blob: 752c5570f2f636d6a96d4be2151077d024f47bb9 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700106#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800107#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800108#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800174 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700204typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800249 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800250 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251};
252
253/*
254 * struct array_cache
255 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700270 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
276 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277};
278
Andrew Mortona737b3e2006-03-22 00:08:11 -0800279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800286 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287};
288
289/*
Christoph Lametere498be72005-09-09 13:03:32 -0700290 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291 */
292struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800298 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304};
305
Christoph Lametere498be72005-09-09 13:03:32 -0700306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define CACHE_CACHE 0
312#define SIZE_AC 1
313#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
Christoph Lametere498be72005-09-09 13:03:32 -0700315/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700318 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700319static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700320{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800321 extern void __bad_size(void);
322
Christoph Lametere498be72005-09-09 13:03:32 -0700323 if (__builtin_constant_p(size)) {
324 int i = 0;
325
326#define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800333 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700334 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800335 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700336 return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
341
Pekka Enberg5295a742006-02-01 03:05:48 -0800342static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700343{
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800349 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
353}
354
Andrew Mortona737b3e2006-03-22 00:08:11 -0800355#define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700359 } while (0)
360
Andrew Mortona737b3e2006-03-22 00:08:11 -0800361#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700367
368/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800369 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700370 *
371 * manages a cache.
372 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800373
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800374struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800376 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800377/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800381
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800382 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800384 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800385
Andrew Mortona737b3e2006-03-22 00:08:11 -0800386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800389/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800391 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392
393 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800394 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395
Andrew Mortona737b3e2006-03-22 00:08:11 -0800396 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800398 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800399 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800400 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
402 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700404
405 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800408/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800409 const char *name;
410 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800412/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700423 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800424 atomic_t allochit;
425 atomic_t allocmiss;
426 atomic_t freehit;
427 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700428#endif
429#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800430 /*
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
435 */
436 int obj_offset;
437 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438#endif
439};
440
441#define CFLGS_OFF_SLAB (0x80000000UL)
442#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
443
444#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800445/*
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100449 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 * which could lock up otherwise freeable slabs.
451 */
452#define REAPTIMEOUT_CPUC (2*HZ)
453#define REAPTIMEOUT_LIST3 (4*HZ)
454
455#if STATS
456#define STATS_INC_ACTIVE(x) ((x)->num_active++)
457#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459#define STATS_INC_GROWN(x) ((x)->grown++)
460#define STATS_INC_REAPED(x) ((x)->reaped++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800461#define STATS_SET_HIGH(x) \
462 do { \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
465 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466#define STATS_INC_ERR(x) ((x)->errors++)
467#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700468#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700469#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800470#define STATS_SET_FREEABLE(x, i) \
471 do { \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
474 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
479#else
480#define STATS_INC_ACTIVE(x) do { } while (0)
481#define STATS_DEC_ACTIVE(x) do { } while (0)
482#define STATS_INC_ALLOCED(x) do { } while (0)
483#define STATS_INC_GROWN(x) do { } while (0)
484#define STATS_INC_REAPED(x) do { } while (0)
485#define STATS_SET_HIGH(x) do { } while (0)
486#define STATS_INC_ERR(x) do { } while (0)
487#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700488#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700489#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800490#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491#define STATS_INC_ALLOCHIT(x) do { } while (0)
492#define STATS_INC_ALLOCMISS(x) do { } while (0)
493#define STATS_INC_FREEHIT(x) do { } while (0)
494#define STATS_INC_FREEMISS(x) do { } while (0)
495#endif
496
497#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -0800498/*
499 * Magic nums for obj red zoning.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700500 * Placed in the first word before and the first word after an obj.
501 */
502#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
504
505/* ...and for poisoning */
506#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507#define POISON_FREE 0x6b /* for use-after-free poisoning */
508#define POISON_END 0xa5 /* end-byte of poisoning */
509
Andrew Mortona737b3e2006-03-22 00:08:11 -0800510/*
511 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800530 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531}
532
Pekka Enberg343e0d72006-02-01 03:05:50 -0800533static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534{
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800536 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537}
538
Pekka Enberg343e0d72006-02-01 03:05:50 -0800539static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540{
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800543 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800544 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800545 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546}
547
Pekka Enberg343e0d72006-02-01 03:05:50 -0800548static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549{
550 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552}
553
554#else
555
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800556#define obj_offset(x) 0
557#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700558#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
561
562#endif
563
564/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
566 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700567 */
568#if defined(CONFIG_LARGE_ALLOCS)
569#define MAX_OBJ_ORDER 13 /* up to 32Mb */
570#define MAX_GFP_ORDER 13 /* up to 32Mb */
571#elif defined(CONFIG_MMU)
572#define MAX_OBJ_ORDER 5 /* 32 pages */
573#define MAX_GFP_ORDER 5 /* 32 pages */
574#else
575#define MAX_OBJ_ORDER 8 /* up to 1Mb */
576#define MAX_GFP_ORDER 8 /* up to 1Mb */
577#endif
578
579/*
580 * Do not go above this order unless 0 objects fit into the slab.
581 */
582#define BREAK_GFP_ORDER_HI 1
583#define BREAK_GFP_ORDER_LO 0
584static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
585
Andrew Mortona737b3e2006-03-22 00:08:11 -0800586/*
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700590 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800591static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
592{
593 page->lru.next = (struct list_head *)cache;
594}
595
596static inline struct kmem_cache *page_get_cache(struct page *page)
597{
Nick Piggin84097512006-03-22 00:08:34 -0800598 if (unlikely(PageCompound(page)))
599 page = (struct page *)page_private(page);
Pekka Enberg065d41c2005-11-13 16:06:46 -0800600 return (struct kmem_cache *)page->lru.next;
601}
602
603static inline void page_set_slab(struct page *page, struct slab *slab)
604{
605 page->lru.prev = (struct list_head *)slab;
606}
607
608static inline struct slab *page_get_slab(struct page *page)
609{
Nick Piggin84097512006-03-22 00:08:34 -0800610 if (unlikely(PageCompound(page)))
611 page = (struct page *)page_private(page);
Pekka Enberg065d41c2005-11-13 16:06:46 -0800612 return (struct slab *)page->lru.prev;
613}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800615static inline struct kmem_cache *virt_to_cache(const void *obj)
616{
617 struct page *page = virt_to_page(obj);
618 return page_get_cache(page);
619}
620
621static inline struct slab *virt_to_slab(const void *obj)
622{
623 struct page *page = virt_to_page(obj);
624 return page_get_slab(page);
625}
626
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800627static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 unsigned int idx)
629{
630 return slab->s_mem + cache->buffer_size * idx;
631}
632
633static inline unsigned int obj_to_index(struct kmem_cache *cache,
634 struct slab *slab, void *obj)
635{
636 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
637}
638
Andrew Mortona737b3e2006-03-22 00:08:11 -0800639/*
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700642struct cache_sizes malloc_sizes[] = {
643#define CACHE(x) { .cs_size = (x) },
644#include <linux/kmalloc_sizes.h>
645 CACHE(ULONG_MAX)
646#undef CACHE
647};
648EXPORT_SYMBOL(malloc_sizes);
649
650/* Must match cache_sizes above. Out of line to keep cache footprint low. */
651struct cache_names {
652 char *name;
653 char *name_dma;
654};
655
656static struct cache_names __initdata cache_names[] = {
657#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800659 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660#undef CACHE
661};
662
663static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700665static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800666 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700667
668/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800669static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800670 .batchcount = 1,
671 .limit = BOOT_CPUCACHE_ENTRIES,
672 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800673 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800674 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800676 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700677#endif
678};
679
680/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800681static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682static struct list_head cache_chain;
683
684/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700687 *
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
689 */
690atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700691
692/*
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
695 */
696static enum {
697 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700698 PARTIAL_AC,
699 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700 FULL
701} g_cpucache_up;
702
703static DEFINE_PER_CPU(struct work_struct, reap_work);
704
Andrew Mortona737b3e2006-03-22 00:08:11 -0800705static void free_block(struct kmem_cache *cachep, void **objpp, int len,
706 int node);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800707static void enable_cpucache(struct kmem_cache *cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800708static void cache_reap(void *unused);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800709static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710
Pekka Enberg343e0d72006-02-01 03:05:50 -0800711static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700712{
713 return cachep->array[smp_processor_id()];
714}
715
Andrew Mortona737b3e2006-03-22 00:08:11 -0800716static inline struct kmem_cache *__find_general_cachep(size_t size,
717 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718{
719 struct cache_sizes *csizep = malloc_sizes;
720
721#if DEBUG
722 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800723 * kmem_cache_create(), or __kmalloc(), before
724 * the generic caches are initialized.
725 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700726 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700727#endif
728 while (size > csizep->cs_size)
729 csizep++;
730
731 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700732 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700733 * has cs_{dma,}cachep==NULL. Thus no special case
734 * for large kmalloc calls required.
735 */
736 if (unlikely(gfpflags & GFP_DMA))
737 return csizep->cs_dmacachep;
738 return csizep->cs_cachep;
739}
740
Pekka Enberg343e0d72006-02-01 03:05:50 -0800741struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700742{
743 return __find_general_cachep(size, gfpflags);
744}
745EXPORT_SYMBOL(kmem_find_general_cachep);
746
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800747static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800749 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
750}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700751
Andrew Mortona737b3e2006-03-22 00:08:11 -0800752/*
753 * Calculate the number of objects and left-over bytes for a given buffer size.
754 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800755static void cache_estimate(unsigned long gfporder, size_t buffer_size,
756 size_t align, int flags, size_t *left_over,
757 unsigned int *num)
758{
759 int nr_objs;
760 size_t mgmt_size;
761 size_t slab_size = PAGE_SIZE << gfporder;
762
763 /*
764 * The slab management structure can be either off the slab or
765 * on it. For the latter case, the memory allocated for a
766 * slab is used for:
767 *
768 * - The struct slab
769 * - One kmem_bufctl_t for each object
770 * - Padding to respect alignment of @align
771 * - @buffer_size bytes for each object
772 *
773 * If the slab management structure is off the slab, then the
774 * alignment will already be calculated into the size. Because
775 * the slabs are all pages aligned, the objects will be at the
776 * correct alignment when allocated.
777 */
778 if (flags & CFLGS_OFF_SLAB) {
779 mgmt_size = 0;
780 nr_objs = slab_size / buffer_size;
781
782 if (nr_objs > SLAB_LIMIT)
783 nr_objs = SLAB_LIMIT;
784 } else {
785 /*
786 * Ignore padding for the initial guess. The padding
787 * is at most @align-1 bytes, and @buffer_size is at
788 * least @align. In the worst case, this result will
789 * be one greater than the number of objects that fit
790 * into the memory allocation when taking the padding
791 * into account.
792 */
793 nr_objs = (slab_size - sizeof(struct slab)) /
794 (buffer_size + sizeof(kmem_bufctl_t));
795
796 /*
797 * This calculated number will be either the right
798 * amount, or one greater than what we want.
799 */
800 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
801 > slab_size)
802 nr_objs--;
803
804 if (nr_objs > SLAB_LIMIT)
805 nr_objs = SLAB_LIMIT;
806
807 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800809 *num = nr_objs;
810 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811}
812
813#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
814
Andrew Mortona737b3e2006-03-22 00:08:11 -0800815static void __slab_error(const char *function, struct kmem_cache *cachep,
816 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817{
818 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800819 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820 dump_stack();
821}
822
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800823#ifdef CONFIG_NUMA
824/*
825 * Special reaping functions for NUMA systems called from cache_reap().
826 * These take care of doing round robin flushing of alien caches (containing
827 * objects freed on different nodes from which they were allocated) and the
828 * flushing of remote pcps by calling drain_node_pages.
829 */
830static DEFINE_PER_CPU(unsigned long, reap_node);
831
832static void init_reap_node(int cpu)
833{
834 int node;
835
836 node = next_node(cpu_to_node(cpu), node_online_map);
837 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800838 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800839
840 __get_cpu_var(reap_node) = node;
841}
842
843static void next_reap_node(void)
844{
845 int node = __get_cpu_var(reap_node);
846
847 /*
848 * Also drain per cpu pages on remote zones
849 */
850 if (node != numa_node_id())
851 drain_node_pages(node);
852
853 node = next_node(node, node_online_map);
854 if (unlikely(node >= MAX_NUMNODES))
855 node = first_node(node_online_map);
856 __get_cpu_var(reap_node) = node;
857}
858
859#else
860#define init_reap_node(cpu) do { } while (0)
861#define next_reap_node(void) do { } while (0)
862#endif
863
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864/*
865 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
866 * via the workqueue/eventd.
