blob: b3b919116e0fd28c38b753aedf12b1ed0c09a721 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
Auke Kok3d41e302006-04-14 19:05:31 -07004 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070025 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28*******************************************************************************/
29
30/* e1000_hw.c
31 * Shared functions for accessing and configuring the MAC
32 */
33
34#include "e1000_hw.h"
35
36static int32_t e1000_set_phy_type(struct e1000_hw *hw);
37static void e1000_phy_init_script(struct e1000_hw *hw);
38static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
39static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
40static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
41static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
42static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
43static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
45static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
46 uint16_t count);
47static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
48static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
49static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
50 uint16_t words, uint16_t *data);
51static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
52 uint16_t offset, uint16_t words,
53 uint16_t *data);
54static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
55static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
57static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
58 uint16_t count);
59static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
60 uint16_t phy_data);
61static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
62 uint16_t *phy_data);
63static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
64static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
65static void e1000_release_eeprom(struct e1000_hw *hw);
66static void e1000_standby_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070067static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
68static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
69static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -070070static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
71static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
Adrian Bunk3ad2cc62005-10-30 16:53:34 +010072static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
73static int32_t e1000_check_downshift(struct e1000_hw *hw);
74static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
75static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
76static void e1000_clear_vfta(struct e1000_hw *hw);
77static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
78static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
79 boolean_t link_up);
80static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
81static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
82static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
83static int32_t e1000_get_cable_length(struct e1000_hw *hw,
84 uint16_t *min_length,
85 uint16_t *max_length);
86static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
87static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
88static int32_t e1000_id_led_init(struct e1000_hw * hw);
89static void e1000_init_rx_addrs(struct e1000_hw *hw);
90static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
91static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
92static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
93static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
94 uint16_t words, uint16_t *data);
95static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
96static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
97static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
98
99static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
100 uint32_t value);
101
102#define E1000_WRITE_REG_IO(a, reg, val) \
103 e1000_write_reg_io((a), E1000_##reg, val)
Auke Kokcd94dd02006-06-27 09:08:22 -0700104static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
105 uint16_t duplex);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800106static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700107
Adrian Bunke4c780b2006-08-14 23:00:10 -0700108static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw,
109 uint32_t segment);
110static int32_t e1000_get_software_flag(struct e1000_hw *hw);
111static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
112static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
113static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
114static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
115 uint16_t words, uint16_t *data);
116static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
117 uint8_t* data);
118static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
119 uint16_t *data);
120static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
121 uint16_t *data);
122static void e1000_release_software_flag(struct e1000_hw *hw);
123static void e1000_release_software_semaphore(struct e1000_hw *hw);
124static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw,
125 uint32_t no_snoop);
126static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw,
127 uint32_t index, uint8_t byte);
128static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
129 uint16_t words, uint16_t *data);
130static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
131 uint8_t data);
132static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
133 uint16_t data);
134
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135/* IGP cable length table */
136static const
137uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
138 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
139 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
140 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
141 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
142 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
143 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
144 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
145 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
146
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700147static const
148uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400149 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
150 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
151 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
152 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
153 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
154 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
155 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
156 104, 109, 114, 118, 121, 124};
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700157
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158
159/******************************************************************************
160 * Set the phy type member in the hw struct.
161 *
162 * hw - Struct containing variables accessed by shared code
163 *****************************************************************************/
164int32_t
165e1000_set_phy_type(struct e1000_hw *hw)
166{
167 DEBUGFUNC("e1000_set_phy_type");
168
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700169 if(hw->mac_type == e1000_undefined)
170 return -E1000_ERR_PHY_TYPE;
171
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172 switch(hw->phy_id) {
173 case M88E1000_E_PHY_ID:
174 case M88E1000_I_PHY_ID:
175 case M88E1011_I_PHY_ID:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700176 case M88E1111_I_PHY_ID:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 hw->phy_type = e1000_phy_m88;
178 break;
179 case IGP01E1000_I_PHY_ID:
180 if(hw->mac_type == e1000_82541 ||
181 hw->mac_type == e1000_82541_rev_2 ||
182 hw->mac_type == e1000_82547 ||
183 hw->mac_type == e1000_82547_rev_2) {
184 hw->phy_type = e1000_phy_igp;
185 break;
186 }
Auke Kokcd94dd02006-06-27 09:08:22 -0700187 case IGP03E1000_E_PHY_ID:
188 hw->phy_type = e1000_phy_igp_3;
189 break;
190 case IFE_E_PHY_ID:
191 case IFE_PLUS_E_PHY_ID:
192 case IFE_C_E_PHY_ID:
193 hw->phy_type = e1000_phy_ife;
194 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800195 case GG82563_E_PHY_ID:
196 if (hw->mac_type == e1000_80003es2lan) {
197 hw->phy_type = e1000_phy_gg82563;
198 break;
199 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200 /* Fall Through */
201 default:
202 /* Should never have loaded on this device */
203 hw->phy_type = e1000_phy_undefined;
204 return -E1000_ERR_PHY_TYPE;
205 }
206
207 return E1000_SUCCESS;
208}
209
210/******************************************************************************
211 * IGP phy init script - initializes the GbE PHY
212 *
213 * hw - Struct containing variables accessed by shared code
214 *****************************************************************************/
215static void
216e1000_phy_init_script(struct e1000_hw *hw)
217{
218 uint32_t ret_val;
219 uint16_t phy_saved_data;
220
221 DEBUGFUNC("e1000_phy_init_script");
222
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223 if(hw->phy_init_script) {
224 msec_delay(20);
225
226 /* Save off the current value of register 0x2F5B to be restored at
227 * the end of this routine. */
228 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
229
230 /* Disabled the PHY transmitter */
231 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
232
233 msec_delay(20);
234
235 e1000_write_phy_reg(hw,0x0000,0x0140);
236
237 msec_delay(5);
238
239 switch(hw->mac_type) {
240 case e1000_82541:
241 case e1000_82547:
242 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
243
244 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
245
246 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
247
248 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
249
250 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
251
252 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
253
254 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
255
256 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
257
258 e1000_write_phy_reg(hw, 0x2010, 0x0008);
259 break;
260
261 case e1000_82541_rev_2:
262 case e1000_82547_rev_2:
263 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
264 break;
265 default:
266 break;
267 }
268
269 e1000_write_phy_reg(hw, 0x0000, 0x3300);
270
271 msec_delay(20);
272
273 /* Now enable the transmitter */
274 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
275
276 if(hw->mac_type == e1000_82547) {
277 uint16_t fused, fine, coarse;
278
279 /* Move to analog registers page */
280 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
281
282 if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
283 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
284
285 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
286 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
287
288 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
289 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
290 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
291 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
292 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
293
294 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
295 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
296 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
297
298 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
299 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
300 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
301 }
302 }
303 }
304}
305
306/******************************************************************************
307 * Set the mac type member in the hw struct.
308 *
309 * hw - Struct containing variables accessed by shared code
310 *****************************************************************************/
311int32_t
312e1000_set_mac_type(struct e1000_hw *hw)
313{
314 DEBUGFUNC("e1000_set_mac_type");
315
316 switch (hw->device_id) {
317 case E1000_DEV_ID_82542:
318 switch (hw->revision_id) {
319 case E1000_82542_2_0_REV_ID:
320 hw->mac_type = e1000_82542_rev2_0;
321 break;
322 case E1000_82542_2_1_REV_ID:
323 hw->mac_type = e1000_82542_rev2_1;
324 break;
325 default:
326 /* Invalid 82542 revision ID */
327 return -E1000_ERR_MAC_TYPE;
328 }
329 break;
330 case E1000_DEV_ID_82543GC_FIBER:
331 case E1000_DEV_ID_82543GC_COPPER:
332 hw->mac_type = e1000_82543;
333 break;
334 case E1000_DEV_ID_82544EI_COPPER:
335 case E1000_DEV_ID_82544EI_FIBER:
336 case E1000_DEV_ID_82544GC_COPPER:
337 case E1000_DEV_ID_82544GC_LOM:
338 hw->mac_type = e1000_82544;
339 break;
340 case E1000_DEV_ID_82540EM:
341 case E1000_DEV_ID_82540EM_LOM:
342 case E1000_DEV_ID_82540EP:
343 case E1000_DEV_ID_82540EP_LOM:
344 case E1000_DEV_ID_82540EP_LP:
345 hw->mac_type = e1000_82540;
346 break;
347 case E1000_DEV_ID_82545EM_COPPER:
348 case E1000_DEV_ID_82545EM_FIBER:
349 hw->mac_type = e1000_82545;
350 break;
351 case E1000_DEV_ID_82545GM_COPPER:
352 case E1000_DEV_ID_82545GM_FIBER:
353 case E1000_DEV_ID_82545GM_SERDES:
354 hw->mac_type = e1000_82545_rev_3;
355 break;
356 case E1000_DEV_ID_82546EB_COPPER:
357 case E1000_DEV_ID_82546EB_FIBER:
358 case E1000_DEV_ID_82546EB_QUAD_COPPER:
359 hw->mac_type = e1000_82546;
360 break;
361 case E1000_DEV_ID_82546GB_COPPER:
362 case E1000_DEV_ID_82546GB_FIBER:
363 case E1000_DEV_ID_82546GB_SERDES:
364 case E1000_DEV_ID_82546GB_PCIE:
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800365 case E1000_DEV_ID_82546GB_QUAD_COPPER:
366 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700367 hw->mac_type = e1000_82546_rev_3;
368 break;
369 case E1000_DEV_ID_82541EI:
370 case E1000_DEV_ID_82541EI_MOBILE:
Auke Kokcd94dd02006-06-27 09:08:22 -0700371 case E1000_DEV_ID_82541ER_LOM:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372 hw->mac_type = e1000_82541;
373 break;
374 case E1000_DEV_ID_82541ER:
375 case E1000_DEV_ID_82541GI:
376 case E1000_DEV_ID_82541GI_LF:
377 case E1000_DEV_ID_82541GI_MOBILE:
378 hw->mac_type = e1000_82541_rev_2;
379 break;
380 case E1000_DEV_ID_82547EI:
Auke Kokcd94dd02006-06-27 09:08:22 -0700381 case E1000_DEV_ID_82547EI_MOBILE:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382 hw->mac_type = e1000_82547;
383 break;
384 case E1000_DEV_ID_82547GI:
385 hw->mac_type = e1000_82547_rev_2;
386 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400387 case E1000_DEV_ID_82571EB_COPPER:
388 case E1000_DEV_ID_82571EB_FIBER:
389 case E1000_DEV_ID_82571EB_SERDES:
390 hw->mac_type = e1000_82571;
391 break;
392 case E1000_DEV_ID_82572EI_COPPER:
393 case E1000_DEV_ID_82572EI_FIBER:
394 case E1000_DEV_ID_82572EI_SERDES:
Auke Kokcd94dd02006-06-27 09:08:22 -0700395 case E1000_DEV_ID_82572EI:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400396 hw->mac_type = e1000_82572;
397 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700398 case E1000_DEV_ID_82573E:
399 case E1000_DEV_ID_82573E_IAMT:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400400 case E1000_DEV_ID_82573L:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700401 hw->mac_type = e1000_82573;
402 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700403 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
404 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800405 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
406 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
407 hw->mac_type = e1000_80003es2lan;
408 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700409 case E1000_DEV_ID_ICH8_IGP_M_AMT:
410 case E1000_DEV_ID_ICH8_IGP_AMT:
411 case E1000_DEV_ID_ICH8_IGP_C:
412 case E1000_DEV_ID_ICH8_IFE:
413 case E1000_DEV_ID_ICH8_IGP_M:
414 hw->mac_type = e1000_ich8lan;
415 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 default:
417 /* Should never have loaded on this device */
418 return -E1000_ERR_MAC_TYPE;
419 }
420
421 switch(hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -0700422 case e1000_ich8lan:
423 hw->swfwhw_semaphore_present = TRUE;
424 hw->asf_firmware_present = TRUE;
425 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800426 case e1000_80003es2lan:
427 hw->swfw_sync_present = TRUE;
428 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400429 case e1000_82571:
430 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700431 case e1000_82573:
432 hw->eeprom_semaphore_present = TRUE;
433 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 case e1000_82541:
435 case e1000_82547:
436 case e1000_82541_rev_2:
437 case e1000_82547_rev_2:
438 hw->asf_firmware_present = TRUE;
439 break;
440 default:
441 break;
442 }
443
444 return E1000_SUCCESS;
445}
446
447/*****************************************************************************
448 * Set media type and TBI compatibility.
449 *
450 * hw - Struct containing variables accessed by shared code
451 * **************************************************************************/
452void
453e1000_set_media_type(struct e1000_hw *hw)
454{
455 uint32_t status;
456
457 DEBUGFUNC("e1000_set_media_type");
458
459 if(hw->mac_type != e1000_82543) {
460 /* tbi_compatibility is only valid on 82543 */
461 hw->tbi_compatibility_en = FALSE;
462 }
463
464 switch (hw->device_id) {
465 case E1000_DEV_ID_82545GM_SERDES:
466 case E1000_DEV_ID_82546GB_SERDES:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400467 case E1000_DEV_ID_82571EB_SERDES:
468 case E1000_DEV_ID_82572EI_SERDES:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800469 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470 hw->media_type = e1000_media_type_internal_serdes;
471 break;
472 default:
Malli Chilakala3893d542005-06-17 17:44:49 -0700473 switch (hw->mac_type) {
474 case e1000_82542_rev2_0:
475 case e1000_82542_rev2_1:
476 hw->media_type = e1000_media_type_fiber;
477 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700478 case e1000_ich8lan:
Malli Chilakala3893d542005-06-17 17:44:49 -0700479 case e1000_82573:
480 /* The STATUS_TBIMODE bit is reserved or reused for the this
481 * device.
482 */
483 hw->media_type = e1000_media_type_copper;
484 break;
485 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486 status = E1000_READ_REG(hw, STATUS);
Malli Chilakala3893d542005-06-17 17:44:49 -0700487 if (status & E1000_STATUS_TBIMODE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700488 hw->media_type = e1000_media_type_fiber;
489 /* tbi_compatibility not valid on fiber */
490 hw->tbi_compatibility_en = FALSE;
491 } else {
492 hw->media_type = e1000_media_type_copper;
493 }
Malli Chilakala3893d542005-06-17 17:44:49 -0700494 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495 }
496 }
497}
498
499/******************************************************************************
500 * Reset the transmit and receive units; mask and clear all interrupts.
501 *
502 * hw - Struct containing variables accessed by shared code
503 *****************************************************************************/
504int32_t
505e1000_reset_hw(struct e1000_hw *hw)
506{
507 uint32_t ctrl;
508 uint32_t ctrl_ext;
509 uint32_t icr;
510 uint32_t manc;
511 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700512 uint32_t timeout;
513 uint32_t extcnf_ctrl;
514 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700515
516 DEBUGFUNC("e1000_reset_hw");
517
518 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
519 if(hw->mac_type == e1000_82542_rev2_0) {
520 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
521 e1000_pci_clear_mwi(hw);
522 }
523
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700524 if(hw->bus_type == e1000_bus_type_pci_express) {
525 /* Prevent the PCI-E bus from sticking if there is no TLP connection
526 * on the last TLP read/write transaction when MAC is reset.
527 */
528 if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
529 DEBUGOUT("PCI-E Master disable polling has failed.\n");
530 }
531 }
532
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533 /* Clear interrupt mask to stop board from generating interrupts */
534 DEBUGOUT("Masking off all interrupts\n");
535 E1000_WRITE_REG(hw, IMC, 0xffffffff);
536
537 /* Disable the Transmit and Receive units. Then delay to allow
538 * any pending transactions to complete before we hit the MAC with
539 * the global reset.
540 */
541 E1000_WRITE_REG(hw, RCTL, 0);
542 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
543 E1000_WRITE_FLUSH(hw);
544
545 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
546 hw->tbi_compatibility_on = FALSE;
547
548 /* Delay to allow any outstanding PCI transactions to complete before
549 * resetting the device
550 */
551 msec_delay(10);
552
553 ctrl = E1000_READ_REG(hw, CTRL);
554
555 /* Must reset the PHY before resetting the MAC */
556 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700557 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700558 msec_delay(5);
559 }
560
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700561 /* Must acquire the MDIO ownership before MAC reset.
562 * Ownership defaults to firmware after a reset. */
563 if(hw->mac_type == e1000_82573) {
564 timeout = 10;
565
566 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
567 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
568
569 do {
570 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
571 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
572
573 if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
574 break;
575 else
576 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
577
578 msec_delay(2);
579 timeout--;
580 } while(timeout);
581 }
582
Auke Kokcd94dd02006-06-27 09:08:22 -0700583 /* Workaround for ICH8 bit corruption issue in FIFO memory */
584 if (hw->mac_type == e1000_ich8lan) {
585 /* Set Tx and Rx buffer allocation to 8k apiece. */
586 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
587 /* Set Packet Buffer Size to 16k. */
588 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
589 }
590
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591 /* Issue a global reset to the MAC. This will reset the chip's
592 * transmit, receive, DMA, and link units. It will not effect
593 * the current PCI configuration. The global reset bit is self-
594 * clearing, and should clear within a microsecond.
595 */
596 DEBUGOUT("Issuing a global reset to MAC\n");
597
598 switch(hw->mac_type) {
599 case e1000_82544:
600 case e1000_82540:
601 case e1000_82545:
602 case e1000_82546:
603 case e1000_82541:
604 case e1000_82541_rev_2:
605 /* These controllers can't ack the 64-bit write when issuing the
606 * reset, so use IO-mapping as a workaround to issue the reset */
607 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
608 break;
609 case e1000_82545_rev_3:
610 case e1000_82546_rev_3:
611 /* Reset is performed on a shadow of the control register */
612 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
613 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700614 case e1000_ich8lan:
615 if (!hw->phy_reset_disable &&
616 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
617 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
618 * at the same time to make sure the interface between
619 * MAC and the external PHY is reset.
620 */
621 ctrl |= E1000_CTRL_PHY_RST;
622 }
623
624 e1000_get_software_flag(hw);
625 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
626 msec_delay(5);
627 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700628 default:
629 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
630 break;
631 }
632
633 /* After MAC reset, force reload of EEPROM to restore power-on settings to
634 * device. Later controllers reload the EEPROM automatically, so just wait
635 * for reload to complete.
636 */
637 switch(hw->mac_type) {
638 case e1000_82542_rev2_0:
639 case e1000_82542_rev2_1:
640 case e1000_82543:
641 case e1000_82544:
642 /* Wait for reset to complete */
643 udelay(10);
644 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
645 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
646 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
647 E1000_WRITE_FLUSH(hw);
648 /* Wait for EEPROM reload */
649 msec_delay(2);
650 break;
651 case e1000_82541:
652 case e1000_82541_rev_2:
653 case e1000_82547:
654 case e1000_82547_rev_2:
655 /* Wait for EEPROM reload */
656 msec_delay(20);
657 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700658 case e1000_82573:
Jeff Kirsherfd803242005-12-13 00:06:22 -0500659 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
660 udelay(10);
661 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
662 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
663 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
664 E1000_WRITE_FLUSH(hw);
665 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700666 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400667 case e1000_82571:
668 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -0700669 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800670 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700671 ret_val = e1000_get_auto_rd_done(hw);
672 if(ret_val)
673 /* We don't want to continue accessing MAC registers. */
674 return ret_val;
675 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676 default:
677 /* Wait for EEPROM reload (it happens automatically) */
678 msec_delay(5);
679 break;
680 }
681
682 /* Disable HW ARPs on ASF enabled adapters */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700683 if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684 manc = E1000_READ_REG(hw, MANC);
685 manc &= ~(E1000_MANC_ARP_EN);
686 E1000_WRITE_REG(hw, MANC, manc);
687 }
688
689 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
690 e1000_phy_init_script(hw);
691
692 /* Configure activity LED after PHY reset */
693 led_ctrl = E1000_READ_REG(hw, LEDCTL);
694 led_ctrl &= IGP_ACTIVITY_LED_MASK;
695 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
696 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
697 }
698
699 /* Clear interrupt mask to stop board from generating interrupts */
700 DEBUGOUT("Masking off all interrupts\n");
701 E1000_WRITE_REG(hw, IMC, 0xffffffff);
702
703 /* Clear any pending interrupt events. */
704 icr = E1000_READ_REG(hw, ICR);
705
706 /* If MWI was previously enabled, reenable it. */
707 if(hw->mac_type == e1000_82542_rev2_0) {
708 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
709 e1000_pci_set_mwi(hw);
710 }
711
Auke Kokcd94dd02006-06-27 09:08:22 -0700712 if (hw->mac_type == e1000_ich8lan) {
713 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
714 kab |= E1000_KABGTXD_BGSQLBIAS;
715 E1000_WRITE_REG(hw, KABGTXD, kab);
716 }
717
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 return E1000_SUCCESS;
719}
720
721/******************************************************************************
722 * Performs basic configuration of the adapter.
723 *
724 * hw - Struct containing variables accessed by shared code
725 *
726 * Assumes that the controller has previously been reset and is in a
727 * post-reset uninitialized state. Initializes the receive address registers,
728 * multicast table, and VLAN filter table. Calls routines to setup link
729 * configuration and flow control settings. Clears all on-chip counters. Leaves
730 * the transmit and receive units disabled and uninitialized.
731 *****************************************************************************/
732int32_t
733e1000_init_hw(struct e1000_hw *hw)
734{
735 uint32_t ctrl;
736 uint32_t i;
737 int32_t ret_val;
738 uint16_t pcix_cmd_word;
739 uint16_t pcix_stat_hi_word;
740 uint16_t cmd_mmrbc;
741 uint16_t stat_mmrbc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700742 uint32_t mta_size;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800743 uint32_t reg_data;
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800744 uint32_t ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700745
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746 DEBUGFUNC("e1000_init_hw");
747
748 /* Initialize Identification LED */
749 ret_val = e1000_id_led_init(hw);
750 if(ret_val) {
751 DEBUGOUT("Error Initializing Identification LED\n");
752 return ret_val;
753 }
754
755 /* Set the media type and TBI compatibility */
756 e1000_set_media_type(hw);
757
758 /* Disabling VLAN filtering. */
759 DEBUGOUT("Initializing the IEEE VLAN\n");
Auke Kokcd94dd02006-06-27 09:08:22 -0700760 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
761 if (hw->mac_type != e1000_ich8lan) {
762 if (hw->mac_type < e1000_82545_rev_3)
763 E1000_WRITE_REG(hw, VET, 0);
764 e1000_clear_vfta(hw);
765 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700766
767 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
768 if(hw->mac_type == e1000_82542_rev2_0) {
769 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
770 e1000_pci_clear_mwi(hw);
771 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
772 E1000_WRITE_FLUSH(hw);
773 msec_delay(5);
774 }
775
776 /* Setup the receive address. This involves initializing all of the Receive
777 * Address Registers (RARs 0 - 15).
778 */
779 e1000_init_rx_addrs(hw);
780
781 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
782 if(hw->mac_type == e1000_82542_rev2_0) {
783 E1000_WRITE_REG(hw, RCTL, 0);
784 E1000_WRITE_FLUSH(hw);
785 msec_delay(1);
786 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
787 e1000_pci_set_mwi(hw);
788 }
789
790 /* Zero out the Multicast HASH table */
791 DEBUGOUT("Zeroing the MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700792 mta_size = E1000_MC_TBL_SIZE;
Auke Kokcd94dd02006-06-27 09:08:22 -0700793 if (hw->mac_type == e1000_ich8lan)
794 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
Auke Kok4ca213a2006-06-27 09:07:08 -0700795 for(i = 0; i < mta_size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Auke Kok4ca213a2006-06-27 09:07:08 -0700797 /* use write flush to prevent Memory Write Block (MWB) from
798 * occuring when accessing our register space */
799 E1000_WRITE_FLUSH(hw);
800 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801
802 /* Set the PCI priority bit correctly in the CTRL register. This
803 * determines if the adapter gives priority to receives, or if it
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700804 * gives equal priority to transmits and receives. Valid only on
805 * 82542 and 82543 silicon.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700807 if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808 ctrl = E1000_READ_REG(hw, CTRL);
809 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
810 }
811
812 switch(hw->mac_type) {
813 case e1000_82545_rev_3:
814 case e1000_82546_rev_3:
815 break;
816 default:
817 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
818 if(hw->bus_type == e1000_bus_type_pcix) {
819 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
820 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
821 &pcix_stat_hi_word);
822 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
823 PCIX_COMMAND_MMRBC_SHIFT;
824 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
825 PCIX_STATUS_HI_MMRBC_SHIFT;
826 if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
827 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
828 if(cmd_mmrbc > stat_mmrbc) {
829 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
830 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
831 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
832 &pcix_cmd_word);
833 }
834 }
835 break;
836 }
837
Auke Kokcd94dd02006-06-27 09:08:22 -0700838 /* More time needed for PHY to initialize */
839 if (hw->mac_type == e1000_ich8lan)
840 msec_delay(15);
841
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842 /* Call a subroutine to configure the link and setup flow control. */
843 ret_val = e1000_setup_link(hw);
844
845 /* Set the transmit descriptor write-back policy */
846 if(hw->mac_type > e1000_82544) {
847 ctrl = E1000_READ_REG(hw, TXDCTL);
848 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700849 switch (hw->mac_type) {
850 default:
851 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400852 case e1000_82571:
853 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700854 case e1000_82573:
Auke Kokcd94dd02006-06-27 09:08:22 -0700855 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800856 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700857 ctrl |= E1000_TXDCTL_COUNT_DESC;
858 break;
859 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 E1000_WRITE_REG(hw, TXDCTL, ctrl);
861 }
862
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700863 if (hw->mac_type == e1000_82573) {
Auke Kok76c224b2006-05-23 13:36:06 -0700864 e1000_enable_tx_pkt_filtering(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700865 }
866
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400867 switch (hw->mac_type) {
868 default:
869 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800870 case e1000_80003es2lan:
871 /* Enable retransmit on late collisions */
872 reg_data = E1000_READ_REG(hw, TCTL);
873 reg_data |= E1000_TCTL_RTLC;
874 E1000_WRITE_REG(hw, TCTL, reg_data);
875
876 /* Configure Gigabit Carry Extend Padding */
877 reg_data = E1000_READ_REG(hw, TCTL_EXT);
878 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
879 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
880 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
881
882 /* Configure Transmit Inter-Packet Gap */
883 reg_data = E1000_READ_REG(hw, TIPG);
884 reg_data &= ~E1000_TIPG_IPGT_MASK;
885 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
886 E1000_WRITE_REG(hw, TIPG, reg_data);
887
888 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
889 reg_data &= ~0x00100000;
890 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
891 /* Fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400892 case e1000_82571:
Mallikarjuna R Chilakalaa7990ba2005-10-04 07:08:19 -0400893 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -0700894 case e1000_ich8lan:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400895 ctrl = E1000_READ_REG(hw, TXDCTL1);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800896 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
897 if(hw->mac_type >= e1000_82571)
898 ctrl |= E1000_TXDCTL_COUNT_DESC;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400899 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
900 break;
901 }
902
903
904
905 if (hw->mac_type == e1000_82573) {
906 uint32_t gcr = E1000_READ_REG(hw, GCR);
907 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
908 E1000_WRITE_REG(hw, GCR, gcr);
909 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700910
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911 /* Clear all of the statistics registers (clear on read). It is
912 * important that we do this after we have tried to establish link
913 * because the symbol error count will increment wildly if there
914 * is no link.
915 */
916 e1000_clear_hw_cntrs(hw);
917
Auke Kokcd94dd02006-06-27 09:08:22 -0700918 /* ICH8 No-snoop bits are opposite polarity.
919 * Set to snoop by default after reset. */
920 if (hw->mac_type == e1000_ich8lan)
921 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
922
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800923 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
924 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
925 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
926 /* Relaxed ordering must be disabled to avoid a parity
927 * error crash in a PCI slot. */
928 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
929 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
930 }
931
Linus Torvalds1da177e2005-04-16 15:20:36 -0700932 return ret_val;
933}
934
935/******************************************************************************
936 * Adjust SERDES output amplitude based on EEPROM setting.
937 *
938 * hw - Struct containing variables accessed by shared code.
939 *****************************************************************************/
940static int32_t
941e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
942{
943 uint16_t eeprom_data;
944 int32_t ret_val;
945
946 DEBUGFUNC("e1000_adjust_serdes_amplitude");
947
948 if(hw->media_type != e1000_media_type_internal_serdes)
949 return E1000_SUCCESS;
950
951 switch(hw->mac_type) {
952 case e1000_82545_rev_3:
953 case e1000_82546_rev_3:
954 break;
955 default:
956 return E1000_SUCCESS;
957 }
958
959 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
960 if (ret_val) {
961 return ret_val;
962 }
963
964 if(eeprom_data != EEPROM_RESERVED_WORD) {
965 /* Adjust SERDES output amplitude only. */
Auke Kok76c224b2006-05-23 13:36:06 -0700966 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
968 if(ret_val)
969 return ret_val;
970 }
971
972 return E1000_SUCCESS;
973}
974
975/******************************************************************************
976 * Configures flow control and link settings.
977 *
978 * hw - Struct containing variables accessed by shared code
979 *
980 * Determines which flow control settings to use. Calls the apropriate media-
981 * specific link configuration function. Configures the flow control settings.
982 * Assuming the adapter has a valid link partner, a valid link should be
983 * established. Assumes the hardware has previously been reset and the
984 * transmitter and receiver are not enabled.
985 *****************************************************************************/
986int32_t
987e1000_setup_link(struct e1000_hw *hw)
988{
989 uint32_t ctrl_ext;
990 int32_t ret_val;
991 uint16_t eeprom_data;
992
993 DEBUGFUNC("e1000_setup_link");
994
Jeff Kirsher526f9952006-01-12 16:50:46 -0800995 /* In the case of the phy reset being blocked, we already have a link.
996 * We do not have to set it up again. */
997 if (e1000_check_phy_reset_block(hw))
998 return E1000_SUCCESS;
999
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000 /* Read and store word 0x0F of the EEPROM. This word contains bits
1001 * that determine the hardware's default PAUSE (flow control) mode,
1002 * a bit that determines whether the HW defaults to enabling or
1003 * disabling auto-negotiation, and the direction of the
1004 * SW defined pins. If there is no SW over-ride of the flow
1005 * control setting, then the variable hw->fc will
1006 * be initialized based on a value in the EEPROM.
1007 */
Jeff Kirsherfd803242005-12-13 00:06:22 -05001008 if (hw->fc == e1000_fc_default) {
1009 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -07001010 case e1000_ich8lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05001011 case e1000_82573:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012 hw->fc = e1000_fc_full;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001013 break;
1014 default:
1015 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1016 1, &eeprom_data);
1017 if (ret_val) {
1018 DEBUGOUT("EEPROM Read Error\n");
1019 return -E1000_ERR_EEPROM;
1020 }
1021 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1022 hw->fc = e1000_fc_none;
1023 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1024 EEPROM_WORD0F_ASM_DIR)
1025 hw->fc = e1000_fc_tx_pause;
1026 else
1027 hw->fc = e1000_fc_full;
1028 break;
1029 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 }
1031
1032 /* We want to save off the original Flow Control configuration just
1033 * in case we get disconnected and then reconnected into a different
1034 * hub or switch with different Flow Control capabilities.
1035 */
1036 if(hw->mac_type == e1000_82542_rev2_0)
1037 hw->fc &= (~e1000_fc_tx_pause);
1038
1039 if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1040 hw->fc &= (~e1000_fc_rx_pause);
1041
1042 hw->original_fc = hw->fc;
1043
1044 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1045
1046 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1047 * polarity value for the SW controlled pins, and setup the
1048 * Extended Device Control reg with that info.
1049 * This is needed because one of the SW controlled pins is used for
1050 * signal detection. So this should be done before e1000_setup_pcs_link()
1051 * or e1000_phy_setup() is called.
1052 */
Jeff Kirsher497fce52006-03-02 18:18:20 -08001053 if (hw->mac_type == e1000_82543) {
1054 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1055 1, &eeprom_data);
1056 if (ret_val) {
1057 DEBUGOUT("EEPROM Read Error\n");
1058 return -E1000_ERR_EEPROM;
1059 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1061 SWDPIO__EXT_SHIFT);
1062 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1063 }
1064
1065 /* Call the necessary subroutine to configure the link. */
1066 ret_val = (hw->media_type == e1000_media_type_copper) ?
1067 e1000_setup_copper_link(hw) :
1068 e1000_setup_fiber_serdes_link(hw);
1069
1070 /* Initialize the flow control address, type, and PAUSE timer
1071 * registers to their default values. This is done even if flow
1072 * control is disabled, because it does not hurt anything to
1073 * initialize these registers.
1074 */
1075 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1076
Auke Kokcd94dd02006-06-27 09:08:22 -07001077 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1078 if (hw->mac_type != e1000_ich8lan) {
1079 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1080 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1081 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1082 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001083
Linus Torvalds1da177e2005-04-16 15:20:36 -07001084 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1085
1086 /* Set the flow control receive threshold registers. Normally,
1087 * these registers will be set to a default threshold that may be
1088 * adjusted later by the driver's runtime code. However, if the
1089 * ability to transmit pause frames in not enabled, then these
1090 * registers will be set to 0.
1091 */
1092 if(!(hw->fc & e1000_fc_tx_pause)) {
1093 E1000_WRITE_REG(hw, FCRTL, 0);
1094 E1000_WRITE_REG(hw, FCRTH, 0);
1095 } else {
1096 /* We need to set up the Receive Threshold high and low water marks
1097 * as well as (optionally) enabling the transmission of XON frames.
1098 */
1099 if(hw->fc_send_xon) {
1100 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1101 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1102 } else {
1103 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1104 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1105 }
1106 }
1107 return ret_val;
1108}
1109
1110/******************************************************************************
1111 * Sets up link for a fiber based or serdes based adapter
1112 *
1113 * hw - Struct containing variables accessed by shared code
1114 *
1115 * Manipulates Physical Coding Sublayer functions in order to configure
1116 * link. Assumes the hardware has been previously reset and the transmitter
1117 * and receiver are not enabled.
1118 *****************************************************************************/
1119static int32_t
1120e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1121{
1122 uint32_t ctrl;
1123 uint32_t status;
1124 uint32_t txcw = 0;
1125 uint32_t i;
1126 uint32_t signal = 0;
1127 int32_t ret_val;
1128
1129 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1130
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001131 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1132 * until explicitly turned off or a power cycle is performed. A read to
1133 * the register does not indicate its status. Therefore, we ensure
1134 * loopback mode is disabled during initialization.
1135 */
1136 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1137 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1138
Linus Torvalds1da177e2005-04-16 15:20:36 -07001139 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
1140 * set when the optics detect a signal. On older adapters, it will be
1141 * cleared when there is a signal. This applies to fiber media only.
1142 * If we're on serdes media, adjust the output amplitude to value set in
1143 * the EEPROM.
1144 */
1145 ctrl = E1000_READ_REG(hw, CTRL);
1146 if(hw->media_type == e1000_media_type_fiber)
1147 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1148
1149 ret_val = e1000_adjust_serdes_amplitude(hw);
1150 if(ret_val)
1151 return ret_val;
1152
1153 /* Take the link out of reset */
1154 ctrl &= ~(E1000_CTRL_LRST);
1155
1156 /* Adjust VCO speed to improve BER performance */
1157 ret_val = e1000_set_vco_speed(hw);
1158 if(ret_val)
1159 return ret_val;
1160
1161 e1000_config_collision_dist(hw);
1162
1163 /* Check for a software override of the flow control settings, and setup
1164 * the device accordingly. If auto-negotiation is enabled, then software
1165 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1166 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1167 * auto-negotiation is disabled, then software will have to manually
1168 * configure the two flow control enable bits in the CTRL register.
