blob: 890d93ac2066c085866a295938d804a2a8bafa86 [file] [log] [blame]
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/pci.h>
36#include <linux/pci_regs.h>
37#include <linux/firmware.h>
38#include <linux/stddef.h>
39#include <linux/delay.h>
40#include <linux/string.h>
41#include <linux/compiler.h>
42#include <linux/jiffies.h>
43#include <linux/kernel.h>
44#include <linux/log2.h>
45
46#include "csio_hw.h"
47#include "csio_lnode.h"
48#include "csio_rnode.h"
49
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +053050int csio_dbg_level = 0xFEFF;
51unsigned int csio_port_mask = 0xf;
52
53/* Default FW event queue entries. */
54static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56/* Default MSI param level */
57int csio_msi = 2;
58
59/* FCoE function instances */
60static int dev_num;
61
62/* FCoE Adapter types & its description */
Arvind Bhushan7cc16382013-03-14 05:09:08 +000063static const struct csio_adap_desc csio_t4_fcoe_adapters[] = {
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +053064 {"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
65 {"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
66 {"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
67 {"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
68 {"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
69 {"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
70 {"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
71 {"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
72 {"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
73 {"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
74 {"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
75 {"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
76 {"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
77 {"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
78 {"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
Arvind Bhushan7cc16382013-03-14 05:09:08 +000079 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 {"HUAWEI T480 10G", "Chelsio HUAWEI T480 10G [FCoE]"},
81 {"HUAWEI T440 10G", "Chelsio HUAWEI T440 10G [FCoE]"},
82 {"HUAWEI STG 10G", "Chelsio HUAWEI STG 10G [FCoE]"},
83 {"ACROMAG XAUI 10G", "Chelsio ACROMAG XAUI 10G [FCoE]"},
84 {"ACROMAG SFP+ 10G", "Chelsio ACROMAG SFP+ 10G [FCoE]"},
85 {"QUANTA SFP+ 10G", "Chelsio QUANTA SFP+ 10G [FCoE]"},
86 {"HUAWEI 10Gbase-T", "Chelsio HUAWEI 10Gbase-T [FCoE]"},
87 {"HUAWEI T4TOE 10G", "Chelsio HUAWEI T4TOE 10G [FCoE]"}
88};
89
90static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
91 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
92 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
93 {"T522-CR 10G/1G", "Chelsio T452-CR 10G/1G [FCoE]"},
94 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
95 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
96 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
97 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
98 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
99 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
100 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
101 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
102 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
103 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
104 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
105 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
106 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
107 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
108 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
109 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
110 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530111};
112
113static void csio_mgmtm_cleanup(struct csio_mgmtm *);
114static void csio_hw_mbm_cleanup(struct csio_hw *);
115
116/* State machine forward declarations */
117static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
118static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
119static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
120static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
121static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
122static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
123static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
124static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
125static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
126
127static void csio_hw_initialize(struct csio_hw *hw);
128static void csio_evtq_stop(struct csio_hw *hw);
129static void csio_evtq_start(struct csio_hw *hw);
130
131int csio_is_hw_ready(struct csio_hw *hw)
132{
133 return csio_match_state(hw, csio_hws_ready);
134}
135
136int csio_is_hw_removing(struct csio_hw *hw)
137{
138 return csio_match_state(hw, csio_hws_removing);
139}
140
141
142/*
143 * csio_hw_wait_op_done_val - wait until an operation is completed
144 * @hw: the HW module
145 * @reg: the register to check for completion
146 * @mask: a single-bit field within @reg that indicates completion
147 * @polarity: the value of the field when the operation is completed
148 * @attempts: number of check iterations
149 * @delay: delay in usecs between iterations
150 * @valp: where to store the value of the register at completion time
151 *
152 * Wait until an operation is completed by checking a bit in a register
153 * up to @attempts times. If @valp is not NULL the value of the register
154 * at the time it indicated completion is stored there. Returns 0 if the
155 * operation completes and -EAGAIN otherwise.
156 */
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000157int
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530158csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
159 int polarity, int attempts, int delay, uint32_t *valp)
160{
161 uint32_t val;
162 while (1) {
163 val = csio_rd_reg32(hw, reg);
164
165 if (!!(val & mask) == polarity) {
166 if (valp)
167 *valp = val;
168 return 0;
169 }
170
171 if (--attempts == 0)
172 return -EAGAIN;
173 if (delay)
174 udelay(delay);
175 }
176}
177
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000178/*
179 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
180 * @hw: the adapter
181 * @addr: the indirect TP register address
182 * @mask: specifies the field within the register to modify
183 * @val: new value for the field
184 *
185 * Sets a field of an indirect TP register to the given value.
186 */
187void
188csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
189 unsigned int mask, unsigned int val)
190{
191 csio_wr_reg32(hw, addr, TP_PIO_ADDR);
192 val |= csio_rd_reg32(hw, TP_PIO_DATA) & ~mask;
193 csio_wr_reg32(hw, val, TP_PIO_DATA);
194}
195
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530196void
197csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
198 uint32_t value)
199{
200 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
201
202 csio_wr_reg32(hw, val | value, reg);
203 /* Flush */
204 csio_rd_reg32(hw, reg);
205
206}
207
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530208static int
Naresh Kumar Inna5036f0a2012-11-20 18:15:40 +0530209csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530210{
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000211 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
212 addr, len, buf, 0);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530213}
214
215/*
216 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
217 */
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000218#define EEPROM_MAX_RD_POLL 40
219#define EEPROM_MAX_WR_POLL 6
220#define EEPROM_STAT_ADDR 0x7bfc
221#define VPD_BASE 0x400
222#define VPD_BASE_OLD 0
223#define VPD_LEN 1024
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530224#define VPD_INFO_FLD_HDR_SIZE 3
225
226/*
227 * csio_hw_seeprom_read - read a serial EEPROM location
228 * @hw: hw to read
229 * @addr: EEPROM virtual address
230 * @data: where to store the read data
231 *
232 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
233 * VPD capability. Note that this function must be called with a virtual
234 * address.
235 */
236static int
237csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
238{
239 uint16_t val = 0;
240 int attempts = EEPROM_MAX_RD_POLL;
241 uint32_t base = hw->params.pci.vpd_cap_addr;
242
243 if (addr >= EEPROMVSIZE || (addr & 3))
244 return -EINVAL;
245
246 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
247
248 do {
249 udelay(10);
250 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
251 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
252
253 if (!(val & PCI_VPD_ADDR_F)) {
254 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
255 return -EINVAL;
256 }
257
258 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
259 *data = le32_to_cpu(*data);
Naresh Kumar Inna5036f0a2012-11-20 18:15:40 +0530260
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530261 return 0;
262}
263
264/*
265 * Partial EEPROM Vital Product Data structure. Includes only the ID and
266 * VPD-R sections.
267 */
268struct t4_vpd_hdr {
269 u8 id_tag;
270 u8 id_len[2];
271 u8 id_data[ID_LEN];
272 u8 vpdr_tag;
273 u8 vpdr_len[2];
274};
275
276/*
277 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
278 * the VPD
279 * @v: Pointer to buffered vpd data structure
280 * @kw: The keyword to search for
281 *
282 * Returns the value of the information field keyword or
283 * -EINVAL otherwise.
284 */
285static int
286csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
287{
288 int32_t i;
289 int32_t offset , len;
290 const uint8_t *buf = &v->id_tag;
291 const uint8_t *vpdr_len = &v->vpdr_tag;
292 offset = sizeof(struct t4_vpd_hdr);
293 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
294
295 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
296 return -EINVAL;
297
298 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
299 if (memcmp(buf + i , kw, 2) == 0) {
300 i += VPD_INFO_FLD_HDR_SIZE;
301 return i;
302 }
303
304 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
305 }
306
307 return -EINVAL;
308}
309
310static int
311csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
312{
313 *pos = pci_find_capability(pdev, cap);
314 if (*pos)
315 return 0;
316
317 return -1;
318}
319
320/*
321 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
322 * @hw: HW module
323 * @p: where to store the parameters
324 *
325 * Reads card parameters stored in VPD EEPROM.
326 */
327static int
328csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
329{
330 int i, ret, ec, sn, addr;
331 uint8_t *vpd, csum;
332 const struct t4_vpd_hdr *v;
333 /* To get around compilation warning from strstrip */
334 char *s;
335
336 if (csio_is_valid_vpd(hw))
337 return 0;
338
339 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
340 &hw->params.pci.vpd_cap_addr);
341 if (ret)
342 return -EINVAL;
343
344 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
345 if (vpd == NULL)
346 return -ENOMEM;
347
348 /*
349 * Card information normally starts at VPD_BASE but early cards had
350 * it at 0.
351 */
352 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
353 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
354
355 for (i = 0; i < VPD_LEN; i += 4) {
356 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
357 if (ret) {
358 kfree(vpd);
359 return ret;
360 }
361 }
362
363 /* Reset the VPD flag! */
364 hw->flags &= (~CSIO_HWF_VPD_VALID);
365
366 v = (const struct t4_vpd_hdr *)vpd;
367
368#define FIND_VPD_KW(var, name) do { \
369 var = csio_hw_get_vpd_keyword_val(v, name); \
370 if (var < 0) { \
371 csio_err(hw, "missing VPD keyword " name "\n"); \
372 kfree(vpd); \
373 return -EINVAL; \
374 } \
375} while (0)
376
377 FIND_VPD_KW(i, "RV");
378 for (csum = 0; i >= 0; i--)
379 csum += vpd[i];
380
381 if (csum) {
382 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
383 kfree(vpd);
384 return -EINVAL;
385 }
386 FIND_VPD_KW(ec, "EC");
387 FIND_VPD_KW(sn, "SN");
388#undef FIND_VPD_KW
389
390 memcpy(p->id, v->id_data, ID_LEN);
391 s = strstrip(p->id);
392 memcpy(p->ec, vpd + ec, EC_LEN);
393 s = strstrip(p->ec);
394 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
395 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
396 s = strstrip(p->sn);
397
398 csio_valid_vpd_copied(hw);
399
400 kfree(vpd);
401 return 0;
402}
403
404/*
405 * csio_hw_sf1_read - read data from the serial flash
406 * @hw: the HW module
407 * @byte_cnt: number of bytes to read
408 * @cont: whether another operation will be chained
409 * @lock: whether to lock SF for PL access only
410 * @valp: where to store the read data
411 *
412 * Reads up to 4 bytes of data from the serial flash. The location of
413 * the read needs to be specified prior to calling this by issuing the
414 * appropriate commands to the serial flash.
415 */
416static int
417csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
418 int32_t lock, uint32_t *valp)
419{
420 int ret;
421
422 if (!byte_cnt || byte_cnt > 4)
423 return -EINVAL;
424 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
425 return -EBUSY;
426
427 cont = cont ? SF_CONT : 0;
428 lock = lock ? SF_LOCK : 0;
429
430 csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
431 ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
432 10, NULL);
433 if (!ret)
434 *valp = csio_rd_reg32(hw, SF_DATA);
435 return ret;
436}
437
438/*
439 * csio_hw_sf1_write - write data to the serial flash
440 * @hw: the HW module
441 * @byte_cnt: number of bytes to write
442 * @cont: whether another operation will be chained
443 * @lock: whether to lock SF for PL access only
444 * @val: value to write
445 *
446 * Writes up to 4 bytes of data to the serial flash. The location of
447 * the write needs to be specified prior to calling this by issuing the
448 * appropriate commands to the serial flash.
449 */
450static int
451csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
452 int32_t lock, uint32_t val)
453{
454 if (!byte_cnt || byte_cnt > 4)
455 return -EINVAL;
456 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
457 return -EBUSY;
458
459 cont = cont ? SF_CONT : 0;
460 lock = lock ? SF_LOCK : 0;
461
462 csio_wr_reg32(hw, val, SF_DATA);
463 csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
464
465 return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
466 10, NULL);
467}
468
469/*
470 * csio_hw_flash_wait_op - wait for a flash operation to complete
471 * @hw: the HW module
472 * @attempts: max number of polls of the status register
473 * @delay: delay between polls in ms
474 *
475 * Wait for a flash operation to complete by polling the status register.
476 */
477static int
478csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
479{
480 int ret;
481 uint32_t status;
482
483 while (1) {
484 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
485 if (ret != 0)
486 return ret;
487
488 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
489 if (ret != 0)
490 return ret;
491
492 if (!(status & 1))
493 return 0;
494 if (--attempts == 0)
495 return -EAGAIN;
496 if (delay)
497 msleep(delay);
498 }
499}
500
501/*
502 * csio_hw_read_flash - read words from serial flash
503 * @hw: the HW module
504 * @addr: the start address for the read
505 * @nwords: how many 32-bit words to read
506 * @data: where to store the read data
507 * @byte_oriented: whether to store data as bytes or as words
508 *
509 * Read the specified number of 32-bit words from the serial flash.
510 * If @byte_oriented is set the read data is stored as a byte array
511 * (i.e., big-endian), otherwise as 32-bit words in the platform's
512 * natural endianess.
513 */
514static int
515csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
516 uint32_t *data, int32_t byte_oriented)
517{
518 int ret;
519
520 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
521 return -EINVAL;
522
523 addr = swab32(addr) | SF_RD_DATA_FAST;
524
525 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
526 if (ret != 0)
527 return ret;
528
529 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
530 if (ret != 0)
531 return ret;
532
533 for ( ; nwords; nwords--, data++) {
534 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
535 if (nwords == 1)
536 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
537 if (ret)
538 return ret;
539 if (byte_oriented)
540 *data = htonl(*data);
541 }
542 return 0;
543}
544
545/*
546 * csio_hw_write_flash - write up to a page of data to the serial flash
547 * @hw: the hw
548 * @addr: the start address to write
549 * @n: length of data to write in bytes
550 * @data: the data to write
551 *
552 * Writes up to a page of data (256 bytes) to the serial flash starting
553 * at the given address. All the data must be written to the same page.