867 * Add the CPU number into the expiration time to minimize the possibility of
868 * the CPUs getting into lockstep and contending for the global cache chain
869 * lock.
870 */
871static void __devinit start_cpu_timer(int cpu)
872{
873 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
874
875 /*
876 * When this gets called from do_initcalls via cpucache_init(),
877 * init_workqueues() has already run, so keventd will be setup
878 * at that time.
879 */
880 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800881 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 INIT_WORK(reap_work, cache_reap, NULL);
883 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
884 }
885}
886
Christoph Lametere498be72005-09-09 13:03:32 -0700887static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800888 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700889{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800890 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891 struct array_cache *nc = NULL;
892
Christoph Lametere498be72005-09-09 13:03:32 -0700893 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894 if (nc) {
895 nc->avail = 0;
896 nc->limit = entries;
897 nc->batchcount = batchcount;
898 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700899 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700900 }
901 return nc;
902}
903
Christoph Lameter3ded1752006-03-25 03:06:44 -0800904/*
905 * Transfer objects in one arraycache to another.
906 * Locking must be handled by the caller.
907 *
908 * Return the number of entries transferred.
909 */
910static int transfer_objects(struct array_cache *to,
911 struct array_cache *from, unsigned int max)
912{
913 /* Figure out how many entries to transfer */
914 int nr = min(min(from->avail, max), to->limit - to->avail);
915
916 if (!nr)
917 return 0;
918
919 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
920 sizeof(void *) *nr);
921
922 from->avail -= nr;
923 to->avail += nr;
924 to->touched = 1;
925 return nr;
926}
927
Christoph Lametere498be72005-09-09 13:03:32 -0700928#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800929static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -0800930static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800931
Pekka Enberg5295a742006-02-01 03:05:48 -0800932static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700933{
934 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800935 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700936 int i;
937
938 if (limit > 1)
939 limit = 12;
940 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
941 if (ac_ptr) {
942 for_each_node(i) {
943 if (i == node || !node_online(i)) {
944 ac_ptr[i] = NULL;
945 continue;
946 }
947 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
948 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800949 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700950 kfree(ac_ptr[i]);
951 kfree(ac_ptr);
952 return NULL;
953 }
954 }
955 }
956 return ac_ptr;
957}
958
Pekka Enberg5295a742006-02-01 03:05:48 -0800959static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700960{
961 int i;
962
963 if (!ac_ptr)
964 return;
Christoph Lametere498be72005-09-09 13:03:32 -0700965 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800966 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700967 kfree(ac_ptr);
968}
969
Pekka Enberg343e0d72006-02-01 03:05:50 -0800970static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -0800971 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700972{
973 struct kmem_list3 *rl3 = cachep->nodelists[node];
974
975 if (ac->avail) {
976 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -0800977 /*
978 * Stuff objects into the remote nodes shared array first.
979 * That way we could avoid the overhead of putting the objects
980 * into the free lists and getting them back later.
981 */
982 transfer_objects(rl3->shared, ac, ac->limit);
983
Christoph Lameterff694162005-09-22 21:44:02 -0700984 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700985 ac->avail = 0;
986 spin_unlock(&rl3->list_lock);
987 }
988}
989
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800990/*
991 * Called from cache_reap() to regularly drain alien caches round robin.
992 */
993static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
994{
995 int node = __get_cpu_var(reap_node);
996
997 if (l3->alien) {
998 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -0800999
1000 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001001 __drain_alien_cache(cachep, ac, node);
1002 spin_unlock_irq(&ac->lock);
1003 }
1004 }
1005}
1006
Andrew Mortona737b3e2006-03-22 00:08:11 -08001007static void drain_alien_cache(struct kmem_cache *cachep,
1008 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001009{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001010 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001011 struct array_cache *ac;
1012 unsigned long flags;
1013
1014 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001015 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001016 if (ac) {
1017 spin_lock_irqsave(&ac->lock, flags);
1018 __drain_alien_cache(cachep, ac, i);
1019 spin_unlock_irqrestore(&ac->lock, flags);
1020 }
1021 }
1022}
1023#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001024
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001025#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001026#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001027
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001028static inline struct array_cache **alloc_alien_cache(int node, int limit)
1029{
1030 return (struct array_cache **) 0x01020304ul;
1031}
1032
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001033static inline void free_alien_cache(struct array_cache **ac_ptr)
1034{
1035}
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001036
Christoph Lametere498be72005-09-09 13:03:32 -07001037#endif
1038
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039static int __devinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001040 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041{
1042 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001043 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001044 struct kmem_list3 *l3 = NULL;
1045 int node = cpu_to_node(cpu);
1046 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047
1048 switch (action) {
1049 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001050 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001051 /*
1052 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001053 * alloc_arraycache's are going to use this list.
1054 * kmalloc_node allows us to add the slab to the right
1055 * kmem_list3 and not this cpu's kmem_list3
1056 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057
Christoph Lametere498be72005-09-09 13:03:32 -07001058 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001059 /*
1060 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001061 * begin anything. Make sure some other cpu on this
1062 * node has not already allocated this
1063 */
1064 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001065 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1066 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001067 goto bad;
1068 kmem_list3_init(l3);
1069 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001070 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001071
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001072 /*
1073 * The l3s don't come and go as CPUs come and
1074 * go. cache_chain_mutex is sufficient
1075 * protection here.
1076 */
Christoph Lametere498be72005-09-09 13:03:32 -07001077 cachep->nodelists[node] = l3;
1078 }
1079
1080 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1081 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001082 (1 + nr_cpus_node(node)) *
1083 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001084 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1085 }
1086
Andrew Mortona737b3e2006-03-22 00:08:11 -08001087 /*
1088 * Now we can go ahead with allocating the shared arrays and
1089 * array caches
1090 */
Christoph Lametere498be72005-09-09 13:03:32 -07001091 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001092 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001093 struct array_cache *shared;
1094 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001095
Christoph Lametere498be72005-09-09 13:03:32 -07001096 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001097 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098 if (!nc)
1099 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001100 shared = alloc_arraycache(node,
1101 cachep->shared * cachep->batchcount,
1102 0xbaadf00d);
1103 if (!shared)
1104 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001105
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001106 alien = alloc_alien_cache(node, cachep->limit);
1107 if (!alien)
1108 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001109 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001110 l3 = cachep->nodelists[node];
1111 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001112
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001113 spin_lock_irq(&l3->list_lock);
1114 if (!l3->shared) {
1115 /*
1116 * We are serialised from CPU_DEAD or
1117 * CPU_UP_CANCELLED by the cpucontrol lock
1118 */
1119 l3->shared = shared;
1120 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001121 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001122#ifdef CONFIG_NUMA
1123 if (!l3->alien) {
1124 l3->alien = alien;
1125 alien = NULL;
1126 }
1127#endif
1128 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001129 kfree(shared);
1130 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001132 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001133 break;
1134 case CPU_ONLINE:
1135 start_cpu_timer(cpu);
1136 break;
1137#ifdef CONFIG_HOTPLUG_CPU
1138 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001139 /*
1140 * Even if all the cpus of a node are down, we don't free the
1141 * kmem_list3 of any cache. This to avoid a race between
1142 * cpu_down, and a kmalloc allocation from another cpu for
1143 * memory from the node of the cpu going down. The list3
1144 * structure is usually allocated from kmem_cache_create() and
1145 * gets destroyed at kmem_cache_destroy().
1146 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147 /* fall thru */
1148 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001149 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150 list_for_each_entry(cachep, &cache_chain, next) {
1151 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001152 struct array_cache *shared;
1153 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001154 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155
Christoph Lametere498be72005-09-09 13:03:32 -07001156 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 /* cpu is dead; no one can alloc from it. */
1158 nc = cachep->array[cpu];
1159 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001160 l3 = cachep->nodelists[node];
1161
1162 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001163 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001164
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001165 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001166
1167 /* Free limit for this kmem_list3 */
1168 l3->free_limit -= cachep->batchcount;
1169 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001170 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001171
1172 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001173 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001174 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001175 }
Christoph Lametere498be72005-09-09 13:03:32 -07001176
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001177 shared = l3->shared;
1178 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001179 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001180 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001181 l3->shared = NULL;
1182 }
Christoph Lametere498be72005-09-09 13:03:32 -07001183
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001184 alien = l3->alien;
1185 l3->alien = NULL;
1186
1187 spin_unlock_irq(&l3->list_lock);
1188
1189 kfree(shared);
1190 if (alien) {
1191 drain_alien_cache(cachep, alien);
1192 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001193 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001194free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195 kfree(nc);
1196 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001197 /*
1198 * In the previous loop, all the objects were freed to
1199 * the respective cache's slabs, now we can go ahead and
1200 * shrink each nodelist to its limit.
1201 */
1202 list_for_each_entry(cachep, &cache_chain, next) {
1203 l3 = cachep->nodelists[node];
1204 if (!l3)
1205 continue;
1206 spin_lock_irq(&l3->list_lock);
1207 /* free slabs belonging to this node */
1208 __node_shrink(cachep, node);
1209 spin_unlock_irq(&l3->list_lock);
1210 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001211 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001212 break;
1213#endif
1214 }
1215 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001216bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001217 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218 return NOTIFY_BAD;
1219}
1220
1221static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1222
Christoph Lametere498be72005-09-09 13:03:32 -07001223/*
1224 * swap the static kmem_list3 with kmalloced memory
1225 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001226static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1227 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001228{
1229 struct kmem_list3 *ptr;
1230
1231 BUG_ON(cachep->nodelists[nodeid] != list);
1232 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1233 BUG_ON(!ptr);
1234
1235 local_irq_disable();
1236 memcpy(ptr, list, sizeof(struct kmem_list3));
1237 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1238 cachep->nodelists[nodeid] = ptr;
1239 local_irq_enable();
1240}
1241
Andrew Mortona737b3e2006-03-22 00:08:11 -08001242/*
1243 * Initialisation. Called after the page allocator have been initialised and
1244 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 */
1246void __init kmem_cache_init(void)
1247{
1248 size_t left_over;
1249 struct cache_sizes *sizes;
1250 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001251 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001252 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001253
1254 for (i = 0; i < NUM_INIT_LISTS; i++) {
1255 kmem_list3_init(&initkmem_list3[i]);
1256 if (i < MAX_NUMNODES)
1257 cache_cache.nodelists[i] = NULL;
1258 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001259
1260 /*
1261 * Fragmentation resistance on low memory - only use bigger
1262 * page orders on machines with more than 32MB of memory.
1263 */
1264 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1265 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1266
Linus Torvalds1da177e2005-04-16 15:20:36 -07001267 /* Bootstrap is tricky, because several objects are allocated
1268 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001269 * 1) initialize the cache_cache cache: it contains the struct
1270 * kmem_cache structures of all caches, except cache_cache itself:
1271 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001272 * Initially an __init data area is used for the head array and the
1273 * kmem_list3 structures, it's replaced with a kmalloc allocated
1274 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001276 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001277 * An __init data area is used for the head array.
1278 * 3) Create the remaining kmalloc caches, with minimally sized
1279 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 * 4) Replace the __init data head arrays for cache_cache and the first
1281 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001282 * 5) Replace the __init data for kmem_list3 for cache_cache and
1283 * the other cache's with kmalloc allocated memory.
1284 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 */
1286
1287 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 INIT_LIST_HEAD(&cache_chain);
1289 list_add(&cache_cache.next, &cache_chain);
1290 cache_cache.colour_off = cache_line_size();
1291 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001292 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293
Andrew Mortona737b3e2006-03-22 00:08:11 -08001294 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1295 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296
Jack Steiner07ed76b2006-03-07 21:55:46 -08001297 for (order = 0; order < MAX_ORDER; order++) {
1298 cache_estimate(order, cache_cache.buffer_size,
1299 cache_line_size(), 0, &left_over, &cache_cache.num);
1300 if (cache_cache.num)
1301 break;
1302 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001303 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001304 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001305 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001306 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1307 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001308
1309 /* 2+3) create the kmalloc caches */
1310 sizes = malloc_sizes;
1311 names = cache_names;
1312
Andrew Mortona737b3e2006-03-22 00:08:11 -08001313 /*
1314 * Initialize the caches that provide memory for the array cache and the
1315 * kmem_list3 structures first. Without this, further allocations will
1316 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001317 */
1318
1319 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001320 sizes[INDEX_AC].cs_size,
1321 ARCH_KMALLOC_MINALIGN,
1322 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1323 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001324
Andrew Mortona737b3e2006-03-22 00:08:11 -08001325 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001326 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001327 kmem_cache_create(names[INDEX_L3].name,
1328 sizes[INDEX_L3].cs_size,
1329 ARCH_KMALLOC_MINALIGN,
1330 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1331 NULL, NULL);
1332 }
Christoph Lametere498be72005-09-09 13:03:32 -07001333
Linus Torvalds1da177e2005-04-16 15:20:36 -07001334 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001335 /*
1336 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337 * This should be particularly beneficial on SMP boxes, as it
1338 * eliminates "false sharing".