1169 *
1170 * The possible values of the "fc" parameter are:
1171 * 0: Flow control is completely disabled
1172 * 1: Rx flow control is enabled (we can receive pause frames, but
1173 * not send pause frames).
1174 * 2: Tx flow control is enabled (we can send pause frames but we do
1175 * not support receiving pause frames).
1176 * 3: Both Rx and TX flow control (symmetric) are enabled.
1177 */
1178 switch (hw->fc) {
1179 case e1000_fc_none:
1180 /* Flow control is completely disabled by a software over-ride. */
1181 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1182 break;
1183 case e1000_fc_rx_pause:
1184 /* RX Flow control is enabled and TX Flow control is disabled by a
1185 * software over-ride. Since there really isn't a way to advertise
1186 * that we are capable of RX Pause ONLY, we will advertise that we
1187 * support both symmetric and asymmetric RX PAUSE. Later, we will
1188 * disable the adapter's ability to send PAUSE frames.
1189 */
1190 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1191 break;
1192 case e1000_fc_tx_pause:
1193 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1194 * software over-ride.
1195 */
1196 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1197 break;
1198 case e1000_fc_full:
1199 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1200 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1201 break;
1202 default:
1203 DEBUGOUT("Flow control param set incorrectly\n");
1204 return -E1000_ERR_CONFIG;
1205 break;
1206 }
1207
1208 /* Since auto-negotiation is enabled, take the link out of reset (the link
1209 * will be in reset, because we previously reset the chip). This will
1210 * restart auto-negotiation. If auto-neogtiation is successful then the
1211 * link-up status bit will be set and the flow control enable bits (RFCE
1212 * and TFCE) will be set according to their negotiated value.
1213 */
1214 DEBUGOUT("Auto-negotiation enabled\n");
1215
1216 E1000_WRITE_REG(hw, TXCW, txcw);
1217 E1000_WRITE_REG(hw, CTRL, ctrl);
1218 E1000_WRITE_FLUSH(hw);
1219
1220 hw->txcw = txcw;
1221 msec_delay(1);
1222
1223 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1224 * indication in the Device Status Register. Time-out if a link isn't
1225 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1226 * less than 500 milliseconds even if the other end is doing it in SW).
1227 * For internal serdes, we just assume a signal is present, then poll.
1228 */
1229 if(hw->media_type == e1000_media_type_internal_serdes ||
1230 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1231 DEBUGOUT("Looking for Link\n");
1232 for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1233 msec_delay(10);
1234 status = E1000_READ_REG(hw, STATUS);
1235 if(status & E1000_STATUS_LU) break;
1236 }
1237 if(i == (LINK_UP_TIMEOUT / 10)) {
1238 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1239 hw->autoneg_failed = 1;
1240 /* AutoNeg failed to achieve a link, so we'll call
1241 * e1000_check_for_link. This routine will force the link up if
1242 * we detect a signal. This will allow us to communicate with
1243 * non-autonegotiating link partners.
1244 */
1245 ret_val = e1000_check_for_link(hw);
1246 if(ret_val) {
1247 DEBUGOUT("Error while checking for link\n");
1248 return ret_val;
1249 }
1250 hw->autoneg_failed = 0;
1251 } else {
1252 hw->autoneg_failed = 0;
1253 DEBUGOUT("Valid Link Found\n");
1254 }
1255 } else {
1256 DEBUGOUT("No Signal Detected\n");
1257 }
1258 return E1000_SUCCESS;
1259}
1260
1261/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001262* Make sure we have a valid PHY and change PHY mode before link setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001263*
1264* hw - Struct containing variables accessed by shared code
1265******************************************************************************/
1266static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001267e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268{
1269 uint32_t ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271 uint16_t phy_data;
1272
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001273 DEBUGFUNC("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274
1275 ctrl = E1000_READ_REG(hw, CTRL);
1276 /* With 82543, we need to force speed and duplex on the MAC equal to what
1277 * the PHY speed and duplex configuration is. In addition, we need to
1278 * perform a hardware reset on the PHY to take it out of reset.
1279 */
1280 if(hw->mac_type > e1000_82543) {
1281 ctrl |= E1000_CTRL_SLU;
1282 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1283 E1000_WRITE_REG(hw, CTRL, ctrl);
1284 } else {
1285 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1286 E1000_WRITE_REG(hw, CTRL, ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001287 ret_val = e1000_phy_hw_reset(hw);
1288 if(ret_val)
1289 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001290 }
1291
1292 /* Make sure we have a valid PHY */
1293 ret_val = e1000_detect_gig_phy(hw);
1294 if(ret_val) {
1295 DEBUGOUT("Error, did not detect valid phy.\n");
1296 return ret_val;
1297 }
1298 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1299
1300 /* Set PHY to class A mode (if necessary) */
1301 ret_val = e1000_set_phy_mode(hw);
1302 if(ret_val)
1303 return ret_val;
1304
1305 if((hw->mac_type == e1000_82545_rev_3) ||
1306 (hw->mac_type == e1000_82546_rev_3)) {
1307 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1308 phy_data |= 0x00000008;
1309 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1310 }
1311
1312 if(hw->mac_type <= e1000_82543 ||
1313 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1314 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1315 hw->phy_reset_disable = FALSE;
1316
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001317 return E1000_SUCCESS;
1318}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001319
Linus Torvalds1da177e2005-04-16 15:20:36 -07001320
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001321/********************************************************************
1322* Copper link setup for e1000_phy_igp series.
1323*
1324* hw - Struct containing variables accessed by shared code
1325*********************************************************************/
1326static int32_t
1327e1000_copper_link_igp_setup(struct e1000_hw *hw)
1328{
1329 uint32_t led_ctrl;
1330 int32_t ret_val;
1331 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001333 DEBUGFUNC("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001334
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001335 if (hw->phy_reset_disable)
1336 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001337
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001338 ret_val = e1000_phy_reset(hw);
1339 if (ret_val) {
1340 DEBUGOUT("Error Resetting the PHY\n");
1341 return ret_val;
1342 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001343
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001344 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1345 msec_delay(15);
Auke Kokcd94dd02006-06-27 09:08:22 -07001346 if (hw->mac_type != e1000_ich8lan) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001347 /* Configure activity LED after PHY reset */
1348 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1349 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1350 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1351 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
Auke Kokcd94dd02006-06-27 09:08:22 -07001352 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001353
1354 /* disable lplu d3 during driver init */
1355 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1356 if (ret_val) {
1357 DEBUGOUT("Error Disabling LPLU D3\n");
1358 return ret_val;
1359 }
1360
1361 /* disable lplu d0 during driver init */
1362 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1363 if (ret_val) {
1364 DEBUGOUT("Error Disabling LPLU D0\n");
1365 return ret_val;
1366 }
1367 /* Configure mdi-mdix settings */
1368 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1369 if (ret_val)
1370 return ret_val;
1371
1372 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1373 hw->dsp_config_state = e1000_dsp_config_disabled;
1374 /* Force MDI for earlier revs of the IGP PHY */
1375 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1376 hw->mdix = 1;
1377
1378 } else {
1379 hw->dsp_config_state = e1000_dsp_config_enabled;
1380 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1381
1382 switch (hw->mdix) {
1383 case 1:
1384 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1385 break;
1386 case 2:
1387 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1388 break;
1389 case 0:
1390 default:
1391 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1392 break;
1393 }
1394 }
1395 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1396 if(ret_val)
1397 return ret_val;
1398
1399 /* set auto-master slave resolution settings */
1400 if(hw->autoneg) {
1401 e1000_ms_type phy_ms_setting = hw->master_slave;
1402
1403 if(hw->ffe_config_state == e1000_ffe_config_active)
1404 hw->ffe_config_state = e1000_ffe_config_enabled;
1405
1406 if(hw->dsp_config_state == e1000_dsp_config_activated)
1407 hw->dsp_config_state = e1000_dsp_config_enabled;
1408
1409 /* when autonegotiation advertisment is only 1000Mbps then we
1410 * should disable SmartSpeed and enable Auto MasterSlave
1411 * resolution as hardware default. */
1412 if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1413 /* Disable SmartSpeed */
1414 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 if(ret_val)
1416 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001417 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1418 ret_val = e1000_write_phy_reg(hw,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419 IGP01E1000_PHY_PORT_CONFIG,
1420 phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 if(ret_val)
1422 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001423 /* Set auto Master/Slave resolution process */
1424 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1425 if(ret_val)
1426 return ret_val;
1427 phy_data &= ~CR_1000T_MS_ENABLE;
1428 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1429 if(ret_val)
1430 return ret_val;
1431 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001433 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1434 if(ret_val)
1435 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001437 /* load defaults for future use */
1438 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1439 ((phy_data & CR_1000T_MS_VALUE) ?
1440 e1000_ms_force_master :
1441 e1000_ms_force_slave) :
1442 e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001444 switch (phy_ms_setting) {
1445 case e1000_ms_force_master:
1446 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1447 break;
1448 case e1000_ms_force_slave:
1449 phy_data |= CR_1000T_MS_ENABLE;
1450 phy_data &= ~(CR_1000T_MS_VALUE);
1451 break;
1452 case e1000_ms_auto:
1453 phy_data &= ~CR_1000T_MS_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454 default:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001455 break;
1456 }
1457 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1458 if(ret_val)
1459 return ret_val;
Malli Chilakala2b028932005-06-17 17:46:06 -07001460 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461
Malli Chilakala2b028932005-06-17 17:46:06 -07001462 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001463}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001464
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001465/********************************************************************
1466* Copper link setup for e1000_phy_gg82563 series.
1467*
1468* hw - Struct containing variables accessed by shared code
1469*********************************************************************/
1470static int32_t
1471e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1472{
1473 int32_t ret_val;
1474 uint16_t phy_data;
1475 uint32_t reg_data;
1476
1477 DEBUGFUNC("e1000_copper_link_ggp_setup");
1478
1479 if(!hw->phy_reset_disable) {
Auke Kok76c224b2006-05-23 13:36:06 -07001480
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001481 /* Enable CRS on TX for half-duplex operation. */
1482 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1483 &phy_data);
1484 if(ret_val)
1485 return ret_val;
1486
1487 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1488 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1489 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1490
1491 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1492 phy_data);
1493 if(ret_val)
1494 return ret_val;
1495
1496 /* Options:
1497 * MDI/MDI-X = 0 (default)
1498 * 0 - Auto for all speeds
1499 * 1 - MDI mode
1500 * 2 - MDI-X mode
1501 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1502 */
1503 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1504 if(ret_val)
1505 return ret_val;
1506
1507 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1508
1509 switch (hw->mdix) {
1510 case 1:
1511 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1512 break;
1513 case 2:
1514 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1515 break;
1516 case 0:
1517 default:
1518 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1519 break;
1520 }
1521
1522 /* Options:
1523 * disable_polarity_correction = 0 (default)
1524 * Automatic Correction for Reversed Cable Polarity
1525 * 0 - Disabled
1526 * 1 - Enabled
1527 */
1528 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1529 if(hw->disable_polarity_correction == 1)
1530 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1531 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1532
1533 if(ret_val)
1534 return ret_val;
1535
1536 /* SW Reset the PHY so all changes take effect */
1537 ret_val = e1000_phy_reset(hw);
1538 if (ret_val) {
1539 DEBUGOUT("Error Resetting the PHY\n");
1540 return ret_val;
1541 }
1542 } /* phy_reset_disable */
1543
1544 if (hw->mac_type == e1000_80003es2lan) {
1545 /* Bypass RX and TX FIFO's */
1546 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1547 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1548 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1549 if (ret_val)
1550 return ret_val;
1551
1552 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1553 if (ret_val)
1554 return ret_val;
1555
1556 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1557 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1558
1559 if (ret_val)
1560 return ret_val;
1561
1562 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1563 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1564 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1565
1566 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1567 &phy_data);
1568 if (ret_val)
1569 return ret_val;
1570
1571 /* Do not init these registers when the HW is in IAMT mode, since the
1572 * firmware will have already initialized them. We only initialize
1573 * them if the HW is not in IAMT mode.
1574 */
1575 if (e1000_check_mng_mode(hw) == FALSE) {
1576 /* Enable Electrical Idle on the PHY */
1577 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1578 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1579 phy_data);
1580 if (ret_val)
1581 return ret_val;
1582
1583 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1584 &phy_data);
1585 if (ret_val)
1586 return ret_val;
1587
Auke Kokcd94dd02006-06-27 09:08:22 -07001588 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001589
1590 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1591 phy_data);
1592 if (ret_val)
1593 return ret_val;
1594 }
1595
1596 /* Workaround: Disable padding in Kumeran interface in the MAC
1597 * and in the PHY to avoid CRC errors.
1598 */
1599 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1600 &phy_data);
1601 if (ret_val)
1602 return ret_val;
1603 phy_data |= GG82563_ICR_DIS_PADDING;
1604 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1605 phy_data);
1606 if (ret_val)
1607 return ret_val;
1608 }
1609
1610 return E1000_SUCCESS;
1611}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001612
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001613/********************************************************************
1614* Copper link setup for e1000_phy_m88 series.
1615*
1616* hw - Struct containing variables accessed by shared code
1617*********************************************************************/
1618static int32_t
1619e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1620{
1621 int32_t ret_val;
1622 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001624 DEBUGFUNC("e1000_copper_link_mgp_setup");
1625
1626 if(hw->phy_reset_disable)
1627 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001628
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001629 /* Enable CRS on TX. This must be set for half-duplex operation. */
1630 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1631 if(ret_val)
1632 return ret_val;
1633
1634 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1635
1636 /* Options:
1637 * MDI/MDI-X = 0 (default)
1638 * 0 - Auto for all speeds
1639 * 1 - MDI mode
1640 * 2 - MDI-X mode
1641 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1642 */
1643 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1644
1645 switch (hw->mdix) {
1646 case 1:
1647 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1648 break;
1649 case 2:
1650 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1651 break;
1652 case 3:
1653 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1654 break;
1655 case 0:
1656 default:
1657 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1658 break;
1659 }
1660
1661 /* Options:
1662 * disable_polarity_correction = 0 (default)
1663 * Automatic Correction for Reversed Cable Polarity
1664 * 0 - Disabled
1665 * 1 - Enabled
1666 */
1667 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1668 if(hw->disable_polarity_correction == 1)
1669 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kokee040222006-06-27 09:08:03 -07001670 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1671 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001672 return ret_val;
1673
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001674 if (hw->phy_revision < M88E1011_I_REV_4) {
Auke Kokee040222006-06-27 09:08:03 -07001675 /* Force TX_CLK in the Extended PHY Specific Control Register
1676 * to 25MHz clock.
1677 */
1678 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1679 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001680 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001681
1682 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1683
1684 if ((hw->phy_revision == E1000_REVISION_2) &&
1685 (hw->phy_id == M88E1111_I_PHY_ID)) {
1686 /* Vidalia Phy, set the downshift counter to 5x */
1687 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1688 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1689 ret_val = e1000_write_phy_reg(hw,
1690 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1691 if (ret_val)
1692 return ret_val;
1693 } else {
1694 /* Configure Master and Slave downshift values */
1695 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1696 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1697 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1698 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1699 ret_val = e1000_write_phy_reg(hw,
1700 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1701 if (ret_val)
1702 return ret_val;
1703 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001704 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001706 /* SW Reset the PHY so all changes take effect */
1707 ret_val = e1000_phy_reset(hw);
1708 if(ret_val) {
1709 DEBUGOUT("Error Resetting the PHY\n");
1710 return ret_val;
1711 }
1712
1713 return E1000_SUCCESS;
1714}
1715
1716/********************************************************************
1717* Setup auto-negotiation and flow control advertisements,
1718* and then perform auto-negotiation.
1719*
1720* hw - Struct containing variables accessed by shared code
1721*********************************************************************/
1722static int32_t
1723e1000_copper_link_autoneg(struct e1000_hw *hw)
1724{
1725 int32_t ret_val;
1726 uint16_t phy_data;
1727
1728 DEBUGFUNC("e1000_copper_link_autoneg");
1729
1730 /* Perform some bounds checking on the hw->autoneg_advertised
1731 * parameter. If this variable is zero, then set it to the default.
1732 */
1733 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1734
1735 /* If autoneg_advertised is zero, we assume it was not defaulted
1736 * by the calling code so we set to advertise full capability.
1737 */
1738 if(hw->autoneg_advertised == 0)
1739 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1740
Auke Kokcd94dd02006-06-27 09:08:22 -07001741 /* IFE phy only supports 10/100 */
1742 if (hw->phy_type == e1000_phy_ife)
1743 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1744
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001745 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1746 ret_val = e1000_phy_setup_autoneg(hw);
1747 if(ret_val) {
1748 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1749 return ret_val;
1750 }
1751 DEBUGOUT("Restarting Auto-Neg\n");
1752
1753 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1754 * the Auto Neg Restart bit in the PHY control register.
1755 */
1756 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1757 if(ret_val)
1758 return ret_val;
1759
1760 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1761 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1762 if(ret_val)
1763 return ret_val;
1764
1765 /* Does the user want to wait for Auto-Neg to complete here, or
1766 * check at a later time (for example, callback routine).
1767 */
1768 if(hw->wait_autoneg_complete) {
1769 ret_val = e1000_wait_autoneg(hw);
1770 if(ret_val) {
1771 DEBUGOUT("Error while waiting for autoneg to complete\n");
1772 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001774 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001776 hw->get_link_status = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001778 return E1000_SUCCESS;
1779}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001782/******************************************************************************
1783* Config the MAC and the PHY after link is up.
1784* 1) Set up the MAC to the current PHY speed/duplex
1785* if we are on 82543. If we
1786* are on newer silicon, we only need to configure
1787* collision distance in the Transmit Control Register.
1788* 2) Set up flow control on the MAC to that established with
1789* the link partner.
Auke Kok76c224b2006-05-23 13:36:06 -07001790* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001791*
1792* hw - Struct containing variables accessed by shared code
1793******************************************************************************/
1794static int32_t
1795e1000_copper_link_postconfig(struct e1000_hw *hw)
1796{
1797 int32_t ret_val;
1798 DEBUGFUNC("e1000_copper_link_postconfig");
Auke Kok76c224b2006-05-23 13:36:06 -07001799
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001800 if(hw->mac_type >= e1000_82544) {
1801 e1000_config_collision_dist(hw);
1802 } else {
1803 ret_val = e1000_config_mac_to_phy(hw);
1804 if(ret_val) {
1805 DEBUGOUT("Error configuring MAC to PHY settings\n");
1806 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001808 }
1809 ret_val = e1000_config_fc_after_link_up(hw);
1810 if(ret_val) {
1811 DEBUGOUT("Error Configuring Flow Control\n");
1812 return ret_val;
1813 }
1814
1815 /* Config DSP to improve Giga link quality */
1816 if(hw->phy_type == e1000_phy_igp) {
1817 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1818 if(ret_val) {
1819 DEBUGOUT("Error Configuring DSP after link up\n");
1820 return ret_val;
1821 }
1822 }
Auke Kok76c224b2006-05-23 13:36:06 -07001823
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001824 return E1000_SUCCESS;
1825}
1826
1827/******************************************************************************
1828* Detects which PHY is present and setup the speed and duplex
1829*
1830* hw - Struct containing variables accessed by shared code
1831******************************************************************************/
1832static int32_t
1833e1000_setup_copper_link(struct e1000_hw *hw)
1834{
1835 int32_t ret_val;
1836 uint16_t i;
1837 uint16_t phy_data;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001838 uint16_t reg_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001839
1840 DEBUGFUNC("e1000_setup_copper_link");
1841
Auke Kokcd94dd02006-06-27 09:08:22 -07001842 switch (hw->mac_type) {
1843 case e1000_80003es2lan:
1844 case e1000_ich8lan:
1845 /* Set the mac to wait the maximum time between each
1846 * iteration and increase the max iterations when
1847 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1848 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1849 if (ret_val)
1850 return ret_val;
1851 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1852 if (ret_val)
1853 return ret_val;
1854 reg_data |= 0x3F;
1855 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1856 if (ret_val)
1857 return ret_val;
1858 default:
1859 break;
1860 }
1861
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001862 /* Check if it is a valid PHY and set PHY mode if necessary. */
1863 ret_val = e1000_copper_link_preconfig(hw);
1864 if(ret_val)
1865 return ret_val;
1866
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001867 switch (hw->mac_type) {
1868 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07001869 /* Kumeran registers are written-only */
1870 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001871 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1872 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1873 reg_data);
1874 if (ret_val)
1875 return ret_val;
1876 break;
1877 default:
1878 break;
1879 }
1880
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001881 if (hw->phy_type == e1000_phy_igp ||
Auke Kokcd94dd02006-06-27 09:08:22 -07001882 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001883 hw->phy_type == e1000_phy_igp_2) {
1884 ret_val = e1000_copper_link_igp_setup(hw);
1885 if(ret_val)
1886 return ret_val;
1887 } else if (hw->phy_type == e1000_phy_m88) {
1888 ret_val = e1000_copper_link_mgp_setup(hw);
1889 if(ret_val)
1890 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001891 } else if (hw->phy_type == e1000_phy_gg82563) {
1892 ret_val = e1000_copper_link_ggp_setup(hw);
1893 if(ret_val)
1894 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001895 }
1896
1897 if(hw->autoneg) {
Auke Kok76c224b2006-05-23 13:36:06 -07001898 /* Setup autoneg and flow control advertisement
1899 * and perform autonegotiation */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001900 ret_val = e1000_copper_link_autoneg(hw);
1901 if(ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07001902 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001903 } else {
1904 /* PHY will be set to 10H, 10F, 100H,or 100F
1905 * depending on value from forced_speed_duplex. */
1906 DEBUGOUT("Forcing speed and duplex\n");
1907 ret_val = e1000_phy_force_speed_duplex(hw);
1908 if(ret_val) {
1909 DEBUGOUT("Error Forcing Speed and Duplex\n");
1910 return ret_val;
1911 }
1912 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913
1914 /* Check link status. Wait up to 100 microseconds for link to become
1915 * valid.
1916 */
1917 for(i = 0; i < 10; i++) {
1918 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1919 if(ret_val)
1920 return ret_val;
1921 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1922 if(ret_val)
1923 return ret_val;
1924
1925 if(phy_data & MII_SR_LINK_STATUS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001926 /* Config the MAC and PHY after link is up */
1927 ret_val = e1000_copper_link_postconfig(hw);
1928 if(ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001930
Linus Torvalds1da177e2005-04-16 15:20:36 -07001931 DEBUGOUT("Valid link established!!!\n");
1932 return E1000_SUCCESS;
1933 }
1934 udelay(10);
1935 }
1936
1937 DEBUGOUT("Unable to establish link!!!\n");
1938 return E1000_SUCCESS;
1939}
1940
1941/******************************************************************************
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001942* Configure the MAC-to-PHY interface for 10/100Mbps
1943*
1944* hw - Struct containing variables accessed by shared code
1945******************************************************************************/
1946static int32_t
Auke Kokcd94dd02006-06-27 09:08:22 -07001947e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001948{
1949 int32_t ret_val = E1000_SUCCESS;
1950 uint32_t tipg;
1951 uint16_t reg_data;
1952
1953 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1954
1955 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
1956 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
1957 reg_data);
1958 if (ret_val)
1959 return ret_val;
1960
1961 /* Configure Transmit Inter-Packet Gap */
1962 tipg = E1000_READ_REG(hw, TIPG);
1963 tipg &= ~E1000_TIPG_IPGT_MASK;
1964 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
1965 E1000_WRITE_REG(hw, TIPG, tipg);
1966
Auke Kokcd94dd02006-06-27 09:08:22 -07001967 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1968
1969 if (ret_val)
1970 return ret_val;
1971
1972 if (duplex == HALF_DUPLEX)
1973 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1974 else
1975 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1976
1977 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1978
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001979 return ret_val;
1980}
1981
1982static int32_t
1983e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
1984{
1985 int32_t ret_val = E1000_SUCCESS;
1986 uint16_t reg_data;
1987 uint32_t tipg;
1988
1989 DEBUGFUNC("e1000_configure_kmrn_for_1000");
1990
1991 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
1992 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
1993 reg_data);
1994 if (ret_val)
1995 return ret_val;
1996
1997 /* Configure Transmit Inter-Packet Gap */
1998 tipg = E1000_READ_REG(hw, TIPG);
1999 tipg &= ~E1000_TIPG_IPGT_MASK;
2000 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2001 E1000_WRITE_REG(hw, TIPG, tipg);
2002
Auke Kokcd94dd02006-06-27 09:08:22 -07002003 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2004
2005 if (ret_val)
2006 return ret_val;
2007
2008 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2009 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2010
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002011 return ret_val;
2012}
2013
2014/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015* Configures PHY autoneg and flow control advertisement settings
2016*
2017* hw - Struct containing variables accessed by shared code
2018******************************************************************************/
2019int32_t
2020e1000_phy_setup_autoneg(struct e1000_hw *hw)
2021{
2022 int32_t ret_val;
2023 uint16_t mii_autoneg_adv_reg;
2024 uint16_t mii_1000t_ctrl_reg;
2025
2026 DEBUGFUNC("e1000_phy_setup_autoneg");
2027
2028 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2029 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2030 if(ret_val)
2031 return ret_val;
2032
Auke Kokcd94dd02006-06-27 09:08:22 -07002033 if (hw->phy_type != e1000_phy_ife) {
2034 /* Read the MII 1000Base-T Control Register (Address 9). */
2035 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2036 if (ret_val)
2037 return ret_val;
2038 } else
2039 mii_1000t_ctrl_reg=0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040
2041 /* Need to parse both autoneg_advertised and fc and set up
2042 * the appropriate PHY registers. First we will parse for
2043 * autoneg_advertised software override. Since we can advertise
2044 * a plethora of combinations, we need to check each bit
2045 * individually.
2046 */
2047
2048 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2049 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2050 * the 1000Base-T Control Register (Address 9).
2051 */
2052 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2053 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2054
2055 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2056
2057 /* Do we want to advertise 10 Mb Half Duplex? */
2058 if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
2059 DEBUGOUT("Advertise 10mb Half duplex\n");
2060 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2061 }
2062
2063 /* Do we want to advertise 10 Mb Full Duplex? */
2064 if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
2065 DEBUGOUT("Advertise 10mb Full duplex\n");
2066 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2067 }
2068
2069 /* Do we want to advertise 100 Mb Half Duplex? */
2070 if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
2071 DEBUGOUT("Advertise 100mb Half duplex\n");
2072 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2073 }
2074
2075 /* Do we want to advertise 100 Mb Full Duplex? */
2076 if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
2077 DEBUGOUT("Advertise 100mb Full duplex\n");
2078 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2079 }
2080
2081 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2082 if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2083 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2084 }
2085
2086 /* Do we want to advertise 1000 Mb Full Duplex? */
2087 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2088 DEBUGOUT("Advertise 1000mb Full duplex\n");
2089 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
Auke Kokcd94dd02006-06-27 09:08:22 -07002090 if (hw->phy_type == e1000_phy_ife) {
2091 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2092 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 }
2094
2095 /* Check for a software override of the flow control settings, and
2096 * setup the PHY advertisement registers accordingly. If
2097 * auto-negotiation is enabled, then software will have to set the
2098 * "PAUSE" bits to the correct value in the Auto-Negotiation
2099 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2100 *
2101 * The possible values of the "fc" parameter are:
2102 * 0: Flow control is completely disabled
2103 * 1: Rx flow control is enabled (we can receive pause frames
2104 * but not send pause frames).
2105 * 2: Tx flow control is enabled (we can send pause frames
2106 * but we do not support receiving pause frames).
2107 * 3: Both Rx and TX flow control (symmetric) are enabled.
2108 * other: No software override. The flow control configuration
2109 * in the EEPROM is used.
2110 */
2111 switch (hw->fc) {
2112 case e1000_fc_none: /* 0 */
2113 /* Flow control (RX & TX) is completely disabled by a
2114 * software over-ride.
2115 */
2116 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2117 break;
2118 case e1000_fc_rx_pause: /* 1 */
2119 /* RX Flow control is enabled, and TX Flow control is
2120 * disabled, by a software over-ride.
2121 */
2122 /* Since there really isn't a way to advertise that we are
2123 * capable of RX Pause ONLY, we will advertise that we
2124 * support both symmetric and asymmetric RX PAUSE. Later
2125 * (in e1000_config_fc_after_link_up) we will disable the
2126 *hw's ability to send PAUSE frames.
2127 */
2128 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2129 break;
2130 case e1000_fc_tx_pause: /* 2 */
2131 /* TX Flow control is enabled, and RX Flow control is
2132 * disabled, by a software over-ride.
2133 */
2134 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2135 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2136 break;
2137 case e1000_fc_full: /* 3 */
2138 /* Flow control (both RX and TX) is enabled by a software
2139 * over-ride.
2140 */
2141 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2142 break;
2143 default:
2144 DEBUGOUT("Flow control param set incorrectly\n");
2145 return -E1000_ERR_CONFIG;
2146 }
2147
2148 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2149 if(ret_val)
2150 return ret_val;
2151
2152 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2153
Auke Kokcd94dd02006-06-27 09:08:22 -07002154 if (hw->phy_type != e1000_phy_ife) {
2155 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2156 if (ret_val)
2157 return ret_val;
2158 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159
2160 return E1000_SUCCESS;
2161}
2162
2163/******************************************************************************
2164* Force PHY speed and duplex settings to hw->forced_speed_duplex
2165*
2166* hw - Struct containing variables accessed by shared code
2167******************************************************************************/
2168static int32_t
2169e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2170{
2171 uint32_t ctrl;
2172 int32_t ret_val;
2173 uint16_t mii_ctrl_reg;
2174 uint16_t mii_status_reg;
2175 uint16_t phy_data;
2176 uint16_t i;
2177
2178 DEBUGFUNC("e1000_phy_force_speed_duplex");
2179
2180 /* Turn off Flow control if we are forcing speed and duplex. */
2181 hw->fc = e1000_fc_none;
2182
2183 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2184
2185 /* Read the Device Control Register. */
2186 ctrl = E1000_READ_REG(hw, CTRL);
2187
2188 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2189 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2190 ctrl &= ~(DEVICE_SPEED_MASK);
2191
2192 /* Clear the Auto Speed Detect Enable bit. */
2193 ctrl &= ~E1000_CTRL_ASDE;
2194
2195 /* Read the MII Control Register. */
2196 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2197 if(ret_val)
2198 return ret_val;
2199
2200 /* We need to disable autoneg in order to force link and duplex. */
2201
2202 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2203
2204 /* Are we forcing Full or Half Duplex? */
2205 if(hw->forced_speed_duplex == e1000_100_full ||
2206 hw->forced_speed_duplex == e1000_10_full) {
2207 /* We want to force full duplex so we SET the full duplex bits in the
2208 * Device and MII Control Registers.
2209 */
2210 ctrl |= E1000_CTRL_FD;
2211 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2212 DEBUGOUT("Full Duplex\n");
2213 } else {
2214 /* We want to force half duplex so we CLEAR the full duplex bits in
2215 * the Device and MII Control Registers.
2216 */
2217 ctrl &= ~E1000_CTRL_FD;
2218 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2219 DEBUGOUT("Half Duplex\n");
2220 }
2221
2222 /* Are we forcing 100Mbps??? */
2223 if(hw->forced_speed_duplex == e1000_100_full ||
2224 hw->forced_speed_duplex == e1000_100_half) {
2225 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2226 ctrl |= E1000_CTRL_SPD_100;
2227 mii_ctrl_reg |= MII_CR_SPEED_100;
2228 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2229 DEBUGOUT("Forcing 100mb ");
2230 } else {
2231 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2232 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2233 mii_ctrl_reg |= MII_CR_SPEED_10;
2234 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2235 DEBUGOUT("Forcing 10mb ");
2236 }
2237
2238 e1000_config_collision_dist(hw);
2239
2240 /* Write the configured values back to the Device Control Reg. */
2241 E1000_WRITE_REG(hw, CTRL, ctrl);
2242
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002243 if ((hw->phy_type == e1000_phy_m88) ||
2244 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002245 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2246 if(ret_val)
2247 return ret_val;
2248
2249 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2250 * forced whenever speed are duplex are forced.
2251 */
2252 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2253 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2254 if(ret_val)
2255 return ret_val;
2256
2257 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2258
2259 /* Need to reset the PHY or these changes will be ignored */
2260 mii_ctrl_reg |= MII_CR_RESET;
Auke Kokcd94dd02006-06-27 09:08:22 -07002261 /* Disable MDI-X support for 10/100 */
2262 } else if (hw->phy_type == e1000_phy_ife) {
2263 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2264 if (ret_val)
2265 return ret_val;
2266
2267 phy_data &= ~IFE_PMC_AUTO_MDIX;
2268 phy_data &= ~IFE_PMC_FORCE_MDIX;
2269
2270 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2271 if (ret_val)
2272 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 } else {
2274 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2275 * forced whenever speed or duplex are forced.
2276 */
2277 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2278 if(ret_val)
2279 return ret_val;
2280
2281 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2282 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2283
2284 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2285 if(ret_val)
2286 return ret_val;
2287 }
2288
2289 /* Write back the modified PHY MII control register. */
2290 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2291 if(ret_val)
2292 return ret_val;
2293
2294 udelay(1);
2295
2296 /* The wait_autoneg_complete flag may be a little misleading here.
2297 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2298 * But we do want to delay for a period while forcing only so we
2299 * don't generate false No Link messages. So we will wait here
2300 * only if the user has set wait_autoneg_complete to 1, which is
2301 * the default.
2302 */
2303 if(hw->wait_autoneg_complete) {
2304 /* We will wait for autoneg to complete. */
2305 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2306 mii_status_reg = 0;
2307
2308 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2309 for(i = PHY_FORCE_TIME; i > 0; i--) {
2310 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2311 * to be set.
2312 */
2313 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2314 if(ret_val)
2315 return ret_val;
2316
2317 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2318 if(ret_val)
2319 return ret_val;
2320
2321 if(mii_status_reg & MII_SR_LINK_STATUS) break;
2322 msec_delay(100);
2323 }
2324 if((i == 0) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002325 ((hw->phy_type == e1000_phy_m88) ||
2326 (hw->phy_type == e1000_phy_gg82563))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327 /* We didn't get link. Reset the DSP and wait again for link. */
2328 ret_val = e1000_phy_reset_dsp(hw);
2329 if(ret_val) {
2330 DEBUGOUT("Error Resetting PHY DSP\n");
2331 return ret_val;
2332 }
2333 }
2334 /* This loop will early-out if the link condition has been met. */
2335 for(i = PHY_FORCE_TIME; i > 0; i--) {
2336 if(mii_status_reg & MII_SR_LINK_STATUS) break;
2337 msec_delay(100);
2338 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2339 * to be set.
2340 */
2341 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2342 if(ret_val)
2343 return ret_val;
2344
2345 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2346 if(ret_val)
2347 return ret_val;
2348 }
2349 }
2350
2351 if (hw->phy_type == e1000_phy_m88) {
2352 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2353 * Extended PHY Specific Control Register to 25MHz clock. This value
2354 * defaults back to a 2.5MHz clock when the PHY is reset.
2355 */
2356 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2357 if(ret_val)
2358 return ret_val;
2359
2360 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2361 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2362 if(ret_val)
2363 return ret_val;
2364
2365 /* In addition, because of the s/w reset above, we need to enable CRS on
2366 * TX. This must be set for both full and half duplex operation.