554 */
555static int
556csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
557 uint32_t n, const uint8_t *data)
558{
559 int ret = -EINVAL;
560 uint32_t buf[64];
561 uint32_t i, c, left, val, offset = addr & 0xff;
562
563 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
564 return -EINVAL;
565
566 val = swab32(addr) | SF_PROG_PAGE;
567
568 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
569 if (ret != 0)
570 goto unlock;
571
572 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
573 if (ret != 0)
574 goto unlock;
575
576 for (left = n; left; left -= c) {
577 c = min(left, 4U);
578 for (val = 0, i = 0; i < c; ++i)
579 val = (val << 8) + *data++;
580
581 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
582 if (ret)
583 goto unlock;
584 }
585 ret = csio_hw_flash_wait_op(hw, 8, 1);
586 if (ret)
587 goto unlock;
588
589 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
590
591 /* Read the page to verify the write succeeded */
592 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
593 if (ret)
594 return ret;
595
596 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
597 csio_err(hw,
598 "failed to correctly write the flash page at %#x\n",
599 addr);
600 return -EINVAL;
601 }
602
603 return 0;
604
605unlock:
606 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
607 return ret;
608}
609
610/*
611 * csio_hw_flash_erase_sectors - erase a range of flash sectors
612 * @hw: the HW module
613 * @start: the first sector to erase
614 * @end: the last sector to erase
615 *
616 * Erases the sectors in the given inclusive range.
617 */
618static int
619csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
620{
621 int ret = 0;
622
623 while (start <= end) {
624
625 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
626 if (ret != 0)
627 goto out;
628
629 ret = csio_hw_sf1_write(hw, 4, 0, 1,
630 SF_ERASE_SECTOR | (start << 8));
631 if (ret != 0)
632 goto out;
633
634 ret = csio_hw_flash_wait_op(hw, 14, 500);
635 if (ret != 0)
636 goto out;
637
638 start++;
639 }
640out:
641 if (ret)
642 csio_err(hw, "erase of flash sector %d failed, error %d\n",
643 start, ret);
644 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
645 return 0;
646}
647
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530648static void
649csio_hw_print_fw_version(struct csio_hw *hw, char *str)
650{
651 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +0530652 FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
653 FW_HDR_FW_VER_MINOR_G(hw->fwrev),
654 FW_HDR_FW_VER_MICRO_G(hw->fwrev),
655 FW_HDR_FW_VER_BUILD_G(hw->fwrev));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530656}
657
658/*
659 * csio_hw_get_fw_version - read the firmware version
660 * @hw: HW module
661 * @vers: where to place the version
662 *
663 * Reads the FW version from flash.
664 */
665static int
666csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
667{
668 return csio_hw_read_flash(hw, FW_IMG_START +
669 offsetof(struct fw_hdr, fw_ver), 1,
670 vers, 0);
671}
672
673/*
674 * csio_hw_get_tp_version - read the TP microcode version
675 * @hw: HW module
676 * @vers: where to place the version
677 *
678 * Reads the TP microcode version from flash.
679 */
680static int
681csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
682{
683 return csio_hw_read_flash(hw, FLASH_FW_START +
684 offsetof(struct fw_hdr, tp_microcode_ver), 1,
685 vers, 0);
686}
687
688/*
689 * csio_hw_check_fw_version - check if the FW is compatible with
690 * this driver
691 * @hw: HW module
692 *
693 * Checks if an adapter's FW is compatible with the driver. Returns 0
694 * if there's exact match, a negative error if the version could not be
695 * read or there's a major/minor version mismatch/minor.
696 */
697static int
698csio_hw_check_fw_version(struct csio_hw *hw)
699{
700 int ret, major, minor, micro;
701
702 ret = csio_hw_get_fw_version(hw, &hw->fwrev);
703 if (!ret)
704 ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
705 if (ret)
706 return ret;
707
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +0530708 major = FW_HDR_FW_VER_MAJOR_G(hw->fwrev);
709 minor = FW_HDR_FW_VER_MINOR_G(hw->fwrev);
710 micro = FW_HDR_FW_VER_MICRO_G(hw->fwrev);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530711
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000712 if (major != FW_VERSION_MAJOR(hw)) { /* major mismatch - fail */
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530713 csio_err(hw, "card FW has major version %u, driver wants %u\n",
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000714 major, FW_VERSION_MAJOR(hw));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530715 return -EINVAL;
716 }
717
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000718 if (minor == FW_VERSION_MINOR(hw) && micro == FW_VERSION_MICRO(hw))
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530719 return 0; /* perfect match */
720
721 /* Minor/micro version mismatch */
722 return -EINVAL;
723}
724
725/*
726 * csio_hw_fw_dload - download firmware.
727 * @hw: HW module
728 * @fw_data: firmware image to write.
729 * @size: image size
730 *
731 * Write the supplied firmware image to the card's serial flash.
732 */
733static int
734csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
735{
736 uint32_t csum;
737 int32_t addr;
738 int ret;
739 uint32_t i;
740 uint8_t first_page[SF_PAGE_SIZE];
Naresh Kumar Inna5036f0a2012-11-20 18:15:40 +0530741 const __be32 *p = (const __be32 *)fw_data;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530742 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
743 uint32_t sf_sec_size;
744
745 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
746 csio_err(hw, "Serial Flash data invalid\n");
747 return -EINVAL;
748 }
749
750 if (!size) {
751 csio_err(hw, "FW image has no data\n");
752 return -EINVAL;
753 }
754
755 if (size & 511) {
756 csio_err(hw, "FW image size not multiple of 512 bytes\n");
757 return -EINVAL;
758 }
759
760 if (ntohs(hdr->len512) * 512 != size) {
761 csio_err(hw, "FW image size differs from size in FW header\n");
762 return -EINVAL;
763 }
764
765 if (size > FW_MAX_SIZE) {
766 csio_err(hw, "FW image too large, max is %u bytes\n",
767 FW_MAX_SIZE);
768 return -EINVAL;
769 }
770
771 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
772 csum += ntohl(p[i]);
773
774 if (csum != 0xffffffff) {
775 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
776 return -EINVAL;
777 }
778
779 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
780 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
781
782 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
783 FW_START_SEC, FW_START_SEC + i - 1);
784
785 ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
786 FW_START_SEC + i - 1);
787 if (ret) {
788 csio_err(hw, "Flash Erase failed\n");
789 goto out;
790 }
791
792 /*
793 * We write the correct version at the end so the driver can see a bad
794 * version if the FW write fails. Start by writing a copy of the
795 * first page with a bad version.
796 */
797 memcpy(first_page, fw_data, SF_PAGE_SIZE);
798 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
799 ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
800 if (ret)
801 goto out;
802
803 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
804 FW_IMG_START, FW_IMG_START + size);
805
806 addr = FW_IMG_START;
807 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
808 addr += SF_PAGE_SIZE;
809 fw_data += SF_PAGE_SIZE;
810 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
811 if (ret)
812 goto out;
813 }
814
815 ret = csio_hw_write_flash(hw,
816 FW_IMG_START +
817 offsetof(struct fw_hdr, fw_ver),
818 sizeof(hdr->fw_ver),
819 (const uint8_t *)&hdr->fw_ver);
820
821out:
822 if (ret)
823 csio_err(hw, "firmware download failed, error %d\n", ret);
824 return ret;
825}
826
827static int
828csio_hw_get_flash_params(struct csio_hw *hw)
829{
830 int ret;
831 uint32_t info = 0;
832
833 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
834 if (!ret)
835 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
836 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
837 if (ret != 0)
838 return ret;
839
840 if ((info & 0xff) != 0x20) /* not a Numonix flash */
841 return -EINVAL;
842 info >>= 16; /* log2 of size */
843 if (info >= 0x14 && info < 0x18)
844 hw->params.sf_nsec = 1 << (info - 16);
845 else if (info == 0x18)
846 hw->params.sf_nsec = 64;
847 else
848 return -EINVAL;
849 hw->params.sf_size = 1 << info;
850
851 return 0;
852}
853
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530854/*****************************************************************************/
855/* HW State machine assists */
856/*****************************************************************************/
857
858static int
859csio_hw_dev_ready(struct csio_hw *hw)
860{
861 uint32_t reg;
862 int cnt = 6;
863
864 while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
865 (--cnt != 0))
866 mdelay(100);
867
868 if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
869 (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
870 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
871 return -EIO;
872 }
873
874 hw->pfn = SOURCEPF_GET(reg);
875
876 return 0;
877}
878
879/*
880 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
881 * @hw: HW module
882 * @state: Device state
883 *
884 * FW_HELLO_CMD has to be polled for completion.
885 */
886static int
887csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
888{
889 struct csio_mb *mbp;
890 int rv = 0;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530891 enum fw_retval retval;
892 uint8_t mpfn;
893 char state_str[16];
894 int retries = FW_CMD_HELLO_RETRIES;
895
896 memset(state_str, 0, sizeof(state_str));
897
898 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
899 if (!mbp) {
900 rv = -ENOMEM;
901 CSIO_INC_STATS(hw, n_err_nomem);
902 goto out;
903 }
904
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530905retry:
906 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
Hariprasad Shenai666224d2014-12-11 11:11:43 +0530907 hw->pfn, CSIO_MASTER_MAY, NULL);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530908
909 rv = csio_mb_issue(hw, mbp);
910 if (rv) {
911 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
912 goto out_free_mb;
913 }
914
915 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
916 if (retval != FW_SUCCESS) {
917 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
918 rv = -EINVAL;
919 goto out_free_mb;
920 }
921
922 /* Firmware has designated us to be master */
923 if (hw->pfn == mpfn) {
924 hw->flags |= CSIO_HWF_MASTER;
925 } else if (*state == CSIO_DEV_STATE_UNINIT) {
926 /*
927 * If we're not the Master PF then we need to wait around for
928 * the Master PF Driver to finish setting up the adapter.
929 *
930 * Note that we also do this wait if we're a non-Master-capable
931 * PF and there is no current Master PF; a Master PF may show up
932 * momentarily and we wouldn't want to fail pointlessly. (This
933 * can happen when an OS loads lots of different drivers rapidly
934 * at the same time). In this case, the Master PF returned by
935 * the firmware will be PCIE_FW_MASTER_MASK so the test below
936 * will work ...
937 */
938
939 int waiting = FW_CMD_HELLO_TIMEOUT;
940
941 /*
942 * Wait for the firmware to either indicate an error or
943 * initialized state. If we see either of these we bail out
944 * and report the issue to the caller. If we exhaust the
945 * "hello timeout" and we haven't exhausted our retries, try
946 * again. Otherwise bail with a timeout error.
947 */
948 for (;;) {
949 uint32_t pcie_fw;
950
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000951 spin_unlock_irq(&hw->lock);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530952 msleep(50);
Arvind Bhushan7cc16382013-03-14 05:09:08 +0000953 spin_lock_irq(&hw->lock);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +0530954 waiting -= 50;
955
956 /*
957 * If neither Error nor Initialialized are indicated
958 * by the firmware keep waiting till we exaust our
959 * timeout ... and then retry if we haven't exhausted
960 * our retries ...
961 */
962 pcie_fw = csio_rd_reg32(hw, PCIE_FW);
963 if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
964 if (waiting <= 0) {
965 if (retries-- > 0)
966 goto retry;
967
968 rv = -ETIMEDOUT;
969 break;
970 }
971 continue;
972 }
973
974 /*
975 * We either have an Error or Initialized condition
976 * report errors preferentially.
977 */
978 if (state) {
979 if (pcie_fw & PCIE_FW_ERR) {
980 *state = CSIO_DEV_STATE_ERR;
981 rv = -ETIMEDOUT;
982 } else if (pcie_fw & PCIE_FW_INIT)
983 *state = CSIO_DEV_STATE_INIT;
984 }
985
986 /*
987 * If we arrived before a Master PF was selected and
988 * there's not a valid Master PF, grab its identity
989 * for our caller.
990 */
991 if (mpfn == PCIE_FW_MASTER_MASK &&
992 (pcie_fw & PCIE_FW_MASTER_VLD))
993 mpfn = PCIE_FW_MASTER_GET(pcie_fw);
994 break;
995 }
996 hw->flags &= ~CSIO_HWF_MASTER;
997 }
998
999 switch (*state) {
1000 case CSIO_DEV_STATE_UNINIT:
1001 strcpy(state_str, "Initializing");
1002 break;
1003 case CSIO_DEV_STATE_INIT:
1004 strcpy(state_str, "Initialized");
1005 break;
1006 case CSIO_DEV_STATE_ERR:
1007 strcpy(state_str, "Error");
1008 break;
1009 default:
1010 strcpy(state_str, "Unknown");
1011 break;
1012 }
1013
1014 if (hw->pfn == mpfn)
1015 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1016 hw->pfn, state_str);
1017 else
1018 csio_info(hw,
1019 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1020 hw->pfn, mpfn, state_str);
1021
1022out_free_mb:
1023 mempool_free(mbp, hw->mb_mempool);
1024out:
1025 return rv;
1026}
1027
1028/*
1029 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1030 * @hw: HW module
1031 *
1032 */
1033static int
1034csio_do_bye(struct csio_hw *hw)
1035{
1036 struct csio_mb *mbp;
1037 enum fw_retval retval;
1038
1039 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1040 if (!mbp) {
1041 CSIO_INC_STATS(hw, n_err_nomem);
1042 return -ENOMEM;
1043 }
1044
1045 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1046
1047 if (csio_mb_issue(hw, mbp)) {
1048 csio_err(hw, "Issue of BYE command failed\n");
1049 mempool_free(mbp, hw->mb_mempool);
1050 return -EINVAL;
1051 }
1052
1053 retval = csio_mb_fw_retval(mbp);
1054 if (retval != FW_SUCCESS) {
1055 mempool_free(mbp, hw->mb_mempool);
1056 return -EINVAL;
1057 }
1058
1059 mempool_free(mbp, hw->mb_mempool);
1060
1061 return 0;
1062}
1063
1064/*
1065 * csio_do_reset- Perform the device reset.