1339 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001340 * allow tighter packing of the smaller caches.
1341 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001342 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001343 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001344 sizes->cs_size,
1345 ARCH_KMALLOC_MINALIGN,
1346 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1347 NULL, NULL);
1348 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349
1350 /* Inc off-slab bufctl limit until the ceiling is hit. */
1351 if (!(OFF_SLAB(sizes->cs_cachep))) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001352 offslab_limit = sizes->cs_size - sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001353 offslab_limit /= sizeof(kmem_bufctl_t);
1354 }
1355
1356 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001357 sizes->cs_size,
1358 ARCH_KMALLOC_MINALIGN,
1359 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1360 SLAB_PANIC,
1361 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362 sizes++;
1363 names++;
1364 }
1365 /* 4) Replace the bootstrap head arrays */
1366 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001367 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001368
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001370
Linus Torvalds1da177e2005-04-16 15:20:36 -07001371 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001372 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1373 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001374 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 cache_cache.array[smp_processor_id()] = ptr;
1376 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001377
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001379
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001381 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001382 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001383 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001384 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001385 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001386 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 local_irq_enable();
1388 }
Christoph Lametere498be72005-09-09 13:03:32 -07001389 /* 5) Replace the bootstrap kmem_list3's */
1390 {
1391 int node;
1392 /* Replace the static kmem_list3 structures for the boot cpu */
1393 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001394 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395
Christoph Lametere498be72005-09-09 13:03:32 -07001396 for_each_online_node(node) {
1397 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001398 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001399
1400 if (INDEX_AC != INDEX_L3) {
1401 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001402 &initkmem_list3[SIZE_L3 + node],
1403 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001404 }
1405 }
1406 }
1407
1408 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001409 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001410 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001411 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412 list_for_each_entry(cachep, &cache_chain, next)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001413 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001414 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 }
1416
1417 /* Done! */
1418 g_cpucache_up = FULL;
1419
Andrew Mortona737b3e2006-03-22 00:08:11 -08001420 /*
1421 * Register a cpu startup notifier callback that initializes
1422 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001423 */
1424 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425
Andrew Mortona737b3e2006-03-22 00:08:11 -08001426 /*
1427 * The reap timers are started later, with a module init call: That part
1428 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429 */
1430}
1431
1432static int __init cpucache_init(void)
1433{
1434 int cpu;
1435
Andrew Mortona737b3e2006-03-22 00:08:11 -08001436 /*
1437 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438 */
Christoph Lametere498be72005-09-09 13:03:32 -07001439 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001440 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 return 0;
1442}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443__initcall(cpucache_init);
1444
1445/*
1446 * Interface to system's page allocator. No need to hold the cache-lock.
1447 *
1448 * If we requested dmaable memory, we will get it. Even if we
1449 * did not request dmaable memory, we might get it, but that
1450 * would be relatively rare and ignorable.
1451 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001452static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453{
1454 struct page *page;
1455 void *addr;
1456 int i;
1457
1458 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001459 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460 if (!page)
1461 return NULL;
1462 addr = page_address(page);
1463
1464 i = (1 << cachep->gfporder);
1465 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1466 atomic_add(i, &slab_reclaim_pages);
1467 add_page_state(nr_slab, i);
1468 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001469 __SetPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 page++;
1471 }
1472 return addr;
1473}
1474
1475/*
1476 * Interface to system's page release.
1477 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001478static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001480 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481 struct page *page = virt_to_page(addr);
1482 const unsigned long nr_freed = i;
1483
1484 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001485 BUG_ON(!PageSlab(page));
1486 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001487 page++;
1488 }
1489 sub_page_state(nr_slab, nr_freed);
1490 if (current->reclaim_state)
1491 current->reclaim_state->reclaimed_slab += nr_freed;
1492 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001493 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1494 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001495}
1496
1497static void kmem_rcu_free(struct rcu_head *head)
1498{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001499 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001500 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501
1502 kmem_freepages(cachep, slab_rcu->addr);
1503 if (OFF_SLAB(cachep))
1504 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1505}
1506
1507#if DEBUG
1508
1509#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001510static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001511 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001513 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001515 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001516
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001517 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518 return;
1519
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001520 *addr++ = 0x12345678;
1521 *addr++ = caller;
1522 *addr++ = smp_processor_id();
1523 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524 {
1525 unsigned long *sptr = &caller;
1526 unsigned long svalue;
1527
1528 while (!kstack_end(sptr)) {
1529 svalue = *sptr++;
1530 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001531 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 size -= sizeof(unsigned long);
1533 if (size <= sizeof(unsigned long))
1534 break;
1535 }
1536 }
1537
1538 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001539 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540}
1541#endif
1542
Pekka Enberg343e0d72006-02-01 03:05:50 -08001543static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001544{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001545 int size = obj_size(cachep);
1546 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001547
1548 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001549 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550}
1551
1552static void dump_line(char *data, int offset, int limit)
1553{
1554 int i;
1555 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001556 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001557 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558 printk("\n");
1559}
1560#endif
1561
1562#if DEBUG
1563
Pekka Enberg343e0d72006-02-01 03:05:50 -08001564static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565{
1566 int i, size;
1567 char *realobj;
1568
1569 if (cachep->flags & SLAB_RED_ZONE) {
1570 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001571 *dbg_redzone1(cachep, objp),
1572 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573 }
1574
1575 if (cachep->flags & SLAB_STORE_USER) {
1576 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001577 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001579 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580 printk("\n");
1581 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001582 realobj = (char *)objp + obj_offset(cachep);
1583 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001584 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585 int limit;
1586 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001587 if (i + limit > size)
1588 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589 dump_line(realobj, i, limit);
1590 }
1591}
1592
Pekka Enberg343e0d72006-02-01 03:05:50 -08001593static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001594{
1595 char *realobj;
1596 int size, i;
1597 int lines = 0;
1598
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001599 realobj = (char *)objp + obj_offset(cachep);
1600 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001602 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001604 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605 exp = POISON_END;
1606 if (realobj[i] != exp) {
1607 int limit;
1608 /* Mismatch ! */
1609 /* Print header */
1610 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001611 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001612 "Slab corruption: start=%p, len=%d\n",
1613 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614 print_objinfo(cachep, objp, 0);
1615 }
1616 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001617 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001619 if (i + limit > size)
1620 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621 dump_line(realobj, i, limit);
1622 i += 16;
1623 lines++;
1624 /* Limit to 5 lines */
1625 if (lines > 5)
1626 break;
1627 }
1628 }
1629 if (lines != 0) {
1630 /* Print some data about the neighboring objects, if they
1631 * exist:
1632 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001633 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001634 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001635
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001636 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001638 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001639 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001640 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001641 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001642 print_objinfo(cachep, objp, 2);
1643 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001644 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001645 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001646 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001648 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649 print_objinfo(cachep, objp, 2);
1650 }
1651 }
1652}
1653#endif
1654
Linus Torvalds1da177e2005-04-16 15:20:36 -07001655#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001656/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001657 * slab_destroy_objs - destroy a slab and its objects
1658 * @cachep: cache pointer being destroyed
1659 * @slabp: slab pointer being destroyed
1660 *
1661 * Call the registered destructor for each object in a slab that is being
1662 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001663 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001664static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001665{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666 int i;
1667 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001668 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669
1670 if (cachep->flags & SLAB_POISON) {
1671#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001672 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1673 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001674 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001675 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 else
1677 check_poison_obj(cachep, objp);
1678#else
1679 check_poison_obj(cachep, objp);
1680#endif
1681 }
1682 if (cachep->flags & SLAB_RED_ZONE) {
1683 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1684 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001685 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1687 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001688 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689 }
1690 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001691 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001693}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001694#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001695static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001696{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697 if (cachep->dtor) {
1698 int i;
1699 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001700 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001701 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001702 }
1703 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001704}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705#endif
1706
Randy Dunlap911851e2006-03-22 00:08:14 -08001707/**
1708 * slab_destroy - destroy and release all objects in a slab
1709 * @cachep: cache pointer being destroyed
1710 * @slabp: slab pointer being destroyed
1711 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001712 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001713 * Before calling the slab must have been unlinked from the cache. The
1714 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001715 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001716static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001717{
1718 void *addr = slabp->s_mem - slabp->colouroff;
1719
1720 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1722 struct slab_rcu *slab_rcu;
1723
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001724 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001725 slab_rcu->cachep = cachep;
1726 slab_rcu->addr = addr;
1727 call_rcu(&slab_rcu->head, kmem_rcu_free);
1728 } else {
1729 kmem_freepages(cachep, addr);
1730 if (OFF_SLAB(cachep))
1731 kmem_cache_free(cachep->slabp_cache, slabp);
1732 }
1733}
1734
Andrew Mortona737b3e2006-03-22 00:08:11 -08001735/*
1736 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1737 * size of kmem_list3.
1738 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001739static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001740{
1741 int node;
1742
1743 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001744 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001745 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001746 REAPTIMEOUT_LIST3 +
1747 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001748 }
1749}
1750
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
1755 * @align: required alignment for the objects.
1756 * @flags: slab allocation flags
1757 *
1758 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001759 *
1760 * This could be made much more intelligent. For now, try to avoid using
1761 * high order pages for slabs. When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
1763 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001764static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001765 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001766{
1767 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001768 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001769
Andrew Mortona737b3e2006-03-22 00:08:11 -08001770 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001771 unsigned int num;
1772 size_t remainder;
1773
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001774 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001775 if (!num)
1776 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001777
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001778 /* More than offslab_limit objects will cause problems */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001779 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001780 break;
1781
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001782 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001783 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001784 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001785 left_over = remainder;
1786
1787 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001788 * A VFS-reclaimable slab tends to have most allocations
1789 * as GFP_NOFS and we really don't want to have to be allocating
1790 * higher-order pages when we are unable to shrink dcache.
1791 */
1792 if (flags & SLAB_RECLAIM_ACCOUNT)
1793 break;
1794
1795 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001796 * Large number of objects is good, but very large slabs are
1797 * currently bad for the gfp()s.
1798 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001799 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001800 break;
1801
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001802 /*
1803 * Acceptable internal fragmentation?
1804 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001805 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001806 break;
1807 }
1808 return left_over;
1809}
1810
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001811static void setup_cpu_cache(struct kmem_cache *cachep)
1812{
1813 if (g_cpucache_up == FULL) {
1814 enable_cpucache(cachep);
1815 return;
1816 }
1817 if (g_cpucache_up == NONE) {
1818 /*
1819 * Note: the first kmem_cache_create must create the cache
1820 * that's used by kmalloc(24), otherwise the creation of
1821 * further caches will BUG().
1822 */
1823 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1824
1825 /*
1826 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1827 * the first cache, then we need to set up all its list3s,
1828 * otherwise the creation of further caches will BUG().
1829 */
1830 set_up_list3s(cachep, SIZE_AC);
1831 if (INDEX_AC == INDEX_L3)
1832 g_cpucache_up = PARTIAL_L3;
1833 else
1834 g_cpucache_up = PARTIAL_AC;
1835 } else {
1836 cachep->array[smp_processor_id()] =
1837 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1838
1839 if (g_cpucache_up == PARTIAL_AC) {
1840 set_up_list3s(cachep, SIZE_L3);
1841 g_cpucache_up = PARTIAL_L3;
1842 } else {
1843 int node;
1844 for_each_online_node(node) {
1845 cachep->nodelists[node] =
1846 kmalloc_node(sizeof(struct kmem_list3),
1847 GFP_KERNEL, node);
1848 BUG_ON(!cachep->nodelists[node]);
1849 kmem_list3_init(cachep->nodelists[node]);
1850 }
1851 }
1852 }
1853 cachep->nodelists[numa_node_id()]->next_reap =
1854 jiffies + REAPTIMEOUT_LIST3 +
1855 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1856
1857 cpu_cache_get(cachep)->avail = 0;
1858 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1859 cpu_cache_get(cachep)->batchcount = 1;
1860 cpu_cache_get(cachep)->touched = 0;
1861 cachep->batchcount = 1;
1862 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1863}
1864
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001865/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001866 * kmem_cache_create - Create a cache.