2367 */
2368 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2369 if(ret_val)
2370 return ret_val;
2371
2372 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2373 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2374 if(ret_val)
2375 return ret_val;
2376
2377 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2378 (!hw->autoneg) &&
2379 (hw->forced_speed_duplex == e1000_10_full ||
2380 hw->forced_speed_duplex == e1000_10_half)) {
2381 ret_val = e1000_polarity_reversal_workaround(hw);
2382 if(ret_val)
2383 return ret_val;
2384 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002385 } else if (hw->phy_type == e1000_phy_gg82563) {
2386 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2387 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2388 * we're not in a forced 10/duplex configuration. */
2389 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2390 if (ret_val)
2391 return ret_val;
2392
2393 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2394 if ((hw->forced_speed_duplex == e1000_10_full) ||
2395 (hw->forced_speed_duplex == e1000_10_half))
2396 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2397 else
2398 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2399
2400 /* Also due to the reset, we need to enable CRS on Tx. */
2401 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2402
2403 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2404 if (ret_val)
2405 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406 }
2407 return E1000_SUCCESS;
2408}
2409
2410/******************************************************************************
2411* Sets the collision distance in the Transmit Control register
2412*
2413* hw - Struct containing variables accessed by shared code
2414*
2415* Link should have been established previously. Reads the speed and duplex
2416* information from the Device Status register.
2417******************************************************************************/
2418void
2419e1000_config_collision_dist(struct e1000_hw *hw)
2420{
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002421 uint32_t tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422
2423 DEBUGFUNC("e1000_config_collision_dist");
2424
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002425 if (hw->mac_type < e1000_82543)
2426 coll_dist = E1000_COLLISION_DISTANCE_82542;
2427 else
2428 coll_dist = E1000_COLLISION_DISTANCE;
2429
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430 tctl = E1000_READ_REG(hw, TCTL);
2431
2432 tctl &= ~E1000_TCTL_COLD;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002433 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002434
2435 E1000_WRITE_REG(hw, TCTL, tctl);
2436 E1000_WRITE_FLUSH(hw);
2437}
2438
2439/******************************************************************************
2440* Sets MAC speed and duplex settings to reflect the those in the PHY
2441*
2442* hw - Struct containing variables accessed by shared code
2443* mii_reg - data to write to the MII control register
2444*
2445* The contents of the PHY register containing the needed information need to
2446* be passed in.
2447******************************************************************************/
2448static int32_t
2449e1000_config_mac_to_phy(struct e1000_hw *hw)
2450{
2451 uint32_t ctrl;
2452 int32_t ret_val;
2453 uint16_t phy_data;
2454
2455 DEBUGFUNC("e1000_config_mac_to_phy");
2456
Auke Kok76c224b2006-05-23 13:36:06 -07002457 /* 82544 or newer MAC, Auto Speed Detection takes care of
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002458 * MAC speed/duplex configuration.*/
2459 if (hw->mac_type >= e1000_82544)
2460 return E1000_SUCCESS;
2461
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462 /* Read the Device Control Register and set the bits to Force Speed
2463 * and Duplex.
2464 */
2465 ctrl = E1000_READ_REG(hw, CTRL);
2466 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2467 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2468
2469 /* Set up duplex in the Device Control and Transmit Control
2470 * registers depending on negotiated values.
2471 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002472 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2473 if(ret_val)
2474 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475
Auke Kok76c224b2006-05-23 13:36:06 -07002476 if(phy_data & M88E1000_PSSR_DPLX)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002477 ctrl |= E1000_CTRL_FD;
Auke Kok76c224b2006-05-23 13:36:06 -07002478 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002479 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002481 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002483 /* Set up speed in the Device Control register depending on
2484 * negotiated values.
2485 */
2486 if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2487 ctrl |= E1000_CTRL_SPD_1000;
2488 else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2489 ctrl |= E1000_CTRL_SPD_100;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002490
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 /* Write the configured values back to the Device Control Reg. */
2492 E1000_WRITE_REG(hw, CTRL, ctrl);
2493 return E1000_SUCCESS;
2494}
2495
2496/******************************************************************************
2497 * Forces the MAC's flow control settings.
2498 *
2499 * hw - Struct containing variables accessed by shared code
2500 *
2501 * Sets the TFCE and RFCE bits in the device control register to reflect
2502 * the adapter settings. TFCE and RFCE need to be explicitly set by
2503 * software when a Copper PHY is used because autonegotiation is managed
2504 * by the PHY rather than the MAC. Software must also configure these
2505 * bits when link is forced on a fiber connection.
2506 *****************************************************************************/
2507int32_t
2508e1000_force_mac_fc(struct e1000_hw *hw)
2509{
2510 uint32_t ctrl;
2511
2512 DEBUGFUNC("e1000_force_mac_fc");
2513
2514 /* Get the current configuration of the Device Control Register */
2515 ctrl = E1000_READ_REG(hw, CTRL);
2516
2517 /* Because we didn't get link via the internal auto-negotiation
2518 * mechanism (we either forced link or we got link via PHY
2519 * auto-neg), we have to manually enable/disable transmit an
2520 * receive flow control.
2521 *
2522 * The "Case" statement below enables/disable flow control
2523 * according to the "hw->fc" parameter.
2524 *
2525 * The possible values of the "fc" parameter are:
2526 * 0: Flow control is completely disabled
2527 * 1: Rx flow control is enabled (we can receive pause
2528 * frames but not send pause frames).
2529 * 2: Tx flow control is enabled (we can send pause frames
2530 * frames but we do not receive pause frames).
2531 * 3: Both Rx and TX flow control (symmetric) is enabled.
2532 * other: No other values should be possible at this point.
2533 */
2534
2535 switch (hw->fc) {
2536 case e1000_fc_none:
2537 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2538 break;
2539 case e1000_fc_rx_pause:
2540 ctrl &= (~E1000_CTRL_TFCE);
2541 ctrl |= E1000_CTRL_RFCE;
2542 break;
2543 case e1000_fc_tx_pause:
2544 ctrl &= (~E1000_CTRL_RFCE);
2545 ctrl |= E1000_CTRL_TFCE;
2546 break;
2547 case e1000_fc_full:
2548 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2549 break;
2550 default:
2551 DEBUGOUT("Flow control param set incorrectly\n");
2552 return -E1000_ERR_CONFIG;
2553 }
2554
2555 /* Disable TX Flow Control for 82542 (rev 2.0) */
2556 if(hw->mac_type == e1000_82542_rev2_0)
2557 ctrl &= (~E1000_CTRL_TFCE);
2558
2559 E1000_WRITE_REG(hw, CTRL, ctrl);
2560 return E1000_SUCCESS;
2561}
2562
2563/******************************************************************************
2564 * Configures flow control settings after link is established
2565 *
2566 * hw - Struct containing variables accessed by shared code
2567 *
2568 * Should be called immediately after a valid link has been established.
2569 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2570 * and autonegotiation is enabled, the MAC flow control settings will be set
2571 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2572 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2573 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01002574static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575e1000_config_fc_after_link_up(struct e1000_hw *hw)
2576{
2577 int32_t ret_val;
2578 uint16_t mii_status_reg;
2579 uint16_t mii_nway_adv_reg;
2580 uint16_t mii_nway_lp_ability_reg;
2581 uint16_t speed;
2582 uint16_t duplex;
2583
2584 DEBUGFUNC("e1000_config_fc_after_link_up");
2585
2586 /* Check for the case where we have fiber media and auto-neg failed
2587 * so we had to force link. In this case, we need to force the
2588 * configuration of the MAC to match the "fc" parameter.
2589 */
2590 if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2591 ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
2592 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2593 ret_val = e1000_force_mac_fc(hw);
2594 if(ret_val) {
2595 DEBUGOUT("Error forcing flow control settings\n");
2596 return ret_val;
2597 }
2598 }
2599
2600 /* Check for the case where we have copper media and auto-neg is
2601 * enabled. In this case, we need to check and see if Auto-Neg
2602 * has completed, and if so, how the PHY and link partner has
2603 * flow control configured.
2604 */
2605 if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2606 /* Read the MII Status Register and check to see if AutoNeg
2607 * has completed. We read this twice because this reg has
2608 * some "sticky" (latched) bits.
2609 */
2610 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2611 if(ret_val)
2612 return ret_val;
2613 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2614 if(ret_val)
2615 return ret_val;
2616
2617 if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2618 /* The AutoNeg process has completed, so we now need to
2619 * read both the Auto Negotiation Advertisement Register
2620 * (Address 4) and the Auto_Negotiation Base Page Ability
2621 * Register (Address 5) to determine how flow control was
2622 * negotiated.
2623 */
2624 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2625 &mii_nway_adv_reg);
2626 if(ret_val)
2627 return ret_val;
2628 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2629 &mii_nway_lp_ability_reg);
2630 if(ret_val)
2631 return ret_val;
2632
2633 /* Two bits in the Auto Negotiation Advertisement Register
2634 * (Address 4) and two bits in the Auto Negotiation Base
2635 * Page Ability Register (Address 5) determine flow control
2636 * for both the PHY and the link partner. The following
2637 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2638 * 1999, describes these PAUSE resolution bits and how flow
2639 * control is determined based upon these settings.
2640 * NOTE: DC = Don't Care
2641 *
2642 * LOCAL DEVICE | LINK PARTNER
2643 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2644 *-------|---------|-------|---------|--------------------
2645 * 0 | 0 | DC | DC | e1000_fc_none
2646 * 0 | 1 | 0 | DC | e1000_fc_none
2647 * 0 | 1 | 1 | 0 | e1000_fc_none
2648 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2649 * 1 | 0 | 0 | DC | e1000_fc_none
2650 * 1 | DC | 1 | DC | e1000_fc_full
2651 * 1 | 1 | 0 | 0 | e1000_fc_none
2652 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2653 *
2654 */
2655 /* Are both PAUSE bits set to 1? If so, this implies
2656 * Symmetric Flow Control is enabled at both ends. The
2657 * ASM_DIR bits are irrelevant per the spec.
2658 *
2659 * For Symmetric Flow Control:
2660 *
2661 * LOCAL DEVICE | LINK PARTNER
2662 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2663 *-------|---------|-------|---------|--------------------
2664 * 1 | DC | 1 | DC | e1000_fc_full
2665 *
2666 */
2667 if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2668 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2669 /* Now we need to check if the user selected RX ONLY
2670 * of pause frames. In this case, we had to advertise
2671 * FULL flow control because we could not advertise RX
2672 * ONLY. Hence, we must now check to see if we need to
2673 * turn OFF the TRANSMISSION of PAUSE frames.
2674 */
2675 if(hw->original_fc == e1000_fc_full) {
2676 hw->fc = e1000_fc_full;
Auke Koka42a5072006-05-23 13:36:01 -07002677 DEBUGOUT("Flow Control = FULL.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678 } else {
2679 hw->fc = e1000_fc_rx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002680 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681 }
2682 }
2683 /* For receiving PAUSE frames ONLY.
2684 *
2685 * LOCAL DEVICE | LINK PARTNER
2686 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2687 *-------|---------|-------|---------|--------------------
2688 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2689 *
2690 */
2691 else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2692 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2693 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2694 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2695 hw->fc = e1000_fc_tx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002696 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002697 }
2698 /* For transmitting PAUSE frames ONLY.
2699 *
2700 * LOCAL DEVICE | LINK PARTNER
2701 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2702 *-------|---------|-------|---------|--------------------
2703 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2704 *
2705 */
2706 else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2707 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2708 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2709 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2710 hw->fc = e1000_fc_rx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002711 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712 }
2713 /* Per the IEEE spec, at this point flow control should be
2714 * disabled. However, we want to consider that we could
2715 * be connected to a legacy switch that doesn't advertise
2716 * desired flow control, but can be forced on the link
2717 * partner. So if we advertised no flow control, that is
2718 * what we will resolve to. If we advertised some kind of
2719 * receive capability (Rx Pause Only or Full Flow Control)
2720 * and the link partner advertised none, we will configure
2721 * ourselves to enable Rx Flow Control only. We can do
2722 * this safely for two reasons: If the link partner really
2723 * didn't want flow control enabled, and we enable Rx, no
2724 * harm done since we won't be receiving any PAUSE frames
2725 * anyway. If the intent on the link partner was to have
2726 * flow control enabled, then by us enabling RX only, we
2727 * can at least receive pause frames and process them.
2728 * This is a good idea because in most cases, since we are
2729 * predominantly a server NIC, more times than not we will
2730 * be asked to delay transmission of packets than asking
2731 * our link partner to pause transmission of frames.
2732 */
2733 else if((hw->original_fc == e1000_fc_none ||
2734 hw->original_fc == e1000_fc_tx_pause) ||
2735 hw->fc_strict_ieee) {
2736 hw->fc = e1000_fc_none;
Auke Koka42a5072006-05-23 13:36:01 -07002737 DEBUGOUT("Flow Control = NONE.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 } else {
2739 hw->fc = e1000_fc_rx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002740 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 }
2742
2743 /* Now we need to do one last check... If we auto-
2744 * negotiated to HALF DUPLEX, flow control should not be
2745 * enabled per IEEE 802.3 spec.
2746 */
2747 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2748 if(ret_val) {
2749 DEBUGOUT("Error getting link speed and duplex\n");
2750 return ret_val;
2751 }
2752
2753 if(duplex == HALF_DUPLEX)
2754 hw->fc = e1000_fc_none;
2755
2756 /* Now we call a subroutine to actually force the MAC
2757 * controller to use the correct flow control settings.
2758 */
2759 ret_val = e1000_force_mac_fc(hw);
2760 if(ret_val) {
2761 DEBUGOUT("Error forcing flow control settings\n");
2762 return ret_val;
2763 }
2764 } else {
Auke Koka42a5072006-05-23 13:36:01 -07002765 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766 }
2767 }
2768 return E1000_SUCCESS;
2769}
2770
2771/******************************************************************************
2772 * Checks to see if the link status of the hardware has changed.
2773 *
2774 * hw - Struct containing variables accessed by shared code
2775 *
2776 * Called by any function that needs to check the link status of the adapter.
2777 *****************************************************************************/
2778int32_t
2779e1000_check_for_link(struct e1000_hw *hw)
2780{
2781 uint32_t rxcw = 0;
2782 uint32_t ctrl;
2783 uint32_t status;
2784 uint32_t rctl;
2785 uint32_t icr;
2786 uint32_t signal = 0;
2787 int32_t ret_val;
2788 uint16_t phy_data;
2789
2790 DEBUGFUNC("e1000_check_for_link");
2791
2792 ctrl = E1000_READ_REG(hw, CTRL);
2793 status = E1000_READ_REG(hw, STATUS);
2794
2795 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2796 * set when the optics detect a signal. On older adapters, it will be
2797 * cleared when there is a signal. This applies to fiber media only.
2798 */
2799 if((hw->media_type == e1000_media_type_fiber) ||
2800 (hw->media_type == e1000_media_type_internal_serdes)) {
2801 rxcw = E1000_READ_REG(hw, RXCW);
2802
2803 if(hw->media_type == e1000_media_type_fiber) {
2804 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2805 if(status & E1000_STATUS_LU)
2806 hw->get_link_status = FALSE;
2807 }
2808 }
2809
2810 /* If we have a copper PHY then we only want to go out to the PHY
2811 * registers to see if Auto-Neg has completed and/or if our link
2812 * status has changed. The get_link_status flag will be set if we
2813 * receive a Link Status Change interrupt or we have Rx Sequence
2814 * Errors.
2815 */
2816 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2817 /* First we want to see if the MII Status Register reports
2818 * link. If so, then we want to get the current speed/duplex
2819 * of the PHY.
2820 * Read the register twice since the link bit is sticky.
2821 */
2822 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2823 if(ret_val)
2824 return ret_val;
2825 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2826 if(ret_val)
2827 return ret_val;
2828
2829 if(phy_data & MII_SR_LINK_STATUS) {
2830 hw->get_link_status = FALSE;
2831 /* Check if there was DownShift, must be checked immediately after
2832 * link-up */
2833 e1000_check_downshift(hw);
2834
2835 /* If we are on 82544 or 82543 silicon and speed/duplex
2836 * are forced to 10H or 10F, then we will implement the polarity
2837 * reversal workaround. We disable interrupts first, and upon
2838 * returning, place the devices interrupt state to its previous
2839 * value except for the link status change interrupt which will
2840 * happen due to the execution of this workaround.
2841 */
2842
2843 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2844 (!hw->autoneg) &&
2845 (hw->forced_speed_duplex == e1000_10_full ||
2846 hw->forced_speed_duplex == e1000_10_half)) {
2847 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2848 ret_val = e1000_polarity_reversal_workaround(hw);
2849 icr = E1000_READ_REG(hw, ICR);
2850 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2851 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2852 }
2853
2854 } else {
2855 /* No link detected */
2856 e1000_config_dsp_after_link_change(hw, FALSE);
2857 return 0;
2858 }
2859
2860 /* If we are forcing speed/duplex, then we simply return since
2861 * we have already determined whether we have link or not.
2862 */
2863 if(!hw->autoneg) return -E1000_ERR_CONFIG;
2864
2865 /* optimize the dsp settings for the igp phy */
2866 e1000_config_dsp_after_link_change(hw, TRUE);
2867
2868 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2869 * have Si on board that is 82544 or newer, Auto
2870 * Speed Detection takes care of MAC speed/duplex
2871 * configuration. So we only need to configure Collision
2872 * Distance in the MAC. Otherwise, we need to force
2873 * speed/duplex on the MAC to the current PHY speed/duplex
2874 * settings.
2875 */
2876 if(hw->mac_type >= e1000_82544)
2877 e1000_config_collision_dist(hw);
2878 else {
2879 ret_val = e1000_config_mac_to_phy(hw);
2880 if(ret_val) {
2881 DEBUGOUT("Error configuring MAC to PHY settings\n");
2882 return ret_val;
2883 }
2884 }
2885
2886 /* Configure Flow Control now that Auto-Neg has completed. First, we
2887 * need to restore the desired flow control settings because we may
2888 * have had to re-autoneg with a different link partner.
2889 */
2890 ret_val = e1000_config_fc_after_link_up(hw);
2891 if(ret_val) {
2892 DEBUGOUT("Error configuring flow control\n");
2893 return ret_val;
2894 }
2895
2896 /* At this point we know that we are on copper and we have
2897 * auto-negotiated link. These are conditions for checking the link
2898 * partner capability register. We use the link speed to determine if
2899 * TBI compatibility needs to be turned on or off. If the link is not
2900 * at gigabit speed, then TBI compatibility is not needed. If we are
2901 * at gigabit speed, we turn on TBI compatibility.
2902 */
2903 if(hw->tbi_compatibility_en) {
2904 uint16_t speed, duplex;
Auke Kok592600a2006-06-27 09:08:09 -07002905 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2906 if (ret_val) {
2907 DEBUGOUT("Error getting link speed and duplex\n");
2908 return ret_val;
2909 }
2910 if (speed != SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911 /* If link speed is not set to gigabit speed, we do not need
2912 * to enable TBI compatibility.
2913 */
2914 if(hw->tbi_compatibility_on) {
2915 /* If we previously were in the mode, turn it off. */
2916 rctl = E1000_READ_REG(hw, RCTL);
2917 rctl &= ~E1000_RCTL_SBP;
2918 E1000_WRITE_REG(hw, RCTL, rctl);
2919 hw->tbi_compatibility_on = FALSE;
2920 }
2921 } else {
2922 /* If TBI compatibility is was previously off, turn it on. For
2923 * compatibility with a TBI link partner, we will store bad
2924 * packets. Some frames have an additional byte on the end and
2925 * will look like CRC errors to to the hardware.
2926 */
2927 if(!hw->tbi_compatibility_on) {
2928 hw->tbi_compatibility_on = TRUE;
2929 rctl = E1000_READ_REG(hw, RCTL);
2930 rctl |= E1000_RCTL_SBP;
2931 E1000_WRITE_REG(hw, RCTL, rctl);
2932 }
2933 }
2934 }
2935 }
2936 /* If we don't have link (auto-negotiation failed or link partner cannot
2937 * auto-negotiate), the cable is plugged in (we have signal), and our
2938 * link partner is not trying to auto-negotiate with us (we are receiving
2939 * idles or data), we need to force link up. We also need to give
2940 * auto-negotiation time to complete, in case the cable was just plugged
2941 * in. The autoneg_failed flag does this.
2942 */
2943 else if((((hw->media_type == e1000_media_type_fiber) &&
2944 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2945 (hw->media_type == e1000_media_type_internal_serdes)) &&
2946 (!(status & E1000_STATUS_LU)) &&
2947 (!(rxcw & E1000_RXCW_C))) {
2948 if(hw->autoneg_failed == 0) {
2949 hw->autoneg_failed = 1;
2950 return 0;
2951 }
Auke Koka42a5072006-05-23 13:36:01 -07002952 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002953
2954 /* Disable auto-negotiation in the TXCW register */
2955 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2956
2957 /* Force link-up and also force full-duplex. */
2958 ctrl = E1000_READ_REG(hw, CTRL);
2959 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2960 E1000_WRITE_REG(hw, CTRL, ctrl);
2961
2962 /* Configure Flow Control after forcing link up. */
2963 ret_val = e1000_config_fc_after_link_up(hw);
2964 if(ret_val) {
2965 DEBUGOUT("Error configuring flow control\n");
2966 return ret_val;
2967 }
2968 }
2969 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2970 * auto-negotiation in the TXCW register and disable forced link in the
2971 * Device Control register in an attempt to auto-negotiate with our link
2972 * partner.
2973 */
2974 else if(((hw->media_type == e1000_media_type_fiber) ||
2975 (hw->media_type == e1000_media_type_internal_serdes)) &&
2976 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Auke Koka42a5072006-05-23 13:36:01 -07002977 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2979 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2980
2981 hw->serdes_link_down = FALSE;
2982 }
2983 /* If we force link for non-auto-negotiation switch, check link status
2984 * based on MAC synchronization for internal serdes media type.
2985 */
2986 else if((hw->media_type == e1000_media_type_internal_serdes) &&
2987 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2988 /* SYNCH bit and IV bit are sticky. */
2989 udelay(10);
2990 if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
2991 if(!(rxcw & E1000_RXCW_IV)) {
2992 hw->serdes_link_down = FALSE;
2993 DEBUGOUT("SERDES: Link is up.\n");
2994 }
2995 } else {
2996 hw->serdes_link_down = TRUE;
2997 DEBUGOUT("SERDES: Link is down.\n");
2998 }
2999 }
3000 if((hw->media_type == e1000_media_type_internal_serdes) &&
3001 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3002 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3003 }
3004 return E1000_SUCCESS;
3005}
3006
3007/******************************************************************************
3008 * Detects the current speed and duplex settings of the hardware.
3009 *
3010 * hw - Struct containing variables accessed by shared code
3011 * speed - Speed of the connection
3012 * duplex - Duplex setting of the connection
3013 *****************************************************************************/
3014int32_t
3015e1000_get_speed_and_duplex(struct e1000_hw *hw,
3016 uint16_t *speed,
3017 uint16_t *duplex)
3018{
3019 uint32_t status;
3020 int32_t ret_val;
3021 uint16_t phy_data;
3022
3023 DEBUGFUNC("e1000_get_speed_and_duplex");
3024
3025 if(hw->mac_type >= e1000_82543) {
3026 status = E1000_READ_REG(hw, STATUS);
3027 if(status & E1000_STATUS_SPEED_1000) {
3028 *speed = SPEED_1000;
3029 DEBUGOUT("1000 Mbs, ");
3030 } else if(status & E1000_STATUS_SPEED_100) {
3031 *speed = SPEED_100;
3032 DEBUGOUT("100 Mbs, ");
3033 } else {
3034 *speed = SPEED_10;
3035 DEBUGOUT("10 Mbs, ");
3036 }
3037
3038 if(status & E1000_STATUS_FD) {
3039 *duplex = FULL_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003040 DEBUGOUT("Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003041 } else {
3042 *duplex = HALF_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003043 DEBUGOUT(" Half Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003044 }
3045 } else {
Auke Koka42a5072006-05-23 13:36:01 -07003046 DEBUGOUT("1000 Mbs, Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003047 *speed = SPEED_1000;
3048 *duplex = FULL_DUPLEX;
3049 }
3050
3051 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3052 * if it is operating at half duplex. Here we set the duplex settings to
3053 * match the duplex in the link partner's capabilities.
3054 */
3055 if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3056 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3057 if(ret_val)
3058 return ret_val;
3059
3060 if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3061 *duplex = HALF_DUPLEX;
3062 else {
3063 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3064 if(ret_val)
3065 return ret_val;
3066 if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3067 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3068 *duplex = HALF_DUPLEX;
3069 }
3070 }
3071
Auke Kok76c224b2006-05-23 13:36:06 -07003072 if ((hw->mac_type == e1000_80003es2lan) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003073 (hw->media_type == e1000_media_type_copper)) {
3074 if (*speed == SPEED_1000)
3075 ret_val = e1000_configure_kmrn_for_1000(hw);
3076 else
Auke Kokcd94dd02006-06-27 09:08:22 -07003077 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3078 if (ret_val)
3079 return ret_val;
3080 }
3081
3082 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3083 ret_val = e1000_kumeran_lock_loss_workaround(hw);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003084 if (ret_val)
3085 return ret_val;
3086 }
3087
Linus Torvalds1da177e2005-04-16 15:20:36 -07003088 return E1000_SUCCESS;
3089}
3090
3091/******************************************************************************
3092* Blocks until autoneg completes or times out (~4.5 seconds)
3093*
3094* hw - Struct containing variables accessed by shared code
3095******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003096static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003097e1000_wait_autoneg(struct e1000_hw *hw)
3098{
3099 int32_t ret_val;
3100 uint16_t i;
3101 uint16_t phy_data;
3102
3103 DEBUGFUNC("e1000_wait_autoneg");
3104 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3105
3106 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3107 for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3108 /* Read the MII Status Register and wait for Auto-Neg
3109 * Complete bit to be set.
3110 */
3111 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3112 if(ret_val)
3113 return ret_val;
3114 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3115 if(ret_val)
3116 return ret_val;
3117 if(phy_data & MII_SR_AUTONEG_COMPLETE) {
3118 return E1000_SUCCESS;
3119 }
3120 msec_delay(100);
3121 }
3122 return E1000_SUCCESS;
3123}
3124
3125/******************************************************************************
3126* Raises the Management Data Clock
3127*
3128* hw - Struct containing variables accessed by shared code
3129* ctrl - Device control register's current value
3130******************************************************************************/
3131static void
3132e1000_raise_mdi_clk(struct e1000_hw *hw,
3133 uint32_t *ctrl)
3134{
3135 /* Raise the clock input to the Management Data Clock (by setting the MDC
3136 * bit), and then delay 10 microseconds.
3137 */
3138 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3139 E1000_WRITE_FLUSH(hw);
3140 udelay(10);
3141}
3142
3143/******************************************************************************
3144* Lowers the Management Data Clock
3145*
3146* hw - Struct containing variables accessed by shared code
3147* ctrl - Device control register's current value
3148******************************************************************************/
3149static void
3150e1000_lower_mdi_clk(struct e1000_hw *hw,
3151 uint32_t *ctrl)
3152{
3153 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3154 * bit), and then delay 10 microseconds.
3155 */
3156 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3157 E1000_WRITE_FLUSH(hw);
3158 udelay(10);
3159}
3160
3161/******************************************************************************
3162* Shifts data bits out to the PHY
3163*
3164* hw - Struct containing variables accessed by shared code
3165* data - Data to send out to the PHY
3166* count - Number of bits to shift out
3167*
3168* Bits are shifted out in MSB to LSB order.
3169******************************************************************************/
3170static void
3171e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3172 uint32_t data,
3173 uint16_t count)
3174{
3175 uint32_t ctrl;
3176 uint32_t mask;
3177
3178 /* We need to shift "count" number of bits out to the PHY. So, the value
3179 * in the "data" parameter will be shifted out to the PHY one bit at a
3180 * time. In order to do this, "data" must be broken down into bits.
3181 */
3182 mask = 0x01;
3183 mask <<= (count - 1);
3184
3185 ctrl = E1000_READ_REG(hw, CTRL);
3186
3187 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3188 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3189
3190 while(mask) {
3191 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3192 * then raising and lowering the Management Data Clock. A "0" is
3193 * shifted out to the PHY by setting the MDIO bit to "0" and then
3194 * raising and lowering the clock.
3195 */
3196 if(data & mask) ctrl |= E1000_CTRL_MDIO;
3197 else ctrl &= ~E1000_CTRL_MDIO;
3198
3199 E1000_WRITE_REG(hw, CTRL, ctrl);
3200 E1000_WRITE_FLUSH(hw);
3201
3202 udelay(10);
3203
3204 e1000_raise_mdi_clk(hw, &ctrl);
3205 e1000_lower_mdi_clk(hw, &ctrl);
3206
3207 mask = mask >> 1;
3208 }
3209}
3210
3211/******************************************************************************
3212* Shifts data bits in from the PHY
3213*
3214* hw - Struct containing variables accessed by shared code
3215*
3216* Bits are shifted in in MSB to LSB order.
3217******************************************************************************/
3218static uint16_t
3219e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3220{
3221 uint32_t ctrl;
3222 uint16_t data = 0;
3223 uint8_t i;
3224
3225 /* In order to read a register from the PHY, we need to shift in a total
3226 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3227 * to avoid contention on the MDIO pin when a read operation is performed.
3228 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3229 * by raising the input to the Management Data Clock (setting the MDC bit),
3230 * and then reading the value of the MDIO bit.
3231 */
3232 ctrl = E1000_READ_REG(hw, CTRL);
3233
3234 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3235 ctrl &= ~E1000_CTRL_MDIO_DIR;
3236 ctrl &= ~E1000_CTRL_MDIO;
3237
3238 E1000_WRITE_REG(hw, CTRL, ctrl);
3239 E1000_WRITE_FLUSH(hw);
3240
3241 /* Raise and Lower the clock before reading in the data. This accounts for
3242 * the turnaround bits. The first clock occurred when we clocked out the
3243 * last bit of the Register Address.
3244 */
3245 e1000_raise_mdi_clk(hw, &ctrl);
3246 e1000_lower_mdi_clk(hw, &ctrl);
3247
3248 for(data = 0, i = 0; i < 16; i++) {
3249 data = data << 1;
3250 e1000_raise_mdi_clk(hw, &ctrl);
3251 ctrl = E1000_READ_REG(hw, CTRL);
3252 /* Check to see if we shifted in a "1". */
3253 if(ctrl & E1000_CTRL_MDIO) data |= 1;
3254 e1000_lower_mdi_clk(hw, &ctrl);
3255 }
3256
3257 e1000_raise_mdi_clk(hw, &ctrl);
3258 e1000_lower_mdi_clk(hw, &ctrl);
3259
3260 return data;
3261}
3262
Adrian Bunke4c780b2006-08-14 23:00:10 -07003263static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003264e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3265{
3266 uint32_t swfw_sync = 0;
3267 uint32_t swmask = mask;
3268 uint32_t fwmask = mask << 16;
3269 int32_t timeout = 200;
3270
3271 DEBUGFUNC("e1000_swfw_sync_acquire");
3272
Auke Kokcd94dd02006-06-27 09:08:22 -07003273 if (hw->swfwhw_semaphore_present)
3274 return e1000_get_software_flag(hw);
3275
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003276 if (!hw->swfw_sync_present)
3277 return e1000_get_hw_eeprom_semaphore(hw);
3278
3279 while(timeout) {
3280 if (e1000_get_hw_eeprom_semaphore(hw))
3281 return -E1000_ERR_SWFW_SYNC;
3282
3283 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3284 if (!(swfw_sync & (fwmask | swmask))) {
3285 break;
3286 }
3287
3288 /* firmware currently using resource (fwmask) */
3289 /* or other software thread currently using resource (swmask) */
3290 e1000_put_hw_eeprom_semaphore(hw);
3291 msec_delay_irq(5);
3292 timeout--;
3293 }
3294
3295 if (!timeout) {
3296 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3297 return -E1000_ERR_SWFW_SYNC;
3298 }
3299
3300 swfw_sync |= swmask;
3301 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3302
3303 e1000_put_hw_eeprom_semaphore(hw);
3304 return E1000_SUCCESS;
3305}
3306
Adrian Bunke4c780b2006-08-14 23:00:10 -07003307static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003308e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3309{
3310 uint32_t swfw_sync;
3311 uint32_t swmask = mask;
3312
3313 DEBUGFUNC("e1000_swfw_sync_release");
3314
Auke Kokcd94dd02006-06-27 09:08:22 -07003315 if (hw->swfwhw_semaphore_present) {
3316 e1000_release_software_flag(hw);
3317 return;
3318 }
3319
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003320 if (!hw->swfw_sync_present) {
3321 e1000_put_hw_eeprom_semaphore(hw);
3322 return;
3323 }
3324
3325 /* if (e1000_get_hw_eeprom_semaphore(hw))
3326 * return -E1000_ERR_SWFW_SYNC; */
3327 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3328 /* empty */
3329
3330 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3331 swfw_sync &= ~swmask;
3332 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3333
3334 e1000_put_hw_eeprom_semaphore(hw);
3335}
3336
Linus Torvalds1da177e2005-04-16 15:20:36 -07003337/*****************************************************************************
3338* Reads the value from a PHY register, if the value is on a specific non zero
3339* page, sets the page first.
3340* hw - Struct containing variables accessed by shared code
3341* reg_addr - address of the PHY register to read
3342******************************************************************************/
3343int32_t
3344e1000_read_phy_reg(struct e1000_hw *hw,
3345 uint32_t reg_addr,
3346 uint16_t *phy_data)
3347{
3348 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003349 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003350
3351 DEBUGFUNC("e1000_read_phy_reg");
3352
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003353 if ((hw->mac_type == e1000_80003es2lan) &&
3354 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3355 swfw = E1000_SWFW_PHY1_SM;
3356 } else {
3357 swfw = E1000_SWFW_PHY0_SM;
3358 }
3359 if (e1000_swfw_sync_acquire(hw, swfw))
3360 return -E1000_ERR_SWFW_SYNC;
3361
Auke Kokcd94dd02006-06-27 09:08:22 -07003362 if ((hw->phy_type == e1000_phy_igp ||
3363 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003364 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003365 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3366 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3367 (uint16_t)reg_addr);
3368 if(ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003369 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003370 return ret_val;
3371 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003372 } else if (hw->phy_type == e1000_phy_gg82563) {
3373 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3374 (hw->mac_type == e1000_80003es2lan)) {
3375 /* Select Configuration Page */
3376 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3377 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3378 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3379 } else {
3380 /* Use Alternative Page Select register to access
3381 * registers 30 and 31
3382 */
3383 ret_val = e1000_write_phy_reg_ex(hw,
3384 GG82563_PHY_PAGE_SELECT_ALT,
3385 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3386 }
3387
3388 if (ret_val) {
3389 e1000_swfw_sync_release(hw, swfw);
3390 return ret_val;
3391 }
3392 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003393 }
3394
3395 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3396 phy_data);
3397
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003398 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399 return ret_val;
3400}
3401
3402int32_t
3403e1000_read_phy_reg_ex(struct e1000_hw *hw,
3404 uint32_t reg_addr,
3405 uint16_t *phy_data)
3406{
3407 uint32_t i;
3408 uint32_t mdic = 0;
3409 const uint32_t phy_addr = 1;
3410
3411 DEBUGFUNC("e1000_read_phy_reg_ex");
3412
3413 if(reg_addr > MAX_PHY_REG_ADDRESS) {
3414 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3415 return -E1000_ERR_PARAM;
3416 }
3417
3418 if(hw->mac_type > e1000_82543) {
3419 /* Set up Op-code, Phy Address, and register address in the MDI
3420 * Control register. The MAC will take care of interfacing with the
3421 * PHY to retrieve the desired data.