1066 * @hw: HW module
1067 * @fw_rst: FW reset
1068 *
1069 * If fw_rst is set, issues FW reset mbox cmd otherwise
1070 * does PIO reset.
1071 * Performs reset of the function.
1072 */
1073static int
1074csio_do_reset(struct csio_hw *hw, bool fw_rst)
1075{
1076 struct csio_mb *mbp;
1077 enum fw_retval retval;
1078
1079 if (!fw_rst) {
1080 /* PIO reset */
1081 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1082 mdelay(2000);
1083 return 0;
1084 }
1085
1086 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1087 if (!mbp) {
1088 CSIO_INC_STATS(hw, n_err_nomem);
1089 return -ENOMEM;
1090 }
1091
1092 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1093 PIORSTMODE | PIORST, 0, NULL);
1094
1095 if (csio_mb_issue(hw, mbp)) {
1096 csio_err(hw, "Issue of RESET command failed.n");
1097 mempool_free(mbp, hw->mb_mempool);
1098 return -EINVAL;
1099 }
1100
1101 retval = csio_mb_fw_retval(mbp);
1102 if (retval != FW_SUCCESS) {
1103 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1104 mempool_free(mbp, hw->mb_mempool);
1105 return -EINVAL;
1106 }
1107
1108 mempool_free(mbp, hw->mb_mempool);
1109
1110 return 0;
1111}
1112
1113static int
1114csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1115{
1116 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1117 uint16_t caps;
1118
1119 caps = ntohs(rsp->fcoecaps);
1120
1121 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1122 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1123 return -EINVAL;
1124 }
1125
1126 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1127 csio_err(hw, "No FCoE Control Offload capability\n");
1128 return -EINVAL;
1129 }
1130
1131 return 0;
1132}
1133
1134/*
1135 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1136 * @hw: the HW module
1137 * @mbox: mailbox to use for the FW RESET command (if desired)
1138 * @force: force uP into RESET even if FW RESET command fails
1139 *
1140 * Issues a RESET command to firmware (if desired) with a HALT indication
1141 * and then puts the microprocessor into RESET state. The RESET command
1142 * will only be issued if a legitimate mailbox is provided (mbox <=
1143 * PCIE_FW_MASTER_MASK).
1144 *
1145 * This is generally used in order for the host to safely manipulate the
1146 * adapter without fear of conflicting with whatever the firmware might
1147 * be doing. The only way out of this state is to RESTART the firmware
1148 * ...
1149 */
1150static int
1151csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1152{
1153 enum fw_retval retval = 0;
1154
1155 /*
1156 * If a legitimate mailbox is provided, issue a RESET command
1157 * with a HALT indication.
1158 */
1159 if (mbox <= PCIE_FW_MASTER_MASK) {
1160 struct csio_mb *mbp;
1161
1162 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1163 if (!mbp) {
1164 CSIO_INC_STATS(hw, n_err_nomem);
1165 return -ENOMEM;
1166 }
1167
1168 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
Hariprasad Shenai51678652014-11-21 12:52:02 +05301169 PIORSTMODE | PIORST, FW_RESET_CMD_HALT_F,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301170 NULL);
1171
1172 if (csio_mb_issue(hw, mbp)) {
1173 csio_err(hw, "Issue of RESET command failed!\n");
1174 mempool_free(mbp, hw->mb_mempool);
1175 return -EINVAL;
1176 }
1177
1178 retval = csio_mb_fw_retval(mbp);
1179 mempool_free(mbp, hw->mb_mempool);
1180 }
1181
1182 /*
1183 * Normally we won't complete the operation if the firmware RESET
1184 * command fails but if our caller insists we'll go ahead and put the
1185 * uP into RESET. This can be useful if the firmware is hung or even
1186 * missing ... We'll have to take the risk of putting the uP into
1187 * RESET without the cooperation of firmware in that case.
1188 *
1189 * We also force the firmware's HALT flag to be on in case we bypassed
1190 * the firmware RESET command above or we're dealing with old firmware
1191 * which doesn't have the HALT capability. This will serve as a flag
1192 * for the incoming firmware to know that it's coming out of a HALT
1193 * rather than a RESET ... if it's new enough to understand that ...
1194 */
1195 if (retval == 0 || force) {
1196 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1197 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1198 }
1199
1200 /*
1201 * And we always return the result of the firmware RESET command
1202 * even when we force the uP into RESET ...
1203 */
1204 return retval ? -EINVAL : 0;
1205}
1206
1207/*
1208 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1209 * @hw: the HW module
1210 * @reset: if we want to do a RESET to restart things
1211 *
1212 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1213 * return the previous PF Master remains as the new PF Master and there
1214 * is no need to issue a new HELLO command, etc.
1215 *
1216 * We do this in two ways:
1217 *
1218 * 1. If we're dealing with newer firmware we'll simply want to take
1219 * the chip's microprocessor out of RESET. This will cause the
1220 * firmware to start up from its start vector. And then we'll loop
1221 * until the firmware indicates it's started again (PCIE_FW.HALT
1222 * reset to 0) or we timeout.
1223 *
1224 * 2. If we're dealing with older firmware then we'll need to RESET
1225 * the chip since older firmware won't recognize the PCIE_FW.HALT
1226 * flag and automatically RESET itself on startup.
1227 */
1228static int
1229csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1230{
1231 if (reset) {
1232 /*
1233 * Since we're directing the RESET instead of the firmware
1234 * doing it automatically, we need to clear the PCIE_FW.HALT
1235 * bit.
1236 */
1237 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1238
1239 /*
1240 * If we've been given a valid mailbox, first try to get the
1241 * firmware to do the RESET. If that works, great and we can
1242 * return success. Otherwise, if we haven't been given a
1243 * valid mailbox or the RESET command failed, fall back to
1244 * hitting the chip with a hammer.
1245 */
1246 if (mbox <= PCIE_FW_MASTER_MASK) {
1247 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1248 msleep(100);
1249 if (csio_do_reset(hw, true) == 0)
1250 return 0;
1251 }
1252
1253 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1254 msleep(2000);
1255 } else {
1256 int ms;
1257
1258 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1259 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1260 if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1261 return 0;
1262 msleep(100);
1263 ms += 100;
1264 }
1265 return -ETIMEDOUT;
1266 }
1267 return 0;
1268}
1269
1270/*
1271 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1272 * @hw: the HW module
1273 * @mbox: mailbox to use for the FW RESET command (if desired)
1274 * @fw_data: the firmware image to write
1275 * @size: image size
1276 * @force: force upgrade even if firmware doesn't cooperate
1277 *
1278 * Perform all of the steps necessary for upgrading an adapter's
1279 * firmware image. Normally this requires the cooperation of the
1280 * existing firmware in order to halt all existing activities
1281 * but if an invalid mailbox token is passed in we skip that step
1282 * (though we'll still put the adapter microprocessor into RESET in
1283 * that case).
1284 *
1285 * On successful return the new firmware will have been loaded and
1286 * the adapter will have been fully RESET losing all previous setup
1287 * state. On unsuccessful return the adapter may be completely hosed ...
1288 * positive errno indicates that the adapter is ~probably~ intact, a
1289 * negative errno indicates that things are looking bad ...
1290 */
1291static int
1292csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1293 const u8 *fw_data, uint32_t size, int32_t force)
1294{
1295 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1296 int reset, ret;
1297
1298 ret = csio_hw_fw_halt(hw, mbox, force);
1299 if (ret != 0 && !force)
1300 return ret;
1301
1302 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1303 if (ret != 0)
1304 return ret;
1305
1306 /*
1307 * Older versions of the firmware don't understand the new
1308 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1309 * restart. So for newly loaded older firmware we'll have to do the
1310 * RESET for it so it starts up on a clean slate. We can tell if
1311 * the newly loaded firmware will handle this right by checking
1312 * its header flags to see if it advertises the capability.
1313 */
1314 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1315 return csio_hw_fw_restart(hw, mbox, reset);
1316}
1317
1318
1319/*
1320 * csio_hw_fw_config_file - setup an adapter via a Configuration File
1321 * @hw: the HW module
1322 * @mbox: mailbox to use for the FW command
1323 * @mtype: the memory type where the Configuration File is located
1324 * @maddr: the memory address where the Configuration File is located
1325 * @finiver: return value for CF [fini] version
1326 * @finicsum: return value for CF [fini] checksum
1327 * @cfcsum: return value for CF computed checksum
1328 *
1329 * Issue a command to get the firmware to process the Configuration
1330 * File located at the specified mtype/maddress. If the Configuration
1331 * File is processed successfully and return value pointers are
1332 * provided, the Configuration File "[fini] section version and
1333 * checksum values will be returned along with the computed checksum.
1334 * It's up to the caller to decide how it wants to respond to the
1335 * checksums not matching but it recommended that a prominant warning
1336 * be emitted in order to help people rapidly identify changed or
1337 * corrupted Configuration Files.
1338 *
1339 * Also note that it's possible to modify things like "niccaps",
1340 * "toecaps",etc. between processing the Configuration File and telling
1341 * the firmware to use the new configuration. Callers which want to
1342 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1343 * Configuration Files if they want to do this.
1344 */
1345static int
1346csio_hw_fw_config_file(struct csio_hw *hw,
1347 unsigned int mtype, unsigned int maddr,
1348 uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1349{
1350 struct csio_mb *mbp;
1351 struct fw_caps_config_cmd *caps_cmd;
1352 int rv = -EINVAL;
1353 enum fw_retval ret;
1354
1355 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1356 if (!mbp) {
1357 CSIO_INC_STATS(hw, n_err_nomem);
1358 return -ENOMEM;
1359 }
1360 /*
1361 * Tell the firmware to process the indicated Configuration File.
1362 * If there are no errors and the caller has provided return value
1363 * pointers for the [fini] section version, checksum and computed
1364 * checksum, pass those back to the caller.
1365 */
1366 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1367 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1368 caps_cmd->op_to_write =
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05301369 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1370 FW_CMD_REQUEST_F |
1371 FW_CMD_READ_F);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301372 caps_cmd->cfvalid_to_len16 =
Hariprasad Shenai51678652014-11-21 12:52:02 +05301373 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1374 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1375 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301376 FW_LEN16(*caps_cmd));
1377
1378 if (csio_mb_issue(hw, mbp)) {
1379 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1380 goto out;
1381 }
1382
1383 ret = csio_mb_fw_retval(mbp);
1384 if (ret != FW_SUCCESS) {
1385 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1386 goto out;
1387 }
1388
1389 if (finiver)
1390 *finiver = ntohl(caps_cmd->finiver);
1391 if (finicsum)
1392 *finicsum = ntohl(caps_cmd->finicsum);
1393 if (cfcsum)
1394 *cfcsum = ntohl(caps_cmd->cfcsum);
1395
1396 /* Validate device capabilities */
1397 if (csio_hw_validate_caps(hw, mbp)) {
1398 rv = -ENOENT;
1399 goto out;
1400 }
1401
1402 /*
1403 * And now tell the firmware to use the configuration we just loaded.
1404 */
1405 caps_cmd->op_to_write =
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05301406 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1407 FW_CMD_REQUEST_F |
1408 FW_CMD_WRITE_F);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301409 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1410
1411 if (csio_mb_issue(hw, mbp)) {
1412 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1413 goto out;
1414 }
1415
1416 ret = csio_mb_fw_retval(mbp);
1417 if (ret != FW_SUCCESS) {
1418 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1419 goto out;
1420 }
1421
1422 rv = 0;
1423out:
1424 mempool_free(mbp, hw->mb_mempool);
1425 return rv;
1426}
1427
1428/*
1429 * csio_get_device_params - Get device parameters.
1430 * @hw: HW module
1431 *
1432 */
1433static int
1434csio_get_device_params(struct csio_hw *hw)
1435{
1436 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1437 struct csio_mb *mbp;
1438 enum fw_retval retval;
1439 u32 param[6];
1440 int i, j = 0;
1441
1442 /* Initialize portids to -1 */
1443 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1444 hw->pport[i].portid = -1;
1445
1446 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1447 if (!mbp) {
1448 CSIO_INC_STATS(hw, n_err_nomem);
1449 return -ENOMEM;
1450 }
1451
1452 /* Get port vec information. */
1453 param[0] = FW_PARAM_DEV(PORTVEC);
1454
1455 /* Get Core clock. */
1456 param[1] = FW_PARAM_DEV(CCLK);
1457
1458 /* Get EQ id start and end. */
1459 param[2] = FW_PARAM_PFVF(EQ_START);
1460 param[3] = FW_PARAM_PFVF(EQ_END);
1461
1462 /* Get IQ id start and end. */
1463 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1464 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1465
1466 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1467 ARRAY_SIZE(param), param, NULL, false, NULL);
1468 if (csio_mb_issue(hw, mbp)) {
1469 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1470 mempool_free(mbp, hw->mb_mempool);
1471 return -EINVAL;
1472 }
1473
1474 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1475 ARRAY_SIZE(param), param);
1476 if (retval != FW_SUCCESS) {
1477 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1478 retval);
1479 mempool_free(mbp, hw->mb_mempool);
1480 return -EINVAL;
1481 }
1482
1483 /* cache the information. */
1484 hw->port_vec = param[0];
1485 hw->vpd.cclk = param[1];
1486 wrm->fw_eq_start = param[2];
1487 wrm->fw_iq_start = param[4];
1488
1489 /* Using FW configured max iqs & eqs */
1490 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1491 !csio_is_hw_master(hw)) {
1492 hw->cfg_niq = param[5] - param[4] + 1;
1493 hw->cfg_neq = param[3] - param[2] + 1;
1494 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1495 hw->cfg_niq, hw->cfg_neq);
1496 }
1497
1498 hw->port_vec &= csio_port_mask;
1499
1500 hw->num_pports = hweight32(hw->port_vec);
1501
1502 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1503 hw->port_vec, hw->num_pports);
1504
1505 for (i = 0; i < hw->num_pports; i++) {
1506 while ((hw->port_vec & (1 << j)) == 0)
1507 j++;
1508 hw->pport[i].portid = j++;
1509 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1510 }
1511 mempool_free(mbp, hw->mb_mempool);
1512
1513 return 0;
1514}
1515
1516
1517/*
1518 * csio_config_device_caps - Get and set device capabilities.