1867 * @name: A string which is used in /proc/slabinfo to identify this cache.
1868 * @size: The size of objects to be created in this cache.
1869 * @align: The required alignment for the objects.
1870 * @flags: SLAB flags
1871 * @ctor: A constructor for the objects.
1872 * @dtor: A destructor for the objects.
1873 *
1874 * Returns a ptr to the cache on success, NULL on failure.
1875 * Cannot be called within a int, but can be interrupted.
1876 * The @ctor is run when new pages are allocated by the cache
1877 * and the @dtor is run before the pages are handed back.
1878 *
1879 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08001880 * the module calling this has to destroy the cache before getting unloaded.
1881 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882 * The flags are
1883 *
1884 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1885 * to catch references to uninitialised memory.
1886 *
1887 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1888 * for buffer overruns.
1889 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1891 * cacheline. This can be beneficial if you're counting cycles as closely
1892 * as davem.
1893 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001894struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001896 unsigned long flags,
1897 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08001898 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899{
1900 size_t left_over, slab_size, ralign;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001901 struct kmem_cache *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001902 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903
1904 /*
1905 * Sanity checks... these are all serious usage bugs.
1906 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001907 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001908 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001909 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1910 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001911 BUG();
1912 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08001914 /*
1915 * Prevent CPUs from coming and going.
1916 * lock_cpu_hotplug() nests outside cache_chain_mutex
1917 */
1918 lock_cpu_hotplug();
1919
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001920 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001921
1922 list_for_each(p, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001923 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001924 mm_segment_t old_fs = get_fs();
1925 char tmp;
1926 int res;
1927
1928 /*
1929 * This happens when the module gets unloaded and doesn't
1930 * destroy its slab cache and no-one else reuses the vmalloc
1931 * area of the module. Print a warning.
1932 */
1933 set_fs(KERNEL_DS);
1934 res = __get_user(tmp, pc->name);
1935 set_fs(old_fs);
1936 if (res) {
1937 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001938 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001939 continue;
1940 }
1941
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001942 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001943 printk("kmem_cache_create: duplicate cache %s\n", name);
1944 dump_stack();
1945 goto oops;
1946 }
1947 }
1948
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949#if DEBUG
1950 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1951 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1952 /* No constructor, but inital state check requested */
1953 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001954 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955 flags &= ~SLAB_DEBUG_INITIAL;
1956 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957#if FORCED_DEBUG
1958 /*
1959 * Enable redzoning and last user accounting, except for caches with
1960 * large objects, if the increased size would increase the object size
1961 * above the next power of two: caches with object sizes just above a
1962 * power of two have a significant amount of internal fragmentation.
1963 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001964 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001965 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966 if (!(flags & SLAB_DESTROY_BY_RCU))
1967 flags |= SLAB_POISON;
1968#endif
1969 if (flags & SLAB_DESTROY_BY_RCU)
1970 BUG_ON(flags & SLAB_POISON);
1971#endif
1972 if (flags & SLAB_DESTROY_BY_RCU)
1973 BUG_ON(dtor);
1974
1975 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08001976 * Always checks flags, a caller might be expecting debug support which
1977 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001979 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001980
Andrew Mortona737b3e2006-03-22 00:08:11 -08001981 /*
1982 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983 * unaligned accesses for some archs when redzoning is used, and makes
1984 * sure any on-slab bufctl's are also correctly aligned.
1985 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001986 if (size & (BYTES_PER_WORD - 1)) {
1987 size += (BYTES_PER_WORD - 1);
1988 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 }
1990
Andrew Mortona737b3e2006-03-22 00:08:11 -08001991 /* calculate the final buffer alignment: */
1992
Linus Torvalds1da177e2005-04-16 15:20:36 -07001993 /* 1) arch recommendation: can be overridden for debug */
1994 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001995 /*
1996 * Default alignment: as specified by the arch code. Except if
1997 * an object is really small, then squeeze multiple objects into
1998 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 */
2000 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002001 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002002 ralign /= 2;
2003 } else {
2004 ralign = BYTES_PER_WORD;
2005 }
2006 /* 2) arch mandated alignment: disables debug if necessary */
2007 if (ralign < ARCH_SLAB_MINALIGN) {
2008 ralign = ARCH_SLAB_MINALIGN;
2009 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002010 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011 }
2012 /* 3) caller mandated alignment: disables debug if necessary */
2013 if (ralign < align) {
2014 ralign = align;
2015 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002016 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002017 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002018 /*
2019 * 4) Store it. Note that the debug code below can reduce
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020 * the alignment to BYTES_PER_WORD.
2021 */
2022 align = ralign;
2023
2024 /* Get cache's description obj. */
Pekka Enbergc5e3b832006-03-25 03:06:43 -08002025 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002027 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028
2029#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002030 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031
2032 if (flags & SLAB_RED_ZONE) {
2033 /* redzoning only works with word aligned caches */
2034 align = BYTES_PER_WORD;
2035
2036 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002037 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002038 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 }
2040 if (flags & SLAB_STORE_USER) {
2041 /* user store requires word alignment and
2042 * one word storage behind the end of the real
2043 * object.
2044 */
2045 align = BYTES_PER_WORD;
2046 size += BYTES_PER_WORD;
2047 }
2048#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002049 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002050 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2051 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 size = PAGE_SIZE;
2053 }
2054#endif
2055#endif
2056
2057 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002058 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002059 /*
2060 * Size is large, assume best to place the slab management obj
2061 * off-slab (should allow better packing of objs).
2062 */
2063 flags |= CFLGS_OFF_SLAB;
2064
2065 size = ALIGN(size, align);
2066
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002067 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068
2069 if (!cachep->num) {
2070 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2071 kmem_cache_free(&cache_cache, cachep);
2072 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002073 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002075 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2076 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077
2078 /*
2079 * If the slab has been placed off-slab, and we have enough space then
2080 * move it on-slab. This is at the expense of any extra colouring.
2081 */
2082 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2083 flags &= ~CFLGS_OFF_SLAB;
2084 left_over -= slab_size;
2085 }
2086
2087 if (flags & CFLGS_OFF_SLAB) {
2088 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002089 slab_size =
2090 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002091 }
2092
2093 cachep->colour_off = cache_line_size();
2094 /* Offset must be a multiple of the alignment. */
2095 if (cachep->colour_off < align)
2096 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002097 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098 cachep->slab_size = slab_size;
2099 cachep->flags = flags;
2100 cachep->gfpflags = 0;
2101 if (flags & SLAB_CACHE_DMA)
2102 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002103 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104
2105 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07002106 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 cachep->ctor = ctor;
2108 cachep->dtor = dtor;
2109 cachep->name = name;
2110
Linus Torvalds1da177e2005-04-16 15:20:36 -07002111
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002112 setup_cpu_cache(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114 /* cache setup completed, link it into the list */
2115 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002116oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117 if (!cachep && (flags & SLAB_PANIC))
2118 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002119 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002120 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002121 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 return cachep;
2123}
2124EXPORT_SYMBOL(kmem_cache_create);
2125
2126#if DEBUG
2127static void check_irq_off(void)
2128{
2129 BUG_ON(!irqs_disabled());
2130}
2131
2132static void check_irq_on(void)
2133{
2134 BUG_ON(irqs_disabled());
2135}
2136
Pekka Enberg343e0d72006-02-01 03:05:50 -08002137static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002138{
2139#ifdef CONFIG_SMP
2140 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002141 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142#endif
2143}
Christoph Lametere498be72005-09-09 13:03:32 -07002144
Pekka Enberg343e0d72006-02-01 03:05:50 -08002145static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002146{
2147#ifdef CONFIG_SMP
2148 check_irq_off();
2149 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2150#endif
2151}
2152
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153#else
2154#define check_irq_off() do { } while(0)
2155#define check_irq_on() do { } while(0)
2156#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002157#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002158#endif
2159
Christoph Lameteraab22072006-03-22 00:09:06 -08002160static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2161 struct array_cache *ac,
2162 int force, int node);
2163
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164static void do_drain(void *arg)
2165{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002166 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002168 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169
2170 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002171 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002172 spin_lock(&cachep->nodelists[node]->list_lock);
2173 free_block(cachep, ac->entry, ac->avail, node);
2174 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175 ac->avail = 0;
2176}
2177
Pekka Enberg343e0d72006-02-01 03:05:50 -08002178static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179{
Christoph Lametere498be72005-09-09 13:03:32 -07002180 struct kmem_list3 *l3;
2181 int node;
2182
Andrew Mortona07fa392006-03-22 00:08:17 -08002183 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002185 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002186 l3 = cachep->nodelists[node];
2187 if (l3) {
Christoph Lameteraab22072006-03-22 00:09:06 -08002188 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002189 if (l3->alien)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08002190 drain_alien_cache(cachep, l3->alien);
Christoph Lametere498be72005-09-09 13:03:32 -07002191 }
2192 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193}
2194
Pekka Enberg343e0d72006-02-01 03:05:50 -08002195static int __node_shrink(struct kmem_cache *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196{
2197 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07002198 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 int ret;
2200
Christoph Lametere498be72005-09-09 13:03:32 -07002201 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002202 struct list_head *p;
2203
Christoph Lametere498be72005-09-09 13:03:32 -07002204 p = l3->slabs_free.prev;
2205 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206 break;
2207
Christoph Lametere498be72005-09-09 13:03:32 -07002208 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002209#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002210 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211#endif
2212 list_del(&slabp->list);
2213
Christoph Lametere498be72005-09-09 13:03:32 -07002214 l3->free_objects -= cachep->num;
2215 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002217 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002219 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002220 return ret;
2221}
2222
Pekka Enberg343e0d72006-02-01 03:05:50 -08002223static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002224{
2225 int ret = 0, i = 0;
2226 struct kmem_list3 *l3;
2227
2228 drain_cpu_caches(cachep);
2229
2230 check_irq_on();
2231 for_each_online_node(i) {
2232 l3 = cachep->nodelists[i];
2233 if (l3) {
2234 spin_lock_irq(&l3->list_lock);
2235 ret += __node_shrink(cachep, i);
2236 spin_unlock_irq(&l3->list_lock);
2237 }
2238 }
2239 return (ret ? 1 : 0);
2240}
2241
Linus Torvalds1da177e2005-04-16 15:20:36 -07002242/**
2243 * kmem_cache_shrink - Shrink a cache.
2244 * @cachep: The cache to shrink.
2245 *
2246 * Releases as many slabs as possible for a cache.
2247 * To help debugging, a zero exit status indicates all slabs were released.
2248 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002249int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002251 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252
2253 return __cache_shrink(cachep);
2254}
2255EXPORT_SYMBOL(kmem_cache_shrink);
2256
2257/**
2258 * kmem_cache_destroy - delete a cache
2259 * @cachep: the cache to destroy
2260 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002261 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262 * Returns 0 on success.
2263 *
2264 * It is expected this function will be called by a module when it is
2265 * unloaded. This will remove the cache completely, and avoid a duplicate
2266 * cache being allocated each time a module is loaded and unloaded, if the
2267 * module doesn't have persistent in-kernel storage across loads and unloads.
2268 *
2269 * The cache must be empty before calling this function.
2270 *
2271 * The caller must guarantee that noone will allocate memory from the cache
2272 * during the kmem_cache_destroy().
