blob: e47420f4786bb3146b426d3cd44f01b2ffb64175 [file] [log] [blame]
Mike Marciniszyn77241052015-07-30 15:17:43 -04001/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
66
67#define NUM_IB_PORTS 1
68
69uint kdeth_qp;
70module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
71MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
72
73uint num_vls = HFI1_MAX_VLS_SUPPORTED;
74module_param(num_vls, uint, S_IRUGO);
75MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
76
77/*
78 * Default time to aggregate two 10K packets from the idle state
79 * (timer not running). The timer starts at the end of the first packet,
80 * so only the time for one 10K packet and header plus a bit extra is needed.
81 * 10 * 1024 + 64 header byte = 10304 byte
82 * 10304 byte / 12.5 GB/s = 824.32ns
83 */
84uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
85module_param(rcv_intr_timeout, uint, S_IRUGO);
86MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
87
88uint rcv_intr_count = 16; /* same as qib */
89module_param(rcv_intr_count, uint, S_IRUGO);
90MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
91
92ushort link_crc_mask = SUPPORTED_CRCS;
93module_param(link_crc_mask, ushort, S_IRUGO);
94MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
95
96uint loopback;
97module_param_named(loopback, loopback, uint, S_IRUGO);
98MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
99
100/* Other driver tunables */
101uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
102static ushort crc_14b_sideband = 1;
103static uint use_flr = 1;
104uint quick_linkup; /* skip LNI */
105
106struct flag_table {
107 u64 flag; /* the flag */
108 char *str; /* description string */
109 u16 extra; /* extra information */
110 u16 unused0;
111 u32 unused1;
112};
113
114/* str must be a string constant */
115#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
116#define FLAG_ENTRY0(str, flag) {flag, str, 0}
117
118/* Send Error Consequences */
119#define SEC_WRITE_DROPPED 0x1
120#define SEC_PACKET_DROPPED 0x2
121#define SEC_SC_HALTED 0x4 /* per-context only */
122#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
123
124#define VL15CTXT 1
125#define MIN_KERNEL_KCTXTS 2
126#define NUM_MAP_REGS 32
127
128/* Bit offset into the GUID which carries HFI id information */
129#define GUID_HFI_INDEX_SHIFT 39
130
131/* extract the emulation revision */
132#define emulator_rev(dd) ((dd)->irev >> 8)
133/* parallel and serial emulation versions are 3 and 4 respectively */
134#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
135#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
136
137/* RSM fields */
138
139/* packet type */
140#define IB_PACKET_TYPE 2ull
141#define QW_SHIFT 6ull
142/* QPN[7..1] */
143#define QPN_WIDTH 7ull
144
145/* LRH.BTH: QW 0, OFFSET 48 - for match */
146#define LRH_BTH_QW 0ull
147#define LRH_BTH_BIT_OFFSET 48ull
148#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
149#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
150#define LRH_BTH_SELECT
151#define LRH_BTH_MASK 3ull
152#define LRH_BTH_VALUE 2ull
153
154/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
155#define LRH_SC_QW 0ull
156#define LRH_SC_BIT_OFFSET 56ull
157#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
158#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
159#define LRH_SC_MASK 128ull
160#define LRH_SC_VALUE 0ull
161
162/* SC[n..0] QW 0, OFFSET 60 - for select */
163#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
164
165/* QPN[m+n:1] QW 1, OFFSET 1 */
166#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
167
168/* defines to build power on SC2VL table */
169#define SC2VL_VAL( \
170 num, \
171 sc0, sc0val, \
172 sc1, sc1val, \
173 sc2, sc2val, \
174 sc3, sc3val, \
175 sc4, sc4val, \
176 sc5, sc5val, \
177 sc6, sc6val, \
178 sc7, sc7val) \
179( \
180 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
181 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
182 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
183 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
184 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
185 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
186 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
187 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
188)
189
190#define DC_SC_VL_VAL( \
191 range, \
192 e0, e0val, \
193 e1, e1val, \
194 e2, e2val, \
195 e3, e3val, \
196 e4, e4val, \
197 e5, e5val, \
198 e6, e6val, \
199 e7, e7val, \
200 e8, e8val, \
201 e9, e9val, \
202 e10, e10val, \
203 e11, e11val, \
204 e12, e12val, \
205 e13, e13val, \
206 e14, e14val, \
207 e15, e15val) \
208( \
209 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
210 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
211 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
212 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
213 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
214 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
215 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
216 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
217 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
218 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
219 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
220 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
221 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
222 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
223 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
224 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
225)
226
227/* all CceStatus sub-block freeze bits */
228#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
229 | CCE_STATUS_RXE_FROZE_SMASK \
230 | CCE_STATUS_TXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
232/* all CceStatus sub-block TXE pause bits */
233#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
234 | CCE_STATUS_TXE_PAUSED_SMASK \
235 | CCE_STATUS_SDMA_PAUSED_SMASK)
236/* all CceStatus sub-block RXE pause bits */
237#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
238
239/*
240 * CCE Error flags.