1519 * @hw: HW module
1520 *
1521 */
1522static int
1523csio_config_device_caps(struct csio_hw *hw)
1524{
1525 struct csio_mb *mbp;
1526 enum fw_retval retval;
1527 int rv = -EINVAL;
1528
1529 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1530 if (!mbp) {
1531 CSIO_INC_STATS(hw, n_err_nomem);
1532 return -ENOMEM;
1533 }
1534
1535 /* Get device capabilities */
1536 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1537
1538 if (csio_mb_issue(hw, mbp)) {
1539 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1540 goto out;
1541 }
1542
1543 retval = csio_mb_fw_retval(mbp);
1544 if (retval != FW_SUCCESS) {
1545 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1546 goto out;
1547 }
1548
1549 /* Validate device capabilities */
1550 if (csio_hw_validate_caps(hw, mbp))
1551 goto out;
1552
1553 /* Don't config device capabilities if already configured */
1554 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1555 rv = 0;
1556 goto out;
1557 }
1558
1559 /* Write back desired device capabilities */
1560 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1561 false, true, NULL);
1562
1563 if (csio_mb_issue(hw, mbp)) {
1564 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1565 goto out;
1566 }
1567
1568 retval = csio_mb_fw_retval(mbp);
1569 if (retval != FW_SUCCESS) {
1570 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1571 goto out;
1572 }
1573
1574 rv = 0;
1575out:
1576 mempool_free(mbp, hw->mb_mempool);
1577 return rv;
1578}
1579
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301580/*
1581 * csio_enable_ports - Bring up all available ports.
1582 * @hw: HW module.
1583 *
1584 */
1585static int
1586csio_enable_ports(struct csio_hw *hw)
1587{
1588 struct csio_mb *mbp;
1589 enum fw_retval retval;
1590 uint8_t portid;
1591 int i;
1592
1593 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1594 if (!mbp) {
1595 CSIO_INC_STATS(hw, n_err_nomem);
1596 return -ENOMEM;
1597 }
1598
1599 for (i = 0; i < hw->num_pports; i++) {
1600 portid = hw->pport[i].portid;
1601
1602 /* Read PORT information */
1603 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1604 false, 0, 0, NULL);
1605
1606 if (csio_mb_issue(hw, mbp)) {
1607 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1608 portid);
1609 mempool_free(mbp, hw->mb_mempool);
1610 return -EINVAL;
1611 }
1612
1613 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1614 &hw->pport[i].pcap);
1615 if (retval != FW_SUCCESS) {
1616 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1617 portid, retval);
1618 mempool_free(mbp, hw->mb_mempool);
1619 return -EINVAL;
1620 }
1621
1622 /* Write back PORT information */
1623 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1624 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1625
1626 if (csio_mb_issue(hw, mbp)) {
1627 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1628 portid);
1629 mempool_free(mbp, hw->mb_mempool);
1630 return -EINVAL;
1631 }
1632
1633 retval = csio_mb_fw_retval(mbp);
1634 if (retval != FW_SUCCESS) {
1635 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1636 portid, retval);
1637 mempool_free(mbp, hw->mb_mempool);
1638 return -EINVAL;
1639 }
1640
1641 } /* For all ports */
1642
1643 mempool_free(mbp, hw->mb_mempool);
1644
1645 return 0;
1646}
1647
1648/*
1649 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1650 * @hw: HW module
1651 * Issued with lock held.
1652 */
1653static int
1654csio_get_fcoe_resinfo(struct csio_hw *hw)
1655{
1656 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1657 struct fw_fcoe_res_info_cmd *rsp;
1658 struct csio_mb *mbp;
1659 enum fw_retval retval;
1660
1661 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1662 if (!mbp) {
1663 CSIO_INC_STATS(hw, n_err_nomem);
1664 return -ENOMEM;
1665 }
1666
1667 /* Get FCoE FW resource information */
1668 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1669
1670 if (csio_mb_issue(hw, mbp)) {
1671 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1672 mempool_free(mbp, hw->mb_mempool);
1673 return -EINVAL;
1674 }
1675
1676 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05301677 retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301678 if (retval != FW_SUCCESS) {
1679 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1680 retval);
1681 mempool_free(mbp, hw->mb_mempool);
1682 return -EINVAL;
1683 }
1684
1685 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1686 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1687 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1688 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1689 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1690 res_info->max_ssns = ntohl(rsp->max_ssns);
1691 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1692 res_info->used_ssns = ntohl(rsp->used_ssns);
1693 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1694 res_info->max_vnps = ntohl(rsp->max_vnps);
1695 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1696 res_info->used_vnps = ntohl(rsp->used_vnps);
1697
1698 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1699 res_info->max_xchgs);
1700 mempool_free(mbp, hw->mb_mempool);
1701
1702 return 0;
1703}
1704
1705static int
1706csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1707{
1708 struct csio_mb *mbp;
1709 enum fw_retval retval;
1710 u32 _param[1];
1711
1712 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1713 if (!mbp) {
1714 CSIO_INC_STATS(hw, n_err_nomem);
1715 return -ENOMEM;
1716 }
1717
1718 /*
1719 * Find out whether we're dealing with a version of
1720 * the firmware which has configuration file support.
1721 */
Hariprasad Shenai51678652014-11-21 12:52:02 +05301722 _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1723 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301724
1725 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1726 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1727 if (csio_mb_issue(hw, mbp)) {
1728 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1729 mempool_free(mbp, hw->mb_mempool);
1730 return -EINVAL;
1731 }
1732
1733 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1734 ARRAY_SIZE(_param), _param);
1735 if (retval != FW_SUCCESS) {
1736 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1737 retval);
1738 mempool_free(mbp, hw->mb_mempool);
1739 return -EINVAL;
1740 }
1741
1742 mempool_free(mbp, hw->mb_mempool);
1743 *param = _param[0];
1744
1745 return 0;
1746}
1747
1748static int
1749csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1750{
1751 int ret = 0;
1752 const struct firmware *cf;
1753 struct pci_dev *pci_dev = hw->pdev;
1754 struct device *dev = &pci_dev->dev;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301755 unsigned int mtype = 0, maddr = 0;
1756 uint32_t *cfg_data;
1757 int value_to_add = 0;
1758
Arvind Bhushan7cc16382013-03-14 05:09:08 +00001759 if (request_firmware(&cf, CSIO_CF_FNAME(hw), dev) < 0) {
1760 csio_err(hw, "could not find config file %s, err: %d\n",
1761 CSIO_CF_FNAME(hw), ret);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301762 return -ENOENT;
1763 }
1764
1765 if (cf->size%4 != 0)
1766 value_to_add = 4 - (cf->size % 4);
1767
1768 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
Jesper Juhl02db3db2012-12-26 21:31:51 +01001769 if (cfg_data == NULL) {
1770 ret = -ENOMEM;
1771 goto leave;
1772 }
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301773
1774 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
Jesper Juhl02db3db2012-12-26 21:31:51 +01001775 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1776 ret = -EINVAL;
1777 goto leave;
1778 }
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301779
Hariprasad Shenai51678652014-11-21 12:52:02 +05301780 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1781 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301782
1783 ret = csio_memory_write(hw, mtype, maddr,
1784 cf->size + value_to_add, cfg_data);
Arvind Bhushan7cc16382013-03-14 05:09:08 +00001785
1786 if ((ret == 0) && (value_to_add != 0)) {
1787 union {
1788 u32 word;
1789 char buf[4];
1790 } last;
1791 size_t size = cf->size & ~0x3;
1792 int i;
1793
1794 last.word = cfg_data[size >> 2];
1795 for (i = value_to_add; i < 4; i++)
1796 last.buf[i] = 0;
1797 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1798 }
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301799 if (ret == 0) {
Arvind Bhushan7cc16382013-03-14 05:09:08 +00001800 csio_info(hw, "config file upgraded to %s\n",
1801 CSIO_CF_FNAME(hw));
1802 snprintf(path, 64, "%s%s", "/lib/firmware/", CSIO_CF_FNAME(hw));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301803 }
1804
Jesper Juhl02db3db2012-12-26 21:31:51 +01001805leave:
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301806 kfree(cfg_data);
1807 release_firmware(cf);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301808 return ret;
1809}
1810
1811/*
1812 * HW initialization: contact FW, obtain config, perform basic init.
1813 *
1814 * If the firmware we're dealing with has Configuration File support, then
1815 * we use that to perform all configuration -- either using the configuration
1816 * file stored in flash on the adapter or using a filesystem-local file
1817 * if available.
1818 *
1819 * If we don't have configuration file support in the firmware, then we'll
1820 * have to set things up the old fashioned way with hard-coded register
1821 * writes and firmware commands ...
1822 */
1823
1824/*
1825 * Attempt to initialize the HW via a Firmware Configuration File.
1826 */
1827static int
1828csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1829{
1830 unsigned int mtype, maddr;
1831 int rv;
Arvind Bhushan7cc16382013-03-14 05:09:08 +00001832 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301833 int using_flash;
1834 char path[64];
1835
1836 /*
1837 * Reset device if necessary
1838 */
1839 if (reset) {
1840 rv = csio_do_reset(hw, true);
1841 if (rv != 0)
1842 goto bye;
1843 }
1844
1845 /*
1846 * If we have a configuration file in host ,
1847 * then use that. Otherwise, use the configuration file stored
1848 * in the HW flash ...
1849 */
1850 spin_unlock_irq(&hw->lock);
1851 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1852 spin_lock_irq(&hw->lock);
1853 if (rv != 0) {
1854 if (rv == -ENOENT) {
1855 /*
1856 * config file was not found. Use default
1857 * config file from flash.
1858 */
1859 mtype = FW_MEMTYPE_CF_FLASH;
Arvind Bhushan7cc16382013-03-14 05:09:08 +00001860 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301861 using_flash = 1;
1862 } else {
1863 /*
1864 * we revert back to the hardwired config if
1865 * flashing failed.
1866 */
1867 goto bye;
1868 }
1869 } else {
Hariprasad Shenai51678652014-11-21 12:52:02 +05301870 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1871 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301872 using_flash = 0;
1873 }
1874
1875 hw->cfg_store = (uint8_t)mtype;
1876
1877 /*
1878 * Issue a Capability Configuration command to the firmware to get it
1879 * to parse the Configuration File.
1880 */
1881 rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
1882 &finicsum, &cfcsum);
1883 if (rv != 0)
1884 goto bye;
1885
1886 hw->cfg_finiver = finiver;
1887 hw->cfg_finicsum = finicsum;
1888 hw->cfg_cfcsum = cfcsum;
1889 hw->cfg_csum_status = true;
1890
1891 if (finicsum != cfcsum) {
1892 csio_warn(hw,
1893 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1894 finicsum, cfcsum);
1895
1896 hw->cfg_csum_status = false;
1897 }
1898
1899 /*
1900 * Note that we're operating with parameters
1901 * not supplied by the driver, rather than from hard-wired
1902 * initialization constants buried in the driver.
1903 */
1904 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1905
1906 /* device parameters */
1907 rv = csio_get_device_params(hw);
1908 if (rv != 0)
1909 goto bye;
1910
1911 /* Configure SGE */
1912 csio_wr_sge_init(hw);
1913
1914 /*
1915 * And finally tell the firmware to initialize itself using the
1916 * parameters from the Configuration File.
1917 */
1918 /* Post event to notify completion of configuration */
1919 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1920
1921 csio_info(hw,
1922 "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
1923 (using_flash ? "in device FLASH" : path), finiver, cfcsum);
1924
1925 return 0;
1926
1927 /*
1928 * Something bad happened. Return the error ...
1929 */
1930bye:
1931 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1932 csio_dbg(hw, "Configuration file error %d\n", rv);
1933 return rv;
1934}
1935
1936/*
1937 * Attempt to initialize the adapter via hard-coded, driver supplied
1938 * parameters ...
1939 */
1940static int
1941csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
1942{
1943 int rv;
1944 /*
1945 * Reset device if necessary
1946 */
1947 if (reset) {
1948 rv = csio_do_reset(hw, true);
1949 if (rv != 0)
1950 goto out;
1951 }
1952
1953 /* Get and set device capabilities */
1954 rv = csio_config_device_caps(hw);
1955 if (rv != 0)
1956 goto out;
1957
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301958 /* device parameters */
1959 rv = csio_get_device_params(hw);
1960 if (rv != 0)
1961 goto out;
1962
1963 /* Configure SGE */
1964 csio_wr_sge_init(hw);
1965
1966 /* Post event to notify completion of configuration */
1967 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1968
1969out:
1970 return rv;
1971}
1972
1973/*
1974 * Returns -EINVAL if attempts to flash the firmware failed
1975 * else returns 0,
1976 * if flashing was not attempted because the card had the
1977 * latest firmware ECANCELED is returned
1978 */
1979static int
1980csio_hw_flash_fw(struct csio_hw *hw)
1981{
1982 int ret = -ECANCELED;
1983 const struct firmware *fw;
1984 const struct fw_hdr *hdr;
1985 u32 fw_ver;
1986 struct pci_dev *pci_dev = hw->pdev;
1987 struct device *dev = &pci_dev->dev ;
1988
Arvind Bhushan7cc16382013-03-14 05:09:08 +00001989 if (request_firmware(&fw, CSIO_FW_FNAME(hw), dev) < 0) {
1990 csio_err(hw, "could not find firmware image %s, err: %d\n",
1991 CSIO_FW_FNAME(hw), ret);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301992 return -EINVAL;
1993 }
1994
1995 hdr = (const struct fw_hdr *)fw->data;
1996 fw_ver = ntohl(hdr->fw_ver);
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05301997 if (FW_HDR_FW_VER_MAJOR_G(fw_ver) != FW_VERSION_MAJOR(hw))
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05301998 return -EINVAL; /* wrong major version, won't do */
1999
2000 /*
2001 * If the flash FW is unusable or we found something newer, load it.