2273 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002274int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002275{
2276 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002277 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002279 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280
2281 /* Don't let CPUs to come and go */
2282 lock_cpu_hotplug();
2283
2284 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002285 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286 /*
2287 * the chain is never empty, cache_cache is never destroyed
2288 */
2289 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002290 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291
2292 if (__cache_shrink(cachep)) {
2293 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002294 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002295 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002296 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002297 unlock_cpu_hotplug();
2298 return 1;
2299 }
2300
2301 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002302 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303
Christoph Lametere498be72005-09-09 13:03:32 -07002304 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002305 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306
2307 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002308 for_each_online_node(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002309 l3 = cachep->nodelists[i];
2310 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07002311 kfree(l3->shared);
2312 free_alien_cache(l3->alien);
2313 kfree(l3);
2314 }
2315 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002316 kmem_cache_free(&cache_cache, cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002317 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318 return 0;
2319}
2320EXPORT_SYMBOL(kmem_cache_destroy);
2321
2322/* Get the memory for a slab management obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002323static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002324 int colour_off, gfp_t local_flags,
2325 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326{
2327 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002328
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 if (OFF_SLAB(cachep)) {
2330 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002331 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2332 local_flags, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333 if (!slabp)
2334 return NULL;
2335 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002336 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337 colour_off += cachep->slab_size;
2338 }
2339 slabp->inuse = 0;
2340 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002341 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002342 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 return slabp;
2344}
2345
2346static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2347{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002348 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002349}
2350
Pekka Enberg343e0d72006-02-01 03:05:50 -08002351static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002352 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353{
2354 int i;
2355
2356 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002357 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358#if DEBUG
2359 /* need to poison the objs? */
2360 if (cachep->flags & SLAB_POISON)
2361 poison_obj(cachep, objp, POISON_FREE);
2362 if (cachep->flags & SLAB_STORE_USER)
2363 *dbg_userword(cachep, objp) = NULL;
2364
2365 if (cachep->flags & SLAB_RED_ZONE) {
2366 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2367 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2368 }
2369 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002370 * Constructors are not allowed to allocate memory from the same
2371 * cache which they are a constructor for. Otherwise, deadlock.
2372 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002373 */
2374 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002375 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002376 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377
2378 if (cachep->flags & SLAB_RED_ZONE) {
2379 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2380 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002381 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2383 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002384 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002385 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002386 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2387 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002388 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002389 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390#else
2391 if (cachep->ctor)
2392 cachep->ctor(objp, cachep, ctor_flags);
2393#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002394 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002396 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002397 slabp->free = 0;
2398}
2399
Pekka Enberg343e0d72006-02-01 03:05:50 -08002400static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002402 if (flags & SLAB_DMA)
2403 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2404 else
2405 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406}
2407
Andrew Mortona737b3e2006-03-22 00:08:11 -08002408static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2409 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002410{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002411 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002412 kmem_bufctl_t next;
2413
2414 slabp->inuse++;
2415 next = slab_bufctl(slabp)[slabp->free];
2416#if DEBUG
2417 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2418 WARN_ON(slabp->nodeid != nodeid);
2419#endif
2420 slabp->free = next;
2421
2422 return objp;
2423}
2424
Andrew Mortona737b3e2006-03-22 00:08:11 -08002425static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2426 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002427{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002428 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002429
2430#if DEBUG
2431 /* Verify that the slab belongs to the intended node */
2432 WARN_ON(slabp->nodeid != nodeid);
2433
Al Viro871751e2006-03-25 03:06:39 -08002434 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002435 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002436 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002437 BUG();
2438 }
2439#endif
2440 slab_bufctl(slabp)[objnr] = slabp->free;
2441 slabp->free = objnr;
2442 slabp->inuse--;
2443}
2444
Andrew Mortona737b3e2006-03-22 00:08:11 -08002445static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2446 void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447{
2448 int i;
2449 struct page *page;
2450
2451 /* Nasty!!!!!! I hope this is OK. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452 page = virt_to_page(objp);
Nick Piggin84097512006-03-22 00:08:34 -08002453
2454 i = 1;
2455 if (likely(!PageCompound(page)))
2456 i <<= cachep->gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002457 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002458 page_set_cache(page, cachep);
2459 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460 page++;
2461 } while (--i);
2462}
2463
2464/*
2465 * Grow (by 1) the number of slabs within a cache. This is called by
2466 * kmem_cache_alloc() when there are no active objs left in a cache.
2467 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002468static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002469{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002470 struct slab *slabp;
2471 void *objp;
2472 size_t offset;
2473 gfp_t local_flags;
2474 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002475 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002476
Andrew Mortona737b3e2006-03-22 00:08:11 -08002477 /*
2478 * Be lazy and only check for valid flags here, keeping it out of the
2479 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002481 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482 if (flags & SLAB_NO_GROW)
2483 return 0;
2484
2485 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2486 local_flags = (flags & SLAB_LEVEL_MASK);
2487 if (!(local_flags & __GFP_WAIT))
2488 /*
2489 * Not allowed to sleep. Need to tell a constructor about
2490 * this - it might need to know...
2491 */
2492 ctor_flags |= SLAB_CTOR_ATOMIC;
2493
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002494 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002495 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002496 l3 = cachep->nodelists[nodeid];
2497 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002498
2499 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002500 offset = l3->colour_next;
2501 l3->colour_next++;
2502 if (l3->colour_next >= cachep->colour)
2503 l3->colour_next = 0;
2504 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002506 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507
2508 if (local_flags & __GFP_WAIT)
2509 local_irq_enable();
2510
2511 /*
2512 * The test for missing atomic flag is performed here, rather than
2513 * the more obvious place, simply to reduce the critical path length
2514 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2515 * will eventually be caught here (where it matters).
2516 */
2517 kmem_flagcheck(cachep, flags);
2518
Andrew Mortona737b3e2006-03-22 00:08:11 -08002519 /*
2520 * Get mem for the objs. Attempt to allocate a physical page from
2521 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002522 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002523 objp = kmem_getpages(cachep, flags, nodeid);
2524 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002525 goto failed;
2526
2527 /* Get slab management. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002528 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002529 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 goto opps1;
2531
Christoph Lametere498be72005-09-09 13:03:32 -07002532 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 set_slab_attr(cachep, slabp, objp);
2534
2535 cache_init_objs(cachep, slabp, ctor_flags);
2536
2537 if (local_flags & __GFP_WAIT)
2538 local_irq_disable();
2539 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002540 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541
2542 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002543 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002545 l3->free_objects += cachep->num;
2546 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002547 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002548opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002550failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002551 if (local_flags & __GFP_WAIT)
2552 local_irq_disable();
2553 return 0;
2554}
2555
2556#if DEBUG
2557
2558/*
2559 * Perform extra freeing checks:
2560 * - detect bad pointers.
2561 * - POISON/RED_ZONE checking
2562 * - destructor calls, for caches with POISON+dtor
2563 */
2564static void kfree_debugcheck(const void *objp)
2565{
2566 struct page *page;
2567
2568 if (!virt_addr_valid(objp)) {
2569 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002570 (unsigned long)objp);
2571 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002572 }
2573 page = virt_to_page(objp);
2574 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002575 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2576 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577 BUG();
2578 }
2579}
2580
Pekka Enberg343e0d72006-02-01 03:05:50 -08002581static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002582 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002583{
2584 struct page *page;
2585 unsigned int objnr;
2586 struct slab *slabp;
2587
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002588 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002589 kfree_debugcheck(objp);
2590 page = virt_to_page(objp);
2591
Pekka Enberg065d41c2005-11-13 16:06:46 -08002592 if (page_get_cache(page) != cachep) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002593 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2594 "cache %p, got %p\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002595 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002596 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002597 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2598 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599 WARN_ON(1);
2600 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002601 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602
2603 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002604 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2605 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2606 slab_error(cachep, "double free, or memory outside"
2607 " object was overwritten");
2608 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2609 "redzone 2:0x%lx.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002610 objp, *dbg_redzone1(cachep, objp),
2611 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002612 }
2613 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2614 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2615 }
2616 if (cachep->flags & SLAB_STORE_USER)
2617 *dbg_userword(cachep, objp) = caller;
2618
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002619 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002620
2621 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002622 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623
2624 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002625 /*
2626 * Need to call the slab's constructor so the caller can
2627 * perform a verify of its state (debugging). Called without
2628 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002630 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002631 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632 }
2633 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2634 /* we want to cache poison the object,
2635 * call the destruction callback
2636 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002637 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 }
Al Viro871751e2006-03-25 03:06:39 -08002639#ifdef CONFIG_DEBUG_SLAB_LEAK
2640 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2641#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642 if (cachep->flags & SLAB_POISON) {
2643#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002644 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002646 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002647 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002648 } else {
2649 poison_obj(cachep, objp, POISON_FREE);
2650 }
2651#else
2652 poison_obj(cachep, objp, POISON_FREE);
2653#endif
2654 }
2655 return objp;
2656}
2657
Pekka Enberg343e0d72006-02-01 03:05:50 -08002658static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659{
2660 kmem_bufctl_t i;
2661 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002662
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663 /* Check slab's freelist to see if this obj is there. */
2664 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2665 entries++;
2666 if (entries > cachep->num || i >= cachep->num)
2667 goto bad;
2668 }
2669 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002670bad:
2671 printk(KERN_ERR "slab: Internal list corruption detected in "
2672 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2673 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002674 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002675 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002676 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002677 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002679 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002680 }
2681 printk("\n");
2682 BUG();
2683 }
2684}
2685#else
2686#define kfree_debugcheck(x) do { } while(0)
2687#define cache_free_debugcheck(x,objp,z) (objp)
2688#define check_slabp(x,y) do { } while(0)
2689#endif
2690
Pekka Enberg343e0d72006-02-01 03:05:50 -08002691static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692{
2693 int batchcount;
2694 struct kmem_list3 *l3;
2695 struct array_cache *ac;
2696
2697 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002698 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002699retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002700 batchcount = ac->batchcount;
2701 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002702 /*
2703 * If there was little recent activity on this cache, then
2704 * perform only a partial refill. Otherwise we could generate
2705 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706 */
2707 batchcount = BATCHREFILL_LIMIT;
2708 }
Christoph Lametere498be72005-09-09 13:03:32 -07002709 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710
Christoph Lametere498be72005-09-09 13:03:32 -07002711 BUG_ON(ac->avail > 0 || !l3);
2712 spin_lock(&l3->list_lock);
2713
Christoph Lameter3ded1752006-03-25 03:06:44 -08002714 /* See if we can refill from the shared array */
2715 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2716 goto alloc_done;
2717
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718 while (batchcount > 0) {
2719 struct list_head *entry;
2720 struct slab *slabp;
2721 /* Get slab alloc is to come from. */
2722 entry = l3->slabs_partial.next;
2723 if (entry == &l3->slabs_partial) {
2724 l3->free_touched = 1;
2725 entry = l3->slabs_free.next;
2726 if (entry == &l3->slabs_free)
2727 goto must_grow;
2728 }
2729
2730 slabp = list_entry(entry, struct slab, list);
2731 check_slabp(cachep, slabp);
2732 check_spinlock_acquired(cachep);
2733 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734 STATS_INC_ALLOCED(cachep);
2735 STATS_INC_ACTIVE(cachep);
2736 STATS_SET_HIGH(cachep);
2737
Matthew Dobson78d382d2006-02-01 03:05:47 -08002738 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2739 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002740 }
2741 check_slabp(cachep, slabp);
2742
2743 /* move slabp to correct slabp list: */
2744 list_del(&slabp->list);
2745 if (slabp->free == BUFCTL_END)
2746 list_add(&slabp->list, &l3->slabs_full);
2747 else
2748 list_add(&slabp->list, &l3->slabs_partial);
2749 }
2750
Andrew Mortona737b3e2006-03-22 00:08:11 -08002751must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002753alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002754 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755
2756 if (unlikely(!ac->avail)) {
2757 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002758 x = cache_grow(cachep, flags, numa_node_id());
2759
Andrew Mortona737b3e2006-03-22 00:08:11 -08002760 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002761 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002762 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763 return NULL;
2764
Andrew Mortona737b3e2006-03-22 00:08:11 -08002765 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766 goto retry;
2767 }
2768 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002769 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770}
2771
Andrew Mortona737b3e2006-03-22 00:08:11 -08002772static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2773 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002774{
2775 might_sleep_if(flags & __GFP_WAIT);
2776#if DEBUG
2777 kmem_flagcheck(cachep, flags);
2778#endif
2779}
2780
2781#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002782static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2783 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002785 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002786 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002787 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002789 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002790 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002791 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002792 else
2793 check_poison_obj(cachep, objp);
2794#else
2795 check_poison_obj(cachep, objp);
2796#endif
2797 poison_obj(cachep, objp, POISON_INUSE);
2798 }
2799 if (cachep->flags & SLAB_STORE_USER)
2800 *dbg_userword(cachep, objp) = caller;
2801
2802 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002803 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2804 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2805 slab_error(cachep, "double free, or memory outside"
2806 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002807 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002808 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2809 objp, *dbg_redzone1(cachep, objp),
2810 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002811 }
2812 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2813 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2814 }
Al Viro871751e2006-03-25 03:06:39 -08002815#ifdef CONFIG_DEBUG_SLAB_LEAK
2816 {
2817 struct slab *slabp;
2818 unsigned objnr;
2819
2820 slabp = page_get_slab(virt_to_page(objp));
2821 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2822 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2823 }
2824#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002825 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002827 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002828
2829 if (!(flags & __GFP_WAIT))
2830 ctor_flags |= SLAB_CTOR_ATOMIC;
2831
2832 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002833 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002834 return objp;
2835}
2836#else
2837#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2838#endif
2839
Pekka Enberg343e0d72006-02-01 03:05:50 -08002840static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002842 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843 struct array_cache *ac;
2844
Christoph Lameterdc85da12006-01-18 17:42:36 -08002845#ifdef CONFIG_NUMA
Paul Jacksonb2455392006-03-24 03:16:12 -08002846 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
Paul Jacksonc61afb12006-03-24 03:16:08 -08002847 objp = alternate_node_alloc(cachep, flags);
2848 if (objp != NULL)
2849 return objp;
Paul Jackson101a5002006-03-24 03:16:07 -08002850 }
Christoph Lameterdc85da12006-01-18 17:42:36 -08002851#endif
2852
Alok N Kataria5c382302005-09-27 21:45:46 -07002853 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002854 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855 if (likely(ac->avail)) {
2856 STATS_INC_ALLOCHIT(cachep);
2857 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002858 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002859 } else {
2860 STATS_INC_ALLOCMISS(cachep);
2861 objp = cache_alloc_refill(cachep, flags);
2862 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002863 return objp;
2864}
2865
Andrew Mortona737b3e2006-03-22 00:08:11 -08002866static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2867 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07002868{
2869 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002870 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002871
2872 cache_alloc_debugcheck_before(cachep, flags);
2873
2874 local_irq_save(save_flags);
2875 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002876 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002877 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002878 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07002879 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880 return objp;
2881}
2882
Christoph Lametere498be72005-09-09 13:03:32 -07002883#ifdef CONFIG_NUMA
2884/*
Paul Jacksonb2455392006-03-24 03:16:12 -08002885 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08002886 *
2887 * If we are in_interrupt, then process context, including cpusets and
2888 * mempolicy, may not apply and should not be used for allocation policy.