241 */
242static struct flag_table cce_err_status_flags[] = {
243/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
244 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
245/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
246 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
247/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
248 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
249/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
250 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
251/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
252 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
253/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
254 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
255/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
256 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
257/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
258 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
259/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
260 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
261/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
262 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
263/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
264 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
265/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
266 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
267/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
268 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
269/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
270 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
271/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
272 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
273/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
274 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
275/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
276 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
277/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
278 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
279/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
280 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
281/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
282 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
283/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
284 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
285/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
286 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
287/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
288 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
289/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
290 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
291/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
292 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
293/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
294 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
295/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
296 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
297/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
298 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
299/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
300 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
301/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
302 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
303/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
304 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
305/*31*/ FLAG_ENTRY0("LATriggered",
306 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
307/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
308 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
309/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
310 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
311/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
312 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
313/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
314 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
315/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
316 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
317/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
318 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
319/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
320 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
321/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
322 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
323/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
324 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
325/*41-63 reserved*/
326};
327
328/*
329 * Misc Error flags
330 */
331#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
332static struct flag_table misc_err_status_flags[] = {
333/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
334/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
335/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
336/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
337/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
338/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
339/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
340/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
341/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
342/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
343/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
344/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
345/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
346};
347
348/*
349 * TXE PIO Error flags and consequences
350 */
351static struct flag_table pio_err_status_flags[] = {
352/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
353 SEC_WRITE_DROPPED,
354 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
355/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
356 SEC_SPC_FREEZE,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
358/* 2*/ FLAG_ENTRY("PioCsrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
361/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
364/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
367/* 5*/ FLAG_ENTRY("PioPccFifoParity",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
370/* 6*/ FLAG_ENTRY("PioPecFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
373/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
376/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
379/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
382/*10*/ FLAG_ENTRY("PioSmPktResetParity",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
385/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
388/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
391/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
392 0,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
394/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
397/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
400/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
403/*17*/ FLAG_ENTRY("PioInitSmIn",
404 0,
405 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
406/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
409/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
412/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
413 0,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
415/*21*/ FLAG_ENTRY("PioWriteDataParity",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
418/*22*/ FLAG_ENTRY("PioStateMachine",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
421/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
422 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
424/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
425 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
427/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
428 SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
430/*26*/ FLAG_ENTRY("PioVlfSopParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
433/*27*/ FLAG_ENTRY("PioVlFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
436/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
439/*29*/ FLAG_ENTRY("PioPpmcSopLen",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
442/*30-31 reserved*/
443/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
446/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
449/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
452/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
455/*36-63 reserved*/
456};
457
458/* TXE PIO errors that cause an SPC freeze */
459#define ALL_PIO_FREEZE_ERR \
460 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
461 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
489
490/*
491 * TXE SDMA Error flags
492 */
493static struct flag_table sdma_err_status_flags[] = {
494/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
495 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
496/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
497 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
498/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
499 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
500/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
501 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
502/*04-63 reserved*/
503};
504
505/* TXE SDMA errors that cause an SPC freeze */
506#define ALL_SDMA_FREEZE_ERR \
507 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
508 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
510
511/*
512 * TXE Egress Error flags
513 */
514#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
515static struct flag_table egress_err_status_flags[] = {
516/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
517/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
518/* 2 reserved */
519/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
520 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
521/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
522/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
523/* 6 reserved */
524/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
525 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
526/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
527 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
528/* 9-10 reserved */
529/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
530 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
531/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
532/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
533/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
534/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
535/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
536 SEES(TX_SDMA0_DISALLOWED_PACKET)),
537/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
538 SEES(TX_SDMA1_DISALLOWED_PACKET)),
539/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
540 SEES(TX_SDMA2_DISALLOWED_PACKET)),
541/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
542 SEES(TX_SDMA3_DISALLOWED_PACKET)),