2002 */
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302003 if (FW_HDR_FW_VER_MAJOR_G(hw->fwrev) != FW_VERSION_MAJOR(hw) ||
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302004 fw_ver > hw->fwrev) {
2005 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2006 /*force=*/false);
2007 if (!ret)
Arvind Bhushan7cc16382013-03-14 05:09:08 +00002008 csio_info(hw,
2009 "firmware upgraded to version %pI4 from %s\n",
2010 &hdr->fw_ver, CSIO_FW_FNAME(hw));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302011 else
2012 csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
Arvind Bhushan7cc16382013-03-14 05:09:08 +00002013 } else
2014 ret = -EINVAL;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302015
2016 release_firmware(fw);
2017
2018 return ret;
2019}
2020
2021
2022/*
2023 * csio_hw_configure - Configure HW
2024 * @hw - HW module
2025 *
2026 */
2027static void
2028csio_hw_configure(struct csio_hw *hw)
2029{
2030 int reset = 1;
2031 int rv;
2032 u32 param[1];
2033
2034 rv = csio_hw_dev_ready(hw);
2035 if (rv != 0) {
2036 CSIO_INC_STATS(hw, n_err_fatal);
2037 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2038 goto out;
2039 }
2040
2041 /* HW version */
2042 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2043
2044 /* Needed for FW download */
2045 rv = csio_hw_get_flash_params(hw);
2046 if (rv != 0) {
2047 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2048 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2049 goto out;
2050 }
2051
Yijing Wangad4d35f2013-09-05 15:55:26 +08002052 /* Set PCIe completion timeout to 4 seconds */
2053 if (pci_is_pcie(hw->pdev))
2054 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2055 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302056
Arvind Bhushan7cc16382013-03-14 05:09:08 +00002057 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302058
2059 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2060 if (rv != 0)
2061 goto out;
2062
2063 csio_hw_print_fw_version(hw, "Firmware revision");
2064
2065 rv = csio_do_hello(hw, &hw->fw_state);
2066 if (rv != 0) {
2067 CSIO_INC_STATS(hw, n_err_fatal);
2068 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2069 goto out;
2070 }
2071
2072 /* Read vpd */
2073 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2074 if (rv != 0)
2075 goto out;
2076
2077 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2078 rv = csio_hw_check_fw_version(hw);
2079 if (rv == -EINVAL) {
2080
2081 /* Do firmware update */
2082 spin_unlock_irq(&hw->lock);
2083 rv = csio_hw_flash_fw(hw);
2084 spin_lock_irq(&hw->lock);
2085
2086 if (rv == 0) {
2087 reset = 0;
2088 /*
2089 * Note that the chip was reset as part of the
2090 * firmware upgrade so we don't reset it again
2091 * below and grab the new firmware version.
2092 */
2093 rv = csio_hw_check_fw_version(hw);
2094 }
2095 }
2096 /*
2097 * If the firmware doesn't support Configuration
2098 * Files, use the old Driver-based, hard-wired
2099 * initialization. Otherwise, try using the
2100 * Configuration File support and fall back to the
2101 * Driver-based initialization if there's no
2102 * Configuration File found.
2103 */
2104 if (csio_hw_check_fwconfig(hw, param) == 0) {
2105 rv = csio_hw_use_fwconfig(hw, reset, param);
2106 if (rv == -ENOENT)
2107 goto out;
2108 if (rv != 0) {
2109 csio_info(hw,
2110 "No Configuration File present "
2111 "on adapter. Using hard-wired "
2112 "configuration parameters.\n");
2113 rv = csio_hw_no_fwconfig(hw, reset);
2114 }
2115 } else {
2116 rv = csio_hw_no_fwconfig(hw, reset);
2117 }
2118
2119 if (rv != 0)
2120 goto out;
2121
2122 } else {
2123 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2124
Arvind Bhushan7cc16382013-03-14 05:09:08 +00002125 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2126
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302127 /* device parameters */
2128 rv = csio_get_device_params(hw);
2129 if (rv != 0)
2130 goto out;
2131
2132 /* Get device capabilities */
2133 rv = csio_config_device_caps(hw);
2134 if (rv != 0)
2135 goto out;
2136
2137 /* Configure SGE */
2138 csio_wr_sge_init(hw);
2139
2140 /* Post event to notify completion of configuration */
2141 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2142 goto out;
2143 }
2144 } /* if not master */
2145
2146out:
2147 return;
2148}
2149
2150/*
2151 * csio_hw_initialize - Initialize HW
2152 * @hw - HW module
2153 *
2154 */
2155static void
2156csio_hw_initialize(struct csio_hw *hw)
2157{
2158 struct csio_mb *mbp;
2159 enum fw_retval retval;
2160 int rv;
2161 int i;
2162
2163 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2164 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2165 if (!mbp)
2166 goto out;
2167
2168 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2169
2170 if (csio_mb_issue(hw, mbp)) {
2171 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2172 goto free_and_out;
2173 }
2174
2175 retval = csio_mb_fw_retval(mbp);
2176 if (retval != FW_SUCCESS) {
2177 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2178 retval);
2179 goto free_and_out;
2180 }
2181
2182 mempool_free(mbp, hw->mb_mempool);
2183 }
2184
2185 rv = csio_get_fcoe_resinfo(hw);
2186 if (rv != 0) {
2187 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2188 goto out;
2189 }
2190
2191 spin_unlock_irq(&hw->lock);
2192 rv = csio_config_queues(hw);
2193 spin_lock_irq(&hw->lock);
2194
2195 if (rv != 0) {
2196 csio_err(hw, "Config of queues failed!: %d\n", rv);
2197 goto out;
2198 }
2199
2200 for (i = 0; i < hw->num_pports; i++)
2201 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2202
2203 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2204 rv = csio_enable_ports(hw);
2205 if (rv != 0) {
2206 csio_err(hw, "Failed to enable ports: %d\n", rv);
2207 goto out;
2208 }
2209 }
2210
2211 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2212 return;
2213
2214free_and_out:
2215 mempool_free(mbp, hw->mb_mempool);
2216out:
2217 return;
2218}
2219
2220#define PF_INTR_MASK (PFSW | PFCIM)
2221
2222/*
2223 * csio_hw_intr_enable - Enable HW interrupts
2224 * @hw: Pointer to HW module.
2225 *
2226 * Enable interrupts in HW registers.
2227 */
2228static void
2229csio_hw_intr_enable(struct csio_hw *hw)
2230{
2231 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2232 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2233 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2234
2235 /*
2236 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2237 * by FW, so do nothing for INTX.
2238 */
2239 if (hw->intr_mode == CSIO_IM_MSIX)
2240 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2241 AIVEC(AIVEC_MASK), vec);
2242 else if (hw->intr_mode == CSIO_IM_MSI)
2243 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2244 AIVEC(AIVEC_MASK), 0);
2245
2246 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2247
2248 /* Turn on MB interrupts - this will internally flush PIO as well */
2249 csio_mb_intr_enable(hw);
2250
2251 /* These are common registers - only a master can modify them */
2252 if (csio_is_hw_master(hw)) {
2253 /*
2254 * Disable the Serial FLASH interrupt, if enabled!
2255 */
2256 pl &= (~SF);
2257 csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2258
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302259 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2260 EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2261 ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2262 ERR_DATA_CPL_ON_HIGH_QID1_F |
2263 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2264 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2265 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2266 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2267 SGE_INT_ENABLE3_A);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302268 csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2269 }
2270
2271 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2272
2273}
2274
2275/*
2276 * csio_hw_intr_disable - Disable HW interrupts
2277 * @hw: Pointer to HW module.
2278 *
2279 * Turn off Mailbox and PCI_PF_CFG interrupts.
2280 */
2281void
2282csio_hw_intr_disable(struct csio_hw *hw)
2283{
2284 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2285
2286 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2287 return;
2288
2289 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2290
2291 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2292 if (csio_is_hw_master(hw))
2293 csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2294
2295 /* Turn off MB interrupts */
2296 csio_mb_intr_disable(hw);
2297
2298}
2299
Arvind Bhushan7cc16382013-03-14 05:09:08 +00002300void
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302301csio_hw_fatal_err(struct csio_hw *hw)
2302{
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302303 csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302304 csio_hw_intr_disable(hw);
2305
2306 /* Do not reset HW, we may need FW state for debugging */
2307 csio_fatal(hw, "HW Fatal error encountered!\n");
2308}
2309
2310/*****************************************************************************/
2311/* START: HW SM */
2312/*****************************************************************************/
2313/*
2314 * csio_hws_uninit - Uninit state
2315 * @hw - HW module
2316 * @evt - Event
2317 *
2318 */
2319static void
2320csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2321{
2322 hw->prev_evt = hw->cur_evt;
2323 hw->cur_evt = evt;
2324 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2325
2326 switch (evt) {
2327 case CSIO_HWE_CFG:
2328 csio_set_state(&hw->sm, csio_hws_configuring);
2329 csio_hw_configure(hw);
2330 break;
2331
2332 default:
2333 CSIO_INC_STATS(hw, n_evt_unexp);
2334 break;
2335 }
2336}
2337
2338/*
2339 * csio_hws_configuring - Configuring state
2340 * @hw - HW module
2341 * @evt - Event
2342 *
2343 */
2344static void
2345csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2346{
2347 hw->prev_evt = hw->cur_evt;
2348 hw->cur_evt = evt;
2349 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2350
2351 switch (evt) {
2352 case CSIO_HWE_INIT:
2353 csio_set_state(&hw->sm, csio_hws_initializing);
2354 csio_hw_initialize(hw);
2355 break;
2356
2357 case CSIO_HWE_INIT_DONE:
2358 csio_set_state(&hw->sm, csio_hws_ready);
2359 /* Fan out event to all lnode SMs */
2360 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2361 break;
2362
2363 case CSIO_HWE_FATAL:
2364 csio_set_state(&hw->sm, csio_hws_uninit);
2365 break;
2366
2367 case CSIO_HWE_PCI_REMOVE:
2368 csio_do_bye(hw);
2369 break;
2370 default:
2371 CSIO_INC_STATS(hw, n_evt_unexp);
2372 break;
2373 }
2374}
2375
2376/*
2377 * csio_hws_initializing - Initialiazing state
2378 * @hw - HW module
2379 * @evt - Event
2380 *
2381 */
2382static void
2383csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2384{
2385 hw->prev_evt = hw->cur_evt;
2386 hw->cur_evt = evt;
2387 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2388
2389 switch (evt) {
2390 case CSIO_HWE_INIT_DONE:
2391 csio_set_state(&hw->sm, csio_hws_ready);
2392
2393 /* Fan out event to all lnode SMs */
2394 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2395
2396 /* Enable interrupts */
2397 csio_hw_intr_enable(hw);
2398 break;
2399
2400 case CSIO_HWE_FATAL:
2401 csio_set_state(&hw->sm, csio_hws_uninit);
2402 break;
2403
2404 case CSIO_HWE_PCI_REMOVE:
2405 csio_do_bye(hw);
2406 break;
2407
2408 default:
2409 CSIO_INC_STATS(hw, n_evt_unexp);
2410 break;
2411 }
2412}
2413
2414/*
2415 * csio_hws_ready - Ready state
2416 * @hw - HW module
2417 * @evt - Event
2418 *
2419 */
2420static void
2421csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2422{
2423 /* Remember the event */
2424 hw->evtflag = evt;
2425
2426 hw->prev_evt = hw->cur_evt;
2427 hw->cur_evt = evt;
2428 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2429
2430 switch (evt) {
2431 case CSIO_HWE_HBA_RESET:
2432 case CSIO_HWE_FW_DLOAD:
2433 case CSIO_HWE_SUSPEND:
2434 case CSIO_HWE_PCI_REMOVE:
2435 case CSIO_HWE_PCIERR_DETECTED:
2436 csio_set_state(&hw->sm, csio_hws_quiescing);
2437 /* cleanup all outstanding cmds */
2438 if (evt == CSIO_HWE_HBA_RESET ||
2439 evt == CSIO_HWE_PCIERR_DETECTED)
2440 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2441 else
2442 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2443
2444 csio_hw_intr_disable(hw);
2445 csio_hw_mbm_cleanup(hw);
2446 csio_evtq_stop(hw);
2447 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2448 csio_evtq_flush(hw);
2449 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2450 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2451 break;
2452
2453 case CSIO_HWE_FATAL:
2454 csio_set_state(&hw->sm, csio_hws_uninit);
2455 break;
2456
2457 default:
2458 CSIO_INC_STATS(hw, n_evt_unexp);
2459 break;
2460 }
2461}
2462
2463/*
2464 * csio_hws_quiescing - Quiescing state
2465 * @hw - HW module
2466 * @evt - Event
2467 *
2468 */
2469static void
2470csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2471{
2472 hw->prev_evt = hw->cur_evt;
2473 hw->cur_evt = evt;
2474 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2475
2476 switch (evt) {
2477 case CSIO_HWE_QUIESCED:
2478 switch (hw->evtflag) {
2479 case CSIO_HWE_FW_DLOAD:
2480 csio_set_state(&hw->sm, csio_hws_resetting);
2481 /* Download firmware */
2482 /* Fall through */
2483
2484 case CSIO_HWE_HBA_RESET:
2485 csio_set_state(&hw->sm, csio_hws_resetting);
2486 /* Start reset of the HBA */
2487 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2488 csio_wr_destroy_queues(hw, false);
2489 csio_do_reset(hw, false);
2490 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2491 break;
2492
2493 case CSIO_HWE_PCI_REMOVE:
2494 csio_set_state(&hw->sm, csio_hws_removing);
2495 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2496 csio_wr_destroy_queues(hw, true);
2497 /* Now send the bye command */
2498 csio_do_bye(hw);
2499 break;
2500
2501 case CSIO_HWE_SUSPEND:
2502 csio_set_state(&hw->sm, csio_hws_quiesced);
2503 break;
2504
2505 case CSIO_HWE_PCIERR_DETECTED:
2506 csio_set_state(&hw->sm, csio_hws_pcierr);
2507 csio_wr_destroy_queues(hw, false);
2508 break;
2509
2510 default:
2511 CSIO_INC_STATS(hw, n_evt_unexp);
2512 break;
2513
2514 }
2515 break;
2516
2517 default:
2518 CSIO_INC_STATS(hw, n_evt_unexp);
2519 break;
2520 }
2521}
2522
2523/*
2524 * csio_hws_quiesced - Quiesced state
2525 * @hw - HW module
2526 * @evt - Event
2527 *
2528 */
2529static void
2530csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2531{
2532 hw->prev_evt = hw->cur_evt;
2533 hw->cur_evt = evt;
2534 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2535
2536 switch (evt) {
2537 case CSIO_HWE_RESUME:
2538 csio_set_state(&hw->sm, csio_hws_configuring);
2539 csio_hw_configure(hw);
2540 break;
2541
2542 default:
2543 CSIO_INC_STATS(hw, n_evt_unexp);
2544 break;
2545 }
2546}
2547
2548/*
2549 * csio_hws_resetting - HW Resetting state
2550 * @hw - HW module
2551 * @evt - Event
2552 *
2553 */
2554static void
2555csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2556{
2557 hw->prev_evt = hw->cur_evt;
2558 hw->cur_evt = evt;
2559 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2560
2561 switch (evt) {
2562 case CSIO_HWE_HBA_RESET_DONE:
2563 csio_evtq_start(hw);
2564 csio_set_state(&hw->sm, csio_hws_configuring);
2565 csio_hw_configure(hw);
2566 break;
2567
2568 default:
2569 CSIO_INC_STATS(hw, n_evt_unexp);
2570 break;
2571 }
2572}
2573
2574/*
2575 * csio_hws_removing - PCI Hotplug removing state
2576 * @hw - HW module
2577 * @evt - Event
2578 *
2579 */
2580static void
2581csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2582{
2583 hw->prev_evt = hw->cur_evt;
2584 hw->cur_evt = evt;
2585 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2586
2587 switch (evt) {
2588 case CSIO_HWE_HBA_RESET:
2589 if (!csio_is_hw_master(hw))
2590 break;
2591 /*
2592 * The BYE should have alerady been issued, so we cant
2593 * use the mailbox interface. Hence we use the PL_RST
2594 * register directly.