2889 */
2890static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2891{
2892 int nid_alloc, nid_here;
2893
2894 if (in_interrupt())
2895 return NULL;
2896 nid_alloc = nid_here = numa_node_id();
2897 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2898 nid_alloc = cpuset_mem_spread_node();
2899 else if (current->mempolicy)
2900 nid_alloc = slab_node(current->mempolicy);
2901 if (nid_alloc != nid_here)
2902 return __cache_alloc_node(cachep, flags, nid_alloc);
2903 return NULL;
2904}
2905
2906/*
Christoph Lametere498be72005-09-09 13:03:32 -07002907 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002909static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2910 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002911{
2912 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002913 struct slab *slabp;
2914 struct kmem_list3 *l3;
2915 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002916 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002918 l3 = cachep->nodelists[nodeid];
2919 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002920
Andrew Mortona737b3e2006-03-22 00:08:11 -08002921retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002922 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002923 spin_lock(&l3->list_lock);
2924 entry = l3->slabs_partial.next;
2925 if (entry == &l3->slabs_partial) {
2926 l3->free_touched = 1;
2927 entry = l3->slabs_free.next;
2928 if (entry == &l3->slabs_free)
2929 goto must_grow;
2930 }
Christoph Lametere498be72005-09-09 13:03:32 -07002931
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002932 slabp = list_entry(entry, struct slab, list);
2933 check_spinlock_acquired_node(cachep, nodeid);
2934 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002935
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002936 STATS_INC_NODEALLOCS(cachep);
2937 STATS_INC_ACTIVE(cachep);
2938 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002939
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002940 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07002941
Matthew Dobson78d382d2006-02-01 03:05:47 -08002942 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002943 check_slabp(cachep, slabp);
2944 l3->free_objects--;
2945 /* move slabp to correct slabp list: */
2946 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07002947
Andrew Mortona737b3e2006-03-22 00:08:11 -08002948 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002949 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002950 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002951 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002952
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002953 spin_unlock(&l3->list_lock);
2954 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07002955
Andrew Mortona737b3e2006-03-22 00:08:11 -08002956must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002957 spin_unlock(&l3->list_lock);
2958 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002959
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002960 if (!x)
2961 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07002962
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002963 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002964done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002965 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07002966}
2967#endif
2968
2969/*
2970 * Caller needs to acquire correct kmem_list's list_lock
2971 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002972static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002973 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974{
2975 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002976 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002977
2978 for (i = 0; i < nr_objects; i++) {
2979 void *objp = objpp[i];
2980 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08002982 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07002983 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002984 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07002985 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002987 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002988 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002989 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002990 check_slabp(cachep, slabp);
2991
2992 /* fixup slab chains */
2993 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002994 if (l3->free_objects > l3->free_limit) {
2995 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002996 slab_destroy(cachep, slabp);
2997 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002998 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002999 }
3000 } else {
3001 /* Unconditionally move a slab to the end of the
3002 * partial list on free - maximum time for the
3003 * other objects to be freed, too.
3004 */
Christoph Lametere498be72005-09-09 13:03:32 -07003005 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006 }
3007 }
3008}
3009
Pekka Enberg343e0d72006-02-01 03:05:50 -08003010static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003011{
3012 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003013 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003014 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015
3016 batchcount = ac->batchcount;
3017#if DEBUG
3018 BUG_ON(!batchcount || batchcount > ac->avail);
3019#endif
3020 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003021 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07003022 spin_lock(&l3->list_lock);
3023 if (l3->shared) {
3024 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003025 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003026 if (max) {
3027 if (batchcount > max)
3028 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003029 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003030 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031 shared_array->avail += batchcount;
3032 goto free_done;
3033 }
3034 }
3035
Christoph Lameterff694162005-09-22 21:44:02 -07003036 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003037free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003038#if STATS
3039 {
3040 int i = 0;
3041 struct list_head *p;
3042
Christoph Lametere498be72005-09-09 13:03:32 -07003043 p = l3->slabs_free.next;
3044 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 struct slab *slabp;
3046
3047 slabp = list_entry(p, struct slab, list);
3048 BUG_ON(slabp->inuse);
3049
3050 i++;
3051 p = p->next;
3052 }
3053 STATS_SET_FREEABLE(cachep, i);
3054 }
3055#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003056 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003058 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003059}
3060
3061/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003062 * Release an obj back to its cache. If the obj has a constructed state, it must
3063 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003064 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003065static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003066{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003067 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068
3069 check_irq_off();
3070 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3071
Christoph Lametere498be72005-09-09 13:03:32 -07003072 /* Make sure we are not freeing a object from another
3073 * node to the array cache on this cpu.
3074 */
3075#ifdef CONFIG_NUMA
3076 {
3077 struct slab *slabp;
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003078 slabp = virt_to_slab(objp);
Christoph Lametere498be72005-09-09 13:03:32 -07003079 if (unlikely(slabp->nodeid != numa_node_id())) {
3080 struct array_cache *alien = NULL;
3081 int nodeid = slabp->nodeid;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003082 struct kmem_list3 *l3;
Christoph Lametere498be72005-09-09 13:03:32 -07003083
Andrew Mortona737b3e2006-03-22 00:08:11 -08003084 l3 = cachep->nodelists[numa_node_id()];
Christoph Lametere498be72005-09-09 13:03:32 -07003085 STATS_INC_NODEFREES(cachep);
3086 if (l3->alien && l3->alien[nodeid]) {
3087 alien = l3->alien[nodeid];
3088 spin_lock(&alien->lock);
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003089 if (unlikely(alien->avail == alien->limit)) {
3090 STATS_INC_ACOVERFLOW(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003091 __drain_alien_cache(cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003092 alien, nodeid);
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003093 }
Christoph Lametere498be72005-09-09 13:03:32 -07003094 alien->entry[alien->avail++] = objp;
3095 spin_unlock(&alien->lock);
3096 } else {
3097 spin_lock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003098 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003099 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003100 spin_unlock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003101 list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003102 }
3103 return;
3104 }
3105 }
3106#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003107 if (likely(ac->avail < ac->limit)) {
3108 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003109 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003110 return;
3111 } else {
3112 STATS_INC_FREEMISS(cachep);
3113 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003114 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003115 }
3116}
3117
3118/**
3119 * kmem_cache_alloc - Allocate an object
3120 * @cachep: The cache to allocate from.
3121 * @flags: See kmalloc().
3122 *
3123 * Allocate an object from this cache. The flags are only relevant
3124 * if the cache has no available objects.
3125 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003126void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003127{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003128 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003129}
3130EXPORT_SYMBOL(kmem_cache_alloc);
3131
3132/**
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003133 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3134 * @cache: The cache to allocate from.
3135 * @flags: See kmalloc().
3136 *
3137 * Allocate an object from this cache and set the allocated memory to zero.
3138 * The flags are only relevant if the cache has no available objects.
3139 */
3140void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3141{
3142 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3143 if (ret)
3144 memset(ret, 0, obj_size(cache));
3145 return ret;
3146}
3147EXPORT_SYMBOL(kmem_cache_zalloc);
3148
3149/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003150 * kmem_ptr_validate - check if an untrusted pointer might
3151 * be a slab entry.
3152 * @cachep: the cache we're checking against
3153 * @ptr: pointer to validate
3154 *
3155 * This verifies that the untrusted pointer looks sane:
3156 * it is _not_ a guarantee that the pointer is actually
3157 * part of the slab cache in question, but it at least
3158 * validates that the pointer can be dereferenced and
3159 * looks half-way sane.
3160 *
3161 * Currently only used for dentry validation.
3162 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003163int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003164{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003165 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003166 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003167 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003168 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003169 struct page *page;
3170
3171 if (unlikely(addr < min_addr))
3172 goto out;
3173 if (unlikely(addr > (unsigned long)high_memory - size))
3174 goto out;
3175 if (unlikely(addr & align_mask))
3176 goto out;
3177 if (unlikely(!kern_addr_valid(addr)))
3178 goto out;
3179 if (unlikely(!kern_addr_valid(addr + size - 1)))
3180 goto out;
3181 page = virt_to_page(ptr);
3182 if (unlikely(!PageSlab(page)))
3183 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003184 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003185 goto out;
3186 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003187out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188 return 0;
3189}
3190
3191#ifdef CONFIG_NUMA
3192/**
3193 * kmem_cache_alloc_node - Allocate an object on the specified node
3194 * @cachep: The cache to allocate from.
3195 * @flags: See kmalloc().
3196 * @nodeid: node number of the target node.
3197 *
3198 * Identical to kmem_cache_alloc, except that this function is slow
3199 * and can sleep. And it will allocate memory on the given node, which
3200 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003201 * New and improved: it will now make sure that the object gets
3202 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003204void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003205{
Christoph Lametere498be72005-09-09 13:03:32 -07003206 unsigned long save_flags;
3207 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208
Christoph Lametere498be72005-09-09 13:03:32 -07003209 cache_alloc_debugcheck_before(cachep, flags);
3210 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003211
3212 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003213 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003214 ptr = ____cache_alloc(cachep, flags);
3215 else
3216 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003217 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003218
3219 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3220 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003221
Christoph Lametere498be72005-09-09 13:03:32 -07003222 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003223}
3224EXPORT_SYMBOL(kmem_cache_alloc_node);
3225
Al Virodd0fc662005-10-07 07:46:04 +01003226void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003227{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003228 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003229
3230 cachep = kmem_find_general_cachep(size, flags);
3231 if (unlikely(cachep == NULL))
3232 return NULL;
3233 return kmem_cache_alloc_node(cachep, flags, node);
3234}
3235EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003236#endif
3237
3238/**
3239 * kmalloc - allocate memory
3240 * @size: how many bytes of memory are required.
3241 * @flags: the type of memory to allocate.
Randy Dunlap911851e2006-03-22 00:08:14 -08003242 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003243 *
3244 * kmalloc is the normal method of allocating memory
3245 * in the kernel.