3422 */
3423 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3424 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3425 (E1000_MDIC_OP_READ));
3426
3427 E1000_WRITE_REG(hw, MDIC, mdic);
3428
3429 /* Poll the ready bit to see if the MDI read completed */
3430 for(i = 0; i < 64; i++) {
3431 udelay(50);
3432 mdic = E1000_READ_REG(hw, MDIC);
3433 if(mdic & E1000_MDIC_READY) break;
3434 }
3435 if(!(mdic & E1000_MDIC_READY)) {
3436 DEBUGOUT("MDI Read did not complete\n");
3437 return -E1000_ERR_PHY;
3438 }
3439 if(mdic & E1000_MDIC_ERROR) {
3440 DEBUGOUT("MDI Error\n");
3441 return -E1000_ERR_PHY;
3442 }
3443 *phy_data = (uint16_t) mdic;
3444 } else {
3445 /* We must first send a preamble through the MDIO pin to signal the
3446 * beginning of an MII instruction. This is done by sending 32
3447 * consecutive "1" bits.
3448 */
3449 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3450
3451 /* Now combine the next few fields that are required for a read
3452 * operation. We use this method instead of calling the
3453 * e1000_shift_out_mdi_bits routine five different times. The format of
3454 * a MII read instruction consists of a shift out of 14 bits and is
3455 * defined as follows:
3456 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3457 * followed by a shift in of 18 bits. This first two bits shifted in
3458 * are TurnAround bits used to avoid contention on the MDIO pin when a
3459 * READ operation is performed. These two bits are thrown away
3460 * followed by a shift in of 16 bits which contains the desired data.
3461 */
3462 mdic = ((reg_addr) | (phy_addr << 5) |
3463 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3464
3465 e1000_shift_out_mdi_bits(hw, mdic, 14);
3466
3467 /* Now that we've shifted out the read command to the MII, we need to
3468 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3469 * register address.
3470 */
3471 *phy_data = e1000_shift_in_mdi_bits(hw);
3472 }
3473 return E1000_SUCCESS;
3474}
3475
3476/******************************************************************************
3477* Writes a value to a PHY register
3478*
3479* hw - Struct containing variables accessed by shared code
3480* reg_addr - address of the PHY register to write
3481* data - data to write to the PHY
3482******************************************************************************/
3483int32_t
3484e1000_write_phy_reg(struct e1000_hw *hw,
3485 uint32_t reg_addr,
3486 uint16_t phy_data)
3487{
3488 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003489 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003490
3491 DEBUGFUNC("e1000_write_phy_reg");
3492
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003493 if ((hw->mac_type == e1000_80003es2lan) &&
3494 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3495 swfw = E1000_SWFW_PHY1_SM;
3496 } else {
3497 swfw = E1000_SWFW_PHY0_SM;
3498 }
3499 if (e1000_swfw_sync_acquire(hw, swfw))
3500 return -E1000_ERR_SWFW_SYNC;
3501
Auke Kokcd94dd02006-06-27 09:08:22 -07003502 if ((hw->phy_type == e1000_phy_igp ||
3503 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003504 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3506 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3507 (uint16_t)reg_addr);
3508 if(ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003509 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003510 return ret_val;
3511 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003512 } else if (hw->phy_type == e1000_phy_gg82563) {
3513 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3514 (hw->mac_type == e1000_80003es2lan)) {
3515 /* Select Configuration Page */
3516 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3517 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3518 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3519 } else {
3520 /* Use Alternative Page Select register to access
3521 * registers 30 and 31
3522 */
3523 ret_val = e1000_write_phy_reg_ex(hw,
3524 GG82563_PHY_PAGE_SELECT_ALT,
3525 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3526 }
3527
3528 if (ret_val) {
3529 e1000_swfw_sync_release(hw, swfw);
3530 return ret_val;
3531 }
3532 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003533 }
3534
3535 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3536 phy_data);
3537
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003538 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003539 return ret_val;
3540}
3541
3542int32_t
3543e1000_write_phy_reg_ex(struct e1000_hw *hw,
3544 uint32_t reg_addr,
3545 uint16_t phy_data)
3546{
3547 uint32_t i;
3548 uint32_t mdic = 0;
3549 const uint32_t phy_addr = 1;
3550
3551 DEBUGFUNC("e1000_write_phy_reg_ex");
3552
3553 if(reg_addr > MAX_PHY_REG_ADDRESS) {
3554 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3555 return -E1000_ERR_PARAM;
3556 }
3557
3558 if(hw->mac_type > e1000_82543) {
3559 /* Set up Op-code, Phy Address, register address, and data intended
3560 * for the PHY register in the MDI Control register. The MAC will take
3561 * care of interfacing with the PHY to send the desired data.
3562 */
3563 mdic = (((uint32_t) phy_data) |
3564 (reg_addr << E1000_MDIC_REG_SHIFT) |
3565 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3566 (E1000_MDIC_OP_WRITE));
3567
3568 E1000_WRITE_REG(hw, MDIC, mdic);
3569
3570 /* Poll the ready bit to see if the MDI read completed */
3571 for(i = 0; i < 640; i++) {
3572 udelay(5);
3573 mdic = E1000_READ_REG(hw, MDIC);
3574 if(mdic & E1000_MDIC_READY) break;
3575 }
3576 if(!(mdic & E1000_MDIC_READY)) {
3577 DEBUGOUT("MDI Write did not complete\n");
3578 return -E1000_ERR_PHY;
3579 }
3580 } else {
3581 /* We'll need to use the SW defined pins to shift the write command
3582 * out to the PHY. We first send a preamble to the PHY to signal the
3583 * beginning of the MII instruction. This is done by sending 32
3584 * consecutive "1" bits.
3585 */
3586 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3587
3588 /* Now combine the remaining required fields that will indicate a
3589 * write operation. We use this method instead of calling the
3590 * e1000_shift_out_mdi_bits routine for each field in the command. The
3591 * format of a MII write instruction is as follows:
3592 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3593 */
3594 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3595 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3596 mdic <<= 16;
3597 mdic |= (uint32_t) phy_data;
3598
3599 e1000_shift_out_mdi_bits(hw, mdic, 32);
3600 }
3601
3602 return E1000_SUCCESS;
3603}
3604
Adrian Bunke4c780b2006-08-14 23:00:10 -07003605static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003606e1000_read_kmrn_reg(struct e1000_hw *hw,
3607 uint32_t reg_addr,
3608 uint16_t *data)
3609{
3610 uint32_t reg_val;
3611 uint16_t swfw;
3612 DEBUGFUNC("e1000_read_kmrn_reg");
3613
3614 if ((hw->mac_type == e1000_80003es2lan) &&
3615 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3616 swfw = E1000_SWFW_PHY1_SM;
3617 } else {
3618 swfw = E1000_SWFW_PHY0_SM;
3619 }
3620 if (e1000_swfw_sync_acquire(hw, swfw))
3621 return -E1000_ERR_SWFW_SYNC;
3622
3623 /* Write register address */
3624 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3625 E1000_KUMCTRLSTA_OFFSET) |
3626 E1000_KUMCTRLSTA_REN;
3627 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3628 udelay(2);
3629
3630 /* Read the data returned */
3631 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3632 *data = (uint16_t)reg_val;
3633
3634 e1000_swfw_sync_release(hw, swfw);
3635 return E1000_SUCCESS;
3636}
3637
Adrian Bunke4c780b2006-08-14 23:00:10 -07003638static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003639e1000_write_kmrn_reg(struct e1000_hw *hw,
3640 uint32_t reg_addr,
3641 uint16_t data)
3642{
3643 uint32_t reg_val;
3644 uint16_t swfw;
3645 DEBUGFUNC("e1000_write_kmrn_reg");
3646
3647 if ((hw->mac_type == e1000_80003es2lan) &&
3648 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3649 swfw = E1000_SWFW_PHY1_SM;
3650 } else {
3651 swfw = E1000_SWFW_PHY0_SM;
3652 }
3653 if (e1000_swfw_sync_acquire(hw, swfw))
3654 return -E1000_ERR_SWFW_SYNC;
3655
3656 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3657 E1000_KUMCTRLSTA_OFFSET) | data;
3658 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3659 udelay(2);
3660
3661 e1000_swfw_sync_release(hw, swfw);
3662 return E1000_SUCCESS;
3663}
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003664
Linus Torvalds1da177e2005-04-16 15:20:36 -07003665/******************************************************************************
3666* Returns the PHY to the power-on reset state
3667*
3668* hw - Struct containing variables accessed by shared code
3669******************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003670int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671e1000_phy_hw_reset(struct e1000_hw *hw)
3672{
3673 uint32_t ctrl, ctrl_ext;
3674 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003675 int32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003676 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003677
3678 DEBUGFUNC("e1000_phy_hw_reset");
3679
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003680 /* In the case of the phy reset being blocked, it's not an error, we
3681 * simply return success without performing the reset. */
3682 ret_val = e1000_check_phy_reset_block(hw);
3683 if (ret_val)
3684 return E1000_SUCCESS;
3685
Linus Torvalds1da177e2005-04-16 15:20:36 -07003686 DEBUGOUT("Resetting Phy...\n");
3687
3688 if(hw->mac_type > e1000_82543) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003689 if ((hw->mac_type == e1000_80003es2lan) &&
3690 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3691 swfw = E1000_SWFW_PHY1_SM;
3692 } else {
3693 swfw = E1000_SWFW_PHY0_SM;
3694 }
3695 if (e1000_swfw_sync_acquire(hw, swfw)) {
3696 e1000_release_software_semaphore(hw);
3697 return -E1000_ERR_SWFW_SYNC;
3698 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003699 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3700 * bit. Then, take it out of reset.
Auke Kok76c224b2006-05-23 13:36:06 -07003701 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
Jeff Kirsherfd803242005-12-13 00:06:22 -05003702 * and deassert. For e1000_82571 hardware and later, we instead delay
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08003703 * for 50us between and 10ms after the deassertion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003704 */
3705 ctrl = E1000_READ_REG(hw, CTRL);
3706 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3707 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003708
3709 if (hw->mac_type < e1000_82571)
Jeff Kirsherfd803242005-12-13 00:06:22 -05003710 msec_delay(10);
Jeff Kirsherb55ccb32006-01-12 16:50:30 -08003711 else
3712 udelay(100);
Auke Kok76c224b2006-05-23 13:36:06 -07003713
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714 E1000_WRITE_REG(hw, CTRL, ctrl);
3715 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003716
Jeff Kirsherfd803242005-12-13 00:06:22 -05003717 if (hw->mac_type >= e1000_82571)
Auke Kokcd94dd02006-06-27 09:08:22 -07003718 msec_delay_irq(10);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003719 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720 } else {
3721 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3722 * bit to put the PHY into reset. Then, take it out of reset.
3723 */
3724 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3725 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3726 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3727 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3728 E1000_WRITE_FLUSH(hw);
3729 msec_delay(10);
3730 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3731 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3732 E1000_WRITE_FLUSH(hw);
3733 }
3734 udelay(150);
3735
3736 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3737 /* Configure activity LED after PHY reset */
3738 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3739 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3740 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3741 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3742 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003743
3744 /* Wait for FW to finish PHY configuration. */
3745 ret_val = e1000_get_phy_cfg_done(hw);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003746 e1000_release_software_semaphore(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003747
Auke Kokcd94dd02006-06-27 09:08:22 -07003748 if ((hw->mac_type == e1000_ich8lan) &&
3749 (hw->phy_type == e1000_phy_igp_3)) {
3750 ret_val = e1000_init_lcd_from_nvm(hw);
3751 if (ret_val)
3752 return ret_val;
3753 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003754 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003755}
3756
3757/******************************************************************************
3758* Resets the PHY
3759*
3760* hw - Struct containing variables accessed by shared code
3761*
3762* Sets bit 15 of the MII Control regiser
3763******************************************************************************/
3764int32_t
3765e1000_phy_reset(struct e1000_hw *hw)
3766{
3767 int32_t ret_val;
3768 uint16_t phy_data;
3769
3770 DEBUGFUNC("e1000_phy_reset");
3771
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003772 /* In the case of the phy reset being blocked, it's not an error, we
3773 * simply return success without performing the reset. */
3774 ret_val = e1000_check_phy_reset_block(hw);
3775 if (ret_val)
3776 return E1000_SUCCESS;
3777
3778 switch (hw->mac_type) {
3779 case e1000_82541_rev_2:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003780 case e1000_82571:
3781 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -07003782 case e1000_ich8lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003783 ret_val = e1000_phy_hw_reset(hw);
3784 if(ret_val)
3785 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07003786
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003787 break;
3788 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003789 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3790 if(ret_val)
3791 return ret_val;
3792
3793 phy_data |= MII_CR_RESET;
3794 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3795 if(ret_val)
3796 return ret_val;
3797
3798 udelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003799 break;
3800 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003801
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003802 if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003803 e1000_phy_init_script(hw);
3804
3805 return E1000_SUCCESS;
3806}
3807
3808/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07003809* Work-around for 82566 power-down: on D3 entry-
3810* 1) disable gigabit link
3811* 2) write VR power-down enable
3812* 3) read it back
3813* if successful continue, else issue LCD reset and repeat
3814*
3815* hw - struct containing variables accessed by shared code
3816******************************************************************************/
3817void
3818e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3819{
3820 int32_t reg;
3821 uint16_t phy_data;
3822 int32_t retry = 0;
3823
3824 DEBUGFUNC("e1000_phy_powerdown_workaround");
3825
3826 if (hw->phy_type != e1000_phy_igp_3)
3827 return;
3828
3829 do {
3830 /* Disable link */
3831 reg = E1000_READ_REG(hw, PHY_CTRL);
3832 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3833 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3834
3835 /* Write VR power-down enable */
3836 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3837 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3838 IGP3_VR_CTRL_MODE_SHUT);
3839
3840 /* Read it back and test */
3841 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3842 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3843 break;
3844
3845 /* Issue PHY reset and repeat at most one more time */
3846 reg = E1000_READ_REG(hw, CTRL);
3847 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3848 retry++;
3849 } while (retry);
3850
3851 return;
3852
3853}
3854
3855/******************************************************************************
3856* Work-around for 82566 Kumeran PCS lock loss:
3857* On link status change (i.e. PCI reset, speed change) and link is up and
3858* speed is gigabit-
3859* 0) if workaround is optionally disabled do nothing
3860* 1) wait 1ms for Kumeran link to come up
3861* 2) check Kumeran Diagnostic register PCS lock loss bit
3862* 3) if not set the link is locked (all is good), otherwise...
3863* 4) reset the PHY
3864* 5) repeat up to 10 times
3865* Note: this is only called for IGP3 copper when speed is 1gb.
3866*
3867* hw - struct containing variables accessed by shared code
3868******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07003869static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07003870e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3871{
3872 int32_t ret_val;
3873 int32_t reg;
3874 int32_t cnt;
3875 uint16_t phy_data;
3876
3877 if (hw->kmrn_lock_loss_workaround_disabled)
3878 return E1000_SUCCESS;
3879
3880 /* Make sure link is up before proceeding. If not just return.
3881 * Attempting this while link is negotiating fouls up link
3882 * stability */
3883 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3884 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3885
3886 if (phy_data & MII_SR_LINK_STATUS) {
3887 for (cnt = 0; cnt < 10; cnt++) {
3888 /* read once to clear */
3889 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3890 if (ret_val)
3891 return ret_val;
3892 /* and again to get new status */
3893 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3894 if (ret_val)
3895 return ret_val;
3896
3897 /* check for PCS lock */
3898 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3899 return E1000_SUCCESS;
3900
3901 /* Issue PHY reset */
3902 e1000_phy_hw_reset(hw);
3903 msec_delay_irq(5);
3904 }
3905 /* Disable GigE link negotiation */
3906 reg = E1000_READ_REG(hw, PHY_CTRL);
3907 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3908 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3909
3910 /* unable to acquire PCS lock */
3911 return E1000_ERR_PHY;
3912 }
3913
3914 return E1000_SUCCESS;
3915}
3916
3917/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07003918* Probes the expected PHY address for known PHY IDs
3919*
3920* hw - Struct containing variables accessed by shared code
3921******************************************************************************/
Auke Kokd37ea5d2006-06-27 09:08:17 -07003922int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003923e1000_detect_gig_phy(struct e1000_hw *hw)
3924{
3925 int32_t phy_init_status, ret_val;
3926 uint16_t phy_id_high, phy_id_low;
3927 boolean_t match = FALSE;
3928
3929 DEBUGFUNC("e1000_detect_gig_phy");
3930
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003931 /* The 82571 firmware may still be configuring the PHY. In this
3932 * case, we cannot access the PHY until the configuration is done. So
3933 * we explicitly set the PHY values. */
Auke Kokcd94dd02006-06-27 09:08:22 -07003934 if (hw->mac_type == e1000_82571 ||
3935 hw->mac_type == e1000_82572) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003936 hw->phy_id = IGP01E1000_I_PHY_ID;
3937 hw->phy_type = e1000_phy_igp_2;
3938 return E1000_SUCCESS;
3939 }
3940
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003941 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
3942 * around that forces PHY page 0 to be set or the reads fail. The rest of
3943 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
3944 * So for ESB-2 we need to have this set so our reads won't fail. If the
3945 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
3946 * this out as well. */
3947 if (hw->mac_type == e1000_80003es2lan)
3948 hw->phy_type = e1000_phy_gg82563;
3949
Linus Torvalds1da177e2005-04-16 15:20:36 -07003950 /* Read the PHY ID Registers to identify which PHY is onboard. */
3951 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
Auke Kokcd94dd02006-06-27 09:08:22 -07003952 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003953 return ret_val;
3954
3955 hw->phy_id = (uint32_t) (phy_id_high << 16);
3956 udelay(20);
3957 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3958 if(ret_val)
3959 return ret_val;
3960
3961 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
3962 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
3963
3964 switch(hw->mac_type) {
3965 case e1000_82543:
3966 if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
3967 break;
3968 case e1000_82544:
3969 if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
3970 break;
3971 case e1000_82540:
3972 case e1000_82545:
3973 case e1000_82545_rev_3:
3974 case e1000_82546:
3975 case e1000_82546_rev_3:
3976 if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
3977 break;
3978 case e1000_82541:
3979 case e1000_82541_rev_2:
3980 case e1000_82547:
3981 case e1000_82547_rev_2:
3982 if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
3983 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003984 case e1000_82573:
3985 if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
3986 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003987 case e1000_80003es2lan:
3988 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
3989 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07003990 case e1000_ich8lan:
3991 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
3992 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
3993 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
3994 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
3995 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003996 default:
3997 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
3998 return -E1000_ERR_CONFIG;
3999 }
4000 phy_init_status = e1000_set_phy_type(hw);
4001
4002 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4003 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4004 return E1000_SUCCESS;
4005 }
4006 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4007 return -E1000_ERR_PHY;
4008}
4009
4010/******************************************************************************
4011* Resets the PHY's DSP
4012*
4013* hw - Struct containing variables accessed by shared code
4014******************************************************************************/
4015static int32_t
4016e1000_phy_reset_dsp(struct e1000_hw *hw)
4017{
4018 int32_t ret_val;
4019 DEBUGFUNC("e1000_phy_reset_dsp");
4020
4021 do {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004022 if (hw->phy_type != e1000_phy_gg82563) {
4023 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4024 if(ret_val) break;
4025 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4027 if(ret_val) break;
4028 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4029 if(ret_val) break;
4030 ret_val = E1000_SUCCESS;
4031 } while(0);
4032
4033 return ret_val;
4034}
4035
4036/******************************************************************************
4037* Get PHY information from various PHY registers for igp PHY only.
4038*
4039* hw - Struct containing variables accessed by shared code
4040* phy_info - PHY information structure
4041******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004042static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004043e1000_phy_igp_get_info(struct e1000_hw *hw,
4044 struct e1000_phy_info *phy_info)
4045{
4046 int32_t ret_val;
4047 uint16_t phy_data, polarity, min_length, max_length, average;
4048
4049 DEBUGFUNC("e1000_phy_igp_get_info");
4050
4051 /* The downshift status is checked only once, after link is established,
4052 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004053 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004054
4055 /* IGP01E1000 does not need to support it. */
4056 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4057
4058 /* IGP01E1000 always correct polarity reversal */
4059 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4060
4061 /* Check polarity status */
4062 ret_val = e1000_check_polarity(hw, &polarity);
4063 if(ret_val)
4064 return ret_val;
4065
4066 phy_info->cable_polarity = polarity;
4067
4068 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4069 if(ret_val)
4070 return ret_val;
4071
4072 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
4073 IGP01E1000_PSSR_MDIX_SHIFT;
4074
4075 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4076 IGP01E1000_PSSR_SPEED_1000MBPS) {
4077 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4078 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4079 if(ret_val)
4080 return ret_val;
4081
4082 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4083 SR_1000T_LOCAL_RX_STATUS_SHIFT;
4084 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4085 SR_1000T_REMOTE_RX_STATUS_SHIFT;
4086
4087 /* Get cable length */
4088 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4089 if(ret_val)
4090 return ret_val;
4091
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004092 /* Translate to old method */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004093 average = (max_length + min_length) / 2;
4094
4095 if(average <= e1000_igp_cable_length_50)
4096 phy_info->cable_length = e1000_cable_length_50;
4097 else if(average <= e1000_igp_cable_length_80)
4098 phy_info->cable_length = e1000_cable_length_50_80;
4099 else if(average <= e1000_igp_cable_length_110)
4100 phy_info->cable_length = e1000_cable_length_80_110;
4101 else if(average <= e1000_igp_cable_length_140)
4102 phy_info->cable_length = e1000_cable_length_110_140;
4103 else
4104 phy_info->cable_length = e1000_cable_length_140;
4105 }
4106
4107 return E1000_SUCCESS;
4108}
4109
4110/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07004111* Get PHY information from various PHY registers for ife PHY only.
4112*
4113* hw - Struct containing variables accessed by shared code
4114* phy_info - PHY information structure
4115******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07004116static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07004117e1000_phy_ife_get_info(struct e1000_hw *hw,
4118 struct e1000_phy_info *phy_info)
4119{
4120 int32_t ret_val;
4121 uint16_t phy_data, polarity;
4122
4123 DEBUGFUNC("e1000_phy_ife_get_info");
4124
4125 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4126 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4127
4128 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4129 if (ret_val)
4130 return ret_val;
4131 phy_info->polarity_correction =
4132 (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4133 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
4134
4135 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4136 ret_val = e1000_check_polarity(hw, &polarity);
4137 if (ret_val)
4138 return ret_val;
4139 } else {
4140 /* Polarity is forced. */
4141 polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
4142 IFE_PSC_FORCE_POLARITY_SHIFT;
4143 }
4144 phy_info->cable_polarity = polarity;
4145
4146 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4147 if (ret_val)
4148 return ret_val;
4149
4150 phy_info->mdix_mode =
4151 (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4152 IFE_PMC_MDIX_MODE_SHIFT;
4153
4154 return E1000_SUCCESS;
4155}
4156
4157/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158* Get PHY information from various PHY registers fot m88 PHY only.
4159*
4160* hw - Struct containing variables accessed by shared code
4161* phy_info - PHY information structure
4162******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004163static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004164e1000_phy_m88_get_info(struct e1000_hw *hw,
4165 struct e1000_phy_info *phy_info)
4166{
4167 int32_t ret_val;
4168 uint16_t phy_data, polarity;
4169
4170 DEBUGFUNC("e1000_phy_m88_get_info");
4171
4172 /* The downshift status is checked only once, after link is established,
4173 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004174 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004175
4176 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4177 if(ret_val)
4178 return ret_val;
4179
4180 phy_info->extended_10bt_distance =
4181 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4182 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
4183 phy_info->polarity_correction =
4184 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4185 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
4186
4187 /* Check polarity status */
4188 ret_val = e1000_check_polarity(hw, &polarity);
4189 if(ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07004190 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004191 phy_info->cable_polarity = polarity;
4192
4193 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4194 if(ret_val)
4195 return ret_val;
4196
4197 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
4198 M88E1000_PSSR_MDIX_SHIFT;
4199
4200 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4201 /* Cable Length Estimation and Local/Remote Receiver Information
4202 * are only valid at 1000 Mbps.
4203 */
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004204 if (hw->phy_type != e1000_phy_gg82563) {
4205 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4206 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4207 } else {
4208 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4209 &phy_data);
4210 if (ret_val)
4211 return ret_val;
4212
4213 phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
4214 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004215
4216 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4217 if(ret_val)
4218 return ret_val;
4219
4220 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4221 SR_1000T_LOCAL_RX_STATUS_SHIFT;
4222
4223 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4224 SR_1000T_REMOTE_RX_STATUS_SHIFT;
4225 }
4226
4227 return E1000_SUCCESS;
4228}
4229
4230/******************************************************************************
4231* Get PHY information from various PHY registers
4232*
4233* hw - Struct containing variables accessed by shared code
4234* phy_info - PHY information structure
4235******************************************************************************/
4236int32_t
4237e1000_phy_get_info(struct e1000_hw *hw,
4238 struct e1000_phy_info *phy_info)
4239{
4240 int32_t ret_val;
4241 uint16_t phy_data;
4242
4243 DEBUGFUNC("e1000_phy_get_info");
4244
4245 phy_info->cable_length = e1000_cable_length_undefined;
4246 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4247 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4248 phy_info->downshift = e1000_downshift_undefined;
4249 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4250 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4251 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4252 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4253
4254 if(hw->media_type != e1000_media_type_copper) {
4255 DEBUGOUT("PHY info is only valid for copper media\n");
4256 return -E1000_ERR_CONFIG;
4257 }
4258
4259 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4260 if(ret_val)
4261 return ret_val;
4262
4263 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4264 if(ret_val)
4265 return ret_val;
4266
4267 if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4268 DEBUGOUT("PHY info is only valid if link is up\n");
4269 return -E1000_ERR_CONFIG;
4270 }
4271
Auke Kokcd94dd02006-06-27 09:08:22 -07004272 if (hw->phy_type == e1000_phy_igp ||
4273 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004274 hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004275 return e1000_phy_igp_get_info(hw, phy_info);
Auke Kokcd94dd02006-06-27 09:08:22 -07004276 else if (hw->phy_type == e1000_phy_ife)
4277 return e1000_phy_ife_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278 else
4279 return e1000_phy_m88_get_info(hw, phy_info);
4280}
4281
4282int32_t
4283e1000_validate_mdi_setting(struct e1000_hw *hw)
4284{
4285 DEBUGFUNC("e1000_validate_mdi_settings");
4286
4287 if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4288 DEBUGOUT("Invalid MDI setting detected\n");
4289 hw->mdix = 1;
4290 return -E1000_ERR_CONFIG;
4291 }
4292 return E1000_SUCCESS;
4293}
4294
4295
4296/******************************************************************************
4297 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08004298 * is configured. Additionally, if this is ICH8, the flash controller GbE
4299 * registers must be mapped, or this will crash.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004300 *
4301 * hw - Struct containing variables accessed by shared code
4302 *****************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004303int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004304e1000_init_eeprom_params(struct e1000_hw *hw)
4305{
4306 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4307 uint32_t eecd = E1000_READ_REG(hw, EECD);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004308 int32_t ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004309 uint16_t eeprom_size;
4310
4311 DEBUGFUNC("e1000_init_eeprom_params");
4312
4313 switch (hw->mac_type) {
4314 case e1000_82542_rev2_0:
4315 case e1000_82542_rev2_1:
4316 case e1000_82543:
4317 case e1000_82544:
4318 eeprom->type = e1000_eeprom_microwire;
4319 eeprom->word_size = 64;
4320 eeprom->opcode_bits = 3;
4321 eeprom->address_bits = 6;
4322 eeprom->delay_usec = 50;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004323 eeprom->use_eerd = FALSE;
4324 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325 break;
4326 case e1000_82540:
4327 case e1000_82545:
4328 case e1000_82545_rev_3:
4329 case e1000_82546:
4330 case e1000_82546_rev_3:
4331 eeprom->type = e1000_eeprom_microwire;
4332 eeprom->opcode_bits = 3;
4333 eeprom->delay_usec = 50;
4334 if(eecd & E1000_EECD_SIZE) {
4335 eeprom->word_size = 256;
4336 eeprom->address_bits = 8;
4337 } else {
4338 eeprom->word_size = 64;
4339 eeprom->address_bits = 6;
4340 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004341 eeprom->use_eerd = FALSE;
4342 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004343 break;
4344 case e1000_82541:
4345 case e1000_82541_rev_2:
4346 case e1000_82547:
4347 case e1000_82547_rev_2:
4348 if (eecd & E1000_EECD_TYPE) {
4349 eeprom->type = e1000_eeprom_spi;
4350 eeprom->opcode_bits = 8;
4351 eeprom->delay_usec = 1;
4352 if (eecd & E1000_EECD_ADDR_BITS) {
4353 eeprom->page_size = 32;
4354 eeprom->address_bits = 16;
4355 } else {
4356 eeprom->page_size = 8;
4357 eeprom->address_bits = 8;
4358 }
4359 } else {
4360 eeprom->type = e1000_eeprom_microwire;
4361 eeprom->opcode_bits = 3;
4362 eeprom->delay_usec = 50;
4363 if (eecd & E1000_EECD_ADDR_BITS) {
4364 eeprom->word_size = 256;
4365 eeprom->address_bits = 8;
4366 } else {
4367 eeprom->word_size = 64;
4368 eeprom->address_bits = 6;
4369 }
4370 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004371 eeprom->use_eerd = FALSE;
4372 eeprom->use_eewr = FALSE;
4373 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004374 case e1000_82571:
4375 case e1000_82572:
4376 eeprom->type = e1000_eeprom_spi;
4377 eeprom->opcode_bits = 8;
4378 eeprom->delay_usec = 1;
4379 if (eecd & E1000_EECD_ADDR_BITS) {
4380 eeprom->page_size = 32;
4381 eeprom->address_bits = 16;
4382 } else {
4383 eeprom->page_size = 8;
4384 eeprom->address_bits = 8;
4385 }
4386 eeprom->use_eerd = FALSE;
4387 eeprom->use_eewr = FALSE;
4388 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004389 case e1000_82573:
4390 eeprom->type = e1000_eeprom_spi;
4391 eeprom->opcode_bits = 8;
4392 eeprom->delay_usec = 1;
4393 if (eecd & E1000_EECD_ADDR_BITS) {
4394 eeprom->page_size = 32;
4395 eeprom->address_bits = 16;
4396 } else {
4397 eeprom->page_size = 8;
4398 eeprom->address_bits = 8;
4399 }
4400 eeprom->use_eerd = TRUE;
4401 eeprom->use_eewr = TRUE;
4402 if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4403 eeprom->type = e1000_eeprom_flash;
4404 eeprom->word_size = 2048;
4405
4406 /* Ensure that the Autonomous FLASH update bit is cleared due to
4407 * Flash update issue on parts which use a FLASH for NVM. */
4408 eecd &= ~E1000_EECD_AUPDEN;
4409 E1000_WRITE_REG(hw, EECD, eecd);
4410 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004411 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004412 case e1000_80003es2lan:
4413 eeprom->type = e1000_eeprom_spi;
4414 eeprom->opcode_bits = 8;
4415 eeprom->delay_usec = 1;
4416 if (eecd & E1000_EECD_ADDR_BITS) {
4417 eeprom->page_size = 32;
4418 eeprom->address_bits = 16;
4419 } else {
4420 eeprom->page_size = 8;
4421 eeprom->address_bits = 8;
4422 }
4423 eeprom->use_eerd = TRUE;
4424 eeprom->use_eewr = FALSE;
4425 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07004426 case e1000_ich8lan:
4427 {
4428 int32_t i = 0;
4429 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4430
4431 eeprom->type = e1000_eeprom_ich8;
4432 eeprom->use_eerd = FALSE;
4433 eeprom->use_eewr = FALSE;
4434 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4435
4436 /* Zero the shadow RAM structure. But don't load it from NVM
4437 * so as to save time for driver init */
4438 if (hw->eeprom_shadow_ram != NULL) {
4439 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4440 hw->eeprom_shadow_ram[i].modified = FALSE;
4441 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4442 }
4443 }
4444
4445 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4446 ICH8_FLASH_SECTOR_SIZE;
4447
4448 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4449 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4450 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4451 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4452
4453 break;
4454 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004455 default:
4456 break;
4457 }
4458
4459 if (eeprom->type == e1000_eeprom_spi) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004460 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4461 * 32KB (incremented by powers of 2).
4462 */
4463 if(hw->mac_type <= e1000_82547_rev_2) {
4464 /* Set to default value for initial eeprom read. */
4465 eeprom->word_size = 64;
4466 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4467 if(ret_val)
4468 return ret_val;
4469 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4470 /* 256B eeprom size was not supported in earlier hardware, so we
4471 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4472 * is never the result used in the shifting logic below. */
4473 if(eeprom_size)
4474 eeprom_size++;
4475 } else {
4476 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4477 E1000_EECD_SIZE_EX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004478 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004479
4480 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004481 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004482 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004483}
4484
4485/******************************************************************************
4486 * Raises the EEPROM's clock input.
4487 *
4488 * hw - Struct containing variables accessed by shared code
4489 * eecd - EECD's current value
4490 *****************************************************************************/
4491static void
4492e1000_raise_ee_clk(struct e1000_hw *hw,
4493 uint32_t *eecd)
4494{
4495 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4496 * wait <delay> microseconds.
4497 */
4498 *eecd = *eecd | E1000_EECD_SK;
4499 E1000_WRITE_REG(hw, EECD, *eecd);
4500 E1000_WRITE_FLUSH(hw);
4501 udelay(hw->eeprom.delay_usec);
4502}
4503
4504/******************************************************************************
4505 * Lowers the EEPROM's clock input.
4506 *
4507 * hw - Struct containing variables accessed by shared code
4508 * eecd - EECD's current value
4509 *****************************************************************************/
4510static void
4511e1000_lower_ee_clk(struct e1000_hw *hw,
4512 uint32_t *eecd)
4513{
4514 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4515 * wait 50 microseconds.
4516 */
4517 *eecd = *eecd & ~E1000_EECD_SK;
4518 E1000_WRITE_REG(hw, EECD, *eecd);
4519 E1000_WRITE_FLUSH(hw);
4520 udelay(hw->eeprom.delay_usec);
4521}
4522
4523/******************************************************************************
4524 * Shift data bits out to the EEPROM.
4525 *
4526 * hw - Struct containing variables accessed by shared code
4527 * data - data to send to the EEPROM
4528 * count - number of bits to shift out
4529 *****************************************************************************/
4530static void
4531e1000_shift_out_ee_bits(struct e1000_hw *hw,
4532 uint16_t data,
4533 uint16_t count)
4534{
4535 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4536 uint32_t eecd;
4537 uint32_t mask;
4538
4539 /* We need to shift "count" bits out to the EEPROM. So, value in the
4540 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4541 * In order to do this, "data" must be broken down into bits.