2595 */
2596 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2597 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2598 mdelay(2000);
2599 break;
2600
2601 /* Should never receive any new events */
2602 default:
2603 CSIO_INC_STATS(hw, n_evt_unexp);
2604 break;
2605
2606 }
2607}
2608
2609/*
2610 * csio_hws_pcierr - PCI Error state
2611 * @hw - HW module
2612 * @evt - Event
2613 *
2614 */
2615static void
2616csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2617{
2618 hw->prev_evt = hw->cur_evt;
2619 hw->cur_evt = evt;
2620 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2621
2622 switch (evt) {
2623 case CSIO_HWE_PCIERR_SLOT_RESET:
2624 csio_evtq_start(hw);
2625 csio_set_state(&hw->sm, csio_hws_configuring);
2626 csio_hw_configure(hw);
2627 break;
2628
2629 default:
2630 CSIO_INC_STATS(hw, n_evt_unexp);
2631 break;
2632 }
2633}
2634
2635/*****************************************************************************/
2636/* END: HW SM */
2637/*****************************************************************************/
2638
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302639/*
2640 * csio_handle_intr_status - table driven interrupt handler
2641 * @hw: HW instance
2642 * @reg: the interrupt status register to process
2643 * @acts: table of interrupt actions
2644 *
2645 * A table driven interrupt handler that applies a set of masks to an
2646 * interrupt status word and performs the corresponding actions if the
2647 * interrupts described by the mask have occured. The actions include
2648 * optionally emitting a warning or alert message. The table is terminated
2649 * by an entry specifying mask 0. Returns the number of fatal interrupt
2650 * conditions.
2651 */
Arvind Bhushan7cc16382013-03-14 05:09:08 +00002652int
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302653csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2654 const struct intr_info *acts)
2655{
2656 int fatal = 0;
2657 unsigned int mask = 0;
2658 unsigned int status = csio_rd_reg32(hw, reg);
2659
2660 for ( ; acts->mask; ++acts) {
2661 if (!(status & acts->mask))
2662 continue;
2663 if (acts->fatal) {
2664 fatal++;
2665 csio_fatal(hw, "Fatal %s (0x%x)\n",
2666 acts->msg, status & acts->mask);
2667 } else if (acts->msg)
2668 csio_info(hw, "%s (0x%x)\n",
2669 acts->msg, status & acts->mask);
2670 mask |= acts->mask;
2671 }
2672 status &= mask;
2673 if (status) /* clear processed interrupts */
2674 csio_wr_reg32(hw, status, reg);
2675 return fatal;
2676}
2677
2678/*
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302679 * TP interrupt handler.
2680 */
2681static void csio_tp_intr_handler(struct csio_hw *hw)
2682{
2683 static struct intr_info tp_intr_info[] = {
2684 { 0x3fffffff, "TP parity error", -1, 1 },
2685 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2686 { 0, NULL, 0, 0 }
2687 };
2688
2689 if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
2690 csio_hw_fatal_err(hw);
2691}
2692
2693/*
2694 * SGE interrupt handler.
2695 */
2696static void csio_sge_intr_handler(struct csio_hw *hw)
2697{
2698 uint64_t v;
2699
2700 static struct intr_info sge_intr_info[] = {
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302701 { ERR_CPL_EXCEED_IQE_SIZE_F,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302702 "SGE received CPL exceeding IQE size", -1, 1 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302703 { ERR_INVALID_CIDX_INC_F,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302704 "SGE GTS CIDX increment too large", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302705 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2706 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2707 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302708 "SGE IQID > 1023 received CPL for FL", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302709 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302710 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302711 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302712 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302713 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302714 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302715 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302716 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302717 { ERR_ING_CTXT_PRIO_F,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302718 "SGE too many priority ingress contexts", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302719 { ERR_EGR_CTXT_PRIO_F,
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302720 "SGE too many priority egress contexts", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302721 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2722 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302723 { 0, NULL, 0, 0 }
2724 };
2725
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302726 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2727 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302728 if (v) {
2729 csio_fatal(hw, "SGE parity error (%#llx)\n",
2730 (unsigned long long)v);
2731 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302732 SGE_INT_CAUSE1_A);
2733 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302734 }
2735
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302736 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302737
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302738 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05302739 v != 0)
2740 csio_hw_fatal_err(hw);
2741}
2742
2743#define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
2744 OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
2745#define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
2746 IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
2747
2748/*
2749 * CIM interrupt handler.
2750 */
2751static void csio_cim_intr_handler(struct csio_hw *hw)
2752{
2753 static struct intr_info cim_intr_info[] = {
2754 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2755 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2756 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2757 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2758 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2759 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2760 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2761 { 0, NULL, 0, 0 }
2762 };
2763 static struct intr_info cim_upintr_info[] = {
2764 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2765 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2766 { ILLWRINT, "CIM illegal write", -1, 1 },
2767 { ILLRDINT, "CIM illegal read", -1, 1 },
2768 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2769 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2770 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2771 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2772 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2773 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2774 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2775 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2776 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2777 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2778 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2779 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2780 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2781 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2782 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2783 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2784 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2785 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2786 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2787 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2788 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2789 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2790 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2791 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2792 { 0, NULL, 0, 0 }
2793 };
2794
2795 int fat;
2796
2797 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
2798 cim_intr_info) +
2799 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
2800 cim_upintr_info);
2801 if (fat)
2802 csio_hw_fatal_err(hw);
2803}
2804
2805/*
2806 * ULP RX interrupt handler.
2807 */
2808static void csio_ulprx_intr_handler(struct csio_hw *hw)
2809{
2810 static struct intr_info ulprx_intr_info[] = {
2811 { 0x1800000, "ULPRX context error", -1, 1 },
2812 { 0x7fffff, "ULPRX parity error", -1, 1 },
2813 { 0, NULL, 0, 0 }
2814 };
2815
2816 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
2817 csio_hw_fatal_err(hw);
2818}
2819
2820/*
2821 * ULP TX interrupt handler.
2822 */
2823static void csio_ulptx_intr_handler(struct csio_hw *hw)
2824{
2825 static struct intr_info ulptx_intr_info[] = {
2826 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2827 0 },
2828 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2829 0 },
2830 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2831 0 },
2832 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2833 0 },
2834 { 0xfffffff, "ULPTX parity error", -1, 1 },
2835 { 0, NULL, 0, 0 }
2836 };
2837
2838 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
2839 csio_hw_fatal_err(hw);
2840}
2841
2842/*
2843 * PM TX interrupt handler.
2844 */
2845static void csio_pmtx_intr_handler(struct csio_hw *hw)
2846{
2847 static struct intr_info pmtx_intr_info[] = {
2848 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2849 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2850 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2851 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2852 { 0xffffff0, "PMTX framing error", -1, 1 },
2853 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2854 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2855 1 },
2856 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2857 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2858 { 0, NULL, 0, 0 }
2859 };
2860
2861 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
2862 csio_hw_fatal_err(hw);
2863}
2864
2865/*
2866 * PM RX interrupt handler.
2867 */
2868static void csio_pmrx_intr_handler(struct csio_hw *hw)
2869{
2870 static struct intr_info pmrx_intr_info[] = {
2871 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2872 { 0x3ffff0, "PMRX framing error", -1, 1 },
2873 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2874 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2875 1 },
2876 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2877 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2878 { 0, NULL, 0, 0 }
2879 };
2880
2881 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
2882 csio_hw_fatal_err(hw);
2883}
2884
2885/*
2886 * CPL switch interrupt handler.
2887 */
2888static void csio_cplsw_intr_handler(struct csio_hw *hw)
2889{
2890 static struct intr_info cplsw_intr_info[] = {
2891 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2892 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2893 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2894 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2895 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2896 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2897 { 0, NULL, 0, 0 }
2898 };
2899
2900 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
2901 csio_hw_fatal_err(hw);
2902}
2903
2904/*
2905 * LE interrupt handler.
2906 */
2907static void csio_le_intr_handler(struct csio_hw *hw)
2908{
2909 static struct intr_info le_intr_info[] = {
2910 { LIPMISS, "LE LIP miss", -1, 0 },
2911 { LIP0, "LE 0 LIP error", -1, 0 },
2912 { PARITYERR, "LE parity error", -1, 1 },
2913 { UNKNOWNCMD, "LE unknown command", -1, 1 },
2914 { REQQPARERR, "LE request queue parity error", -1, 1 },
2915 { 0, NULL, 0, 0 }
2916 };
2917
2918 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
2919 csio_hw_fatal_err(hw);
2920}
2921
2922/*
2923 * MPS interrupt handler.
2924 */
2925static void csio_mps_intr_handler(struct csio_hw *hw)
2926{
2927 static struct intr_info mps_rx_intr_info[] = {
2928 { 0xffffff, "MPS Rx parity error", -1, 1 },
2929 { 0, NULL, 0, 0 }
2930 };
2931 static struct intr_info mps_tx_intr_info[] = {
2932 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
2933 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2934 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
2935 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
2936 { BUBBLE, "MPS Tx underflow", -1, 1 },
2937 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2938 { FRMERR, "MPS Tx framing error", -1, 1 },
2939 { 0, NULL, 0, 0 }
2940 };
2941 static struct intr_info mps_trc_intr_info[] = {
2942 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
2943 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
2944 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
2945 { 0, NULL, 0, 0 }
2946 };
2947 static struct intr_info mps_stat_sram_intr_info[] = {
2948 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2949 { 0, NULL, 0, 0 }
2950 };
2951 static struct intr_info mps_stat_tx_intr_info[] = {
2952 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2953 { 0, NULL, 0, 0 }
2954 };
2955 static struct intr_info mps_stat_rx_intr_info[] = {
2956 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2957 { 0, NULL, 0, 0 }
2958 };
2959 static struct intr_info mps_cls_intr_info[] = {
2960 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2961 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2962 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2963 { 0, NULL, 0, 0 }
2964 };
2965
2966 int fat;
2967
2968 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
2969 mps_rx_intr_info) +
2970 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
2971 mps_tx_intr_info) +
2972 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
2973 mps_trc_intr_info) +
2974 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
2975 mps_stat_sram_intr_info) +
2976 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2977 mps_stat_tx_intr_info) +
2978 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2979 mps_stat_rx_intr_info) +
2980 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
2981 mps_cls_intr_info);
2982
2983 csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
2984 csio_rd_reg32(hw, MPS_INT_CAUSE); /* flush */
2985 if (fat)
2986 csio_hw_fatal_err(hw);
2987}
2988
2989#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
2990
2991/*
2992 * EDC/MC interrupt handler.
2993 */
2994static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
2995{
2996 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
2997
2998 unsigned int addr, cnt_addr, v;
2999
3000 if (idx <= MEM_EDC1) {
3001 addr = EDC_REG(EDC_INT_CAUSE, idx);
3002 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3003 } else {
3004 addr = MC_INT_CAUSE;
3005 cnt_addr = MC_ECC_STATUS;
3006 }
3007
3008 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3009 if (v & PERR_INT_CAUSE)
3010 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3011 if (v & ECC_CE_INT_CAUSE) {
3012 uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3013
3014 csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3015 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3016 cnt, name[idx], cnt > 1 ? "s" : "");
3017 }
3018 if (v & ECC_UE_INT_CAUSE)
3019 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3020
3021 csio_wr_reg32(hw, v, addr);
3022 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3023 csio_hw_fatal_err(hw);
3024}
3025
3026/*
3027 * MA interrupt handler.