3246 *
3247 * The @flags argument may be one of:
3248 *
3249 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3250 *
3251 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3252 *
3253 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3254 *
3255 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3256 * must be suitable for DMA. This can mean different things on different
3257 * platforms. For example, on i386, it means that the memory must come
3258 * from the first 16MB.
3259 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003260static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3261 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003262{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003263 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003264
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003265 /* If you want to save a few bytes .text space: replace
3266 * __ with kmem_.
3267 * Then kmalloc uses the uninlined functions instead of the inline
3268 * functions.
3269 */
3270 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003271 if (unlikely(cachep == NULL))
3272 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003273 return __cache_alloc(cachep, flags, caller);
3274}
3275
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003276
3277void *__kmalloc(size_t size, gfp_t flags)
3278{
Al Viro871751e2006-03-25 03:06:39 -08003279#ifndef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003280 return __do_kmalloc(size, flags, NULL);
Al Viro871751e2006-03-25 03:06:39 -08003281#else
3282 return __do_kmalloc(size, flags, __builtin_return_address(0));
3283#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003284}
3285EXPORT_SYMBOL(__kmalloc);
3286
Al Viro871751e2006-03-25 03:06:39 -08003287#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003288void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3289{
3290 return __do_kmalloc(size, flags, caller);
3291}
3292EXPORT_SYMBOL(__kmalloc_track_caller);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003293#endif
3294
Linus Torvalds1da177e2005-04-16 15:20:36 -07003295#ifdef CONFIG_SMP
3296/**
3297 * __alloc_percpu - allocate one copy of the object for every present
3298 * cpu in the system, zeroing them.
3299 * Objects should be dereferenced using the per_cpu_ptr macro only.
3300 *
3301 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003302 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003303void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003304{
3305 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003306 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003307
3308 if (!pdata)
3309 return NULL;
3310
Christoph Lametere498be72005-09-09 13:03:32 -07003311 /*
3312 * Cannot use for_each_online_cpu since a cpu may come online
3313 * and we have no way of figuring out how to fix the array
3314 * that we have allocated then....
3315 */
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08003316 for_each_possible_cpu(i) {
Christoph Lametere498be72005-09-09 13:03:32 -07003317 int node = cpu_to_node(i);
3318
3319 if (node_online(node))
3320 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3321 else
3322 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323
3324 if (!pdata->ptrs[i])
3325 goto unwind_oom;
3326 memset(pdata->ptrs[i], 0, size);
3327 }
3328
3329 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003330 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003331
Andrew Mortona737b3e2006-03-22 00:08:11 -08003332unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003333 while (--i >= 0) {
3334 if (!cpu_possible(i))
3335 continue;
3336 kfree(pdata->ptrs[i]);
3337 }
3338 kfree(pdata);
3339 return NULL;
3340}
3341EXPORT_SYMBOL(__alloc_percpu);
3342#endif
3343
3344/**
3345 * kmem_cache_free - Deallocate an object
3346 * @cachep: The cache the allocation was from.
3347 * @objp: The previously allocated object.
3348 *
3349 * Free an object which was previously allocated from this
3350 * cache.
3351 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003352void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003353{
3354 unsigned long flags;
3355
3356 local_irq_save(flags);
3357 __cache_free(cachep, objp);
3358 local_irq_restore(flags);
3359}
3360EXPORT_SYMBOL(kmem_cache_free);
3361
3362/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003363 * kfree - free previously allocated memory
3364 * @objp: pointer returned by kmalloc.
3365 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003366 * If @objp is NULL, no operation is performed.
3367 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003368 * Don't free memory not originally allocated by kmalloc()
3369 * or you will run into trouble.
3370 */
3371void kfree(const void *objp)
3372{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003373 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003374 unsigned long flags;
3375
3376 if (unlikely(!objp))
3377 return;
3378 local_irq_save(flags);
3379 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003380 c = virt_to_cache(objp);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003381 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003382 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003383 local_irq_restore(flags);
3384}
3385EXPORT_SYMBOL(kfree);
3386
3387#ifdef CONFIG_SMP
3388/**
3389 * free_percpu - free previously allocated percpu memory
3390 * @objp: pointer returned by alloc_percpu.
3391 *
3392 * Don't free memory not originally allocated by alloc_percpu()
3393 * The complemented objp is to check for that.
3394 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003395void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003396{
3397 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003398 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399
Christoph Lametere498be72005-09-09 13:03:32 -07003400 /*
3401 * We allocate for all cpus so we cannot use for online cpu here.
3402 */
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08003403 for_each_possible_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003404 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003405 kfree(p);
3406}
3407EXPORT_SYMBOL(free_percpu);
3408#endif
3409
Pekka Enberg343e0d72006-02-01 03:05:50 -08003410unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003411{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003412 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003413}
3414EXPORT_SYMBOL(kmem_cache_size);
3415
Pekka Enberg343e0d72006-02-01 03:05:50 -08003416const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003417{
3418 return cachep->name;
3419}
3420EXPORT_SYMBOL_GPL(kmem_cache_name);
3421
Christoph Lametere498be72005-09-09 13:03:32 -07003422/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003423 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003424 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003425static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003426{
3427 int node;
3428 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003429 struct array_cache *new_shared;
3430 struct array_cache **new_alien;
Christoph Lametere498be72005-09-09 13:03:32 -07003431
3432 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003433
Andrew Mortona737b3e2006-03-22 00:08:11 -08003434 new_alien = alloc_alien_cache(node, cachep->limit);
3435 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003436 goto fail;
Christoph Lametercafeb022006-03-25 03:06:46 -08003437
Christoph Lameter0718dc22006-03-25 03:06:47 -08003438 new_shared = alloc_arraycache(node,
3439 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003440 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003441 if (!new_shared) {
3442 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003443 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003444 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003445
Andrew Mortona737b3e2006-03-22 00:08:11 -08003446 l3 = cachep->nodelists[node];
3447 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003448 struct array_cache *shared = l3->shared;
3449
Christoph Lametere498be72005-09-09 13:03:32 -07003450 spin_lock_irq(&l3->list_lock);
3451
Christoph Lametercafeb022006-03-25 03:06:46 -08003452 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003453 free_block(cachep, shared->entry,
3454 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003455
Christoph Lametercafeb022006-03-25 03:06:46 -08003456 l3->shared = new_shared;
3457 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003458 l3->alien = new_alien;
3459 new_alien = NULL;
3460 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003461 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003462 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003463 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003464 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003465 free_alien_cache(new_alien);
3466 continue;
3467 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003468 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003469 if (!l3) {
3470 free_alien_cache(new_alien);
3471 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003472 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003473 }
Christoph Lametere498be72005-09-09 13:03:32 -07003474
3475 kmem_list3_init(l3);
3476 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003477 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003478 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003479 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003480 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003481 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003482 cachep->nodelists[node] = l3;
3483 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003484 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003485
Andrew Mortona737b3e2006-03-22 00:08:11 -08003486fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003487 if (!cachep->next.next) {
3488 /* Cache is not active yet. Roll back what we did */
3489 node--;
3490 while (node >= 0) {
3491 if (cachep->nodelists[node]) {
3492 l3 = cachep->nodelists[node];
3493
3494 kfree(l3->shared);
3495 free_alien_cache(l3->alien);
3496 kfree(l3);
3497 cachep->nodelists[node] = NULL;
3498 }
3499 node--;
3500 }
3501 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003502 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003503}
3504
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003506 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507 struct array_cache *new[NR_CPUS];
3508};
3509
3510static void do_ccupdate_local(void *info)
3511{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003512 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513 struct array_cache *old;
3514
3515 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003516 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003517
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3519 new->new[smp_processor_id()] = old;
3520}
3521
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003522/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003523static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3524 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525{
3526 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003527 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003528
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003529 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003530 for_each_online_cpu(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003531 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3532 batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003533 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003534 for (i--; i >= 0; i--)
3535 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003536 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537 }
3538 }
3539 new.cachep = cachep;
3540
Andrew Mortona07fa392006-03-22 00:08:17 -08003541 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003542
Linus Torvalds1da177e2005-04-16 15:20:36 -07003543 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544 cachep->batchcount = batchcount;
3545 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003546 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547
Christoph Lametere498be72005-09-09 13:03:32 -07003548 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549 struct array_cache *ccold = new.new[i];
3550 if (!ccold)
3551 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003552 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003553 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003554 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555 kfree(ccold);
3556 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557
Christoph Lametere498be72005-09-09 13:03:32 -07003558 err = alloc_kmemlist(cachep);
3559 if (err) {
3560 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003561 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003562 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003564 return 0;
3565}
3566
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003567/* Called with cache_chain_mutex held always */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003568static void enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003569{
3570 int err;
3571 int limit, shared;
3572
Andrew Mortona737b3e2006-03-22 00:08:11 -08003573 /*
3574 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575 * - create a LIFO ordering, i.e. return objects that are cache-warm
3576 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003577 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003578 * bufctl chains: array operations are cheaper.
3579 * The numbers are guessed, we should auto-tune as described by
3580 * Bonwick.
3581 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003582 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003584 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003585 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003586 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003587 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003588 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589 limit = 54;
3590 else
3591 limit = 120;
3592
Andrew Mortona737b3e2006-03-22 00:08:11 -08003593 /*
3594 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003595 * allocation behaviour: Most allocs on one cpu, most free operations
3596 * on another cpu. For these cases, an efficient object passing between
3597 * cpus is necessary. This is provided by a shared array. The array
3598 * replaces Bonwick's magazine layer.
3599 * On uniprocessor, it's functionally equivalent (but less efficient)
3600 * to a larger limit. Thus disabled by default.
3601 */
3602 shared = 0;
3603#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003604 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003605 shared = 8;
3606#endif
3607
3608#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003609 /*
3610 * With debugging enabled, large batchcount lead to excessively long
3611 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003612 */
3613 if (limit > 32)
3614 limit = 32;
3615#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003616 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617 if (err)
3618 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003619 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620}
3621
Christoph Lameter1b552532006-03-22 00:09:07 -08003622/*
3623 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003624 * necessary. Note that the l3 listlock also protects the array_cache
3625 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003626 */
3627void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3628 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003629{
3630 int tofree;
3631
Christoph Lameter1b552532006-03-22 00:09:07 -08003632 if (!ac || !ac->avail)
3633 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634 if (ac->touched && !force) {
3635 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003636 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003637 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003638 if (ac->avail) {
3639 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3640 if (tofree > ac->avail)
3641 tofree = (ac->avail + 1) / 2;
3642 free_block(cachep, ac->entry, tofree, node);
3643 ac->avail -= tofree;
3644 memmove(ac->entry, &(ac->entry[tofree]),
3645 sizeof(void *) * ac->avail);
3646 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003647 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003648 }
3649}
3650
3651/**
3652 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003653 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003654 *
3655 * Called from workqueue/eventd every few seconds.
3656 * Purpose:
3657 * - clear the per-cpu caches for this CPU.
3658 * - return freeable pages to the main free memory pool.
3659 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003660 * If we cannot acquire the cache chain mutex then just give up - we'll try
3661 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662 */
3663static void cache_reap(void *unused)
3664{
3665 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003666 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08003667 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003669 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003671 schedule_delayed_work(&__get_cpu_var(reap_work),
3672 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003673 return;
3674 }
3675
3676 list_for_each(walk, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003677 struct kmem_cache *searchp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003678 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679 int tofree;
3680 struct slab *slabp;
3681
Pekka Enberg343e0d72006-02-01 03:05:50 -08003682 searchp = list_entry(walk, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003683 check_irq_on();
3684
Christoph Lameter35386e32006-03-22 00:09:05 -08003685 /*
3686 * We only take the l3 lock if absolutely necessary and we
3687 * have established with reasonable certainty that
3688 * we can do some work if the lock was obtained.
3689 */
Christoph Lameteraab22072006-03-22 00:09:06 -08003690 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08003691
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003692 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003693
Christoph Lameteraab22072006-03-22 00:09:06 -08003694 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695
Christoph Lameter35386e32006-03-22 00:09:05 -08003696 /*
3697 * These are racy checks but it does not matter
3698 * if we skip one check or scan twice.
3699 */
Christoph Lametere498be72005-09-09 13:03:32 -07003700 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08003701 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702
Christoph Lametere498be72005-09-09 13:03:32 -07003703 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003704
Christoph Lameteraab22072006-03-22 00:09:06 -08003705 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706
Christoph Lametere498be72005-09-09 13:03:32 -07003707 if (l3->free_touched) {
3708 l3->free_touched = 0;
Christoph Lameter35386e32006-03-22 00:09:05 -08003709 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003710 }
3711
Andrew Mortona737b3e2006-03-22 00:08:11 -08003712 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3713 (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714 do {
Christoph Lameter35386e32006-03-22 00:09:05 -08003715 /*
3716 * Do not lock if there are no free blocks.