4542 */
4543 mask = 0x01 << (count - 1);
4544 eecd = E1000_READ_REG(hw, EECD);
4545 if (eeprom->type == e1000_eeprom_microwire) {
4546 eecd &= ~E1000_EECD_DO;
4547 } else if (eeprom->type == e1000_eeprom_spi) {
4548 eecd |= E1000_EECD_DO;
4549 }
4550 do {
4551 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4552 * and then raising and then lowering the clock (the SK bit controls
4553 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4554 * by setting "DI" to "0" and then raising and then lowering the clock.
4555 */
4556 eecd &= ~E1000_EECD_DI;
4557
4558 if(data & mask)
4559 eecd |= E1000_EECD_DI;
4560
4561 E1000_WRITE_REG(hw, EECD, eecd);
4562 E1000_WRITE_FLUSH(hw);
4563
4564 udelay(eeprom->delay_usec);
4565
4566 e1000_raise_ee_clk(hw, &eecd);
4567 e1000_lower_ee_clk(hw, &eecd);
4568
4569 mask = mask >> 1;
4570
4571 } while(mask);
4572
4573 /* We leave the "DI" bit set to "0" when we leave this routine. */
4574 eecd &= ~E1000_EECD_DI;
4575 E1000_WRITE_REG(hw, EECD, eecd);
4576}
4577
4578/******************************************************************************
4579 * Shift data bits in from the EEPROM
4580 *
4581 * hw - Struct containing variables accessed by shared code
4582 *****************************************************************************/
4583static uint16_t
4584e1000_shift_in_ee_bits(struct e1000_hw *hw,
4585 uint16_t count)
4586{
4587 uint32_t eecd;
4588 uint32_t i;
4589 uint16_t data;
4590
4591 /* In order to read a register from the EEPROM, we need to shift 'count'
4592 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4593 * input to the EEPROM (setting the SK bit), and then reading the value of
4594 * the "DO" bit. During this "shifting in" process the "DI" bit should
4595 * always be clear.
4596 */
4597
4598 eecd = E1000_READ_REG(hw, EECD);
4599
4600 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4601 data = 0;
4602
4603 for(i = 0; i < count; i++) {
4604 data = data << 1;
4605 e1000_raise_ee_clk(hw, &eecd);
4606
4607 eecd = E1000_READ_REG(hw, EECD);
4608
4609 eecd &= ~(E1000_EECD_DI);
4610 if(eecd & E1000_EECD_DO)
4611 data |= 1;
4612
4613 e1000_lower_ee_clk(hw, &eecd);
4614 }
4615
4616 return data;
4617}
4618
4619/******************************************************************************
4620 * Prepares EEPROM for access
4621 *
4622 * hw - Struct containing variables accessed by shared code
4623 *
4624 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4625 * function should be called before issuing a command to the EEPROM.
4626 *****************************************************************************/
4627static int32_t
4628e1000_acquire_eeprom(struct e1000_hw *hw)
4629{
4630 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4631 uint32_t eecd, i=0;
4632
4633 DEBUGFUNC("e1000_acquire_eeprom");
4634
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004635 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4636 return -E1000_ERR_SWFW_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004637 eecd = E1000_READ_REG(hw, EECD);
4638
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004639 if (hw->mac_type != e1000_82573) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004640 /* Request EEPROM Access */
4641 if(hw->mac_type > e1000_82544) {
4642 eecd |= E1000_EECD_REQ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643 E1000_WRITE_REG(hw, EECD, eecd);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004644 eecd = E1000_READ_REG(hw, EECD);
4645 while((!(eecd & E1000_EECD_GNT)) &&
4646 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4647 i++;
4648 udelay(5);
4649 eecd = E1000_READ_REG(hw, EECD);
4650 }
4651 if(!(eecd & E1000_EECD_GNT)) {
4652 eecd &= ~E1000_EECD_REQ;
4653 E1000_WRITE_REG(hw, EECD, eecd);
4654 DEBUGOUT("Could not acquire EEPROM grant\n");
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004655 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004656 return -E1000_ERR_EEPROM;
4657 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004658 }
4659 }
4660
4661 /* Setup EEPROM for Read/Write */
4662
4663 if (eeprom->type == e1000_eeprom_microwire) {
4664 /* Clear SK and DI */
4665 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4666 E1000_WRITE_REG(hw, EECD, eecd);
4667
4668 /* Set CS */
4669 eecd |= E1000_EECD_CS;
4670 E1000_WRITE_REG(hw, EECD, eecd);
4671 } else if (eeprom->type == e1000_eeprom_spi) {
4672 /* Clear SK and CS */
4673 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4674 E1000_WRITE_REG(hw, EECD, eecd);
4675 udelay(1);
4676 }
4677
4678 return E1000_SUCCESS;
4679}
4680
4681/******************************************************************************
4682 * Returns EEPROM to a "standby" state
4683 *
4684 * hw - Struct containing variables accessed by shared code
4685 *****************************************************************************/
4686static void
4687e1000_standby_eeprom(struct e1000_hw *hw)
4688{
4689 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4690 uint32_t eecd;
4691
4692 eecd = E1000_READ_REG(hw, EECD);
4693
4694 if(eeprom->type == e1000_eeprom_microwire) {
4695 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4696 E1000_WRITE_REG(hw, EECD, eecd);
4697 E1000_WRITE_FLUSH(hw);
4698 udelay(eeprom->delay_usec);
4699
4700 /* Clock high */
4701 eecd |= E1000_EECD_SK;
4702 E1000_WRITE_REG(hw, EECD, eecd);
4703 E1000_WRITE_FLUSH(hw);
4704 udelay(eeprom->delay_usec);
4705
4706 /* Select EEPROM */
4707 eecd |= E1000_EECD_CS;
4708 E1000_WRITE_REG(hw, EECD, eecd);
4709 E1000_WRITE_FLUSH(hw);
4710 udelay(eeprom->delay_usec);
4711
4712 /* Clock low */
4713 eecd &= ~E1000_EECD_SK;
4714 E1000_WRITE_REG(hw, EECD, eecd);
4715 E1000_WRITE_FLUSH(hw);
4716 udelay(eeprom->delay_usec);
4717 } else if(eeprom->type == e1000_eeprom_spi) {
4718 /* Toggle CS to flush commands */
4719 eecd |= E1000_EECD_CS;
4720 E1000_WRITE_REG(hw, EECD, eecd);
4721 E1000_WRITE_FLUSH(hw);
4722 udelay(eeprom->delay_usec);
4723 eecd &= ~E1000_EECD_CS;
4724 E1000_WRITE_REG(hw, EECD, eecd);
4725 E1000_WRITE_FLUSH(hw);
4726 udelay(eeprom->delay_usec);
4727 }
4728}
4729
4730/******************************************************************************
4731 * Terminates a command by inverting the EEPROM's chip select pin
4732 *
4733 * hw - Struct containing variables accessed by shared code
4734 *****************************************************************************/
4735static void
4736e1000_release_eeprom(struct e1000_hw *hw)
4737{
4738 uint32_t eecd;
4739
4740 DEBUGFUNC("e1000_release_eeprom");
4741
4742 eecd = E1000_READ_REG(hw, EECD);
4743
4744 if (hw->eeprom.type == e1000_eeprom_spi) {
4745 eecd |= E1000_EECD_CS; /* Pull CS high */
4746 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4747
4748 E1000_WRITE_REG(hw, EECD, eecd);
4749
4750 udelay(hw->eeprom.delay_usec);
4751 } else if(hw->eeprom.type == e1000_eeprom_microwire) {
4752 /* cleanup eeprom */
4753
4754 /* CS on Microwire is active-high */
4755 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4756
4757 E1000_WRITE_REG(hw, EECD, eecd);
4758
4759 /* Rising edge of clock */
4760 eecd |= E1000_EECD_SK;
4761 E1000_WRITE_REG(hw, EECD, eecd);
4762 E1000_WRITE_FLUSH(hw);
4763 udelay(hw->eeprom.delay_usec);
4764
4765 /* Falling edge of clock */
4766 eecd &= ~E1000_EECD_SK;
4767 E1000_WRITE_REG(hw, EECD, eecd);
4768 E1000_WRITE_FLUSH(hw);
4769 udelay(hw->eeprom.delay_usec);
4770 }
4771
4772 /* Stop requesting EEPROM access */
4773 if(hw->mac_type > e1000_82544) {
4774 eecd &= ~E1000_EECD_REQ;
4775 E1000_WRITE_REG(hw, EECD, eecd);
4776 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004777
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004778 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779}
4780
4781/******************************************************************************
4782 * Reads a 16 bit word from the EEPROM.
4783 *
4784 * hw - Struct containing variables accessed by shared code
4785 *****************************************************************************/
4786int32_t
4787e1000_spi_eeprom_ready(struct e1000_hw *hw)
4788{
4789 uint16_t retry_count = 0;
4790 uint8_t spi_stat_reg;
4791
4792 DEBUGFUNC("e1000_spi_eeprom_ready");
4793
4794 /* Read "Status Register" repeatedly until the LSB is cleared. The
4795 * EEPROM will signal that the command has been completed by clearing
4796 * bit 0 of the internal status register. If it's not cleared within
4797 * 5 milliseconds, then error out.
4798 */
4799 retry_count = 0;
4800 do {
4801 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4802 hw->eeprom.opcode_bits);
4803 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4804 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4805 break;
4806
4807 udelay(5);
4808 retry_count += 5;
4809
4810 e1000_standby_eeprom(hw);
4811 } while(retry_count < EEPROM_MAX_RETRY_SPI);
4812
4813 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4814 * only 0-5mSec on 5V devices)
4815 */
4816 if(retry_count >= EEPROM_MAX_RETRY_SPI) {
4817 DEBUGOUT("SPI EEPROM Status error\n");
4818 return -E1000_ERR_EEPROM;
4819 }
4820
4821 return E1000_SUCCESS;
4822}
4823
4824/******************************************************************************
4825 * Reads a 16 bit word from the EEPROM.
4826 *
4827 * hw - Struct containing variables accessed by shared code
4828 * offset - offset of word in the EEPROM to read
4829 * data - word read from the EEPROM
4830 * words - number of words to read
4831 *****************************************************************************/
4832int32_t
4833e1000_read_eeprom(struct e1000_hw *hw,
4834 uint16_t offset,
4835 uint16_t words,
4836 uint16_t *data)
4837{
4838 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4839 uint32_t i = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004840 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004841
4842 DEBUGFUNC("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004843
Linus Torvalds1da177e2005-04-16 15:20:36 -07004844 /* A check for invalid values: offset too large, too many words, and not
4845 * enough words.
4846 */
4847 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4848 (words == 0)) {
4849 DEBUGOUT("\"words\" parameter out of bounds\n");
4850 return -E1000_ERR_EEPROM;
4851 }
4852
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004853 /* FLASH reads without acquiring the semaphore are safe */
4854 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4855 hw->eeprom.use_eerd == FALSE) {
4856 switch (hw->mac_type) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004857 case e1000_80003es2lan:
4858 break;
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004859 default:
4860 /* Prepare the EEPROM for reading */
4861 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4862 return -E1000_ERR_EEPROM;
4863 break;
4864 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004865 }
4866
Jesse Brandeburg96838a42006-01-18 13:01:39 -08004867 if (eeprom->use_eerd == TRUE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004868 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
4869 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
4870 (hw->mac_type != e1000_82573))
4871 e1000_release_eeprom(hw);
4872 return ret_val;
4873 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004874
Auke Kokcd94dd02006-06-27 09:08:22 -07004875 if (eeprom->type == e1000_eeprom_ich8)
4876 return e1000_read_eeprom_ich8(hw, offset, words, data);
4877
4878 if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004879 uint16_t word_in;
4880 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
4881
4882 if(e1000_spi_eeprom_ready(hw)) {
4883 e1000_release_eeprom(hw);
4884 return -E1000_ERR_EEPROM;
4885 }
4886
4887 e1000_standby_eeprom(hw);
4888
4889 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4890 if((eeprom->address_bits == 8) && (offset >= 128))
4891 read_opcode |= EEPROM_A8_OPCODE_SPI;
4892
4893 /* Send the READ command (opcode + addr) */
4894 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4895 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
4896
4897 /* Read the data. The address of the eeprom internally increments with
4898 * each byte (spi) being read, saving on the overhead of eeprom setup
4899 * and tear-down. The address counter will roll over if reading beyond
4900 * the size of the eeprom, thus allowing the entire memory to be read
4901 * starting from any offset. */
4902 for (i = 0; i < words; i++) {
4903 word_in = e1000_shift_in_ee_bits(hw, 16);
4904 data[i] = (word_in >> 8) | (word_in << 8);
4905 }
4906 } else if(eeprom->type == e1000_eeprom_microwire) {
4907 for (i = 0; i < words; i++) {
4908 /* Send the READ command (opcode + addr) */
4909 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4910 eeprom->opcode_bits);
4911 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
4912 eeprom->address_bits);
4913
4914 /* Read the data. For microwire, each word requires the overhead
4915 * of eeprom setup and tear-down. */
4916 data[i] = e1000_shift_in_ee_bits(hw, 16);
4917 e1000_standby_eeprom(hw);
4918 }
4919 }
4920
4921 /* End this read operation */
4922 e1000_release_eeprom(hw);
4923
4924 return E1000_SUCCESS;
4925}
4926
4927/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004928 * Reads a 16 bit word from the EEPROM using the EERD register.
4929 *
4930 * hw - Struct containing variables accessed by shared code
4931 * offset - offset of word in the EEPROM to read
4932 * data - word read from the EEPROM
4933 * words - number of words to read
4934 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004935static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004936e1000_read_eeprom_eerd(struct e1000_hw *hw,
4937 uint16_t offset,
4938 uint16_t words,
4939 uint16_t *data)
4940{
4941 uint32_t i, eerd = 0;
4942 int32_t error = 0;
4943
4944 for (i = 0; i < words; i++) {
4945 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
4946 E1000_EEPROM_RW_REG_START;
4947
4948 E1000_WRITE_REG(hw, EERD, eerd);
4949 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
Auke Kok76c224b2006-05-23 13:36:06 -07004950
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004951 if(error) {
4952 break;
4953 }
4954 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
Auke Kok76c224b2006-05-23 13:36:06 -07004955
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004956 }
Auke Kok76c224b2006-05-23 13:36:06 -07004957
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004958 return error;
4959}
4960
4961/******************************************************************************
4962 * Writes a 16 bit word from the EEPROM using the EEWR register.
4963 *
4964 * hw - Struct containing variables accessed by shared code
4965 * offset - offset of word in the EEPROM to read
4966 * data - word read from the EEPROM
4967 * words - number of words to read
4968 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004969static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004970e1000_write_eeprom_eewr(struct e1000_hw *hw,
4971 uint16_t offset,
4972 uint16_t words,
4973 uint16_t *data)
4974{
4975 uint32_t register_value = 0;
4976 uint32_t i = 0;
4977 int32_t error = 0;
4978
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004979 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4980 return -E1000_ERR_SWFW_SYNC;
4981
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004982 for (i = 0; i < words; i++) {
Auke Kok76c224b2006-05-23 13:36:06 -07004983 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
4984 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004985 E1000_EEPROM_RW_REG_START;
4986
4987 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4988 if(error) {
4989 break;
Auke Kok76c224b2006-05-23 13:36:06 -07004990 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004991
4992 E1000_WRITE_REG(hw, EEWR, register_value);
Auke Kok76c224b2006-05-23 13:36:06 -07004993
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004994 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok76c224b2006-05-23 13:36:06 -07004995
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004996 if(error) {
4997 break;
Auke Kok76c224b2006-05-23 13:36:06 -07004998 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004999 }
Auke Kok76c224b2006-05-23 13:36:06 -07005000
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005001 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005002 return error;
5003}
5004
5005/******************************************************************************
5006 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5007 *
5008 * hw - Struct containing variables accessed by shared code
5009 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005010static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005011e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5012{
5013 uint32_t attempts = 100000;
5014 uint32_t i, reg = 0;
5015 int32_t done = E1000_ERR_EEPROM;
5016
5017 for(i = 0; i < attempts; i++) {
5018 if(eerd == E1000_EEPROM_POLL_READ)
5019 reg = E1000_READ_REG(hw, EERD);
Auke Kok76c224b2006-05-23 13:36:06 -07005020 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005021 reg = E1000_READ_REG(hw, EEWR);
5022
5023 if(reg & E1000_EEPROM_RW_REG_DONE) {
5024 done = E1000_SUCCESS;
5025 break;
5026 }
5027 udelay(5);
5028 }
5029
5030 return done;
5031}
5032
5033/***************************************************************************
5034* Description: Determines if the onboard NVM is FLASH or EEPROM.
5035*
5036* hw - Struct containing variables accessed by shared code
5037****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005038static boolean_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005039e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5040{
5041 uint32_t eecd = 0;
5042
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005043 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5044
Auke Kokcd94dd02006-06-27 09:08:22 -07005045 if (hw->mac_type == e1000_ich8lan)
5046 return FALSE;
5047
5048 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005049 eecd = E1000_READ_REG(hw, EECD);
5050
5051 /* Isolate bits 15 & 16 */
5052 eecd = ((eecd >> 15) & 0x03);
5053
5054 /* If both bits are set, device is Flash type */
5055 if(eecd == 0x03) {
5056 return FALSE;
5057 }
5058 }
5059 return TRUE;
5060}
5061
5062/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005063 * Verifies that the EEPROM has a valid checksum
5064 *
5065 * hw - Struct containing variables accessed by shared code
5066 *
5067 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5068 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5069 * valid.
5070 *****************************************************************************/
5071int32_t
5072e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5073{
5074 uint16_t checksum = 0;
5075 uint16_t i, eeprom_data;
5076
5077 DEBUGFUNC("e1000_validate_eeprom_checksum");
5078
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005079 if ((hw->mac_type == e1000_82573) &&
5080 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5081 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5082 * 10h-12h. Checksum may need to be fixed. */
5083 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5084 if ((eeprom_data & 0x10) == 0) {
5085 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5086 * has already been fixed. If the checksum is still wrong and this
5087 * bit is a 1, we need to return bad checksum. Otherwise, we need
5088 * to set this bit to a 1 and update the checksum. */
5089 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5090 if ((eeprom_data & 0x8000) == 0) {
5091 eeprom_data |= 0x8000;
5092 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5093 e1000_update_eeprom_checksum(hw);
5094 }
5095 }
5096 }
5097
Auke Kokcd94dd02006-06-27 09:08:22 -07005098 if (hw->mac_type == e1000_ich8lan) {
5099 /* Drivers must allocate the shadow ram structure for the
5100 * EEPROM checksum to be updated. Otherwise, this bit as well
5101 * as the checksum must both be set correctly for this
5102 * validation to pass.
5103 */
5104 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5105 if ((eeprom_data & 0x40) == 0) {
5106 eeprom_data |= 0x40;
5107 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5108 e1000_update_eeprom_checksum(hw);
5109 }
5110 }
5111
5112 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5113 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005114 DEBUGOUT("EEPROM Read Error\n");
5115 return -E1000_ERR_EEPROM;
5116 }
5117 checksum += eeprom_data;
5118 }
5119
5120 if(checksum == (uint16_t) EEPROM_SUM)
5121 return E1000_SUCCESS;
5122 else {
5123 DEBUGOUT("EEPROM Checksum Invalid\n");
5124 return -E1000_ERR_EEPROM;
5125 }
5126}
5127
5128/******************************************************************************
5129 * Calculates the EEPROM checksum and writes it to the EEPROM
5130 *
5131 * hw - Struct containing variables accessed by shared code
5132 *
5133 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5134 * Writes the difference to word offset 63 of the EEPROM.
5135 *****************************************************************************/
5136int32_t
5137e1000_update_eeprom_checksum(struct e1000_hw *hw)
5138{
Auke Kokcd94dd02006-06-27 09:08:22 -07005139 uint32_t ctrl_ext;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005140 uint16_t checksum = 0;
5141 uint16_t i, eeprom_data;
5142
5143 DEBUGFUNC("e1000_update_eeprom_checksum");
5144
5145 for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5146 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5147 DEBUGOUT("EEPROM Read Error\n");
5148 return -E1000_ERR_EEPROM;
5149 }
5150 checksum += eeprom_data;
5151 }
5152 checksum = (uint16_t) EEPROM_SUM - checksum;
5153 if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5154 DEBUGOUT("EEPROM Write Error\n");
5155 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005156 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5157 e1000_commit_shadow_ram(hw);
Auke Kokcd94dd02006-06-27 09:08:22 -07005158 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5159 e1000_commit_shadow_ram(hw);
5160 /* Reload the EEPROM, or else modifications will not appear
5161 * until after next adapter reset. */
5162 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5163 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5164 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5165 msec_delay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005166 }
5167 return E1000_SUCCESS;
5168}
5169
5170/******************************************************************************
5171 * Parent function for writing words to the different EEPROM types.
5172 *
5173 * hw - Struct containing variables accessed by shared code
5174 * offset - offset within the EEPROM to be written to
5175 * words - number of words to write
5176 * data - 16 bit word to be written to the EEPROM
5177 *
5178 * If e1000_update_eeprom_checksum is not called after this function, the
5179 * EEPROM will most likely contain an invalid checksum.
5180 *****************************************************************************/
5181int32_t
5182e1000_write_eeprom(struct e1000_hw *hw,
5183 uint16_t offset,
5184 uint16_t words,
5185 uint16_t *data)
5186{
5187 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5188 int32_t status = 0;
5189
5190 DEBUGFUNC("e1000_write_eeprom");
5191
5192 /* A check for invalid values: offset too large, too many words, and not
5193 * enough words.
5194 */
5195 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5196 (words == 0)) {
5197 DEBUGOUT("\"words\" parameter out of bounds\n");
5198 return -E1000_ERR_EEPROM;
5199 }
5200
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005201 /* 82573 writes only through eewr */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005202 if(eeprom->use_eewr == TRUE)
5203 return e1000_write_eeprom_eewr(hw, offset, words, data);
5204
Auke Kokcd94dd02006-06-27 09:08:22 -07005205 if (eeprom->type == e1000_eeprom_ich8)
5206 return e1000_write_eeprom_ich8(hw, offset, words, data);
5207
Linus Torvalds1da177e2005-04-16 15:20:36 -07005208 /* Prepare the EEPROM for writing */
5209 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5210 return -E1000_ERR_EEPROM;
5211
5212 if(eeprom->type == e1000_eeprom_microwire) {
5213 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5214 } else {
5215 status = e1000_write_eeprom_spi(hw, offset, words, data);
5216 msec_delay(10);
5217 }
5218
5219 /* Done with writing */
5220 e1000_release_eeprom(hw);
5221
5222 return status;
5223}
5224
5225/******************************************************************************
5226 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5227 *
5228 * hw - Struct containing variables accessed by shared code
5229 * offset - offset within the EEPROM to be written to
5230 * words - number of words to write
5231 * data - pointer to array of 8 bit words to be written to the EEPROM
5232 *
5233 *****************************************************************************/
5234int32_t
5235e1000_write_eeprom_spi(struct e1000_hw *hw,
5236 uint16_t offset,
5237 uint16_t words,
5238 uint16_t *data)
5239{
5240 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5241 uint16_t widx = 0;
5242
5243 DEBUGFUNC("e1000_write_eeprom_spi");
5244
5245 while (widx < words) {
5246 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5247
5248 if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5249
5250 e1000_standby_eeprom(hw);
5251
5252 /* Send the WRITE ENABLE command (8 bit opcode ) */
5253 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5254 eeprom->opcode_bits);
5255
5256 e1000_standby_eeprom(hw);
5257
5258 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5259 if((eeprom->address_bits == 8) && (offset >= 128))
5260 write_opcode |= EEPROM_A8_OPCODE_SPI;
5261
5262 /* Send the Write command (8-bit opcode + addr) */
5263 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5264
5265 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5266 eeprom->address_bits);
5267
5268 /* Send the data */
5269
5270 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5271 while (widx < words) {
5272 uint16_t word_out = data[widx];
5273 word_out = (word_out >> 8) | (word_out << 8);
5274 e1000_shift_out_ee_bits(hw, word_out, 16);
5275 widx++;
5276
5277 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5278 * operation, while the smaller eeproms are capable of an 8-byte
5279 * PAGE WRITE operation. Break the inner loop to pass new address
5280 */
5281 if((((offset + widx)*2) % eeprom->page_size) == 0) {
5282 e1000_standby_eeprom(hw);
5283 break;
5284 }
5285 }
5286 }
5287
5288 return E1000_SUCCESS;
5289}
5290
5291/******************************************************************************
5292 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5293 *
5294 * hw - Struct containing variables accessed by shared code
5295 * offset - offset within the EEPROM to be written to
5296 * words - number of words to write
5297 * data - pointer to array of 16 bit words to be written to the EEPROM
5298 *
5299 *****************************************************************************/
5300int32_t
5301e1000_write_eeprom_microwire(struct e1000_hw *hw,
5302 uint16_t offset,
5303 uint16_t words,
5304 uint16_t *data)
5305{
5306 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5307 uint32_t eecd;
5308 uint16_t words_written = 0;
5309 uint16_t i = 0;
5310
5311 DEBUGFUNC("e1000_write_eeprom_microwire");
5312
5313 /* Send the write enable command to the EEPROM (3-bit opcode plus
5314 * 6/8-bit dummy address beginning with 11). It's less work to include
5315 * the 11 of the dummy address as part of the opcode than it is to shift
5316 * it over the correct number of bits for the address. This puts the
5317 * EEPROM into write/erase mode.
5318 */
5319 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5320 (uint16_t)(eeprom->opcode_bits + 2));
5321
5322 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5323
5324 /* Prepare the EEPROM */
5325 e1000_standby_eeprom(hw);
5326
5327 while (words_written < words) {
5328 /* Send the Write command (3-bit opcode + addr) */
5329 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5330 eeprom->opcode_bits);
5331
5332 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5333 eeprom->address_bits);
5334
5335 /* Send the data */
5336 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5337
5338 /* Toggle the CS line. This in effect tells the EEPROM to execute
5339 * the previous command.
5340 */
5341 e1000_standby_eeprom(hw);
5342
5343 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5344 * signal that the command has been completed by raising the DO signal.
5345 * If DO does not go high in 10 milliseconds, then error out.
5346 */
5347 for(i = 0; i < 200; i++) {
5348 eecd = E1000_READ_REG(hw, EECD);
5349 if(eecd & E1000_EECD_DO) break;
5350 udelay(50);
5351 }
5352 if(i == 200) {
5353 DEBUGOUT("EEPROM Write did not complete\n");
5354 return -E1000_ERR_EEPROM;
5355 }
5356
5357 /* Recover from write */
5358 e1000_standby_eeprom(hw);
5359
5360 words_written++;
5361 }
5362
5363 /* Send the write disable command to the EEPROM (3-bit opcode plus
5364 * 6/8-bit dummy address beginning with 10). It's less work to include
5365 * the 10 of the dummy address as part of the opcode than it is to shift
5366 * it over the correct number of bits for the address. This takes the
5367 * EEPROM out of write/erase mode.
5368 */
5369 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5370 (uint16_t)(eeprom->opcode_bits + 2));
5371
5372 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5373
5374 return E1000_SUCCESS;
5375}
5376
5377/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005378 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5379 * in the eeprom cache and the non modified values in the currently active bank
5380 * to the new bank.
5381 *
5382 * hw - Struct containing variables accessed by shared code
5383 * offset - offset of word in the EEPROM to read
5384 * data - word read from the EEPROM
5385 * words - number of words to read
5386 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005387static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005388e1000_commit_shadow_ram(struct e1000_hw *hw)
5389{
5390 uint32_t attempts = 100000;
5391 uint32_t eecd = 0;
5392 uint32_t flop = 0;
5393 uint32_t i = 0;
5394 int32_t error = E1000_SUCCESS;
Auke Kokcd94dd02006-06-27 09:08:22 -07005395 uint32_t old_bank_offset = 0;
5396 uint32_t new_bank_offset = 0;
5397 uint32_t sector_retries = 0;
5398 uint8_t low_byte = 0;
5399 uint8_t high_byte = 0;
5400 uint8_t temp_byte = 0;
5401 boolean_t sector_write_failed = FALSE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005402
5403 if (hw->mac_type == e1000_82573) {
Auke Kokcd94dd02006-06-27 09:08:22 -07005404 /* The flop register will be used to determine if flash type is STM */
5405 flop = E1000_READ_REG(hw, FLOP);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005406 for (i=0; i < attempts; i++) {
5407 eecd = E1000_READ_REG(hw, EECD);
5408 if ((eecd & E1000_EECD_FLUPD) == 0) {
5409 break;
5410 }
5411 udelay(5);
5412 }
5413
5414 if (i == attempts) {
5415 return -E1000_ERR_EEPROM;
5416 }
5417
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005418 /* If STM opcode located in bits 15:8 of flop, reset firmware */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005419 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5420 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5421 }
5422
5423 /* Perform the flash update */
5424 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5425
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005426 for (i=0; i < attempts; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005427 eecd = E1000_READ_REG(hw, EECD);
5428 if ((eecd & E1000_EECD_FLUPD) == 0) {
5429 break;
5430 }
5431 udelay(5);
5432 }
5433
5434 if (i == attempts) {
5435 return -E1000_ERR_EEPROM;
5436 }
5437 }
5438
Auke Kokcd94dd02006-06-27 09:08:22 -07005439 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5440 /* We're writing to the opposite bank so if we're on bank 1,
5441 * write to bank 0 etc. We also need to erase the segment that
5442 * is going to be written */
5443 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5444 new_bank_offset = hw->flash_bank_size * 2;
5445 old_bank_offset = 0;
5446 e1000_erase_ich8_4k_segment(hw, 1);
5447 } else {
5448 old_bank_offset = hw->flash_bank_size * 2;
5449 new_bank_offset = 0;
5450 e1000_erase_ich8_4k_segment(hw, 0);
5451 }
5452
5453 do {
5454 sector_write_failed = FALSE;
5455 /* Loop for every byte in the shadow RAM,
5456 * which is in units of words. */
5457 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5458 /* Determine whether to write the value stored
5459 * in the other NVM bank or a modified value stored
5460 * in the shadow RAM */
5461 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5462 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5463 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5464 &temp_byte);
5465 udelay(100);
5466 error = e1000_verify_write_ich8_byte(hw,
5467 (i << 1) + new_bank_offset,
5468 low_byte);
5469 if (error != E1000_SUCCESS)
5470 sector_write_failed = TRUE;
5471 high_byte =
5472 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5473 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5474 &temp_byte);
5475 udelay(100);
5476 } else {
5477 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5478 &low_byte);
5479 udelay(100);
5480 error = e1000_verify_write_ich8_byte(hw,
5481 (i << 1) + new_bank_offset, low_byte);
5482 if (error != E1000_SUCCESS)
5483 sector_write_failed = TRUE;
5484 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5485 &high_byte);
5486 }
5487
5488 /* If the word is 0x13, then make sure the signature bits
5489 * (15:14) are 11b until the commit has completed.
5490 * This will allow us to write 10b which indicates the
5491 * signature is valid. We want to do this after the write
5492 * has completed so that we don't mark the segment valid
5493 * while the write is still in progress */
5494 if (i == E1000_ICH8_NVM_SIG_WORD)
5495 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5496
5497 error = e1000_verify_write_ich8_byte(hw,
5498 (i << 1) + new_bank_offset + 1, high_byte);
5499 if (error != E1000_SUCCESS)
5500 sector_write_failed = TRUE;
5501
5502 if (sector_write_failed == FALSE) {
5503 /* Clear the now not used entry in the cache */
5504 hw->eeprom_shadow_ram[i].modified = FALSE;
5505 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5506 }
5507 }
5508
5509 /* Don't bother writing the segment valid bits if sector
5510 * programming failed. */
5511 if (sector_write_failed == FALSE) {
5512 /* Finally validate the new segment by setting bit 15:14
5513 * to 10b in word 0x13 , this can be done without an
5514 * erase as well since these bits are 11 to start with
5515 * and we need to change bit 14 to 0b */
5516 e1000_read_ich8_byte(hw,
5517 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5518 &high_byte);
5519 high_byte &= 0xBF;
5520 error = e1000_verify_write_ich8_byte(hw,
5521 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5522 high_byte);
5523 if (error != E1000_SUCCESS)
5524 sector_write_failed = TRUE;
5525
5526 /* And invalidate the previously valid segment by setting
5527 * its signature word (0x13) high_byte to 0b. This can be
5528 * done without an erase because flash erase sets all bits
5529 * to 1's. We can write 1's to 0's without an erase */
5530 error = e1000_verify_write_ich8_byte(hw,
5531 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
5532 0);
5533 if (error != E1000_SUCCESS)
5534 sector_write_failed = TRUE;
5535 }
5536 } while (++sector_retries < 10 && sector_write_failed == TRUE);
5537 }
5538
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005539 return error;
5540}
5541
5542/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005543 * Reads the adapter's part number from the EEPROM
5544 *
5545 * hw - Struct containing variables accessed by shared code
5546 * part_num - Adapter's part number
5547 *****************************************************************************/
5548int32_t
5549e1000_read_part_num(struct e1000_hw *hw,
5550 uint32_t *part_num)
5551{
5552 uint16_t offset = EEPROM_PBA_BYTE_1;
5553 uint16_t eeprom_data;
5554
5555 DEBUGFUNC("e1000_read_part_num");
5556
5557 /* Get word 0 from EEPROM */
5558 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5559 DEBUGOUT("EEPROM Read Error\n");
5560 return -E1000_ERR_EEPROM;
5561 }
5562 /* Save word 0 in upper half of part_num */
5563 *part_num = (uint32_t) (eeprom_data << 16);
5564
5565 /* Get word 1 from EEPROM */
5566 if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
5567 DEBUGOUT("EEPROM Read Error\n");
5568 return -E1000_ERR_EEPROM;
5569 }
5570 /* Save word 1 in lower half of part_num */
5571 *part_num |= eeprom_data;
5572
5573 return E1000_SUCCESS;
5574}
5575
5576/******************************************************************************
5577 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5578 * second function of dual function devices
5579 *
5580 * hw - Struct containing variables accessed by shared code
5581 *****************************************************************************/
5582int32_t
5583e1000_read_mac_addr(struct e1000_hw * hw)
5584{
5585 uint16_t offset;
5586 uint16_t eeprom_data, i;
5587
5588 DEBUGFUNC("e1000_read_mac_addr");
5589
5590 for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5591 offset = i >> 1;
5592 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5593 DEBUGOUT("EEPROM Read Error\n");
5594 return -E1000_ERR_EEPROM;
5595 }
5596 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5597 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5598 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005599
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005600 switch (hw->mac_type) {
5601 default:
5602 break;
5603 case e1000_82546:
5604 case e1000_82546_rev_3:
5605 case e1000_82571:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005606 case e1000_80003es2lan:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005607 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005608 hw->perm_mac_addr[5] ^= 0x01;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005609 break;
5610 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005611
5612 for(i = 0; i < NODE_ADDRESS_SIZE; i++)
5613 hw->mac_addr[i] = hw->perm_mac_addr[i];
5614 return E1000_SUCCESS;
5615}
5616
5617/******************************************************************************
5618 * Initializes receive address filters.
5619 *
5620 * hw - Struct containing variables accessed by shared code
5621 *
5622 * Places the MAC address in receive address register 0 and clears the rest
5623 * of the receive addresss registers. Clears the multicast table. Assumes
5624 * the receiver is in reset when the routine is called.