543/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
544 SEES(TX_SDMA4_DISALLOWED_PACKET)),
545/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
546 SEES(TX_SDMA5_DISALLOWED_PACKET)),
547/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
548 SEES(TX_SDMA6_DISALLOWED_PACKET)),
549/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
550 SEES(TX_SDMA7_DISALLOWED_PACKET)),
551/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
552 SEES(TX_SDMA8_DISALLOWED_PACKET)),
553/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
554 SEES(TX_SDMA9_DISALLOWED_PACKET)),
555/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
556 SEES(TX_SDMA10_DISALLOWED_PACKET)),
557/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
558 SEES(TX_SDMA11_DISALLOWED_PACKET)),
559/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
560 SEES(TX_SDMA12_DISALLOWED_PACKET)),
561/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
562 SEES(TX_SDMA13_DISALLOWED_PACKET)),
563/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
564 SEES(TX_SDMA14_DISALLOWED_PACKET)),
565/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
566 SEES(TX_SDMA15_DISALLOWED_PACKET)),
567/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
568 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
569/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
570 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
571/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
572 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
573/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
574 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
575/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
576 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
577/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
578 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
579/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
580 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
581/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
582 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
583/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
584 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
585/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
586/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
587/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
588/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
589/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
590/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
591/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
592/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
593/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
594/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
595/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
596/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
597/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
598/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
599/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
600/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
601/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
602/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
603/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
604/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
605/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
606/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
607 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
608/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
609 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
610};
611
612/*
613 * TXE Egress Error Info flags
614 */
615#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
616static struct flag_table egress_err_info_flags[] = {
617/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
618/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
619/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
620/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
621/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
622/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
623/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
624/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
625/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
626/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
627/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
628/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
629/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
630/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
631/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
632/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
633/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
634/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
635/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
636/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
637/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
638/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
639};
640
641/* TXE Egress errors that cause an SPC freeze */
642#define ALL_TXE_EGRESS_FREEZE_ERR \
643 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
644 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
645 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
646 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
647 | SEES(TX_LAUNCH_CSR_PARITY) \
648 | SEES(TX_SBRD_CTL_CSR_PARITY) \
649 | SEES(TX_CONFIG_PARITY) \
650 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
651 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
652 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
653 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
654 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
655 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
656 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
659 | SEES(TX_CREDIT_RETURN_PARITY))
660
661/*
662 * TXE Send error flags
663 */
664#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
665static struct flag_table send_err_status_flags[] = {
666/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", SES(CSR_PARITY)),
667/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
668/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
669};
670
671/*
672 * TXE Send Context Error flags and consequences
673 */
674static struct flag_table sc_err_status_flags[] = {
675/* 0*/ FLAG_ENTRY("InconsistentSop",
676 SEC_PACKET_DROPPED | SEC_SC_HALTED,
677 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
678/* 1*/ FLAG_ENTRY("DisallowedPacket",
679 SEC_PACKET_DROPPED | SEC_SC_HALTED,
680 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
681/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
682 SEC_WRITE_DROPPED | SEC_SC_HALTED,
683 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
684/* 3*/ FLAG_ENTRY("WriteOverflow",
685 SEC_WRITE_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
687/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
688 SEC_WRITE_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
690/* 5-63 reserved*/
691};
692
693/*
694 * RXE Receive Error flags
695 */
696#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
697static struct flag_table rxe_err_status_flags[] = {
698/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
699/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
700/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
701/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
702/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
703/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
704/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
705/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
706/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
707/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
708/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
709/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
710/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
711/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
712/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
713/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
714/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
715 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
716/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
717/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
718/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
719 RXES(RBUF_BLOCK_LIST_READ_UNC)),
720/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
721 RXES(RBUF_BLOCK_LIST_READ_COR)),
722/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
723 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
724/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
725 RXES(RBUF_CSR_QENT_CNT_PARITY)),
726/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
727 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
728/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
729 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
730/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
731/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
732/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
733 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
734/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
735/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
736/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
737/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
738/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
739/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
740/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
741/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
742 RXES(RBUF_FL_INITDONE_PARITY)),
743/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
744 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
745/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
746/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
747/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
748/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
749 RXES(LOOKUP_DES_PART1_UNC_COR)),
750/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
751 RXES(LOOKUP_DES_PART2_PARITY)),
752/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
753/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
754/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
755/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
756/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
757/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
758/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
759/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
760/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
761/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
762/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
763/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
764/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
765/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
766/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
767/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