3717 */
3718 if (list_empty(&l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003719 break;
3720
Christoph Lameter35386e32006-03-22 00:09:05 -08003721 spin_lock_irq(&l3->list_lock);
3722 p = l3->slabs_free.next;
3723 if (p == &(l3->slabs_free)) {
3724 spin_unlock_irq(&l3->list_lock);
3725 break;
3726 }
3727
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728 slabp = list_entry(p, struct slab, list);
3729 BUG_ON(slabp->inuse);
3730 list_del(&slabp->list);
3731 STATS_INC_REAPED(searchp);
3732
Andrew Mortona737b3e2006-03-22 00:08:11 -08003733 /*
3734 * Safe to drop the lock. The slab is no longer linked
3735 * to the cache. searchp cannot disappear, we hold
Linus Torvalds1da177e2005-04-16 15:20:36 -07003736 * cache_chain_lock
3737 */
Christoph Lametere498be72005-09-09 13:03:32 -07003738 l3->free_objects -= searchp->num;
3739 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003740 slab_destroy(searchp, slabp);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003741 } while (--tofree > 0);
Christoph Lameter35386e32006-03-22 00:09:05 -08003742next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743 cond_resched();
3744 }
3745 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003746 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003747 next_reap_node();
Andrew Mortona737b3e2006-03-22 00:08:11 -08003748 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003749 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750}
3751
3752#ifdef CONFIG_PROC_FS
3753
Pekka Enberg85289f92006-01-08 01:00:36 -08003754static void print_slabinfo_header(struct seq_file *m)
3755{
3756 /*
3757 * Output format version, so at least we can change it
3758 * without _too_ many complaints.
3759 */
3760#if STATS
3761 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3762#else
3763 seq_puts(m, "slabinfo - version: 2.1\n");
3764#endif
3765 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3766 "<objperslab> <pagesperslab>");
3767 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3768 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3769#if STATS
3770 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003771 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08003772 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3773#endif
3774 seq_putc(m, '\n');
3775}
3776
Linus Torvalds1da177e2005-04-16 15:20:36 -07003777static void *s_start(struct seq_file *m, loff_t *pos)
3778{
3779 loff_t n = *pos;
3780 struct list_head *p;
3781
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003782 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003783 if (!n)
3784 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003785 p = cache_chain.next;
3786 while (n--) {
3787 p = p->next;
3788 if (p == &cache_chain)
3789 return NULL;
3790 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003791 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003792}
3793
3794static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3795{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003796 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003798 return cachep->next.next == &cache_chain ?
3799 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003800}
3801
3802static void s_stop(struct seq_file *m, void *p)
3803{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003804 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003805}
3806
3807static int s_show(struct seq_file *m, void *p)
3808{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003809 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003810 struct list_head *q;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003811 struct slab *slabp;
3812 unsigned long active_objs;
3813 unsigned long num_objs;
3814 unsigned long active_slabs = 0;
3815 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003816 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003817 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003818 int node;
3819 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820
Linus Torvalds1da177e2005-04-16 15:20:36 -07003821 active_objs = 0;
3822 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003823 for_each_online_node(node) {
3824 l3 = cachep->nodelists[node];
3825 if (!l3)
3826 continue;
3827
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003828 check_irq_on();
3829 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003830
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003831 list_for_each(q, &l3->slabs_full) {
Christoph Lametere498be72005-09-09 13:03:32 -07003832 slabp = list_entry(q, struct slab, list);
3833 if (slabp->inuse != cachep->num && !error)
3834 error = "slabs_full accounting error";
3835 active_objs += cachep->num;
3836 active_slabs++;
3837 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003838 list_for_each(q, &l3->slabs_partial) {
Christoph Lametere498be72005-09-09 13:03:32 -07003839 slabp = list_entry(q, struct slab, list);
3840 if (slabp->inuse == cachep->num && !error)
3841 error = "slabs_partial inuse accounting error";
3842 if (!slabp->inuse && !error)
3843 error = "slabs_partial/inuse accounting error";
3844 active_objs += slabp->inuse;
3845 active_slabs++;
3846 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003847 list_for_each(q, &l3->slabs_free) {
Christoph Lametere498be72005-09-09 13:03:32 -07003848 slabp = list_entry(q, struct slab, list);
3849 if (slabp->inuse && !error)
3850 error = "slabs_free/inuse accounting error";
3851 num_slabs++;
3852 }
3853 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003854 if (l3->shared)
3855 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003856
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003857 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003859 num_slabs += active_slabs;
3860 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003861 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003862 error = "free_objects accounting error";
3863
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003864 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003865 if (error)
3866 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3867
3868 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003869 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003870 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003871 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003872 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003873 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003874 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003875#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003876 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003877 unsigned long high = cachep->high_mark;
3878 unsigned long allocs = cachep->num_allocations;
3879 unsigned long grown = cachep->grown;
3880 unsigned long reaped = cachep->reaped;
3881 unsigned long errors = cachep->errors;
3882 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003883 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003884 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003885 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003886
Christoph Lametere498be72005-09-09 13:03:32 -07003887 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003888 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003889 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003890 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003891 }
3892 /* cpu stats */
3893 {
3894 unsigned long allochit = atomic_read(&cachep->allochit);
3895 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3896 unsigned long freehit = atomic_read(&cachep->freehit);
3897 unsigned long freemiss = atomic_read(&cachep->freemiss);
3898
3899 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003900 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003901 }
3902#endif
3903 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07003904 return 0;
3905}
3906
3907/*
3908 * slabinfo_op - iterator that generates /proc/slabinfo
3909 *
3910 * Output layout:
3911 * cache-name
3912 * num-active-objs
3913 * total-objs
3914 * object size
3915 * num-active-slabs
3916 * total-slabs
3917 * num-pages-per-slab
3918 * + further values on SMP and with statistics enabled
3919 */
3920
3921struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003922 .start = s_start,
3923 .next = s_next,
3924 .stop = s_stop,
3925 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003926};
3927
3928#define MAX_SLABINFO_WRITE 128
3929/**
3930 * slabinfo_write - Tuning for the slab allocator
3931 * @file: unused
3932 * @buffer: user buffer
3933 * @count: data length
3934 * @ppos: unused
3935 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003936ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3937 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003938{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003939 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003940 int limit, batchcount, shared, res;
3941 struct list_head *p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003942
Linus Torvalds1da177e2005-04-16 15:20:36 -07003943 if (count > MAX_SLABINFO_WRITE)
3944 return -EINVAL;
3945 if (copy_from_user(&kbuf, buffer, count))
3946 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003947 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003948
3949 tmp = strchr(kbuf, ' ');
3950 if (!tmp)
3951 return -EINVAL;
3952 *tmp = '\0';
3953 tmp++;
3954 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3955 return -EINVAL;
3956
3957 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003958 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003959 res = -EINVAL;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003960 list_for_each(p, &cache_chain) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003961 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003962
Andrew Mortona737b3e2006-03-22 00:08:11 -08003963 cachep = list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003965 if (limit < 1 || batchcount < 1 ||
3966 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003967 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003968 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003969 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003970 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003971 }
3972 break;
3973 }
3974 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003975 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003976 if (res >= 0)
3977 res = count;
3978 return res;
3979}
Al Viro871751e2006-03-25 03:06:39 -08003980
3981#ifdef CONFIG_DEBUG_SLAB_LEAK
3982
3983static void *leaks_start(struct seq_file *m, loff_t *pos)
3984{
3985 loff_t n = *pos;
3986 struct list_head *p;
3987
3988 mutex_lock(&cache_chain_mutex);
3989 p = cache_chain.next;
3990 while (n--) {
3991 p = p->next;
3992 if (p == &cache_chain)
3993 return NULL;
3994 }
3995 return list_entry(p, struct kmem_cache, next);
3996}
3997
3998static inline int add_caller(unsigned long *n, unsigned long v)
3999{
4000 unsigned long *p;
4001 int l;
4002 if (!v)
4003 return 1;
4004 l = n[1];
4005 p = n + 2;
4006 while (l) {
4007 int i = l/2;
4008 unsigned long *q = p + 2 * i;
4009 if (*q == v) {
4010 q[1]++;
4011 return 1;
4012 }
4013 if (*q > v) {
4014 l = i;
4015 } else {
4016 p = q + 2;
4017 l -= i + 1;
4018 }
4019 }
4020 if (++n[1] == n[0])
4021 return 0;
4022 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4023 p[0] = v;
4024 p[1] = 1;
4025 return 1;
4026}
4027
4028static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4029{
4030 void *p;
4031 int i;
4032 if (n[0] == n[1])
4033 return;
4034 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4035 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4036 continue;
4037 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4038 return;
4039 }
4040}
4041
4042static void show_symbol(struct seq_file *m, unsigned long address)
4043{
4044#ifdef CONFIG_KALLSYMS
4045 char *modname;
4046 const char *name;
4047 unsigned long offset, size;
4048 char namebuf[KSYM_NAME_LEN+1];
4049
4050 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4051
4052 if (name) {
4053 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4054 if (modname)
4055 seq_printf(m, " [%s]", modname);
4056 return;
4057 }
4058#endif
4059 seq_printf(m, "%p", (void *)address);
4060}
4061
4062static int leaks_show(struct seq_file *m, void *p)
4063{
4064 struct kmem_cache *cachep = p;
4065 struct list_head *q;
4066 struct slab *slabp;
4067 struct kmem_list3 *l3;
4068 const char *name;
4069 unsigned long *n = m->private;
4070 int node;
4071 int i;
4072
4073 if (!(cachep->flags & SLAB_STORE_USER))
4074 return 0;
4075 if (!(cachep->flags & SLAB_RED_ZONE))
4076 return 0;
4077
4078 /* OK, we can do it */
4079
4080 n[1] = 0;
4081
4082 for_each_online_node(node) {
4083 l3 = cachep->nodelists[node];
4084 if (!l3)
4085 continue;
4086
4087 check_irq_on();
4088 spin_lock_irq(&l3->list_lock);
4089
4090 list_for_each(q, &l3->slabs_full) {
4091 slabp = list_entry(q, struct slab, list);
4092 handle_slab(n, cachep, slabp);
4093 }
4094 list_for_each(q, &l3->slabs_partial) {
4095 slabp = list_entry(q, struct slab, list);
4096 handle_slab(n, cachep, slabp);
4097 }
4098 spin_unlock_irq(&l3->list_lock);
4099 }
4100 name = cachep->name;
4101 if (n[0] == n[1]) {
4102 /* Increase the buffer size */
4103 mutex_unlock(&cache_chain_mutex);
4104 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4105 if (!m->private) {
4106 /* Too bad, we are really out */
4107 m->private = n;
4108 mutex_lock(&cache_chain_mutex);
4109 return -ENOMEM;
4110 }
4111 *(unsigned long *)m->private = n[0] * 2;
4112 kfree(n);
4113 mutex_lock(&cache_chain_mutex);
4114 /* Now make sure this entry will be retried */
4115 m->count = m->size;
4116 return 0;
4117 }
4118 for (i = 0; i < n[1]; i++) {
4119 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4120 show_symbol(m, n[2*i+2]);
4121 seq_putc(m, '\n');
4122 }
4123 return 0;
4124}
4125
4126struct seq_operations slabstats_op = {
4127 .start = leaks_start,
4128 .next = s_next,
4129 .stop = s_stop,
4130 .show = leaks_show,
4131};
4132#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133#endif
4134
Manfred Spraul00e145b2005-09-03 15:55:07 -07004135/**
4136 * ksize - get the actual amount of memory allocated for a given object
4137 * @objp: Pointer to the object
4138 *
4139 * kmalloc may internally round up allocations and return more memory
4140 * than requested. ksize() can be used to determine the actual amount of
4141 * memory allocated. The caller may use this additional memory, even though
4142 * a smaller amount of memory was initially specified with the kmalloc call.
4143 * The caller must guarantee that objp points to a valid object previously
4144 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4145 * must not be freed during the duration of the call.
4146 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004147unsigned int ksize(const void *objp)
4148{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004149 if (unlikely(objp == NULL))
4150 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004151
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004152 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004153}