5625 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005626static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005627e1000_init_rx_addrs(struct e1000_hw *hw)
5628{
5629 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005630 uint32_t rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005631
5632 DEBUGFUNC("e1000_init_rx_addrs");
5633
5634 /* Setup the receive address. */
5635 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5636
5637 e1000_rar_set(hw, hw->mac_addr, 0);
5638
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005639 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005640
5641 /* Reserve a spot for the Locally Administered Address to work around
5642 * an 82571 issue in which a reset on one port will reload the MAC on
5643 * the other port. */
5644 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5645 rar_num -= 1;
Auke Kokcd94dd02006-06-27 09:08:22 -07005646 if (hw->mac_type == e1000_ich8lan)
5647 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5648
Linus Torvalds1da177e2005-04-16 15:20:36 -07005649 /* Zero out the other 15 receive addresses. */
5650 DEBUGOUT("Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005651 for(i = 1; i < rar_num; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005652 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005653 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005654 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005655 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005656 }
5657}
5658
5659/******************************************************************************
5660 * Updates the MAC's list of multicast addresses.
5661 *
5662 * hw - Struct containing variables accessed by shared code
5663 * mc_addr_list - the list of new multicast addresses
5664 * mc_addr_count - number of addresses
5665 * pad - number of bytes between addresses in the list
5666 * rar_used_count - offset where to start adding mc addresses into the RAR's
5667 *
5668 * The given list replaces any existing list. Clears the last 15 receive
5669 * address registers and the multicast table. Uses receive address registers
5670 * for the first 15 multicast addresses, and hashes the rest into the
5671 * multicast table.
5672 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07005673#if 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07005674void
5675e1000_mc_addr_list_update(struct e1000_hw *hw,
5676 uint8_t *mc_addr_list,
5677 uint32_t mc_addr_count,
5678 uint32_t pad,
5679 uint32_t rar_used_count)
5680{
5681 uint32_t hash_value;
5682 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005683 uint32_t num_rar_entry;
5684 uint32_t num_mta_entry;
Auke Kok76c224b2006-05-23 13:36:06 -07005685
Linus Torvalds1da177e2005-04-16 15:20:36 -07005686 DEBUGFUNC("e1000_mc_addr_list_update");
5687
5688 /* Set the new number of MC addresses that we are being requested to use. */
5689 hw->num_mc_addrs = mc_addr_count;
5690
5691 /* Clear RAR[1-15] */
5692 DEBUGOUT(" Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005693 num_rar_entry = E1000_RAR_ENTRIES;
Auke Kokcd94dd02006-06-27 09:08:22 -07005694 if (hw->mac_type == e1000_ich8lan)
5695 num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005696 /* Reserve a spot for the Locally Administered Address to work around
5697 * an 82571 issue in which a reset on one port will reload the MAC on
5698 * the other port. */
5699 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5700 num_rar_entry -= 1;
5701
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005702 for(i = rar_used_count; i < num_rar_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005703 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005704 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005705 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005706 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005707 }
5708
5709 /* Clear the MTA */
5710 DEBUGOUT(" Clearing MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005711 num_mta_entry = E1000_NUM_MTA_REGISTERS;
Auke Kokcd94dd02006-06-27 09:08:22 -07005712 if (hw->mac_type == e1000_ich8lan)
5713 num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005714 for(i = 0; i < num_mta_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005715 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005716 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005717 }
5718
5719 /* Add the new addresses */
5720 for(i = 0; i < mc_addr_count; i++) {
5721 DEBUGOUT(" Adding the multicast addresses:\n");
5722 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
5723 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
5724 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
5725 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
5726 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
5727 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
5728 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
5729
5730 hash_value = e1000_hash_mc_addr(hw,
5731 mc_addr_list +
5732 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
5733
5734 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
5735
5736 /* Place this multicast address in the RAR if there is room, *
5737 * else put it in the MTA
5738 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005739 if (rar_used_count < num_rar_entry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005740 e1000_rar_set(hw,
5741 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
5742 rar_used_count);
5743 rar_used_count++;
5744 } else {
5745 e1000_mta_set(hw, hash_value);
5746 }
5747 }
5748 DEBUGOUT("MC Update Complete\n");
5749}
Adrian Bunke4c780b2006-08-14 23:00:10 -07005750#endif /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005751
5752/******************************************************************************
5753 * Hashes an address to determine its location in the multicast table
5754 *
5755 * hw - Struct containing variables accessed by shared code
5756 * mc_addr - the multicast address to hash
5757 *****************************************************************************/
5758uint32_t
5759e1000_hash_mc_addr(struct e1000_hw *hw,
5760 uint8_t *mc_addr)
5761{
5762 uint32_t hash_value = 0;
5763
5764 /* The portion of the address that is used for the hash table is
5765 * determined by the mc_filter_type setting.
5766 */
5767 switch (hw->mc_filter_type) {
5768 /* [0] [1] [2] [3] [4] [5]
5769 * 01 AA 00 12 34 56
5770 * LSB MSB
5771 */
5772 case 0:
Auke Kokcd94dd02006-06-27 09:08:22 -07005773 if (hw->mac_type == e1000_ich8lan) {
5774 /* [47:38] i.e. 0x158 for above example address */
5775 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5776 } else {
5777 /* [47:36] i.e. 0x563 for above example address */
5778 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5779 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005780 break;
5781 case 1:
Auke Kokcd94dd02006-06-27 09:08:22 -07005782 if (hw->mac_type == e1000_ich8lan) {
5783 /* [46:37] i.e. 0x2B1 for above example address */
5784 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5785 } else {
5786 /* [46:35] i.e. 0xAC6 for above example address */
5787 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5788 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005789 break;
5790 case 2:
Auke Kokcd94dd02006-06-27 09:08:22 -07005791 if (hw->mac_type == e1000_ich8lan) {
5792 /*[45:36] i.e. 0x163 for above example address */
5793 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5794 } else {
5795 /* [45:34] i.e. 0x5D8 for above example address */
5796 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5797 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005798 break;
5799 case 3:
Auke Kokcd94dd02006-06-27 09:08:22 -07005800 if (hw->mac_type == e1000_ich8lan) {
5801 /* [43:34] i.e. 0x18D for above example address */
5802 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5803 } else {
5804 /* [43:32] i.e. 0x634 for above example address */
5805 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5806 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005807 break;
5808 }
5809
5810 hash_value &= 0xFFF;
Auke Kokcd94dd02006-06-27 09:08:22 -07005811 if (hw->mac_type == e1000_ich8lan)
5812 hash_value &= 0x3FF;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005813
Linus Torvalds1da177e2005-04-16 15:20:36 -07005814 return hash_value;
5815}
5816
5817/******************************************************************************
5818 * Sets the bit in the multicast table corresponding to the hash value.
5819 *
5820 * hw - Struct containing variables accessed by shared code
5821 * hash_value - Multicast address hash value
5822 *****************************************************************************/
5823void
5824e1000_mta_set(struct e1000_hw *hw,
5825 uint32_t hash_value)
5826{
5827 uint32_t hash_bit, hash_reg;
5828 uint32_t mta;
5829 uint32_t temp;
5830
5831 /* The MTA is a register array of 128 32-bit registers.
5832 * It is treated like an array of 4096 bits. We want to set
5833 * bit BitArray[hash_value]. So we figure out what register
5834 * the bit is in, read it, OR in the new bit, then write
5835 * back the new value. The register is determined by the
5836 * upper 7 bits of the hash value and the bit within that
5837 * register are determined by the lower 5 bits of the value.
5838 */
5839 hash_reg = (hash_value >> 5) & 0x7F;
Auke Kokcd94dd02006-06-27 09:08:22 -07005840 if (hw->mac_type == e1000_ich8lan)
5841 hash_reg &= 0x1F;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005842 hash_bit = hash_value & 0x1F;
5843
5844 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5845
5846 mta |= (1 << hash_bit);
5847
5848 /* If we are on an 82544 and we are trying to write an odd offset
5849 * in the MTA, save off the previous entry before writing and
5850 * restore the old value after writing.
5851 */
5852 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5853 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5854 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005855 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005856 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005857 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005858 } else {
5859 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005860 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005861 }
5862}
5863
5864/******************************************************************************
5865 * Puts an ethernet address into a receive address register.
5866 *
5867 * hw - Struct containing variables accessed by shared code
5868 * addr - Address to put into receive address register
5869 * index - Receive address register to write
5870 *****************************************************************************/
5871void
5872e1000_rar_set(struct e1000_hw *hw,
5873 uint8_t *addr,
5874 uint32_t index)
5875{
5876 uint32_t rar_low, rar_high;
5877
5878 /* HW expects these in little endian so we reverse the byte order
5879 * from network order (big endian) to little endian
5880 */
5881 rar_low = ((uint32_t) addr[0] |
5882 ((uint32_t) addr[1] << 8) |
5883 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005884 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005885
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005886 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5887 * unit hang.
5888 *
5889 * Description:
5890 * If there are any Rx frames queued up or otherwise present in the HW
5891 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5892 * hang. To work around this issue, we have to disable receives and
5893 * flush out all Rx frames before we enable RSS. To do so, we modify we
5894 * redirect all Rx traffic to manageability and then reset the HW.
5895 * This flushes away Rx frames, and (since the redirections to
5896 * manageability persists across resets) keeps new ones from coming in
5897 * while we work. Then, we clear the Address Valid AV bit for all MAC
5898 * addresses and undo the re-direction to manageability.
5899 * Now, frames are coming in again, but the MAC won't accept them, so
5900 * far so good. We now proceed to initialize RSS (if necessary) and
5901 * configure the Rx unit. Last, we re-enable the AV bits and continue
5902 * on our merry way.
5903 */
5904 switch (hw->mac_type) {
5905 case e1000_82571:
5906 case e1000_82572:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005907 case e1000_80003es2lan:
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005908 if (hw->leave_av_bit_off == TRUE)
5909 break;
5910 default:
5911 /* Indicate to hardware the Address is Valid. */
5912 rar_high |= E1000_RAH_AV;
5913 break;
5914 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005915
5916 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
Auke Kok4ca213a2006-06-27 09:07:08 -07005917 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005918 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
Auke Kok4ca213a2006-06-27 09:07:08 -07005919 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005920}
5921
5922/******************************************************************************
5923 * Writes a value to the specified offset in the VLAN filter table.
5924 *
5925 * hw - Struct containing variables accessed by shared code
5926 * offset - Offset in VLAN filer table to write
5927 * value - Value to write into VLAN filter table
5928 *****************************************************************************/
5929void
5930e1000_write_vfta(struct e1000_hw *hw,
5931 uint32_t offset,
5932 uint32_t value)
5933{
5934 uint32_t temp;
5935
Auke Kokcd94dd02006-06-27 09:08:22 -07005936 if (hw->mac_type == e1000_ich8lan)
5937 return;
5938
5939 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005940 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5941 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005942 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005943 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005944 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005945 } else {
5946 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005947 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005948 }
5949}
5950
5951/******************************************************************************
5952 * Clears the VLAN filer table
5953 *
5954 * hw - Struct containing variables accessed by shared code
5955 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005956static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005957e1000_clear_vfta(struct e1000_hw *hw)
5958{
5959 uint32_t offset;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005960 uint32_t vfta_value = 0;
5961 uint32_t vfta_offset = 0;
5962 uint32_t vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005963
Auke Kokcd94dd02006-06-27 09:08:22 -07005964 if (hw->mac_type == e1000_ich8lan)
5965 return;
5966
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005967 if (hw->mac_type == e1000_82573) {
5968 if (hw->mng_cookie.vlan_id != 0) {
5969 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5970 * ID. The following operations determine which 32b entry
5971 * (i.e. offset) into the array we want to set the VLAN ID
5972 * (i.e. bit) of the manageability unit. */
5973 vfta_offset = (hw->mng_cookie.vlan_id >>
5974 E1000_VFTA_ENTRY_SHIFT) &
5975 E1000_VFTA_ENTRY_MASK;
5976 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5977 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5978 }
5979 }
5980 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5981 /* If the offset we want to clear is the same offset of the
5982 * manageability VLAN ID, then clear all bits except that of the
5983 * manageability unit */
5984 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5985 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005986 E1000_WRITE_FLUSH(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005987 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005988}
5989
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005990static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005991e1000_id_led_init(struct e1000_hw * hw)
5992{
5993 uint32_t ledctl;
5994 const uint32_t ledctl_mask = 0x000000FF;
5995 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5996 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5997 uint16_t eeprom_data, i, temp;
5998 const uint16_t led_mask = 0x0F;
5999
6000 DEBUGFUNC("e1000_id_led_init");
6001
6002 if(hw->mac_type < e1000_82540) {
6003 /* Nothing to do */
6004 return E1000_SUCCESS;
6005 }
6006
6007 ledctl = E1000_READ_REG(hw, LEDCTL);
6008 hw->ledctl_default = ledctl;
6009 hw->ledctl_mode1 = hw->ledctl_default;
6010 hw->ledctl_mode2 = hw->ledctl_default;
6011
6012 if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
6013 DEBUGOUT("EEPROM Read Error\n");
6014 return -E1000_ERR_EEPROM;
6015 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006016
6017 if ((hw->mac_type == e1000_82573) &&
6018 (eeprom_data == ID_LED_RESERVED_82573))
6019 eeprom_data = ID_LED_DEFAULT_82573;
6020 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6021 (eeprom_data == ID_LED_RESERVED_FFFF)) {
6022 if (hw->mac_type == e1000_ich8lan)
6023 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6024 else
6025 eeprom_data = ID_LED_DEFAULT;
6026 }
6027 for (i = 0; i < 4; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006028 temp = (eeprom_data >> (i << 2)) & led_mask;
6029 switch(temp) {
6030 case ID_LED_ON1_DEF2:
6031 case ID_LED_ON1_ON2:
6032 case ID_LED_ON1_OFF2:
6033 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6034 hw->ledctl_mode1 |= ledctl_on << (i << 3);
6035 break;
6036 case ID_LED_OFF1_DEF2:
6037 case ID_LED_OFF1_ON2:
6038 case ID_LED_OFF1_OFF2:
6039 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6040 hw->ledctl_mode1 |= ledctl_off << (i << 3);
6041 break;
6042 default:
6043 /* Do nothing */
6044 break;
6045 }
6046 switch(temp) {
6047 case ID_LED_DEF1_ON2:
6048 case ID_LED_ON1_ON2:
6049 case ID_LED_OFF1_ON2:
6050 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6051 hw->ledctl_mode2 |= ledctl_on << (i << 3);
6052 break;
6053 case ID_LED_DEF1_OFF2:
6054 case ID_LED_ON1_OFF2:
6055 case ID_LED_OFF1_OFF2:
6056 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6057 hw->ledctl_mode2 |= ledctl_off << (i << 3);
6058 break;
6059 default:
6060 /* Do nothing */
6061 break;
6062 }
6063 }
6064 return E1000_SUCCESS;
6065}
6066
6067/******************************************************************************
6068 * Prepares SW controlable LED for use and saves the current state of the LED.
6069 *
6070 * hw - Struct containing variables accessed by shared code
6071 *****************************************************************************/
6072int32_t
6073e1000_setup_led(struct e1000_hw *hw)
6074{
6075 uint32_t ledctl;
6076 int32_t ret_val = E1000_SUCCESS;
6077
6078 DEBUGFUNC("e1000_setup_led");
6079
6080 switch(hw->mac_type) {
6081 case e1000_82542_rev2_0:
6082 case e1000_82542_rev2_1:
6083 case e1000_82543:
6084 case e1000_82544:
6085 /* No setup necessary */
6086 break;
6087 case e1000_82541:
6088 case e1000_82547:
6089 case e1000_82541_rev_2:
6090 case e1000_82547_rev_2:
6091 /* Turn off PHY Smart Power Down (if enabled) */
6092 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6093 &hw->phy_spd_default);
6094 if(ret_val)
6095 return ret_val;
6096 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6097 (uint16_t)(hw->phy_spd_default &
6098 ~IGP01E1000_GMII_SPD));
6099 if(ret_val)
6100 return ret_val;
6101 /* Fall Through */
6102 default:
6103 if(hw->media_type == e1000_media_type_fiber) {
6104 ledctl = E1000_READ_REG(hw, LEDCTL);
6105 /* Save current LEDCTL settings */
6106 hw->ledctl_default = ledctl;
6107 /* Turn off LED0 */
6108 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6109 E1000_LEDCTL_LED0_BLINK |
6110 E1000_LEDCTL_LED0_MODE_MASK);
6111 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6112 E1000_LEDCTL_LED0_MODE_SHIFT);
6113 E1000_WRITE_REG(hw, LEDCTL, ledctl);
6114 } else if(hw->media_type == e1000_media_type_copper)
6115 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6116 break;
6117 }
6118
6119 return E1000_SUCCESS;
6120}
6121
6122/******************************************************************************
Auke Kokf1b3a852006-06-27 09:07:56 -07006123 * Used on 82571 and later Si that has LED blink bits.
6124 * Callers must use their own timer and should have already called
6125 * e1000_id_led_init()
6126 * Call e1000_cleanup led() to stop blinking
6127 *
6128 * hw - Struct containing variables accessed by shared code
6129 *****************************************************************************/
6130int32_t
6131e1000_blink_led_start(struct e1000_hw *hw)
6132{
6133 int16_t i;
6134 uint32_t ledctl_blink = 0;
6135
6136 DEBUGFUNC("e1000_id_led_blink_on");
6137
6138 if (hw->mac_type < e1000_82571) {
6139 /* Nothing to do */
6140 return E1000_SUCCESS;
6141 }
6142 if (hw->media_type == e1000_media_type_fiber) {
6143 /* always blink LED0 for PCI-E fiber */
6144 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6145 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6146 } else {
6147 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6148 ledctl_blink = hw->ledctl_mode2;
6149 for (i=0; i < 4; i++)
6150 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6151 E1000_LEDCTL_MODE_LED_ON)
6152 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6153 }
6154
6155 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6156
6157 return E1000_SUCCESS;
6158}
6159
6160/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07006161 * Restores the saved state of the SW controlable LED.
6162 *
6163 * hw - Struct containing variables accessed by shared code
6164 *****************************************************************************/
6165int32_t
6166e1000_cleanup_led(struct e1000_hw *hw)
6167{
6168 int32_t ret_val = E1000_SUCCESS;
6169
6170 DEBUGFUNC("e1000_cleanup_led");
6171
6172 switch(hw->mac_type) {
6173 case e1000_82542_rev2_0:
6174 case e1000_82542_rev2_1:
6175 case e1000_82543:
6176 case e1000_82544:
6177 /* No cleanup necessary */
6178 break;
6179 case e1000_82541:
6180 case e1000_82547:
6181 case e1000_82541_rev_2:
6182 case e1000_82547_rev_2:
6183 /* Turn on PHY Smart Power Down (if previously enabled) */
6184 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6185 hw->phy_spd_default);
6186 if(ret_val)
6187 return ret_val;
6188 /* Fall Through */
6189 default:
Auke Kokcd94dd02006-06-27 09:08:22 -07006190 if (hw->phy_type == e1000_phy_ife) {
6191 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6192 break;
6193 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006194 /* Restore LEDCTL settings */
6195 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6196 break;
6197 }
6198
6199 return E1000_SUCCESS;
6200}
6201
6202/******************************************************************************
6203 * Turns on the software controllable LED
6204 *
6205 * hw - Struct containing variables accessed by shared code
6206 *****************************************************************************/
6207int32_t
6208e1000_led_on(struct e1000_hw *hw)
6209{
6210 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6211
6212 DEBUGFUNC("e1000_led_on");
6213
6214 switch(hw->mac_type) {
6215 case e1000_82542_rev2_0:
6216 case e1000_82542_rev2_1:
6217 case e1000_82543:
6218 /* Set SW Defineable Pin 0 to turn on the LED */
6219 ctrl |= E1000_CTRL_SWDPIN0;
6220 ctrl |= E1000_CTRL_SWDPIO0;
6221 break;
6222 case e1000_82544:
6223 if(hw->media_type == e1000_media_type_fiber) {
6224 /* Set SW Defineable Pin 0 to turn on the LED */
6225 ctrl |= E1000_CTRL_SWDPIN0;
6226 ctrl |= E1000_CTRL_SWDPIO0;
6227 } else {
6228 /* Clear SW Defineable Pin 0 to turn on the LED */
6229 ctrl &= ~E1000_CTRL_SWDPIN0;
6230 ctrl |= E1000_CTRL_SWDPIO0;
6231 }
6232 break;
6233 default:
6234 if(hw->media_type == e1000_media_type_fiber) {
6235 /* Clear SW Defineable Pin 0 to turn on the LED */
6236 ctrl &= ~E1000_CTRL_SWDPIN0;
6237 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006238 } else if (hw->phy_type == e1000_phy_ife) {
6239 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6240 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6241 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006242 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6243 return E1000_SUCCESS;
6244 }
6245 break;
6246 }
6247
6248 E1000_WRITE_REG(hw, CTRL, ctrl);
6249
6250 return E1000_SUCCESS;
6251}
6252
6253/******************************************************************************
6254 * Turns off the software controllable LED
6255 *
6256 * hw - Struct containing variables accessed by shared code
6257 *****************************************************************************/
6258int32_t
6259e1000_led_off(struct e1000_hw *hw)
6260{
6261 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6262
6263 DEBUGFUNC("e1000_led_off");
6264
6265 switch(hw->mac_type) {
6266 case e1000_82542_rev2_0:
6267 case e1000_82542_rev2_1:
6268 case e1000_82543:
6269 /* Clear SW Defineable Pin 0 to turn off the LED */
6270 ctrl &= ~E1000_CTRL_SWDPIN0;
6271 ctrl |= E1000_CTRL_SWDPIO0;
6272 break;
6273 case e1000_82544:
6274 if(hw->media_type == e1000_media_type_fiber) {
6275 /* Clear SW Defineable Pin 0 to turn off the LED */
6276 ctrl &= ~E1000_CTRL_SWDPIN0;
6277 ctrl |= E1000_CTRL_SWDPIO0;
6278 } else {
6279 /* Set SW Defineable Pin 0 to turn off the LED */
6280 ctrl |= E1000_CTRL_SWDPIN0;
6281 ctrl |= E1000_CTRL_SWDPIO0;
6282 }
6283 break;
6284 default:
6285 if(hw->media_type == e1000_media_type_fiber) {
6286 /* Set SW Defineable Pin 0 to turn off the LED */
6287 ctrl |= E1000_CTRL_SWDPIN0;
6288 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006289 } else if (hw->phy_type == e1000_phy_ife) {
6290 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6291 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6292 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006293 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6294 return E1000_SUCCESS;
6295 }
6296 break;
6297 }
6298
6299 E1000_WRITE_REG(hw, CTRL, ctrl);
6300
6301 return E1000_SUCCESS;
6302}
6303
6304/******************************************************************************
6305 * Clears all hardware statistics counters.
6306 *
6307 * hw - Struct containing variables accessed by shared code
6308 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006309static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006310e1000_clear_hw_cntrs(struct e1000_hw *hw)
6311{
6312 volatile uint32_t temp;
6313
6314 temp = E1000_READ_REG(hw, CRCERRS);
6315 temp = E1000_READ_REG(hw, SYMERRS);
6316 temp = E1000_READ_REG(hw, MPC);
6317 temp = E1000_READ_REG(hw, SCC);
6318 temp = E1000_READ_REG(hw, ECOL);
6319 temp = E1000_READ_REG(hw, MCC);
6320 temp = E1000_READ_REG(hw, LATECOL);
6321 temp = E1000_READ_REG(hw, COLC);
6322 temp = E1000_READ_REG(hw, DC);
6323 temp = E1000_READ_REG(hw, SEC);
6324 temp = E1000_READ_REG(hw, RLEC);
6325 temp = E1000_READ_REG(hw, XONRXC);
6326 temp = E1000_READ_REG(hw, XONTXC);
6327 temp = E1000_READ_REG(hw, XOFFRXC);
6328 temp = E1000_READ_REG(hw, XOFFTXC);
6329 temp = E1000_READ_REG(hw, FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006330
6331 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006332 temp = E1000_READ_REG(hw, PRC64);
6333 temp = E1000_READ_REG(hw, PRC127);
6334 temp = E1000_READ_REG(hw, PRC255);
6335 temp = E1000_READ_REG(hw, PRC511);
6336 temp = E1000_READ_REG(hw, PRC1023);
6337 temp = E1000_READ_REG(hw, PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006338 }
6339
Linus Torvalds1da177e2005-04-16 15:20:36 -07006340 temp = E1000_READ_REG(hw, GPRC);
6341 temp = E1000_READ_REG(hw, BPRC);
6342 temp = E1000_READ_REG(hw, MPRC);
6343 temp = E1000_READ_REG(hw, GPTC);
6344 temp = E1000_READ_REG(hw, GORCL);
6345 temp = E1000_READ_REG(hw, GORCH);
6346 temp = E1000_READ_REG(hw, GOTCL);
6347 temp = E1000_READ_REG(hw, GOTCH);
6348 temp = E1000_READ_REG(hw, RNBC);
6349 temp = E1000_READ_REG(hw, RUC);
6350 temp = E1000_READ_REG(hw, RFC);
6351 temp = E1000_READ_REG(hw, ROC);
6352 temp = E1000_READ_REG(hw, RJC);
6353 temp = E1000_READ_REG(hw, TORL);
6354 temp = E1000_READ_REG(hw, TORH);
6355 temp = E1000_READ_REG(hw, TOTL);
6356 temp = E1000_READ_REG(hw, TOTH);
6357 temp = E1000_READ_REG(hw, TPR);
6358 temp = E1000_READ_REG(hw, TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07006359
6360 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006361 temp = E1000_READ_REG(hw, PTC64);
6362 temp = E1000_READ_REG(hw, PTC127);
6363 temp = E1000_READ_REG(hw, PTC255);
6364 temp = E1000_READ_REG(hw, PTC511);
6365 temp = E1000_READ_REG(hw, PTC1023);
6366 temp = E1000_READ_REG(hw, PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006367 }
6368
Linus Torvalds1da177e2005-04-16 15:20:36 -07006369 temp = E1000_READ_REG(hw, MPTC);
6370 temp = E1000_READ_REG(hw, BPTC);
6371
6372 if(hw->mac_type < e1000_82543) return;
6373
6374 temp = E1000_READ_REG(hw, ALGNERRC);
6375 temp = E1000_READ_REG(hw, RXERRC);
6376 temp = E1000_READ_REG(hw, TNCRS);
6377 temp = E1000_READ_REG(hw, CEXTERR);
6378 temp = E1000_READ_REG(hw, TSCTC);
6379 temp = E1000_READ_REG(hw, TSCTFC);
6380
6381 if(hw->mac_type <= e1000_82544) return;
6382
6383 temp = E1000_READ_REG(hw, MGTPRC);
6384 temp = E1000_READ_REG(hw, MGTPDC);
6385 temp = E1000_READ_REG(hw, MGTPTC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006386
6387 if(hw->mac_type <= e1000_82547_rev_2) return;
6388
6389 temp = E1000_READ_REG(hw, IAC);
6390 temp = E1000_READ_REG(hw, ICRXOC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006391
6392 if (hw->mac_type == e1000_ich8lan) return;
6393
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006394 temp = E1000_READ_REG(hw, ICRXPTC);
6395 temp = E1000_READ_REG(hw, ICRXATC);
6396 temp = E1000_READ_REG(hw, ICTXPTC);
6397 temp = E1000_READ_REG(hw, ICTXATC);
6398 temp = E1000_READ_REG(hw, ICTXQEC);
6399 temp = E1000_READ_REG(hw, ICTXQMTC);
6400 temp = E1000_READ_REG(hw, ICRXDMTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006401}
6402
6403/******************************************************************************
6404 * Resets Adaptive IFS to its default state.
6405 *
6406 * hw - Struct containing variables accessed by shared code
6407 *
6408 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6409 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6410 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6411 * before calling this function.
6412 *****************************************************************************/
6413void
6414e1000_reset_adaptive(struct e1000_hw *hw)
6415{
6416 DEBUGFUNC("e1000_reset_adaptive");
6417
6418 if(hw->adaptive_ifs) {
6419 if(!hw->ifs_params_forced) {
6420 hw->current_ifs_val = 0;
6421 hw->ifs_min_val = IFS_MIN;
6422 hw->ifs_max_val = IFS_MAX;
6423 hw->ifs_step_size = IFS_STEP;
6424 hw->ifs_ratio = IFS_RATIO;
6425 }
6426 hw->in_ifs_mode = FALSE;
6427 E1000_WRITE_REG(hw, AIT, 0);
6428 } else {
6429 DEBUGOUT("Not in Adaptive IFS mode!\n");
6430 }
6431}
6432
6433/******************************************************************************
6434 * Called during the callback/watchdog routine to update IFS value based on
6435 * the ratio of transmits to collisions.
6436 *
6437 * hw - Struct containing variables accessed by shared code
6438 * tx_packets - Number of transmits since last callback
6439 * total_collisions - Number of collisions since last callback
6440 *****************************************************************************/
6441void
6442e1000_update_adaptive(struct e1000_hw *hw)
6443{
6444 DEBUGFUNC("e1000_update_adaptive");
6445
6446 if(hw->adaptive_ifs) {
6447 if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6448 if(hw->tx_packet_delta > MIN_NUM_XMITS) {
6449 hw->in_ifs_mode = TRUE;
6450 if(hw->current_ifs_val < hw->ifs_max_val) {
6451 if(hw->current_ifs_val == 0)
6452 hw->current_ifs_val = hw->ifs_min_val;
6453 else
6454 hw->current_ifs_val += hw->ifs_step_size;
6455 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6456 }
6457 }
6458 } else {
6459 if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6460 hw->current_ifs_val = 0;
6461 hw->in_ifs_mode = FALSE;
6462 E1000_WRITE_REG(hw, AIT, 0);
6463 }
6464 }
6465 } else {
6466 DEBUGOUT("Not in Adaptive IFS mode!\n");
6467 }
6468}
6469
6470/******************************************************************************
6471 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6472 *
6473 * hw - Struct containing variables accessed by shared code
6474 * frame_len - The length of the frame in question
6475 * mac_addr - The Ethernet destination address of the frame in question
6476 *****************************************************************************/
6477void
6478e1000_tbi_adjust_stats(struct e1000_hw *hw,
6479 struct e1000_hw_stats *stats,
6480 uint32_t frame_len,
6481 uint8_t *mac_addr)
6482{
6483 uint64_t carry_bit;
6484
6485 /* First adjust the frame length. */
6486 frame_len--;
6487 /* We need to adjust the statistics counters, since the hardware
6488 * counters overcount this packet as a CRC error and undercount
6489 * the packet as a good packet
6490 */
6491 /* This packet should not be counted as a CRC error. */
6492 stats->crcerrs--;
6493 /* This packet does count as a Good Packet Received. */
6494 stats->gprc++;
6495
6496 /* Adjust the Good Octets received counters */
6497 carry_bit = 0x80000000 & stats->gorcl;
6498 stats->gorcl += frame_len;
6499 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6500 * Received Count) was one before the addition,
6501 * AND it is zero after, then we lost the carry out,
6502 * need to add one to Gorch (Good Octets Received Count High).
6503 * This could be simplified if all environments supported
6504 * 64-bit integers.
6505 */
6506 if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
6507 stats->gorch++;
6508 /* Is this a broadcast or multicast? Check broadcast first,
6509 * since the test for a multicast frame will test positive on
6510 * a broadcast frame.
6511 */
6512 if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
6513 /* Broadcast packet */
6514 stats->bprc++;
6515 else if(*mac_addr & 0x01)
6516 /* Multicast packet */
6517 stats->mprc++;
6518
6519 if(frame_len == hw->max_frame_size) {
6520 /* In this case, the hardware has overcounted the number of
6521 * oversize frames.
6522 */
6523 if(stats->roc > 0)
6524 stats->roc--;
6525 }
6526
6527 /* Adjust the bin counters when the extra byte put the frame in the
6528 * wrong bin. Remember that the frame_len was adjusted above.
6529 */
6530 if(frame_len == 64) {
6531 stats->prc64++;
6532 stats->prc127--;
6533 } else if(frame_len == 127) {
6534 stats->prc127++;
6535 stats->prc255--;
6536 } else if(frame_len == 255) {
6537 stats->prc255++;
6538 stats->prc511--;
6539 } else if(frame_len == 511) {
6540 stats->prc511++;
6541 stats->prc1023--;
6542 } else if(frame_len == 1023) {
6543 stats->prc1023++;
6544 stats->prc1522--;
6545 } else if(frame_len == 1522) {
6546 stats->prc1522++;
6547 }
6548}
6549
6550/******************************************************************************
6551 * Gets the current PCI bus type, speed, and width of the hardware
6552 *
6553 * hw - Struct containing variables accessed by shared code
6554 *****************************************************************************/
6555void
6556e1000_get_bus_info(struct e1000_hw *hw)
6557{
6558 uint32_t status;
6559
6560 switch (hw->mac_type) {
6561 case e1000_82542_rev2_0:
6562 case e1000_82542_rev2_1:
6563 hw->bus_type = e1000_bus_type_unknown;
6564 hw->bus_speed = e1000_bus_speed_unknown;
6565 hw->bus_width = e1000_bus_width_unknown;
6566 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006567 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006568 case e1000_82573:
6569 hw->bus_type = e1000_bus_type_pci_express;
6570 hw->bus_speed = e1000_bus_speed_2500;
Jeff Kirsherfd803242005-12-13 00:06:22 -05006571 hw->bus_width = e1000_bus_width_pciex_1;
6572 break;
6573 case e1000_82571:
Auke Kokcd94dd02006-06-27 09:08:22 -07006574 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006575 case e1000_80003es2lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05006576 hw->bus_type = e1000_bus_type_pci_express;
6577 hw->bus_speed = e1000_bus_speed_2500;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006578 hw->bus_width = e1000_bus_width_pciex_4;
6579 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006580 default:
6581 status = E1000_READ_REG(hw, STATUS);
6582 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6583 e1000_bus_type_pcix : e1000_bus_type_pci;
6584
6585 if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6586 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6587 e1000_bus_speed_66 : e1000_bus_speed_120;
6588 } else if(hw->bus_type == e1000_bus_type_pci) {
6589 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6590 e1000_bus_speed_66 : e1000_bus_speed_33;
6591 } else {
6592 switch (status & E1000_STATUS_PCIX_SPEED) {
6593 case E1000_STATUS_PCIX_SPEED_66:
6594 hw->bus_speed = e1000_bus_speed_66;
6595 break;
6596 case E1000_STATUS_PCIX_SPEED_100:
6597 hw->bus_speed = e1000_bus_speed_100;
6598 break;
6599 case E1000_STATUS_PCIX_SPEED_133:
6600 hw->bus_speed = e1000_bus_speed_133;
6601 break;
6602 default:
6603 hw->bus_speed = e1000_bus_speed_reserved;
6604 break;
6605 }
6606 }
6607 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6608 e1000_bus_width_64 : e1000_bus_width_32;
6609 break;
6610 }
6611}
6612/******************************************************************************
6613 * Reads a value from one of the devices registers using port I/O (as opposed
6614 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6615 *
6616 * hw - Struct containing variables accessed by shared code
6617 * offset - offset to read from
6618 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07006619#if 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07006620uint32_t
6621e1000_read_reg_io(struct e1000_hw *hw,
6622 uint32_t offset)
6623{
6624 unsigned long io_addr = hw->io_base;
6625 unsigned long io_data = hw->io_base + 4;
6626
6627 e1000_io_write(hw, io_addr, offset);
6628 return e1000_io_read(hw, io_data);
6629}
Adrian Bunke4c780b2006-08-14 23:00:10 -07006630#endif /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006631
6632/******************************************************************************
6633 * Writes a value to one of the devices registers using port I/O (as opposed to
6634 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6635 *
6636 * hw - Struct containing variables accessed by shared code
6637 * offset - offset to write to
6638 * value - value to write
6639 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006640static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006641e1000_write_reg_io(struct e1000_hw *hw,
6642 uint32_t offset,
6643 uint32_t value)
6644{
6645 unsigned long io_addr = hw->io_base;
6646 unsigned long io_data = hw->io_base + 4;
6647
6648 e1000_io_write(hw, io_addr, offset);
6649 e1000_io_write(hw, io_data, value);
6650}
6651
6652
6653/******************************************************************************
6654 * Estimates the cable length.
