franse6cf5df2008-08-15 23:14:31 +0200290 /* reduce par to 16 bits then calculate rp1 and rp0 */
291 par ^= (par >> 16);
292 rp1 = (par >> 8) & 0xff;
293 rp0 = (par & 0xff);
294
295 /* finally reduce par to 8 bits */
296 par ^= (par >> 8);
297 par &= 0xff;
298
299 /*
300 * and calculate rp5..rp15
301 * note that par = rp4 ^ rp5 and due to the commutative property
302 * of the ^ operator we can say:
303 * rp5 = (par ^ rp4);
304 * The & 0xff seems superfluous, but benchmarking learned that
305 * leaving it out gives slightly worse results. No idea why, probably
306 * it has to do with the way the pipeline in pentium is organized.
307 */
308 rp5 = (par ^ rp4) & 0xff;
309 rp7 = (par ^ rp6) & 0xff;
310 rp9 = (par ^ rp8) & 0xff;
311 rp11 = (par ^ rp10) & 0xff;
312 rp13 = (par ^ rp12) & 0xff;
313 rp15 = (par ^ rp14) & 0xff;
314
315 /*
316 * Finally calculate the ecc bits.
317 * Again here it might seem that there are performance optimisations
318 * possible, but benchmarks showed that on the system this is developed
319 * the code below is the fastest
320 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100321#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200322 code[0] =
323 (invparity[rp7] << 7) |
324 (invparity[rp6] << 6) |
325 (invparity[rp5] << 5) |
326 (invparity[rp4] << 4) |
327 (invparity[rp3] << 3) |
328 (invparity[rp2] << 2) |
329 (invparity[rp1] << 1) |
330 (invparity[rp0]);
331 code[1] =
332 (invparity[rp15] << 7) |
333 (invparity[rp14] << 6) |
334 (invparity[rp13] << 5) |
335 (invparity[rp12] << 4) |
336 (invparity[rp11] << 3) |
337 (invparity[rp10] << 2) |
338 (invparity[rp9] << 1) |
339 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200340#else
franse6cf5df2008-08-15 23:14:31 +0200341 code[1] =
342 (invparity[rp7] << 7) |
343 (invparity[rp6] << 6) |
344 (invparity[rp5] << 5) |
345 (invparity[rp4] << 4) |
346 (invparity[rp3] << 3) |
347 (invparity[rp2] << 2) |
348 (invparity[rp1] << 1) |
349 (invparity[rp0]);
350 code[0] =
351 (invparity[rp15] << 7) |
352 (invparity[rp14] << 6) |
353 (invparity[rp13] << 5) |
354 (invparity[rp12] << 4) |
355 (invparity[rp11] << 3) |
356 (invparity[rp10] << 2) |
357 (invparity[rp9] << 1) |
358 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200359#endif
franse6cf5df2008-08-15 23:14:31 +0200360 code[2] =
361 (invparity[par & 0xf0] << 7) |
362 (invparity[par & 0x0f] << 6) |
363 (invparity[par & 0xcc] << 5) |
364 (invparity[par & 0x33] << 4) |
365 (invparity[par & 0xaa] << 3) |
366 (invparity[par & 0x55] << 2) |
367 3;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 return 0;
369}
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200370EXPORT_SYMBOL(nand_calculate_ecc);
371
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372/**
373 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
franse6cf5df2008-08-15 23:14:31 +0200374 * @mtd: MTD block structure (unused)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375 * @dat: raw data read from the chip
376 * @read_ecc: ECC from the chip
377 * @calc_ecc: the ECC calculated from raw data
378 *
379 * Detect and correct a 1 bit error for 256 byte block
380 */
franse6cf5df2008-08-15 23:14:31 +0200381int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
382 unsigned char *read_ecc, unsigned char *calc_ecc)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383{
franse6cf5df2008-08-15 23:14:31 +0200384 int nr_bits;
385 unsigned char b0, b1, b2;
386 unsigned char byte_addr, bit_addr;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000387
franse6cf5df2008-08-15 23:14:31 +0200388 /*
389 * b0 to b2 indicate which bit is faulty (if any)
390 * we might need the xor result more than once,
391 * so keep them in a local var
392 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100393#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200394 b0 = read_ecc[0] ^ calc_ecc[0];
395 b1 = read_ecc[1] ^ calc_ecc[1];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200396#else
franse6cf5df2008-08-15 23:14:31 +0200397 b0 = read_ecc[1] ^ calc_ecc[1];
398 b1 = read_ecc[0] ^ calc_ecc[0];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200399#endif
franse6cf5df2008-08-15 23:14:31 +0200400 b2 = read_ecc[2] ^ calc_ecc[2];
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000401
franse6cf5df2008-08-15 23:14:31 +0200402 /* check if there are any bitfaults */
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200403
franse6cf5df2008-08-15 23:14:31 +0200404 /* count nr of bits; use table lookup, faster than calculating it */
405 nr_bits = bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200406
franse6cf5df2008-08-15 23:14:31 +0200407 /* repeated if statements are slightly more efficient than switch ... */
408 /* ordered in order of likelihood */
409 if (nr_bits == 0)
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100410 return 0; /* no error */
franse6cf5df2008-08-15 23:14:31 +0200411 if (nr_bits == 11) { /* correctable error */
412 /*
413 * rp15/13/11/9/7/5/3/1 indicate which byte is the faulty byte
414 * cp 5/3/1 indicate the faulty bit.
415 * A lookup table (called addressbits) is used to filter
416 * the bits from the byte they are in.
417 * A marginal optimisation is possible by having three
418 * different lookup tables.
419 * One as we have now (for b0), one for b2
420 * (that would avoid the >> 1), and one for b1 (with all values
421 * << 4). However it was felt that introducing two more tables
422 * hardly justify the gain.
423 *
424 * The b2 shift is there to get rid of the lowest two bits.
425 * We could also do addressbits[b2] >> 1 but for the
426 * performace it does not make any difference
427 */
428 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
429 bit_addr = addressbits[b2 >> 2];
430 /* flip the bit */
431 buf[byte_addr] ^= (1 << bit_addr);
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100432 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 }
franse6cf5df2008-08-15 23:14:31 +0200434 if (nr_bits == 1)
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100435 return 1; /* error in ecc data; no action needed */
franse6cf5df2008-08-15 23:14:31 +0200436 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438EXPORT_SYMBOL(nand_correct_data);
439
440MODULE_LICENSE("GPL");
franse6cf5df2008-08-15 23:14:31 +0200441MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442MODULE_DESCRIPTION("Generic NAND ECC support");