768/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
769/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
770/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
771/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
772/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
773/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
774};
775
776/* RXE errors that will trigger an SPC freeze */
777#define ALL_RXE_FREEZE_ERR \
778 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
779 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
780 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
781 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
782 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
783 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
784 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
822
823#define RXE_FREEZE_ABORT_MASK \
824 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
825 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
826 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
827
828/*
829 * DCC Error Flags
830 */
831#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
832static struct flag_table dcc_err_flags[] = {
833 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
834 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
835 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
836 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
837 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
838 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
839 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
840 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
841 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
842 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
843 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
844 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
845 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
846 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
847 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
848 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
849 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
850 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
851 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
852 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
853 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
854 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
855 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
856 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
857 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
858 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
859 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
860 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
861 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
862 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
863 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
864 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
865 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
866 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
867 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
868 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
869 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
870 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
871 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
872 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
873 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
874 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
875 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
876 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
877 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
878 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
879};
880
881/*
882 * LCB error flags
883 */
884#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
885static struct flag_table lcb_err_flags[] = {
886/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
887/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
888/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
889/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
890 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
891/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
892/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
893/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
894/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
895/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
896/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
897/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
898/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
899/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
900/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
901 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
902/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
903/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
904/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
905/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
906/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
907/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
908 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
909/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
910/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
911/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
912/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
913/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
914/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
915/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
916 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
917/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
918/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
919 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
920/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
921 LCBE(REDUNDANT_FLIT_PARITY_ERR))
922};
923
924/*
925 * DC8051 Error Flags
926 */
927#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
928static struct flag_table dc8051_err_flags[] = {
929 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
930 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
931 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
932 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
933 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
934 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
935 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
936 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
937 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
938 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
939 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
940};
941
942/*
943 * DC8051 Information Error flags
944 *
945 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
946 */
947static struct flag_table dc8051_info_err_flags[] = {
948 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
949 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
950 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
951 FLAG_ENTRY0("Serdes internal loopback failure",
952 FAILED_SERDES_INTERNAL_LOOPBACK),
953 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
954 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
955 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
956 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
957 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
958 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
959 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
960 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
961};
962
963/*
964 * DC8051 Information Host Information flags
965 *
966 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
967 */
968static struct flag_table dc8051_info_host_msg_flags[] = {
969 FLAG_ENTRY0("Host request done", 0x0001),
970 FLAG_ENTRY0("BC SMA message", 0x0002),
971 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
972 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
973 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
974 FLAG_ENTRY0("External device config request", 0x0020),
975 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
976 FLAG_ENTRY0("LinkUp achieved", 0x0080),
977 FLAG_ENTRY0("Link going down", 0x0100),
978};
979
980
981static u32 encoded_size(u32 size);
982static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
983static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
984static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
985 u8 *continuous);
986static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
987 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
988static void read_vc_remote_link_width(struct hfi1_devdata *dd,
989 u8 *remote_tx_rate, u16 *link_widths);
990static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
991 u8 *flag_bits, u16 *link_widths);
992static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
993 u8 *device_rev);
994static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
995static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
996static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
997 u8 *tx_polarity_inversion,
998 u8 *rx_polarity_inversion, u8 *max_rate);
999static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1000 unsigned int context, u64 err_status);
1001static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1002static void handle_dcc_err(struct hfi1_devdata *dd,
1003 unsigned int context, u64 err_status);
1004static void handle_lcb_err(struct hfi1_devdata *dd,
1005 unsigned int context, u64 err_status);
1006static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1007static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1008static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1009static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1010static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1011static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1012static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014static void set_partition_keys(struct hfi1_pportdata *);
1015static const char *link_state_name(u32 state);
1016static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1017 u32 state);
1018static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1019 u64 *out_data);
1020static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1021static int thermal_init(struct hfi1_devdata *dd);
1022
1023static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1024 int msecs);
1025static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1026static void handle_temp_err(struct hfi1_devdata *);
1027static void dc_shutdown(struct hfi1_devdata *);
1028static void dc_start(struct hfi1_devdata *);
1029
1030/*
1031 * Error interrupt table entry. This is used as input to the interrupt
1032 * "clear down" routine used for all second tier error interrupt register.
1033 * Second tier interrupt registers have a single bit representing them
1034 * in the top-level CceIntStatus.