3028 */
3029static void csio_ma_intr_handler(struct csio_hw *hw)
3030{
3031 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3032
3033 if (status & MEM_PERR_INT_CAUSE)
3034 csio_fatal(hw, "MA parity error, parity status %#x\n",
3035 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3036 if (status & MEM_WRAP_INT_CAUSE) {
3037 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3038 csio_fatal(hw,
3039 "MA address wrap-around error by client %u to address %#x\n",
3040 MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3041 }
3042 csio_wr_reg32(hw, status, MA_INT_CAUSE);
3043 csio_hw_fatal_err(hw);
3044}
3045
3046/*
3047 * SMB interrupt handler.
3048 */
3049static void csio_smb_intr_handler(struct csio_hw *hw)
3050{
3051 static struct intr_info smb_intr_info[] = {
3052 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3053 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3054 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3055 { 0, NULL, 0, 0 }
3056 };
3057
3058 if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3059 csio_hw_fatal_err(hw);
3060}
3061
3062/*
3063 * NC-SI interrupt handler.
3064 */
3065static void csio_ncsi_intr_handler(struct csio_hw *hw)
3066{
3067 static struct intr_info ncsi_intr_info[] = {
3068 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3069 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3070 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3071 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3072 { 0, NULL, 0, 0 }
3073 };
3074
3075 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3076 csio_hw_fatal_err(hw);
3077}
3078
3079/*
3080 * XGMAC interrupt handler.
3081 */
3082static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3083{
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003084 uint32_t v = csio_rd_reg32(hw, CSIO_MAC_INT_CAUSE_REG(hw, port));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303085
3086 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3087 if (!v)
3088 return;
3089
3090 if (v & TXFIFO_PRTY_ERR)
3091 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3092 if (v & RXFIFO_PRTY_ERR)
3093 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003094 csio_wr_reg32(hw, v, CSIO_MAC_INT_CAUSE_REG(hw, port));
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303095 csio_hw_fatal_err(hw);
3096}
3097
3098/*
3099 * PL interrupt handler.
3100 */
3101static void csio_pl_intr_handler(struct csio_hw *hw)
3102{
3103 static struct intr_info pl_intr_info[] = {
3104 { FATALPERR, "T4 fatal parity error", -1, 1 },
3105 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3106 { 0, NULL, 0, 0 }
3107 };
3108
3109 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3110 csio_hw_fatal_err(hw);
3111}
3112
3113/*
3114 * csio_hw_slow_intr_handler - control path interrupt handler
3115 * @hw: HW module
3116 *
3117 * Interrupt handler for non-data global interrupt events, e.g., errors.
3118 * The designation 'slow' is because it involves register reads, while
3119 * data interrupts typically don't involve any MMIOs.
3120 */
3121int
3122csio_hw_slow_intr_handler(struct csio_hw *hw)
3123{
3124 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3125
3126 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3127 CSIO_INC_STATS(hw, n_plint_unexp);
3128 return 0;
3129 }
3130
3131 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3132
3133 CSIO_INC_STATS(hw, n_plint_cnt);
3134
3135 if (cause & CIM)
3136 csio_cim_intr_handler(hw);
3137
3138 if (cause & MPS)
3139 csio_mps_intr_handler(hw);
3140
3141 if (cause & NCSI)
3142 csio_ncsi_intr_handler(hw);
3143
3144 if (cause & PL)
3145 csio_pl_intr_handler(hw);
3146
3147 if (cause & SMB)
3148 csio_smb_intr_handler(hw);
3149
3150 if (cause & XGMAC0)
3151 csio_xgmac_intr_handler(hw, 0);
3152
3153 if (cause & XGMAC1)
3154 csio_xgmac_intr_handler(hw, 1);
3155
3156 if (cause & XGMAC_KR0)
3157 csio_xgmac_intr_handler(hw, 2);
3158
3159 if (cause & XGMAC_KR1)
3160 csio_xgmac_intr_handler(hw, 3);
3161
3162 if (cause & PCIE)
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003163 hw->chip_ops->chip_pcie_intr_handler(hw);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303164
3165 if (cause & MC)
3166 csio_mem_intr_handler(hw, MEM_MC);
3167
3168 if (cause & EDC0)
3169 csio_mem_intr_handler(hw, MEM_EDC0);
3170
3171 if (cause & EDC1)
3172 csio_mem_intr_handler(hw, MEM_EDC1);
3173
3174 if (cause & LE)
3175 csio_le_intr_handler(hw);
3176
3177 if (cause & TP)
3178 csio_tp_intr_handler(hw);
3179
3180 if (cause & MA)
3181 csio_ma_intr_handler(hw);
3182
3183 if (cause & PM_TX)
3184 csio_pmtx_intr_handler(hw);
3185
3186 if (cause & PM_RX)
3187 csio_pmrx_intr_handler(hw);
3188
3189 if (cause & ULP_RX)
3190 csio_ulprx_intr_handler(hw);
3191
3192 if (cause & CPL_SWITCH)
3193 csio_cplsw_intr_handler(hw);
3194
3195 if (cause & SGE)
3196 csio_sge_intr_handler(hw);
3197
3198 if (cause & ULP_TX)
3199 csio_ulptx_intr_handler(hw);
3200
3201 /* Clear the interrupts just processed for which we are the master. */
3202 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3203 csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3204
3205 return 1;
3206}
3207
3208/*****************************************************************************
3209 * HW <--> mailbox interfacing routines.
3210 ****************************************************************************/
3211/*
3212 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3213 *
3214 * @data: Private data pointer.
3215 *
3216 * Called from worker thread context.
3217 */
3218static void
3219csio_mberr_worker(void *data)
3220{
3221 struct csio_hw *hw = (struct csio_hw *)data;
3222 struct csio_mbm *mbm = &hw->mbm;
3223 LIST_HEAD(cbfn_q);
3224 struct csio_mb *mbp_next;
3225 int rv;
3226
3227 del_timer_sync(&mbm->timer);
3228
3229 spin_lock_irq(&hw->lock);
3230 if (list_empty(&mbm->cbfn_q)) {
3231 spin_unlock_irq(&hw->lock);
3232 return;
3233 }
3234
3235 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3236 mbm->stats.n_cbfnq = 0;
3237
3238 /* Try to start waiting mailboxes */
3239 if (!list_empty(&mbm->req_q)) {
3240 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3241 list_del_init(&mbp_next->list);
3242
3243 rv = csio_mb_issue(hw, mbp_next);
3244 if (rv != 0)
3245 list_add_tail(&mbp_next->list, &mbm->req_q);
3246 else
3247 CSIO_DEC_STATS(mbm, n_activeq);
3248 }
3249 spin_unlock_irq(&hw->lock);
3250
3251 /* Now callback completions */
3252 csio_mb_completions(hw, &cbfn_q);
3253}
3254
3255/*
3256 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3257 *
3258 * @data: private data pointer
3259 *
3260 **/
3261static void
3262csio_hw_mb_timer(uintptr_t data)
3263{
3264 struct csio_hw *hw = (struct csio_hw *)data;
3265 struct csio_mb *mbp = NULL;
3266
3267 spin_lock_irq(&hw->lock);
3268 mbp = csio_mb_tmo_handler(hw);
3269 spin_unlock_irq(&hw->lock);
3270
3271 /* Call back the function for the timed-out Mailbox */
3272 if (mbp)
3273 mbp->mb_cbfn(hw, mbp);
3274
3275}
3276
3277/*
3278 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3279 * @hw: HW module
3280 *
3281 * Called with lock held, should exit with lock held.
3282 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3283 * into a local queue. Drops lock and calls the completions. Holds
3284 * lock and returns.
3285 */
3286static void
3287csio_hw_mbm_cleanup(struct csio_hw *hw)
3288{
3289 LIST_HEAD(cbfn_q);
3290
3291 csio_mb_cancel_all(hw, &cbfn_q);
3292
3293 spin_unlock_irq(&hw->lock);
3294 csio_mb_completions(hw, &cbfn_q);
3295 spin_lock_irq(&hw->lock);
3296}
3297
3298/*****************************************************************************
3299 * Event handling
3300 ****************************************************************************/
3301int
3302csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3303 uint16_t len)
3304{
3305 struct csio_evt_msg *evt_entry = NULL;
3306
3307 if (type >= CSIO_EVT_MAX)
3308 return -EINVAL;
3309
3310 if (len > CSIO_EVT_MSG_SIZE)
3311 return -EINVAL;
3312
3313 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3314 return -EINVAL;
3315
3316 if (list_empty(&hw->evt_free_q)) {
3317 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3318 type, len);
3319 return -ENOMEM;
3320 }
3321
3322 evt_entry = list_first_entry(&hw->evt_free_q,
3323 struct csio_evt_msg, list);
3324 list_del_init(&evt_entry->list);
3325
3326 /* copy event msg and queue the event */
3327 evt_entry->type = type;
3328 memcpy((void *)evt_entry->data, evt_msg, len);
3329 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3330
3331 CSIO_DEC_STATS(hw, n_evt_freeq);
3332 CSIO_INC_STATS(hw, n_evt_activeq);
3333
3334 return 0;
3335}
3336
3337static int
3338csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3339 uint16_t len, bool msg_sg)
3340{
3341 struct csio_evt_msg *evt_entry = NULL;
3342 struct csio_fl_dma_buf *fl_sg;
3343 uint32_t off = 0;
3344 unsigned long flags;
3345 int n, ret = 0;
3346
3347 if (type >= CSIO_EVT_MAX)
3348 return -EINVAL;
3349
3350 if (len > CSIO_EVT_MSG_SIZE)
3351 return -EINVAL;
3352
3353 spin_lock_irqsave(&hw->lock, flags);
3354 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3355 ret = -EINVAL;
3356 goto out;
3357 }
3358
3359 if (list_empty(&hw->evt_free_q)) {
3360 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3361 type, len);
3362 ret = -ENOMEM;
3363 goto out;
3364 }
3365
3366 evt_entry = list_first_entry(&hw->evt_free_q,
3367 struct csio_evt_msg, list);
3368 list_del_init(&evt_entry->list);
3369
3370 /* copy event msg and queue the event */
3371 evt_entry->type = type;
3372
3373 /* If Payload in SG list*/
3374 if (msg_sg) {
3375 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3376 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3377 memcpy((void *)((uintptr_t)evt_entry->data + off),
3378 fl_sg->flbufs[n].vaddr,
3379 fl_sg->flbufs[n].len);
3380 off += fl_sg->flbufs[n].len;
3381 }
3382 } else
3383 memcpy((void *)evt_entry->data, evt_msg, len);
3384
3385 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3386 CSIO_DEC_STATS(hw, n_evt_freeq);
3387 CSIO_INC_STATS(hw, n_evt_activeq);
3388out:
3389 spin_unlock_irqrestore(&hw->lock, flags);
3390 return ret;
3391}
3392
3393static void
3394csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3395{
3396 if (evt_entry) {
3397 spin_lock_irq(&hw->lock);
3398 list_del_init(&evt_entry->list);
3399 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3400 CSIO_DEC_STATS(hw, n_evt_activeq);
3401 CSIO_INC_STATS(hw, n_evt_freeq);
3402 spin_unlock_irq(&hw->lock);
3403 }
3404}
3405
3406void
3407csio_evtq_flush(struct csio_hw *hw)
3408{
3409 uint32_t count;
3410 count = 30;
3411 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3412 spin_unlock_irq(&hw->lock);
3413 msleep(2000);
3414 spin_lock_irq(&hw->lock);
3415 }
3416
3417 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3418}
3419
3420static void
3421csio_evtq_stop(struct csio_hw *hw)
3422{
3423 hw->flags |= CSIO_HWF_FWEVT_STOP;
3424}
3425
3426static void
3427csio_evtq_start(struct csio_hw *hw)
3428{
3429 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3430}
3431
3432static void
3433csio_evtq_cleanup(struct csio_hw *hw)
3434{
3435 struct list_head *evt_entry, *next_entry;
3436
3437 /* Release outstanding events from activeq to freeq*/
3438 if (!list_empty(&hw->evt_active_q))
3439 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3440
3441 hw->stats.n_evt_activeq = 0;
3442 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3443
3444 /* Freeup event entry */
3445 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3446 kfree(evt_entry);
3447 CSIO_DEC_STATS(hw, n_evt_freeq);
3448 }
3449
3450 hw->stats.n_evt_freeq = 0;
3451}
3452
3453
3454static void
3455csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3456 struct csio_fl_dma_buf *flb, void *priv)
3457{
3458 __u8 op;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303459 void *msg = NULL;
3460 uint32_t msg_len = 0;
3461 bool msg_sg = 0;
3462
3463 op = ((struct rss_header *) wr)->opcode;
3464 if (op == CPL_FW6_PLD) {
3465 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3466 if (!flb || !flb->totlen) {
3467 CSIO_INC_STATS(hw, n_cpl_unexp);
3468 return;
3469 }
3470
3471 msg = (void *) flb;
3472 msg_len = flb->totlen;
3473 msg_sg = 1;
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303474 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3475
3476 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3477 /* skip RSS header */
3478 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3479 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3480 sizeof(struct cpl_fw4_msg);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303481 } else {
3482 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3483 CSIO_INC_STATS(hw, n_cpl_unexp);
3484 return;
3485 }
3486
3487 /*
3488 * Enqueue event to EventQ. Events processing happens
3489 * in Event worker thread context
3490 */
3491 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3492 (uint16_t)msg_len, msg_sg))
3493 CSIO_INC_STATS(hw, n_evt_drop);
3494}
3495
3496void
3497csio_evtq_worker(struct work_struct *work)
3498{
3499 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3500 struct list_head *evt_entry, *next_entry;
3501 LIST_HEAD(evt_q);
3502 struct csio_evt_msg *evt_msg;
3503 struct cpl_fw6_msg *msg;
3504 struct csio_rnode *rn;
3505 int rv = 0;
3506 uint8_t evtq_stop = 0;
3507
3508 csio_dbg(hw, "event worker thread active evts#%d\n",
3509 hw->stats.n_evt_activeq);
3510
3511 spin_lock_irq(&hw->lock);
3512 while (!list_empty(&hw->evt_active_q)) {
3513 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3514 spin_unlock_irq(&hw->lock);
3515
3516 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3517 evt_msg = (struct csio_evt_msg *) evt_entry;
3518
3519 /* Drop events if queue is STOPPED */
3520 spin_lock_irq(&hw->lock);
3521 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3522 evtq_stop = 1;
3523 spin_unlock_irq(&hw->lock);
3524 if (evtq_stop) {
3525 CSIO_INC_STATS(hw, n_evt_drop);
3526 goto free_evt;
3527 }
3528
3529 switch (evt_msg->type) {
3530 case CSIO_EVT_FW:
3531 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3532
3533 if ((msg->opcode == CPL_FW6_MSG ||
3534 msg->opcode == CPL_FW4_MSG) &&
3535 !msg->type) {
3536 rv = csio_mb_fwevt_handler(hw,
3537 msg->data);
3538 if (!rv)
3539 break;
3540 /* Handle any remaining fw events */
3541 csio_fcoe_fwevt_handler(hw,
3542 msg->opcode, msg->data);
3543 } else if (msg->opcode == CPL_FW6_PLD) {
3544
3545 csio_fcoe_fwevt_handler(hw,
3546 msg->opcode, msg->data);
3547 } else {
3548 csio_warn(hw,
3549 "Unhandled FW msg op %x type %x\n",
3550 msg->opcode, msg->type);
3551 CSIO_INC_STATS(hw, n_evt_drop);
3552 }
3553 break;
3554
3555 case CSIO_EVT_MBX:
3556 csio_mberr_worker(hw);
3557 break;
3558
3559 case CSIO_EVT_DEV_LOSS:
3560 memcpy(&rn, evt_msg->data, sizeof(rn));
3561 csio_rnode_devloss_handler(rn);
3562 break;
3563
3564 default:
3565 csio_warn(hw, "Unhandled event %x on evtq\n",
3566 evt_msg->type);
3567 CSIO_INC_STATS(hw, n_evt_unexp);
3568 break;
3569 }
3570free_evt:
3571 csio_free_evt(hw, evt_msg);
3572 }
3573
3574 spin_lock_irq(&hw->lock);
3575 }
3576 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3577 spin_unlock_irq(&hw->lock);
3578}
3579
3580int
3581csio_fwevtq_handler(struct csio_hw *hw)
3582{
3583 int rv;
3584
3585 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3586 CSIO_INC_STATS(hw, n_int_stray);
3587 return -EINVAL;
3588 }
3589
3590 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3591 csio_process_fwevtq_entry, NULL);
3592 return rv;
3593}
3594
3595/****************************************************************************
3596 * Entry points
3597 ****************************************************************************/
3598
3599/* Management module */
3600/*
3601 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3602 * mgmt - mgmt module
3603 * @io_req - io request
3604 *
3605 * Return - 0:if given IO Req exists in active Q.