6655 *
6656 * hw - Struct containing variables accessed by shared code
6657 * min_length - The estimated minimum length
6658 * max_length - The estimated maximum length
6659 *
6660 * returns: - E1000_ERR_XXX
6661 * E1000_SUCCESS
6662 *
6663 * This function always returns a ranged length (minimum & maximum).
6664 * So for M88 phy's, this function interprets the one value returned from the
6665 * register to the minimum and maximum range.
6666 * For IGP phy's, the function calculates the range by the AGC registers.
6667 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006668static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006669e1000_get_cable_length(struct e1000_hw *hw,
6670 uint16_t *min_length,
6671 uint16_t *max_length)
6672{
6673 int32_t ret_val;
6674 uint16_t agc_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006675 uint16_t i, phy_data;
6676 uint16_t cable_length;
6677
6678 DEBUGFUNC("e1000_get_cable_length");
6679
6680 *min_length = *max_length = 0;
6681
6682 /* Use old method for Phy older than IGP */
6683 if(hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006684
Linus Torvalds1da177e2005-04-16 15:20:36 -07006685 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6686 &phy_data);
6687 if(ret_val)
6688 return ret_val;
6689 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6690 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6691
6692 /* Convert the enum value to ranged values */
6693 switch (cable_length) {
6694 case e1000_cable_length_50:
6695 *min_length = 0;
6696 *max_length = e1000_igp_cable_length_50;
6697 break;
6698 case e1000_cable_length_50_80:
6699 *min_length = e1000_igp_cable_length_50;
6700 *max_length = e1000_igp_cable_length_80;
6701 break;
6702 case e1000_cable_length_80_110:
6703 *min_length = e1000_igp_cable_length_80;
6704 *max_length = e1000_igp_cable_length_110;
6705 break;
6706 case e1000_cable_length_110_140:
6707 *min_length = e1000_igp_cable_length_110;
6708 *max_length = e1000_igp_cable_length_140;
6709 break;
6710 case e1000_cable_length_140:
6711 *min_length = e1000_igp_cable_length_140;
6712 *max_length = e1000_igp_cable_length_170;
6713 break;
6714 default:
6715 return -E1000_ERR_PHY;
6716 break;
6717 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006718 } else if (hw->phy_type == e1000_phy_gg82563) {
6719 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6720 &phy_data);
6721 if (ret_val)
6722 return ret_val;
6723 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6724
6725 switch (cable_length) {
6726 case e1000_gg_cable_length_60:
6727 *min_length = 0;
6728 *max_length = e1000_igp_cable_length_60;
6729 break;
6730 case e1000_gg_cable_length_60_115:
6731 *min_length = e1000_igp_cable_length_60;
6732 *max_length = e1000_igp_cable_length_115;
6733 break;
6734 case e1000_gg_cable_length_115_150:
6735 *min_length = e1000_igp_cable_length_115;
6736 *max_length = e1000_igp_cable_length_150;
6737 break;
6738 case e1000_gg_cable_length_150:
6739 *min_length = e1000_igp_cable_length_150;
6740 *max_length = e1000_igp_cable_length_180;
6741 break;
6742 default:
6743 return -E1000_ERR_PHY;
6744 break;
6745 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006746 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
Auke Kokcd94dd02006-06-27 09:08:22 -07006747 uint16_t cur_agc_value;
6748 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006749 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6750 {IGP01E1000_PHY_AGC_A,
6751 IGP01E1000_PHY_AGC_B,
6752 IGP01E1000_PHY_AGC_C,
6753 IGP01E1000_PHY_AGC_D};
6754 /* Read the AGC registers for all channels */
6755 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6756
6757 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6758 if(ret_val)
6759 return ret_val;
6760
Auke Kokcd94dd02006-06-27 09:08:22 -07006761 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006762
Auke Kokcd94dd02006-06-27 09:08:22 -07006763 /* Value bound check. */
6764 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6765 (cur_agc_value == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006766 return -E1000_ERR_PHY;
6767
Auke Kokcd94dd02006-06-27 09:08:22 -07006768 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006769
6770 /* Update minimal AGC value. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006771 if (min_agc_value > cur_agc_value)
6772 min_agc_value = cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006773 }
6774
6775 /* Remove the minimal AGC result for length < 50m */
Auke Kokcd94dd02006-06-27 09:08:22 -07006776 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6777 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006778
6779 /* Get the average length of the remaining 3 channels */
6780 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6781 } else {
6782 /* Get the average length of all the 4 channels. */
6783 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6784 }
6785
6786 /* Set the range of the calculated length. */
6787 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6788 IGP01E1000_AGC_RANGE) > 0) ?
6789 (e1000_igp_cable_length_table[agc_value] -
6790 IGP01E1000_AGC_RANGE) : 0;
6791 *max_length = e1000_igp_cable_length_table[agc_value] +
6792 IGP01E1000_AGC_RANGE;
Auke Kokcd94dd02006-06-27 09:08:22 -07006793 } else if (hw->phy_type == e1000_phy_igp_2 ||
6794 hw->phy_type == e1000_phy_igp_3) {
6795 uint16_t cur_agc_index, max_agc_index = 0;
6796 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006797 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6798 {IGP02E1000_PHY_AGC_A,
6799 IGP02E1000_PHY_AGC_B,
6800 IGP02E1000_PHY_AGC_C,
6801 IGP02E1000_PHY_AGC_D};
6802 /* Read the AGC registers for all channels */
6803 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6804 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6805 if (ret_val)
6806 return ret_val;
6807
6808 /* Getting bits 15:9, which represent the combination of course and
6809 * fine gain values. The result is a number that can be put into
6810 * the lookup table to obtain the approximate cable length. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006811 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6812 IGP02E1000_AGC_LENGTH_MASK;
6813
6814 /* Array index bound check. */
6815 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6816 (cur_agc_index == 0))
6817 return -E1000_ERR_PHY;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006818
6819 /* Remove min & max AGC values from calculation. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006820 if (e1000_igp_2_cable_length_table[min_agc_index] >
6821 e1000_igp_2_cable_length_table[cur_agc_index])
6822 min_agc_index = cur_agc_index;
6823 if (e1000_igp_2_cable_length_table[max_agc_index] <
6824 e1000_igp_2_cable_length_table[cur_agc_index])
6825 max_agc_index = cur_agc_index;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006826
Auke Kokcd94dd02006-06-27 09:08:22 -07006827 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006828 }
6829
Auke Kokcd94dd02006-06-27 09:08:22 -07006830 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6831 e1000_igp_2_cable_length_table[max_agc_index]);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006832 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6833
6834 /* Calculate cable length with the error range of +/- 10 meters. */
6835 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6836 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6837 *max_length = agc_value + IGP02E1000_AGC_RANGE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006838 }
6839
6840 return E1000_SUCCESS;
6841}
6842
6843/******************************************************************************
6844 * Check the cable polarity
6845 *
6846 * hw - Struct containing variables accessed by shared code
6847 * polarity - output parameter : 0 - Polarity is not reversed
6848 * 1 - Polarity is reversed.
6849 *
6850 * returns: - E1000_ERR_XXX
6851 * E1000_SUCCESS
6852 *
6853 * For phy's older then IGP, this function simply reads the polarity bit in the
6854 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6855 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6856 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6857 * IGP01E1000_PHY_PCS_INIT_REG.
6858 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006859static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006860e1000_check_polarity(struct e1000_hw *hw,
6861 uint16_t *polarity)
6862{
6863 int32_t ret_val;
6864 uint16_t phy_data;
6865
6866 DEBUGFUNC("e1000_check_polarity");
6867
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006868 if ((hw->phy_type == e1000_phy_m88) ||
6869 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006870 /* return the Polarity bit in the Status register. */
6871 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6872 &phy_data);
6873 if(ret_val)
6874 return ret_val;
6875 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
6876 M88E1000_PSSR_REV_POLARITY_SHIFT;
Auke Kokcd94dd02006-06-27 09:08:22 -07006877 } else if (hw->phy_type == e1000_phy_igp ||
6878 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006879 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006880 /* Read the Status register to check the speed */
6881 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6882 &phy_data);
6883 if(ret_val)
6884 return ret_val;
6885
6886 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6887 * find the polarity status */
6888 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6889 IGP01E1000_PSSR_SPEED_1000MBPS) {
6890
6891 /* Read the GIG initialization PCS register (0x00B4) */
6892 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6893 &phy_data);
6894 if(ret_val)
6895 return ret_val;
6896
6897 /* Check the polarity bits */
6898 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
6899 } else {
6900 /* For 10 Mbps, read the polarity bit in the status register. (for
6901 * 100 Mbps this bit is always 0) */
6902 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
6903 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006904 } else if (hw->phy_type == e1000_phy_ife) {
6905 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6906 &phy_data);
6907 if (ret_val)
6908 return ret_val;
6909 *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
6910 IFE_PESC_POLARITY_REVERSED_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006911 }
6912 return E1000_SUCCESS;
6913}
6914
6915/******************************************************************************
6916 * Check if Downshift occured
6917 *
6918 * hw - Struct containing variables accessed by shared code
6919 * downshift - output parameter : 0 - No Downshift ocured.
6920 * 1 - Downshift ocured.
6921 *
6922 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07006923 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07006924 *
6925 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6926 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6927 * Link Health register. In IGP this bit is latched high, so the driver must
6928 * read it immediately after link is established.
6929 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006930static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006931e1000_check_downshift(struct e1000_hw *hw)
6932{
6933 int32_t ret_val;
6934 uint16_t phy_data;
6935
6936 DEBUGFUNC("e1000_check_downshift");
6937
Auke Kokcd94dd02006-06-27 09:08:22 -07006938 if (hw->phy_type == e1000_phy_igp ||
6939 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006940 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006941 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6942 &phy_data);
6943 if(ret_val)
6944 return ret_val;
6945
6946 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006947 } else if ((hw->phy_type == e1000_phy_m88) ||
6948 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006949 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6950 &phy_data);
6951 if(ret_val)
6952 return ret_val;
6953
6954 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6955 M88E1000_PSSR_DOWNSHIFT_SHIFT;
Auke Kokcd94dd02006-06-27 09:08:22 -07006956 } else if (hw->phy_type == e1000_phy_ife) {
6957 /* e1000_phy_ife supports 10/100 speed only */
6958 hw->speed_downgraded = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006959 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006960
Linus Torvalds1da177e2005-04-16 15:20:36 -07006961 return E1000_SUCCESS;
6962}
6963
6964/*****************************************************************************
6965 *
6966 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6967 * gigabit link is achieved to improve link quality.
6968 *
6969 * hw: Struct containing variables accessed by shared code
6970 *
6971 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6972 * E1000_SUCCESS at any other case.
6973 *
6974 ****************************************************************************/
6975
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006976static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006977e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6978 boolean_t link_up)
6979{
6980 int32_t ret_val;
6981 uint16_t phy_data, phy_saved_data, speed, duplex, i;
6982 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6983 {IGP01E1000_PHY_AGC_PARAM_A,
6984 IGP01E1000_PHY_AGC_PARAM_B,
6985 IGP01E1000_PHY_AGC_PARAM_C,
6986 IGP01E1000_PHY_AGC_PARAM_D};
6987 uint16_t min_length, max_length;
6988
6989 DEBUGFUNC("e1000_config_dsp_after_link_change");
6990
6991 if(hw->phy_type != e1000_phy_igp)
6992 return E1000_SUCCESS;
6993
6994 if(link_up) {
6995 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6996 if(ret_val) {
6997 DEBUGOUT("Error getting link speed and duplex\n");
6998 return ret_val;
6999 }
7000
7001 if(speed == SPEED_1000) {
7002
Auke Kokcd94dd02006-06-27 09:08:22 -07007003 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
7004 if (ret_val)
7005 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007006
7007 if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
7008 min_length >= e1000_igp_cable_length_50) {
7009
7010 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7011 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
7012 &phy_data);
7013 if(ret_val)
7014 return ret_val;
7015
7016 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7017
7018 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7019 phy_data);
7020 if(ret_val)
7021 return ret_val;
7022 }
7023 hw->dsp_config_state = e1000_dsp_config_activated;
7024 }
7025
7026 if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
7027 (min_length < e1000_igp_cable_length_50)) {
7028
7029 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7030 uint32_t idle_errs = 0;
7031
7032 /* clear previous idle error counts */
7033 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7034 &phy_data);
7035 if(ret_val)
7036 return ret_val;
7037
7038 for(i = 0; i < ffe_idle_err_timeout; i++) {
7039 udelay(1000);
7040 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7041 &phy_data);
7042 if(ret_val)
7043 return ret_val;
7044
7045 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
7046 if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
7047 hw->ffe_config_state = e1000_ffe_config_active;
7048
7049 ret_val = e1000_write_phy_reg(hw,
7050 IGP01E1000_PHY_DSP_FFE,
7051 IGP01E1000_PHY_DSP_FFE_CM_CP);
7052 if(ret_val)
7053 return ret_val;
7054 break;
7055 }
7056
7057 if(idle_errs)
7058 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7059 }
7060 }
7061 }
7062 } else {
7063 if(hw->dsp_config_state == e1000_dsp_config_activated) {
7064 /* Save off the current value of register 0x2F5B to be restored at
7065 * the end of the routines. */
7066 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7067
7068 if(ret_val)
7069 return ret_val;
7070
7071 /* Disable the PHY transmitter */
7072 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7073
7074 if(ret_val)
7075 return ret_val;
7076
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007077 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007078
7079 ret_val = e1000_write_phy_reg(hw, 0x0000,
7080 IGP01E1000_IEEE_FORCE_GIGA);
7081 if(ret_val)
7082 return ret_val;
7083 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7084 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
7085 if(ret_val)
7086 return ret_val;
7087
7088 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7089 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7090
7091 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7092 if(ret_val)
7093 return ret_val;
7094 }
7095
7096 ret_val = e1000_write_phy_reg(hw, 0x0000,
7097 IGP01E1000_IEEE_RESTART_AUTONEG);
7098 if(ret_val)
7099 return ret_val;
7100
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007101 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007102
7103 /* Now enable the transmitter */
7104 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7105
7106 if(ret_val)
7107 return ret_val;
7108
7109 hw->dsp_config_state = e1000_dsp_config_enabled;
7110 }
7111
7112 if(hw->ffe_config_state == e1000_ffe_config_active) {
7113 /* Save off the current value of register 0x2F5B to be restored at
7114 * the end of the routines. */
7115 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7116
7117 if(ret_val)
7118 return ret_val;
7119
7120 /* Disable the PHY transmitter */
7121 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7122
7123 if(ret_val)
7124 return ret_val;
7125
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007126 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007127
7128 ret_val = e1000_write_phy_reg(hw, 0x0000,
7129 IGP01E1000_IEEE_FORCE_GIGA);
7130 if(ret_val)
7131 return ret_val;
7132 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7133 IGP01E1000_PHY_DSP_FFE_DEFAULT);
7134 if(ret_val)
7135 return ret_val;
7136
7137 ret_val = e1000_write_phy_reg(hw, 0x0000,
7138 IGP01E1000_IEEE_RESTART_AUTONEG);
7139 if(ret_val)
7140 return ret_val;
7141
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007142 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007143
7144 /* Now enable the transmitter */
7145 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7146
7147 if(ret_val)
7148 return ret_val;
7149
7150 hw->ffe_config_state = e1000_ffe_config_enabled;
7151 }
7152 }
7153 return E1000_SUCCESS;
7154}
7155
7156/*****************************************************************************
7157 * Set PHY to class A mode
7158 * Assumes the following operations will follow to enable the new class mode.
7159 * 1. Do a PHY soft reset
7160 * 2. Restart auto-negotiation or force link.
7161 *
7162 * hw - Struct containing variables accessed by shared code
7163 ****************************************************************************/
7164static int32_t
7165e1000_set_phy_mode(struct e1000_hw *hw)
7166{
7167 int32_t ret_val;
7168 uint16_t eeprom_data;
7169
7170 DEBUGFUNC("e1000_set_phy_mode");
7171
7172 if((hw->mac_type == e1000_82545_rev_3) &&
7173 (hw->media_type == e1000_media_type_copper)) {
7174 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7175 if(ret_val) {
7176 return ret_val;
7177 }
7178
7179 if((eeprom_data != EEPROM_RESERVED_WORD) &&
7180 (eeprom_data & EEPROM_PHY_CLASS_A)) {
7181 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7182 if(ret_val)
7183 return ret_val;
7184 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7185 if(ret_val)
7186 return ret_val;
7187
7188 hw->phy_reset_disable = FALSE;
7189 }
7190 }
7191
7192 return E1000_SUCCESS;
7193}
7194
7195/*****************************************************************************
7196 *
7197 * This function sets the lplu state according to the active flag. When
7198 * activating lplu this function also disables smart speed and vise versa.
7199 * lplu will not be activated unless the device autonegotiation advertisment
7200 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7201 * hw: Struct containing variables accessed by shared code
7202 * active - true to enable lplu false to disable lplu.
7203 *
7204 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7205 * E1000_SUCCESS at any other case.
7206 *
7207 ****************************************************************************/
7208
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007209static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07007210e1000_set_d3_lplu_state(struct e1000_hw *hw,
7211 boolean_t active)
7212{
Auke Kokcd94dd02006-06-27 09:08:22 -07007213 uint32_t phy_ctrl = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007214 int32_t ret_val;
7215 uint16_t phy_data;
7216 DEBUGFUNC("e1000_set_d3_lplu_state");
7217
Auke Kokcd94dd02006-06-27 09:08:22 -07007218 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7219 && hw->phy_type != e1000_phy_igp_3)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007220 return E1000_SUCCESS;
7221
7222 /* During driver activity LPLU should not be used or it will attain link
7223 * from the lowest speeds starting from 10Mbps. The capability is used for
7224 * Dx transitions and states */
Auke Kokcd94dd02006-06-27 09:08:22 -07007225 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007226 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
Auke Kokcd94dd02006-06-27 09:08:22 -07007227 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007228 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007229 } else if (hw->mac_type == e1000_ich8lan) {
7230 /* MAC writes into PHY register based on the state transition
7231 * and start auto-negotiation. SW driver can overwrite the settings
7232 * in CSR PHY power control E1000_PHY_CTRL register. */
7233 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007234 } else {
7235 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7236 if(ret_val)
7237 return ret_val;
7238 }
7239
7240 if(!active) {
7241 if(hw->mac_type == e1000_82541_rev_2 ||
7242 hw->mac_type == e1000_82547_rev_2) {
7243 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7244 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7245 if(ret_val)
7246 return ret_val;
7247 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007248 if (hw->mac_type == e1000_ich8lan) {
7249 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7250 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7251 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007252 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7253 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7254 phy_data);
7255 if (ret_val)
7256 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007257 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007258 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07007259
7260 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7261 * Dx states where the power conservation is most important. During
7262 * driver activity we should enable SmartSpeed, so performance is
7263 * maintained. */
7264 if (hw->smart_speed == e1000_smart_speed_on) {
7265 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7266 &phy_data);
7267 if(ret_val)
7268 return ret_val;
7269
7270 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7271 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7272 phy_data);
7273 if(ret_val)
7274 return ret_val;
7275 } else if (hw->smart_speed == e1000_smart_speed_off) {
7276 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7277 &phy_data);
7278 if (ret_val)
7279 return ret_val;
7280
7281 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7282 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7283 phy_data);
7284 if(ret_val)
7285 return ret_val;
7286 }
7287
7288 } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7289 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7290 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7291
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007292 if(hw->mac_type == e1000_82541_rev_2 ||
Auke Kokcd94dd02006-06-27 09:08:22 -07007293 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007294 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7295 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7296 if(ret_val)
7297 return ret_val;
7298 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007299 if (hw->mac_type == e1000_ich8lan) {
7300 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7301 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7302 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007303 phy_data |= IGP02E1000_PM_D3_LPLU;
7304 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7305 phy_data);
7306 if (ret_val)
7307 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007308 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007309 }
7310
7311 /* When LPLU is enabled we should disable SmartSpeed */
7312 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007313 if(ret_val)
7314 return ret_val;
7315
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007316 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7317 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7318 if(ret_val)
7319 return ret_val;
7320
7321 }
7322 return E1000_SUCCESS;
7323}
7324
7325/*****************************************************************************
7326 *
7327 * This function sets the lplu d0 state according to the active flag. When
7328 * activating lplu this function also disables smart speed and vise versa.
7329 * lplu will not be activated unless the device autonegotiation advertisment
7330 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7331 * hw: Struct containing variables accessed by shared code
7332 * active - true to enable lplu false to disable lplu.
7333 *
7334 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7335 * E1000_SUCCESS at any other case.
7336 *
7337 ****************************************************************************/
7338
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007339static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007340e1000_set_d0_lplu_state(struct e1000_hw *hw,
7341 boolean_t active)
7342{
Auke Kokcd94dd02006-06-27 09:08:22 -07007343 uint32_t phy_ctrl = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007344 int32_t ret_val;
7345 uint16_t phy_data;
7346 DEBUGFUNC("e1000_set_d0_lplu_state");
7347
7348 if(hw->mac_type <= e1000_82547_rev_2)
7349 return E1000_SUCCESS;
7350
Auke Kokcd94dd02006-06-27 09:08:22 -07007351 if (hw->mac_type == e1000_ich8lan) {
7352 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7353 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007354 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7355 if(ret_val)
7356 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007357 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007358
7359 if (!active) {
Auke Kokcd94dd02006-06-27 09:08:22 -07007360 if (hw->mac_type == e1000_ich8lan) {
7361 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7362 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7363 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007364 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7365 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7366 if (ret_val)
7367 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007368 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007369
7370 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7371 * Dx states where the power conservation is most important. During
7372 * driver activity we should enable SmartSpeed, so performance is
7373 * maintained. */
7374 if (hw->smart_speed == e1000_smart_speed_on) {
7375 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7376 &phy_data);
7377 if(ret_val)
7378 return ret_val;
7379
7380 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7381 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7382 phy_data);
7383 if(ret_val)
7384 return ret_val;
7385 } else if (hw->smart_speed == e1000_smart_speed_off) {
7386 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7387 &phy_data);
7388 if (ret_val)
7389 return ret_val;
7390
7391 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7392 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7393 phy_data);
7394 if(ret_val)
7395 return ret_val;
7396 }
7397
7398
7399 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007400
Auke Kokcd94dd02006-06-27 09:08:22 -07007401 if (hw->mac_type == e1000_ich8lan) {
7402 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7403 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7404 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007405 phy_data |= IGP02E1000_PM_D0_LPLU;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007406 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7407 if (ret_val)
7408 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007409 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007410
Linus Torvalds1da177e2005-04-16 15:20:36 -07007411 /* When LPLU is enabled we should disable SmartSpeed */
7412 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7413 if(ret_val)
7414 return ret_val;
7415
7416 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7417 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7418 if(ret_val)
7419 return ret_val;
7420
7421 }
7422 return E1000_SUCCESS;
7423}
7424
7425/******************************************************************************
7426 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7427 *
7428 * hw - Struct containing variables accessed by shared code
7429 *****************************************************************************/
7430static int32_t
7431e1000_set_vco_speed(struct e1000_hw *hw)
7432{
7433 int32_t ret_val;
7434 uint16_t default_page = 0;
7435 uint16_t phy_data;
7436
7437 DEBUGFUNC("e1000_set_vco_speed");
7438
7439 switch(hw->mac_type) {
7440 case e1000_82545_rev_3:
7441 case e1000_82546_rev_3:
7442 break;
7443 default:
7444 return E1000_SUCCESS;
7445 }
7446
7447 /* Set PHY register 30, page 5, bit 8 to 0 */
7448
7449 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7450 if(ret_val)
7451 return ret_val;
7452
7453 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7454 if(ret_val)
7455 return ret_val;
7456
7457 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7458 if(ret_val)
7459 return ret_val;
7460
7461 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7462 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7463 if(ret_val)
7464 return ret_val;
7465
7466 /* Set PHY register 30, page 4, bit 11 to 1 */
7467
7468 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7469 if(ret_val)
7470 return ret_val;
7471
7472 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7473 if(ret_val)
7474 return ret_val;
7475
7476 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7477 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7478 if(ret_val)
7479 return ret_val;
7480
7481 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7482 if(ret_val)
7483 return ret_val;
7484
7485 return E1000_SUCCESS;
7486}
7487
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007488
7489/*****************************************************************************
7490 * This function reads the cookie from ARC ram.
7491 *
7492 * returns: - E1000_SUCCESS .
7493 ****************************************************************************/
7494int32_t
7495e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7496{
7497 uint8_t i;
Auke Kok76c224b2006-05-23 13:36:06 -07007498 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007499 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7500
7501 length = (length >> 2);
7502 offset = (offset >> 2);
7503
7504 for (i = 0; i < length; i++) {
7505 *((uint32_t *) buffer + i) =
7506 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7507 }
7508 return E1000_SUCCESS;
7509}
7510
7511
7512/*****************************************************************************
7513 * This function checks whether the HOST IF is enabled for command operaton
7514 * and also checks whether the previous command is completed.
7515 * It busy waits in case of previous command is not completed.
7516 *
Auke Kok76c224b2006-05-23 13:36:06 -07007517 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007518 * timeout
7519 * - E1000_SUCCESS for success.
7520 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007521static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007522e1000_mng_enable_host_if(struct e1000_hw * hw)
7523{
7524 uint32_t hicr;
7525 uint8_t i;
7526
7527 /* Check that the host interface is enabled. */
7528 hicr = E1000_READ_REG(hw, HICR);
7529 if ((hicr & E1000_HICR_EN) == 0) {
7530 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7531 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7532 }
7533 /* check the previous command is completed */
7534 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7535 hicr = E1000_READ_REG(hw, HICR);
7536 if (!(hicr & E1000_HICR_C))
7537 break;
7538 msec_delay_irq(1);
7539 }
7540
Auke Kok76c224b2006-05-23 13:36:06 -07007541 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007542 DEBUGOUT("Previous command timeout failed .\n");
7543 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7544 }
7545 return E1000_SUCCESS;
7546}
7547
7548/*****************************************************************************
7549 * This function writes the buffer content at the offset given on the host if.
7550 * It also does alignment considerations to do the writes in most efficient way.
7551 * Also fills up the sum of the buffer in *buffer parameter.
7552 *
7553 * returns - E1000_SUCCESS for success.
7554 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007555static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007556e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7557 uint16_t length, uint16_t offset, uint8_t *sum)
7558{
7559 uint8_t *tmp;
7560 uint8_t *bufptr = buffer;
7561 uint32_t data;
7562 uint16_t remaining, i, j, prev_bytes;
7563
7564 /* sum = only sum of the data and it is not checksum */
7565
7566 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7567 return -E1000_ERR_PARAM;
7568 }
7569
7570 tmp = (uint8_t *)&data;
7571 prev_bytes = offset & 0x3;
7572 offset &= 0xFFFC;
7573 offset >>= 2;
7574
7575 if (prev_bytes) {
7576 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7577 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7578 *(tmp + j) = *bufptr++;
7579 *sum += *(tmp + j);
7580 }
7581 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7582 length -= j - prev_bytes;
7583 offset++;
7584 }
7585
7586 remaining = length & 0x3;
7587 length -= remaining;
7588
7589 /* Calculate length in DWORDs */
7590 length >>= 2;
7591
7592 /* The device driver writes the relevant command block into the
7593 * ram area. */
7594 for (i = 0; i < length; i++) {
7595 for (j = 0; j < sizeof(uint32_t); j++) {
7596 *(tmp + j) = *bufptr++;
7597 *sum += *(tmp + j);
7598 }
7599
7600 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7601 }
7602 if (remaining) {
7603 for (j = 0; j < sizeof(uint32_t); j++) {
7604 if (j < remaining)
7605 *(tmp + j) = *bufptr++;
7606 else
7607 *(tmp + j) = 0;
7608
7609 *sum += *(tmp + j);
7610 }
7611 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7612 }
7613
7614 return E1000_SUCCESS;
7615}
7616
7617
7618/*****************************************************************************
7619 * This function writes the command header after does the checksum calculation.
7620 *
7621 * returns - E1000_SUCCESS for success.
7622 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007623static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007624e1000_mng_write_cmd_header(struct e1000_hw * hw,
7625 struct e1000_host_mng_command_header * hdr)
7626{
7627 uint16_t i;
7628 uint8_t sum;
7629 uint8_t *buffer;
7630
7631 /* Write the whole command header structure which includes sum of
7632 * the buffer */
7633
7634 uint16_t length = sizeof(struct e1000_host_mng_command_header);
7635
7636 sum = hdr->checksum;
7637 hdr->checksum = 0;
7638
7639 buffer = (uint8_t *) hdr;
7640 i = length;
7641 while(i--)
7642 sum += buffer[i];
7643
7644 hdr->checksum = 0 - sum;
7645
7646 length >>= 2;
7647 /* The device driver writes the relevant command block into the ram area. */
Auke Kok4ca213a2006-06-27 09:07:08 -07007648 for (i = 0; i < length; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007649 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
Auke Kok4ca213a2006-06-27 09:07:08 -07007650 E1000_WRITE_FLUSH(hw);
7651 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007652
7653 return E1000_SUCCESS;
7654}
7655
7656
7657/*****************************************************************************
7658 * This function indicates to ARC that a new command is pending which completes
7659 * one write operation by the driver.
7660 *
7661 * returns - E1000_SUCCESS for success.
7662 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007663static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007664e1000_mng_write_commit(
7665 struct e1000_hw * hw)
7666{
7667 uint32_t hicr;
7668
7669 hicr = E1000_READ_REG(hw, HICR);
7670 /* Setting this bit tells the ARC that a new command is pending. */
7671 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7672
7673 return E1000_SUCCESS;
7674}
7675
7676
7677/*****************************************************************************
7678 * This function checks the mode of the firmware.
7679 *
7680 * returns - TRUE when the mode is IAMT or FALSE.
7681 ****************************************************************************/
7682boolean_t
Auke Kokcd94dd02006-06-27 09:08:22 -07007683e1000_check_mng_mode(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007684{
7685 uint32_t fwsm;
7686
7687 fwsm = E1000_READ_REG(hw, FWSM);
7688
Auke Kokcd94dd02006-06-27 09:08:22 -07007689 if (hw->mac_type == e1000_ich8lan) {
7690 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7691 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7692 return TRUE;
7693 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7694 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007695 return TRUE;
7696
7697 return FALSE;
7698}
7699
7700
7701/*****************************************************************************
7702 * This function writes the dhcp info .
7703 ****************************************************************************/
7704int32_t
7705e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7706 uint16_t length)
7707{
7708 int32_t ret_val;
7709 struct e1000_host_mng_command_header hdr;
7710
7711 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7712 hdr.command_length = length;
7713 hdr.reserved1 = 0;
7714 hdr.reserved2 = 0;
7715 hdr.checksum = 0;
7716
7717 ret_val = e1000_mng_enable_host_if(hw);
7718 if (ret_val == E1000_SUCCESS) {
7719 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7720 &(hdr.checksum));
7721 if (ret_val == E1000_SUCCESS) {
7722 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7723 if (ret_val == E1000_SUCCESS)
7724 ret_val = e1000_mng_write_commit(hw);
7725 }
7726 }
7727 return ret_val;
7728}
7729
7730
7731/*****************************************************************************
7732 * This function calculates the checksum.
7733 *
7734 * returns - checksum of buffer contents.
7735 ****************************************************************************/
7736uint8_t
7737e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7738{
7739 uint8_t sum = 0;
7740 uint32_t i;
7741
7742 if (!buffer)
7743 return 0;
7744
7745 for (i=0; i < length; i++)
7746 sum += buffer[i];
7747
7748 return (uint8_t) (0 - sum);
7749}
7750
7751/*****************************************************************************
7752 * This function checks whether tx pkt filtering needs to be enabled or not.
7753 *
7754 * returns - TRUE for packet filtering or FALSE.
7755 ****************************************************************************/
7756boolean_t
7757e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7758{
7759 /* called in init as well as watchdog timer functions */
7760
7761 int32_t ret_val, checksum;
7762 boolean_t tx_filter = FALSE;
7763 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7764 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7765
7766 if (e1000_check_mng_mode(hw)) {
7767 ret_val = e1000_mng_enable_host_if(hw);
7768 if (ret_val == E1000_SUCCESS) {
7769 ret_val = e1000_host_if_read_cookie(hw, buffer);
7770 if (ret_val == E1000_SUCCESS) {
7771 checksum = hdr->checksum;
7772 hdr->checksum = 0;
7773 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7774 checksum == e1000_calculate_mng_checksum((char *)buffer,
7775 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7776 if (hdr->status &
7777 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7778 tx_filter = TRUE;
7779 } else
7780 tx_filter = TRUE;
7781 } else
7782 tx_filter = TRUE;
7783 }
7784 }
7785
7786 hw->tx_pkt_filtering = tx_filter;
7787 return tx_filter;
7788}
7789
7790/******************************************************************************
7791 * Verifies the hardware needs to allow ARPs to be processed by the host
7792 *
7793 * hw - Struct containing variables accessed by shared code
7794 *
7795 * returns: - TRUE/FALSE
7796 *
7797 *****************************************************************************/
7798uint32_t
7799e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7800{
7801 uint32_t manc;
7802 uint32_t fwsm, factps;
7803
7804 if (hw->asf_firmware_present) {
7805 manc = E1000_READ_REG(hw, MANC);
7806
7807 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7808 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7809 return FALSE;
7810 if (e1000_arc_subsystem_valid(hw) == TRUE) {
7811 fwsm = E1000_READ_REG(hw, FWSM);
7812 factps = E1000_READ_REG(hw, FACTPS);
7813
7814 if (((fwsm & E1000_FWSM_MODE_MASK) ==
7815 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
7816 (factps & E1000_FACTPS_MNGCG))
7817 return TRUE;
7818 } else
7819 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7820 return TRUE;
7821 }
7822 return FALSE;
7823}
7824
Linus Torvalds1da177e2005-04-16 15:20:36 -07007825static int32_t
7826e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7827{
7828 int32_t ret_val;
7829 uint16_t mii_status_reg;
7830 uint16_t i;
7831
7832 /* Polarity reversal workaround for forced 10F/10H links. */
7833
7834 /* Disable the transmitter on the PHY */
7835
7836 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7837 if(ret_val)
7838 return ret_val;
7839 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7840 if(ret_val)
7841 return ret_val;
7842
7843 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7844 if(ret_val)
7845 return ret_val;
7846
7847 /* This loop will early-out if the NO link condition has been met. */
7848 for(i = PHY_FORCE_TIME; i > 0; i--) {
7849 /* Read the MII Status Register and wait for Link Status bit
7850 * to be clear.
7851 */
7852
7853 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7854 if(ret_val)
7855 return ret_val;
7856
7857 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7858 if(ret_val)
7859 return ret_val;
7860
7861 if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7862 msec_delay_irq(100);
7863 }
7864
7865 /* Recommended delay time after link has been lost */
7866 msec_delay_irq(1000);
7867
7868 /* Now we will re-enable th transmitter on the PHY */
7869
7870 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7871 if(ret_val)
7872 return ret_val;
7873 msec_delay_irq(50);
7874 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7875 if(ret_val)
7876 return ret_val;
7877 msec_delay_irq(50);
7878 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7879 if(ret_val)
7880 return ret_val;
7881 msec_delay_irq(50);
7882 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7883 if(ret_val)
7884 return ret_val;
7885
7886 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7887 if(ret_val)
7888 return ret_val;
7889
7890 /* This loop will early-out if the link condition has been met. */
7891 for(i = PHY_FORCE_TIME; i > 0; i--) {
7892 /* Read the MII Status Register and wait for Link Status bit
7893 * to be set.
7894 */
7895
7896 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7897 if(ret_val)
7898 return ret_val;
7899
7900 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7901 if(ret_val)
7902 return ret_val;
7903
7904 if(mii_status_reg & MII_SR_LINK_STATUS) break;
7905 msec_delay_irq(100);
7906 }
7907 return E1000_SUCCESS;
7908}
7909
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007910/***************************************************************************
7911 *
7912 * Disables PCI-Express master access.
7913 *
7914 * hw: Struct containing variables accessed by shared code
7915 *
7916 * returns: - none.
7917 *
7918 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007919static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007920e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7921{
7922 uint32_t ctrl;
7923
7924 DEBUGFUNC("e1000_set_pci_express_master_disable");
7925
7926 if (hw->bus_type != e1000_bus_type_pci_express)
7927 return;
7928
7929 ctrl = E1000_READ_REG(hw, CTRL);
7930 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7931 E1000_WRITE_REG(hw, CTRL, ctrl);
7932}
7933
7934/***************************************************************************
7935 *
7936 * Enables PCI-Express master access.
7937 *
7938 * hw: Struct containing variables accessed by shared code
7939 *
7940 * returns: - none.
7941 *
7942 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07007943#if 0
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007944void
7945e1000_enable_pciex_master(struct e1000_hw *hw)
7946{
7947 uint32_t ctrl;
7948
7949 DEBUGFUNC("e1000_enable_pciex_master");
7950
7951 if (hw->bus_type != e1000_bus_type_pci_express)
7952 return;
7953
7954 ctrl = E1000_READ_REG(hw, CTRL);
7955 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
7956 E1000_WRITE_REG(hw, CTRL, ctrl);
7957}
Adrian Bunke4c780b2006-08-14 23:00:10 -07007958#endif /* 0 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007959
7960/*******************************************************************************
7961 *
7962 * Disables PCI-Express master access and verifies there are no pending requests
7963 *
7964 * hw: Struct containing variables accessed by shared code
7965 *
7966 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7967 * caused the master requests to be disabled.
7968 * E1000_SUCCESS master requests disabled.
7969 *
7970 ******************************************************************************/
7971int32_t
7972e1000_disable_pciex_master(struct e1000_hw *hw)
7973{
7974 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7975
7976 DEBUGFUNC("e1000_disable_pciex_master");
7977
7978 if (hw->bus_type != e1000_bus_type_pci_express)
7979 return E1000_SUCCESS;
7980
7981 e1000_set_pci_express_master_disable(hw);
7982
7983 while(timeout) {
7984 if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7985 break;
7986 else
7987 udelay(100);
7988 timeout--;
7989 }
7990
7991 if(!timeout) {
7992 DEBUGOUT("Master requests are pending.\n");
7993 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7994 }
7995
7996 return E1000_SUCCESS;
7997}
7998
7999/*******************************************************************************
8000 *
8001 * Check for EEPROM Auto Read bit done.
8002 *
8003 * hw: Struct containing variables accessed by shared code
8004 *
8005 * returns: - E1000_ERR_RESET if fail to reset MAC
8006 * E1000_SUCCESS at any other case.
8007 *
8008 ******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008009static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008010e1000_get_auto_rd_done(struct e1000_hw *hw)
8011{
8012 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
8013
8014 DEBUGFUNC("e1000_get_auto_rd_done");
8015
8016 switch (hw->mac_type) {
8017 default:
8018 msec_delay(5);
8019 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008020 case e1000_82571:
8021 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008022 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008023 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07008024 case e1000_ich8lan:
8025 while (timeout) {
8026 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
8027 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008028 else msec_delay(1);
8029 timeout--;
8030 }
8031
8032 if(!timeout) {
8033 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8034 return -E1000_ERR_RESET;
8035 }
8036 break;
8037 }
8038
Jeff Kirsherfd803242005-12-13 00:06:22 -05008039 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8040 * Need to wait for PHY configuration completion before accessing NVM
8041 * and PHY. */
8042 if (hw->mac_type == e1000_82573)
8043 msec_delay(25);
8044
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008045 return E1000_SUCCESS;
8046}
8047
8048/***************************************************************************
8049 * Checks if the PHY configuration is done
8050 *
8051 * hw: Struct containing variables accessed by shared code
8052 *
8053 * returns: - E1000_ERR_RESET if fail to reset MAC
8054 * E1000_SUCCESS at any other case.
8055 *
8056 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008057static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008058e1000_get_phy_cfg_done(struct e1000_hw *hw)
8059{
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008060 int32_t timeout = PHY_CFG_TIMEOUT;
8061 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8062
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008063 DEBUGFUNC("e1000_get_phy_cfg_done");
8064
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008065 switch (hw->mac_type) {
8066 default:
Auke Kokcd94dd02006-06-27 09:08:22 -07008067 msec_delay_irq(10);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008068 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008069 case e1000_80003es2lan:
8070 /* Separate *_CFG_DONE_* bit for each port */
8071 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8072 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8073 /* Fall Through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008074 case e1000_82571:
8075 case e1000_82572:
8076 while (timeout) {
8077 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8078 break;
8079 else
8080 msec_delay(1);
8081 timeout--;
8082 }
8083
8084 if (!timeout) {
8085 DEBUGOUT("MNG configuration cycle has not completed.\n");
8086 return -E1000_ERR_RESET;
8087 }
8088 break;
8089 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008090
8091 return E1000_SUCCESS;
8092}
8093
8094/***************************************************************************
8095 *
8096 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8097 * adapter or Eeprom access.
8098 *
8099 * hw: Struct containing variables accessed by shared code
8100 *
8101 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8102 * E1000_SUCCESS at any other case.
8103 *
8104 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008105static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008106e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8107{
8108 int32_t timeout;
8109 uint32_t swsm;
8110
8111 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8112
8113 if(!hw->eeprom_semaphore_present)
8114 return E1000_SUCCESS;
8115
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008116 if (hw->mac_type == e1000_80003es2lan) {
8117 /* Get the SW semaphore. */
8118 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8119 return -E1000_ERR_EEPROM;
8120 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008121
8122 /* Get the FW semaphore. */
8123 timeout = hw->eeprom.word_size + 1;
8124 while(timeout) {
8125 swsm = E1000_READ_REG(hw, SWSM);
8126 swsm |= E1000_SWSM_SWESMBI;
8127 E1000_WRITE_REG(hw, SWSM, swsm);
8128 /* if we managed to set the bit we got the semaphore. */
8129 swsm = E1000_READ_REG(hw, SWSM);
8130 if(swsm & E1000_SWSM_SWESMBI)
8131 break;
8132
8133 udelay(50);
8134 timeout--;
8135 }
8136
8137 if(!timeout) {
8138 /* Release semaphores */
8139 e1000_put_hw_eeprom_semaphore(hw);
8140 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8141 return -E1000_ERR_EEPROM;
8142 }
8143
8144 return E1000_SUCCESS;
8145}
8146
8147/***************************************************************************
8148 * This function clears HW semaphore bits.
8149 *
8150 * hw: Struct containing variables accessed by shared code
8151 *
8152 * returns: - None.
8153 *
8154 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008155static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008156e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8157{
8158 uint32_t swsm;
8159
8160 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8161
8162 if(!hw->eeprom_semaphore_present)
8163 return;
8164
8165 swsm = E1000_READ_REG(hw, SWSM);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008166 if (hw->mac_type == e1000_80003es2lan) {
8167 /* Release both semaphores. */
8168 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8169 } else
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008170 swsm &= ~(E1000_SWSM_SWESMBI);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008171 E1000_WRITE_REG(hw, SWSM, swsm);
8172}
8173
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008174/***************************************************************************
8175 *
8176 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8177 *
8178 * hw: Struct containing variables accessed by shared code
8179 *
8180 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8181 * E1000_SUCCESS at any other case.
8182 *
8183 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008184static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008185e1000_get_software_semaphore(struct e1000_hw *hw)
8186{
8187 int32_t timeout = hw->eeprom.word_size + 1;
8188 uint32_t swsm;
8189
8190 DEBUGFUNC("e1000_get_software_semaphore");
8191
8192 if (hw->mac_type != e1000_80003es2lan)
8193 return E1000_SUCCESS;
8194
8195 while(timeout) {
8196 swsm = E1000_READ_REG(hw, SWSM);
8197 /* If SMBI bit cleared, it is now set and we hold the semaphore */
8198 if(!(swsm & E1000_SWSM_SMBI))
8199 break;
8200 msec_delay_irq(1);
8201 timeout--;
8202 }
8203
8204 if(!timeout) {
8205 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8206 return -E1000_ERR_RESET;
8207 }
8208
8209 return E1000_SUCCESS;
8210}
8211
8212/***************************************************************************
8213 *
8214 * Release semaphore bit (SMBI).
8215 *
8216 * hw: Struct containing variables accessed by shared code
8217 *
8218 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008219static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008220e1000_release_software_semaphore(struct e1000_hw *hw)
8221{
8222 uint32_t swsm;
8223
8224 DEBUGFUNC("e1000_release_software_semaphore");
8225
8226 if (hw->mac_type != e1000_80003es2lan)
8227 return;
8228
8229 swsm = E1000_READ_REG(hw, SWSM);
8230 /* Release the SW semaphores.*/
8231 swsm &= ~E1000_SWSM_SMBI;
8232 E1000_WRITE_REG(hw, SWSM, swsm);
8233}
8234
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008235/******************************************************************************
8236 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8237 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8238 * the caller to figure out how to deal with it.
8239 *
8240 * hw - Struct containing variables accessed by shared code
8241 *
8242 * returns: - E1000_BLK_PHY_RESET
8243 * E1000_SUCCESS
8244 *
8245 *****************************************************************************/
8246int32_t
8247e1000_check_phy_reset_block(struct e1000_hw *hw)
8248{
8249 uint32_t manc = 0;
Auke Kokcd94dd02006-06-27 09:08:22 -07008250 uint32_t fwsm = 0;
8251
8252 if (hw->mac_type == e1000_ich8lan) {
8253 fwsm = E1000_READ_REG(hw, FWSM);
8254 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8255 : E1000_BLK_PHY_RESET;
8256 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08008257
8258 if (hw->mac_type > e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008259 manc = E1000_READ_REG(hw, MANC);
8260 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8261 E1000_BLK_PHY_RESET : E1000_SUCCESS;
8262}
8263
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008264static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008265e1000_arc_subsystem_valid(struct e1000_hw *hw)
8266{
8267 uint32_t fwsm;
8268
8269 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8270 * may not be provided a DMA clock when no manageability features are
8271 * enabled. We do not want to perform any reads/writes to these registers
8272 * if this is the case. We read FWSM to determine the manageability mode.
8273 */
8274 switch (hw->mac_type) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008275 case e1000_82571:
8276 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008277 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008278 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008279 fwsm = E1000_READ_REG(hw, FWSM);
8280 if((fwsm & E1000_FWSM_MODE_MASK) != 0)
8281 return TRUE;
8282 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07008283 case e1000_ich8lan:
8284 return TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008285 default:
8286 break;
8287 }
8288 return FALSE;
8289}
8290
8291
Auke Kokd37ea5d2006-06-27 09:08:17 -07008292/******************************************************************************
8293 * Configure PCI-Ex no-snoop
8294 *
8295 * hw - Struct containing variables accessed by shared code.
8296 * no_snoop - Bitmap of no-snoop events.
8297 *
8298 * returns: E1000_SUCCESS
8299 *
8300 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008301static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008302e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8303{
8304 uint32_t gcr_reg = 0;
8305
8306 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8307
8308 if (hw->bus_type == e1000_bus_type_unknown)
8309 e1000_get_bus_info(hw);
8310
8311 if (hw->bus_type != e1000_bus_type_pci_express)
8312 return E1000_SUCCESS;
8313
8314 if (no_snoop) {
8315 gcr_reg = E1000_READ_REG(hw, GCR);
8316 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8317 gcr_reg |= no_snoop;
8318 E1000_WRITE_REG(hw, GCR, gcr_reg);
8319 }
8320 if (hw->mac_type == e1000_ich8lan) {
8321 uint32_t ctrl_ext;
8322
8323 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8324
8325 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8326 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8327 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8328 }
8329
8330 return E1000_SUCCESS;
8331}
8332
8333/***************************************************************************
8334 *
8335 * Get software semaphore FLAG bit (SWFLAG).
8336 * SWFLAG is used to synchronize the access to all shared resource between
8337 * SW, FW and HW.
8338 *
8339 * hw: Struct containing variables accessed by shared code
8340 *
8341 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008342static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008343e1000_get_software_flag(struct e1000_hw *hw)
8344{
8345 int32_t timeout = PHY_CFG_TIMEOUT;
8346 uint32_t extcnf_ctrl;
8347
8348 DEBUGFUNC("e1000_get_software_flag");
8349
8350 if (hw->mac_type == e1000_ich8lan) {
8351 while (timeout) {
8352 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8353 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8354 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8355
8356 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8357 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8358 break;
8359 msec_delay_irq(1);
8360 timeout--;
8361 }
8362
8363 if (!timeout) {
8364 DEBUGOUT("FW or HW locks the resource too long.\n");
8365 return -E1000_ERR_CONFIG;
8366 }
8367 }
8368
8369 return E1000_SUCCESS;
8370}
8371
8372/***************************************************************************
8373 *
8374 * Release software semaphore FLAG bit (SWFLAG).
8375 * SWFLAG is used to synchronize the access to all shared resource between
8376 * SW, FW and HW.
8377 *
8378 * hw: Struct containing variables accessed by shared code
8379 *
8380 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008381static void
Auke Kokd37ea5d2006-06-27 09:08:17 -07008382e1000_release_software_flag(struct e1000_hw *hw)
8383{
8384 uint32_t extcnf_ctrl;
8385
8386 DEBUGFUNC("e1000_release_software_flag");
8387
8388 if (hw->mac_type == e1000_ich8lan) {
8389 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8390 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8391 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8392 }
8393
8394 return;
8395}
8396
8397/***************************************************************************
8398 *
8399 * Disable dynamic power down mode in ife PHY.
8400 * It can be used to workaround band-gap problem.
8401 *
8402 * hw: Struct containing variables accessed by shared code
8403 *
8404 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008405#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008406int32_t
8407e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
8408{
8409 uint16_t phy_data;
8410 int32_t ret_val = E1000_SUCCESS;
8411
8412 DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
8413
8414 if (hw->phy_type == e1000_phy_ife) {
8415 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8416 if (ret_val)
8417 return ret_val;
8418
8419 phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8420 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8421 }
8422
8423 return ret_val;
8424}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008425#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008426
8427/***************************************************************************
8428 *
8429 * Enable dynamic power down mode in ife PHY.
8430 * It can be used to workaround band-gap problem.
8431 *
8432 * hw: Struct containing variables accessed by shared code
8433 *
8434 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008435#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008436int32_t
8437e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
8438{
8439 uint16_t phy_data;
8440 int32_t ret_val = E1000_SUCCESS;
8441
8442 DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
8443
8444 if (hw->phy_type == e1000_phy_ife) {
8445 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8446 if (ret_val)
8447 return ret_val;
8448
8449 phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8450 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8451 }
8452
8453 return ret_val;
8454}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008455#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008456
8457/******************************************************************************
8458 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8459 * register.
8460 *
8461 * hw - Struct containing variables accessed by shared code
8462 * offset - offset of word in the EEPROM to read
8463 * data - word read from the EEPROM
8464 * words - number of words to read
8465 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008466static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008467e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8468 uint16_t *data)
8469{
8470 int32_t error = E1000_SUCCESS;
8471 uint32_t flash_bank = 0;
8472 uint32_t act_offset = 0;
8473 uint32_t bank_offset = 0;
8474 uint16_t word = 0;
8475 uint16_t i = 0;
8476
8477 /* We need to know which is the valid flash bank. In the event
8478 * that we didn't allocate eeprom_shadow_ram, we may not be
8479 * managing flash_bank. So it cannot be trusted and needs
8480 * to be updated with each read.
8481 */
8482 /* Value of bit 22 corresponds to the flash bank we're on. */
8483 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8484
8485 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8486 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8487
8488 error = e1000_get_software_flag(hw);
8489 if (error != E1000_SUCCESS)
8490 return error;
8491
8492 for (i = 0; i < words; i++) {
8493 if (hw->eeprom_shadow_ram != NULL &&
8494 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8495 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8496 } else {
8497 /* The NVM part needs a byte offset, hence * 2 */
8498 act_offset = bank_offset + ((offset + i) * 2);
8499 error = e1000_read_ich8_word(hw, act_offset, &word);
8500 if (error != E1000_SUCCESS)
8501 break;
8502 data[i] = word;
8503 }
8504 }
8505
8506 e1000_release_software_flag(hw);
8507
8508 return error;
8509}
8510
8511/******************************************************************************
8512 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8513 * register. Actually, writes are written to the shadow ram cache in the hw
8514 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8515 * the NVM, which occurs when the NVM checksum is updated.
8516 *
8517 * hw - Struct containing variables accessed by shared code
8518 * offset - offset of word in the EEPROM to write
8519 * words - number of words to write
8520 * data - words to write to the EEPROM
8521 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008522static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008523e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8524 uint16_t *data)
8525{
8526 uint32_t i = 0;
8527 int32_t error = E1000_SUCCESS;
8528
8529 error = e1000_get_software_flag(hw);
8530 if (error != E1000_SUCCESS)
8531 return error;
8532
8533 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8534 * allocated. Subsequent reads to the modified words are read from
8535 * this cached structure as well. Writes will only go into this
8536 * cached structure unless it's followed by a call to
8537 * e1000_update_eeprom_checksum() where it will commit the changes
8538 * and clear the "modified" field.
8539 */
8540 if (hw->eeprom_shadow_ram != NULL) {
8541 for (i = 0; i < words; i++) {
8542 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8543 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8544 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8545 } else {
8546 error = -E1000_ERR_EEPROM;
8547 break;
8548 }
8549 }
8550 } else {
8551 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8552 * as they don't perform any NVM writes. An attempt in doing so
8553 * will result in this error.
8554 */
8555 error = -E1000_ERR_EEPROM;
8556 }
8557
8558 e1000_release_software_flag(hw);
8559
8560 return error;
8561}
8562
8563/******************************************************************************
8564 * This function does initial flash setup so that a new read/write/erase cycle
8565 * can be started.
8566 *
8567 * hw - The pointer to the hw structure
8568 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008569static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008570e1000_ich8_cycle_init(struct e1000_hw *hw)
8571{
8572 union ich8_hws_flash_status hsfsts;
8573 int32_t error = E1000_ERR_EEPROM;
8574 int32_t i = 0;
8575
8576 DEBUGFUNC("e1000_ich8_cycle_init");
8577
8578 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8579
8580 /* May be check the Flash Des Valid bit in Hw status */
8581 if (hsfsts.hsf_status.fldesvalid == 0) {
8582 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8583 return error;
8584 }
8585
8586 /* Clear FCERR in Hw status by writing 1 */
8587 /* Clear DAEL in Hw status by writing a 1 */
8588 hsfsts.hsf_status.flcerr = 1;
8589 hsfsts.hsf_status.dael = 1;
8590
8591 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8592
8593 /* Either we should have a hardware SPI cycle in progress bit to check
8594 * against, in order to start a new cycle or FDONE bit should be changed
8595 * in the hardware so that it is 1 after harware reset, which can then be
8596 * used as an indication whether a cycle is in progress or has been
8597 * completed .. we should also have some software semaphore mechanism to
8598 * guard FDONE or the cycle in progress bit so that two threads access to
8599 * those bits can be sequentiallized or a way so that 2 threads dont
8600 * start the cycle at the same time */
8601
8602 if (hsfsts.hsf_status.flcinprog == 0) {
8603 /* There is no cycle running at present, so we can start a cycle */
8604 /* Begin by setting Flash Cycle Done. */
8605 hsfsts.hsf_status.flcdone = 1;
8606 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8607 error = E1000_SUCCESS;
8608 } else {
8609 /* otherwise poll for sometime so the current cycle has a chance
8610 * to end before giving up. */
8611 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8612 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8613 if (hsfsts.hsf_status.flcinprog == 0) {
8614 error = E1000_SUCCESS;
8615 break;
8616 }
8617 udelay(1);
8618 }
8619 if (error == E1000_SUCCESS) {
8620 /* Successful in waiting for previous cycle to timeout,
8621 * now set the Flash Cycle Done. */
8622 hsfsts.hsf_status.flcdone = 1;
8623 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8624 } else {
8625 DEBUGOUT("Flash controller busy, cannot get access");
8626 }
8627 }
8628 return error;
8629}
8630
8631/******************************************************************************
8632 * This function starts a flash cycle and waits for its completion
8633 *
8634 * hw - The pointer to the hw structure
8635 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008636static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008637e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8638{
8639 union ich8_hws_flash_ctrl hsflctl;
8640 union ich8_hws_flash_status hsfsts;
8641 int32_t error = E1000_ERR_EEPROM;
8642 uint32_t i = 0;
8643
8644 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8645 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8646 hsflctl.hsf_ctrl.flcgo = 1;
8647 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8648
8649 /* wait till FDONE bit is set to 1 */
8650 do {
8651 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8652 if (hsfsts.hsf_status.flcdone == 1)
8653 break;
8654 udelay(1);
8655 i++;
8656 } while (i < timeout);
8657 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8658 error = E1000_SUCCESS;
8659 }
8660 return error;
8661}
8662
8663/******************************************************************************
8664 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8665 *
8666 * hw - The pointer to the hw structure
8667 * index - The index of the byte or word to read.
8668 * size - Size of data to read, 1=byte 2=word
8669 * data - Pointer to the word to store the value read.
8670 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008671static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008672e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8673 uint32_t size, uint16_t* data)
8674{
8675 union ich8_hws_flash_status hsfsts;
8676 union ich8_hws_flash_ctrl hsflctl;
8677 uint32_t flash_linear_address;
8678 uint32_t flash_data = 0;
8679 int32_t error = -E1000_ERR_EEPROM;
8680 int32_t count = 0;
8681
8682 DEBUGFUNC("e1000_read_ich8_data");
8683
8684 if (size < 1 || size > 2 || data == 0x0 ||
8685 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8686 return error;
8687
8688 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8689 hw->flash_base_addr;
8690
8691 do {
8692 udelay(1);
8693 /* Steps */
8694 error = e1000_ich8_cycle_init(hw);
8695 if (error != E1000_SUCCESS)
8696 break;
8697
8698 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8699 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8700 hsflctl.hsf_ctrl.fldbcount = size - 1;
8701 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8702 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8703
8704 /* Write the last 24 bits of index into Flash Linear address field in
8705 * Flash Address */
8706 /* TODO: TBD maybe check the index against the size of flash */
8707
8708 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8709
8710 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8711
8712 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8713 * sequence a few more times, else read in (shift in) the Flash Data0,
8714 * the order is least significant byte first msb to lsb */
8715 if (error == E1000_SUCCESS) {
8716 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8717 if (size == 1) {
8718 *data = (uint8_t)(flash_data & 0x000000FF);
8719 } else if (size == 2) {
8720 *data = (uint16_t)(flash_data & 0x0000FFFF);
8721 }
8722 break;
8723 } else {
8724 /* If we've gotten here, then things are probably completely hosed,
8725 * but if the error condition is detected, it won't hurt to give
8726 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8727 */
8728 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8729 if (hsfsts.hsf_status.flcerr == 1) {
8730 /* Repeat for some time before giving up. */
8731 continue;
8732 } else if (hsfsts.hsf_status.flcdone == 0) {
8733 DEBUGOUT("Timeout error - flash cycle did not complete.");
8734 break;
8735 }
8736 }
8737 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8738
8739 return error;
8740}
8741
8742/******************************************************************************
8743 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8744 *
8745 * hw - The pointer to the hw structure
8746 * index - The index of the byte/word to read.
8747 * size - Size of data to read, 1=byte 2=word
8748 * data - The byte(s) to write to the NVM.
8749 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008750static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008751e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8752 uint16_t data)
8753{
8754 union ich8_hws_flash_status hsfsts;
8755 union ich8_hws_flash_ctrl hsflctl;
8756 uint32_t flash_linear_address;
8757 uint32_t flash_data = 0;
8758 int32_t error = -E1000_ERR_EEPROM;
8759 int32_t count = 0;
8760
8761 DEBUGFUNC("e1000_write_ich8_data");
8762
8763 if (size < 1 || size > 2 || data > size * 0xff ||
8764 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8765 return error;
8766
8767 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8768 hw->flash_base_addr;
8769
8770 do {
8771 udelay(1);
8772 /* Steps */
8773 error = e1000_ich8_cycle_init(hw);
8774 if (error != E1000_SUCCESS)
8775 break;
8776
8777 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8778 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8779 hsflctl.hsf_ctrl.fldbcount = size -1;
8780 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8781 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8782
8783 /* Write the last 24 bits of index into Flash Linear address field in
8784 * Flash Address */
8785 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8786
8787 if (size == 1)
8788 flash_data = (uint32_t)data & 0x00FF;
8789 else
8790 flash_data = (uint32_t)data;
8791
8792 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8793
8794 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8795 * sequence a few more times else done */
8796 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8797 if (error == E1000_SUCCESS) {
8798 break;
8799 } else {
8800 /* If we're here, then things are most likely completely hosed,
8801 * but if the error condition is detected, it won't hurt to give
8802 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8803 */
8804 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8805 if (hsfsts.hsf_status.flcerr == 1) {
8806 /* Repeat for some time before giving up. */
8807 continue;
8808 } else if (hsfsts.hsf_status.flcdone == 0) {
8809 DEBUGOUT("Timeout error - flash cycle did not complete.");
8810 break;
8811 }
8812 }
8813 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8814
8815 return error;
8816}
8817
8818/******************************************************************************
8819 * Reads a single byte from the NVM using the ICH8 flash access registers.
8820 *
8821 * hw - pointer to e1000_hw structure
8822 * index - The index of the byte to read.
8823 * data - Pointer to a byte to store the value read.
8824 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008825static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008826e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8827{
8828 int32_t status = E1000_SUCCESS;
8829 uint16_t word = 0;
8830
8831 status = e1000_read_ich8_data(hw, index, 1, &word);
8832 if (status == E1000_SUCCESS) {
8833 *data = (uint8_t)word;
8834 }
8835
8836 return status;
8837}
8838
8839/******************************************************************************
8840 * Writes a single byte to the NVM using the ICH8 flash access registers.
8841 * Performs verification by reading back the value and then going through
8842 * a retry algorithm before giving up.
8843 *
8844 * hw - pointer to e1000_hw structure
8845 * index - The index of the byte to write.
8846 * byte - The byte to write to the NVM.
8847 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008848static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008849e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8850{
8851 int32_t error = E1000_SUCCESS;
8852 int32_t program_retries;
8853 uint8_t temp_byte;
8854
8855 e1000_write_ich8_byte(hw, index, byte);
8856 udelay(100);
8857
8858 for (program_retries = 0; program_retries < 100; program_retries++) {
8859 e1000_read_ich8_byte(hw, index, &temp_byte);
8860 if (temp_byte == byte)
8861 break;
8862 udelay(10);
8863 e1000_write_ich8_byte(hw, index, byte);
8864 udelay(100);
8865 }
8866 if (program_retries == 100)
8867 error = E1000_ERR_EEPROM;
8868
8869 return error;
8870}
8871
8872/******************************************************************************
8873 * Writes a single byte to the NVM using the ICH8 flash access registers.
8874 *
8875 * hw - pointer to e1000_hw structure
8876 * index - The index of the byte to read.
8877 * data - The byte to write to the NVM.
8878 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008879static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008880e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8881{
8882 int32_t status = E1000_SUCCESS;
8883 uint16_t word = (uint16_t)data;
8884
8885 status = e1000_write_ich8_data(hw, index, 1, word);
8886
8887 return status;
8888}
8889
8890/******************************************************************************
8891 * Reads a word from the NVM using the ICH8 flash access registers.
8892 *
8893 * hw - pointer to e1000_hw structure
8894 * index - The starting byte index of the word to read.
8895 * data - Pointer to a word to store the value read.
8896 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008897static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008898e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8899{
8900 int32_t status = E1000_SUCCESS;
8901 status = e1000_read_ich8_data(hw, index, 2, data);
8902 return status;
8903}
8904
8905/******************************************************************************
8906 * Writes a word to the NVM using the ICH8 flash access registers.
8907 *
8908 * hw - pointer to e1000_hw structure
8909 * index - The starting byte index of the word to read.
8910 * data - The word to write to the NVM.
8911 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008912#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008913int32_t
8914e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
8915{
8916 int32_t status = E1000_SUCCESS;
8917 status = e1000_write_ich8_data(hw, index, 2, data);
8918 return status;
8919}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008920#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008921
8922/******************************************************************************
8923 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
8924 * segment N is 4096 * N + flash_reg_addr.
8925 *
8926 * hw - pointer to e1000_hw structure
8927 * segment - 0 for first segment, 1 for second segment, etc.
8928 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008929static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008930e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
8931{
8932 union ich8_hws_flash_status hsfsts;
8933 union ich8_hws_flash_ctrl hsflctl;
8934 uint32_t flash_linear_address;
8935 int32_t count = 0;
8936 int32_t error = E1000_ERR_EEPROM;
8937 int32_t iteration, seg_size;
8938 int32_t sector_size;
8939 int32_t j = 0;
8940 int32_t error_flag = 0;
8941
8942 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8943
8944 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8945 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8946 * consecutive sectors. The start index for the nth Hw sector can be
8947 * calculated as = segment * 4096 + n * 256
8948 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8949 * The start index for the nth Hw sector can be calculated
8950 * as = segment * 4096
8951 * 10: Error condition
8952 * 11: The Hw sector size is much bigger than the size asked to
8953 * erase...error condition */
8954 if (hsfsts.hsf_status.berasesz == 0x0) {
8955 /* Hw sector size 256 */
8956 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
8957 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8958 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8959 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
8960 iteration = 1;
8961 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8962 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
8963 iteration = 1;
8964 } else {
8965 return error;
8966 }
8967
8968 for (j = 0; j < iteration ; j++) {
8969 do {
8970 count++;
8971 /* Steps */
8972 error = e1000_ich8_cycle_init(hw);
8973 if (error != E1000_SUCCESS) {
8974 error_flag = 1;
8975 break;
8976 }
8977
8978 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8979 * Control */
8980 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8981 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8982 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8983
8984 /* Write the last 24 bits of an index within the block into Flash
8985 * Linear address field in Flash Address. This probably needs to
8986 * be calculated here based off the on-chip segment size and the
8987 * software segment size assumed (4K) */
8988 /* TBD */
8989 flash_linear_address = segment * sector_size + j * seg_size;
8990 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
8991 flash_linear_address += hw->flash_base_addr;
8992
8993 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8994
8995 error = e1000_ich8_flash_cycle(hw, 1000000);
8996 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8997 * sequence a few more times else Done */
8998 if (error == E1000_SUCCESS) {
8999 break;
9000 } else {
9001 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
9002 if (hsfsts.hsf_status.flcerr == 1) {
9003 /* repeat for some time before giving up */
9004 continue;
9005 } else if (hsfsts.hsf_status.flcdone == 0) {
9006 error_flag = 1;
9007 break;
9008 }
9009 }
9010 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
9011 if (error_flag == 1)
9012 break;
9013 }
9014 if (error_flag != 1)
9015 error = E1000_SUCCESS;
9016 return error;
9017}
9018
9019/******************************************************************************
9020 *
9021 * Reverse duplex setting without breaking the link.
9022 *
9023 * hw: Struct containing variables accessed by shared code
9024 *
9025 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07009026#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07009027int32_t
9028e1000_duplex_reversal(struct e1000_hw *hw)
9029{
9030 int32_t ret_val;
9031 uint16_t phy_data;
9032
9033 if (hw->phy_type != e1000_phy_igp_3)
9034 return E1000_SUCCESS;
9035
9036 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
9037 if (ret_val)
9038 return ret_val;
9039
9040 phy_data ^= MII_CR_FULL_DUPLEX;
9041
9042 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
9043 if (ret_val)
9044 return ret_val;
9045
9046 ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
9047 if (ret_val)
9048 return ret_val;
9049
9050 phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
9051 ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
9052
9053 return ret_val;
9054}
Adrian Bunke4c780b2006-08-14 23:00:10 -07009055#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07009056
Adrian Bunke4c780b2006-08-14 23:00:10 -07009057static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07009058e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
9059 uint32_t cnf_base_addr, uint32_t cnf_size)
9060{
9061 uint32_t ret_val = E1000_SUCCESS;
9062 uint16_t word_addr, reg_data, reg_addr;
9063 uint16_t i;
9064
9065 /* cnf_base_addr is in DWORD */
9066 word_addr = (uint16_t)(cnf_base_addr << 1);
9067
9068 /* cnf_size is returned in size of dwords */
9069 for (i = 0; i < cnf_size; i++) {
9070 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
9071 if (ret_val)
9072 return ret_val;
9073
9074 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
9075 if (ret_val)
9076 return ret_val;
9077
9078 ret_val = e1000_get_software_flag(hw);
9079 if (ret_val != E1000_SUCCESS)
9080 return ret_val;
9081
9082 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
9083
9084 e1000_release_software_flag(hw);
9085 }
9086
9087 return ret_val;
9088}
9089
9090
Adrian Bunke4c780b2006-08-14 23:00:10 -07009091static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07009092e1000_init_lcd_from_nvm(struct e1000_hw *hw)
9093{
9094 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
9095
9096 if (hw->phy_type != e1000_phy_igp_3)
9097 return E1000_SUCCESS;
9098
9099 /* Check if SW needs configure the PHY */
9100 reg_data = E1000_READ_REG(hw, FEXTNVM);
9101 if (!(reg_data & FEXTNVM_SW_CONFIG))
9102 return E1000_SUCCESS;
9103
9104 /* Wait for basic configuration completes before proceeding*/
9105 loop = 0;
9106 do {
9107 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
9108 udelay(100);
9109 loop++;
9110 } while ((!reg_data) && (loop < 50));
9111
9112 /* Clear the Init Done bit for the next init event */
9113 reg_data = E1000_READ_REG(hw, STATUS);
9114 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
9115 E1000_WRITE_REG(hw, STATUS, reg_data);
9116
9117 /* Make sure HW does not configure LCD from PHY extended configuration
9118 before SW configuration */
9119 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9120 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9121 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9122 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9123 cnf_size >>= 16;
9124 if (cnf_size) {
9125 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9126 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9127 /* cnf_base_addr is in DWORD */
9128 cnf_base_addr >>= 16;
9129
9130 /* Configure LCD from extended configuration region. */
9131 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9132 cnf_size);
9133 if (ret_val)
9134 return ret_val;
9135 }
9136 }
9137
9138 return E1000_SUCCESS;
9139}
9140
9141
Malli Chilakala2d7edb92005-04-28 19:43:52 -07009142