3606 * -EINVAL :if lookup fails.
3607 */
3608int
3609csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3610{
3611 struct list_head *tmp;
3612
3613 /* Lookup ioreq in the ACTIVEQ */
3614 list_for_each(tmp, &mgmtm->active_q) {
3615 if (io_req == (struct csio_ioreq *)tmp)
3616 return 0;
3617 }
3618 return -EINVAL;
3619}
3620
3621#define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3622
3623/*
3624 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3625 * @data - Event data.
3626 *
3627 * Return - none.
3628 */
3629static void
3630csio_mgmt_tmo_handler(uintptr_t data)
3631{
3632 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3633 struct list_head *tmp;
3634 struct csio_ioreq *io_req;
3635
3636 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3637
3638 spin_lock_irq(&mgmtm->hw->lock);
3639
3640 list_for_each(tmp, &mgmtm->active_q) {
3641 io_req = (struct csio_ioreq *) tmp;
3642 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3643
3644 if (!io_req->tmo) {
3645 /* Dequeue the request from retry Q. */
3646 tmp = csio_list_prev(tmp);
3647 list_del_init(&io_req->sm.sm_list);
3648 if (io_req->io_cbfn) {
3649 /* io_req will be freed by completion handler */
3650 io_req->wr_status = -ETIMEDOUT;
3651 io_req->io_cbfn(mgmtm->hw, io_req);
3652 } else {
3653 CSIO_DB_ASSERT(0);
3654 }
3655 }
3656 }
3657
3658 /* If retry queue is not empty, re-arm timer */
3659 if (!list_empty(&mgmtm->active_q))
3660 mod_timer(&mgmtm->mgmt_timer,
3661 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3662 spin_unlock_irq(&mgmtm->hw->lock);
3663}
3664
3665static void
3666csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3667{
3668 struct csio_hw *hw = mgmtm->hw;
3669 struct csio_ioreq *io_req;
3670 struct list_head *tmp;
3671 uint32_t count;
3672
3673 count = 30;
3674 /* Wait for all outstanding req to complete gracefully */
3675 while ((!list_empty(&mgmtm->active_q)) && count--) {
3676 spin_unlock_irq(&hw->lock);
3677 msleep(2000);
3678 spin_lock_irq(&hw->lock);
3679 }
3680
3681 /* release outstanding req from ACTIVEQ */
3682 list_for_each(tmp, &mgmtm->active_q) {
3683 io_req = (struct csio_ioreq *) tmp;
3684 tmp = csio_list_prev(tmp);
3685 list_del_init(&io_req->sm.sm_list);
3686 mgmtm->stats.n_active--;
3687 if (io_req->io_cbfn) {
3688 /* io_req will be freed by completion handler */
3689 io_req->wr_status = -ETIMEDOUT;
3690 io_req->io_cbfn(mgmtm->hw, io_req);
3691 }
3692 }
3693}
3694
3695/*
3696 * csio_mgmt_init - Mgmt module init entry point
3697 * @mgmtsm - mgmt module
3698 * @hw - HW module
3699 *
3700 * Initialize mgmt timer, resource wait queue, active queue,
3701 * completion q. Allocate Egress and Ingress
3702 * WR queues and save off the queue index returned by the WR
3703 * module for future use. Allocate and save off mgmt reqs in the
3704 * mgmt_req_freelist for future use. Make sure their SM is initialized
3705 * to uninit state.
3706 * Returns: 0 - on success
3707 * -ENOMEM - on error.
3708 */
3709static int
3710csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3711{
3712 struct timer_list *timer = &mgmtm->mgmt_timer;
3713
3714 init_timer(timer);
3715 timer->function = csio_mgmt_tmo_handler;
3716 timer->data = (unsigned long)mgmtm;
3717
3718 INIT_LIST_HEAD(&mgmtm->active_q);
3719 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3720
3721 mgmtm->hw = hw;
3722 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3723
3724 return 0;
3725}
3726
3727/*
3728 * csio_mgmtm_exit - MGMT module exit entry point
3729 * @mgmtsm - mgmt module
3730 *
3731 * This function called during MGMT module uninit.
3732 * Stop timers, free ioreqs allocated.
3733 * Returns: None
3734 *
3735 */
3736static void
3737csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3738{
3739 del_timer_sync(&mgmtm->mgmt_timer);
3740}
3741
3742
3743/**
3744 * csio_hw_start - Kicks off the HW State machine
3745 * @hw: Pointer to HW module.
3746 *
3747 * It is assumed that the initialization is a synchronous operation.
3748 * So when we return afer posting the event, the HW SM should be in
3749 * the ready state, if there were no errors during init.
3750 */
3751int
3752csio_hw_start(struct csio_hw *hw)
3753{
3754 spin_lock_irq(&hw->lock);
3755 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3756 spin_unlock_irq(&hw->lock);
3757
3758 if (csio_is_hw_ready(hw))
3759 return 0;
3760 else
3761 return -EINVAL;
3762}
3763
3764int
3765csio_hw_stop(struct csio_hw *hw)
3766{
3767 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3768
3769 if (csio_is_hw_removing(hw))
3770 return 0;
3771 else
3772 return -EINVAL;
3773}
3774
3775/* Max reset retries */
3776#define CSIO_MAX_RESET_RETRIES 3
3777
3778/**
3779 * csio_hw_reset - Reset the hardware
3780 * @hw: HW module.
3781 *
3782 * Caller should hold lock across this function.
3783 */
3784int
3785csio_hw_reset(struct csio_hw *hw)
3786{
3787 if (!csio_is_hw_master(hw))
3788 return -EPERM;
3789
3790 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3791 csio_dbg(hw, "Max hw reset attempts reached..");
3792 return -EINVAL;
3793 }
3794
3795 hw->rst_retries++;
3796 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3797
3798 if (csio_is_hw_ready(hw)) {
3799 hw->rst_retries = 0;
3800 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3801 return 0;
3802 } else
3803 return -EINVAL;
3804}
3805
3806/*
3807 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3808 * @hw: HW module.
3809 */
3810static void
3811csio_hw_get_device_id(struct csio_hw *hw)
3812{
3813 /* Is the adapter device id cached already ?*/
3814 if (csio_is_dev_id_cached(hw))
3815 return;
3816
3817 /* Get the PCI vendor & device id */
3818 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3819 &hw->params.pci.vendor_id);
3820 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3821 &hw->params.pci.device_id);
3822
3823 csio_dev_id_cached(hw);
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003824 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303825
3826} /* csio_hw_get_device_id */
3827
3828/*
3829 * csio_hw_set_description - Set the model, description of the hw.
3830 * @hw: HW module.
3831 * @ven_id: PCI Vendor ID
3832 * @dev_id: PCI Device ID
3833 */
3834static void
3835csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3836{
3837 uint32_t adap_type, prot_type;
3838
3839 if (ven_id == CSIO_VENDOR_ID) {
3840 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3841 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3842
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003843 if (prot_type == CSIO_T4_FCOE_ASIC) {
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303844 memcpy(hw->hw_ver,
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003845 csio_t4_fcoe_adapters[adap_type].model_no, 16);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303846 memcpy(hw->model_desc,
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003847 csio_t4_fcoe_adapters[adap_type].description,
3848 32);
3849 } else if (prot_type == CSIO_T5_FCOE_ASIC) {
3850 memcpy(hw->hw_ver,
3851 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3852 memcpy(hw->model_desc,
3853 csio_t5_fcoe_adapters[adap_type].description,
3854 32);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303855 } else {
3856 char tempName[32] = "Chelsio FCoE Controller";
3857 memcpy(hw->model_desc, tempName, 32);
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303858 }
3859 }
3860} /* csio_hw_set_description */
3861
3862/**
3863 * csio_hw_init - Initialize HW module.
3864 * @hw: Pointer to HW module.
3865 *
3866 * Initialize the members of the HW module.
3867 */
3868int
3869csio_hw_init(struct csio_hw *hw)
3870{
3871 int rv = -EINVAL;
3872 uint32_t i;
3873 uint16_t ven_id, dev_id;
3874 struct csio_evt_msg *evt_entry;
3875
3876 INIT_LIST_HEAD(&hw->sm.sm_list);
3877 csio_init_state(&hw->sm, csio_hws_uninit);
3878 spin_lock_init(&hw->lock);
3879 INIT_LIST_HEAD(&hw->sln_head);
3880
3881 /* Get the PCI vendor & device id */
3882 csio_hw_get_device_id(hw);
3883
3884 strcpy(hw->name, CSIO_HW_NAME);
3885
Arvind Bhushan7cc16382013-03-14 05:09:08 +00003886 /* Initialize the HW chip ops with T4/T5 specific ops */
3887 hw->chip_ops = csio_is_t4(hw->chip_id) ? &t4_ops : &t5_ops;
3888
Naresh Kumar Innaa3667aa2012-11-15 22:41:18 +05303889 /* Set the model & its description */
3890
3891 ven_id = hw->params.pci.vendor_id;
3892 dev_id = hw->params.pci.device_id;
3893
3894 csio_hw_set_description(hw, ven_id, dev_id);
3895
3896 /* Initialize default log level */
3897 hw->params.log_level = (uint32_t) csio_dbg_level;
3898
3899 csio_set_fwevt_intr_idx(hw, -1);
3900 csio_set_nondata_intr_idx(hw, -1);
3901
3902 /* Init all the modules: Mailbox, WorkRequest and Transport */
3903 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3904 goto err;
3905
3906 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3907 if (rv)
3908 goto err_mbm_exit;
3909
3910 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3911 if (rv)
3912 goto err_wrm_exit;
3913
3914 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3915 if (rv)
3916 goto err_scsim_exit;
3917 /* Pre-allocate evtq and initialize them */
3918 INIT_LIST_HEAD(&hw->evt_active_q);
3919 INIT_LIST_HEAD(&hw->evt_free_q);
3920 for (i = 0; i < csio_evtq_sz; i++) {
3921
3922 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3923 if (!evt_entry) {
3924 csio_err(hw, "Failed to initialize eventq");
3925 goto err_evtq_cleanup;
3926 }
3927
3928 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3929 CSIO_INC_STATS(hw, n_evt_freeq);
3930 }
3931
3932 hw->dev_num = dev_num;
3933 dev_num++;
3934
3935 return 0;
3936
3937err_evtq_cleanup:
3938 csio_evtq_cleanup(hw);
3939 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3940err_scsim_exit:
3941 csio_scsim_exit(csio_hw_to_scsim(hw));
3942err_wrm_exit:
3943 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3944err_mbm_exit:
3945 csio_mbm_exit(csio_hw_to_mbm(hw));
3946err:
3947 return rv;
3948}
3949
3950/**
3951 * csio_hw_exit - Un-initialize HW module.
3952 * @hw: Pointer to HW module.
3953 *
3954 */
3955void
3956csio_hw_exit(struct csio_hw *hw)
3957{
3958 csio_evtq_cleanup(hw);
3959 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3960 csio_scsim_exit(csio_hw_to_scsim(hw));
3961 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3962 csio_mbm_exit(csio_hw_to_mbm(hw));
3963}