1035 */
1036struct err_reg_info {
1037 u32 status; /* status CSR offset */
1038 u32 clear; /* clear CSR offset */
1039 u32 mask; /* mask CSR offset */
1040 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1041 const char *desc;
1042};
1043
1044#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1045#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1046#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1047
1048/*
1049 * Helpers for building HFI and DC error interrupt table entries. Different
1050 * helpers are needed because of inconsistent register names.
1051 */
1052#define EE(reg, handler, desc) \
1053 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1054 handler, desc }
1055#define DC_EE1(reg, handler, desc) \
1056 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1057#define DC_EE2(reg, handler, desc) \
1058 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1059
1060/*
1061 * Table of the "misc" grouping of error interrupts. Each entry refers to
1062 * another register containing more information.
1063 */
1064static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1065/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1066/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1067/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1068/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1069/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1070/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1071/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1072/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1073 /* the rest are reserved */
1074};
1075
1076/*
1077 * Index into the Various section of the interrupt sources
1078 * corresponding to the Critical Temperature interrupt.
1079 */
1080#define TCRIT_INT_SOURCE 4
1081
1082/*
1083 * SDMA error interrupt entry - refers to another register containing more
1084 * information.
1085 */
1086static const struct err_reg_info sdma_eng_err =
1087 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1088
1089static const struct err_reg_info various_err[NUM_VARIOUS] = {
1090/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1091/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1092/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1093/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1094/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1095 /* rest are reserved */
1096};
1097
1098/*
1099 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1100 * register can not be derived from the MTU value because 10K is not
1101 * a power of 2. Therefore, we need a constant. Everything else can
1102 * be calculated.
1103 */
1104#define DCC_CFG_PORT_MTU_CAP_10240 7
1105
1106/*
1107 * Table of the DC grouping of error interrupts. Each entry refers to
1108 * another register containing more information.
1109 */
1110static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1111/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1112/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1113/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1114/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1115 /* the rest are reserved */
1116};
1117
1118struct cntr_entry {
1119 /*
1120 * counter name
1121 */
1122 char *name;
1123
1124 /*
1125 * csr to read for name (if applicable)
1126 */
1127 u64 csr;
1128
1129 /*
1130 * offset into dd or ppd to store the counter's value
1131 */
1132 int offset;
1133
1134 /*
1135 * flags
1136 */
1137 u8 flags;
1138
1139 /*
1140 * accessor for stat element, context either dd or ppd
1141 */
1142 u64 (*rw_cntr)(const struct cntr_entry *,
1143 void *context,
1144 int vl,
1145 int mode,
1146 u64 data);
1147};
1148
1149#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1150#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1151
1152#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1153{ \
1154 name, \
1155 csr, \
1156 offset, \
1157 flags, \
1158 accessor \
1159}
1160
1161/* 32bit RXE */
1162#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1163CNTR_ELEM(#name, \
1164 (counter * 8 + RCV_COUNTER_ARRAY32), \
1165 0, flags | CNTR_32BIT, \
1166 port_access_u32_csr)
1167
1168#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1169CNTR_ELEM(#name, \
1170 (counter * 8 + RCV_COUNTER_ARRAY32), \
1171 0, flags | CNTR_32BIT, \
1172 dev_access_u32_csr)
1173
1174/* 64bit RXE */
1175#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1176CNTR_ELEM(#name, \
1177 (counter * 8 + RCV_COUNTER_ARRAY64), \
1178 0, flags, \
1179 port_access_u64_csr)
1180
1181#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1182CNTR_ELEM(#name, \
1183 (counter * 8 + RCV_COUNTER_ARRAY64), \
1184 0, flags, \
1185 dev_access_u64_csr)
1186
1187#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1188#define OVR_ELM(ctx) \
1189CNTR_ELEM("RcvHdrOvr" #ctx, \
1190 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1191 0, CNTR_NORMAL, port_access_u64_csr)
1192
1193/* 32bit TXE */
1194#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1195CNTR_ELEM(#name, \
1196 (counter * 8 + SEND_COUNTER_ARRAY32), \
1197 0, flags | CNTR_32BIT, \
1198 port_access_u32_csr)
1199
1200/* 64bit TXE */
1201#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1202CNTR_ELEM(#name, \
1203 (counter * 8 + SEND_COUNTER_ARRAY64), \
1204 0, flags, \
1205 port_access_u64_csr)
1206
1207# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1208CNTR_ELEM(#name,\
1209 counter * 8 + SEND_COUNTER_ARRAY64, \
1210 0, \
1211 flags, \
1212 dev_access_u64_csr)
1213
1214/* CCE */
1215#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1216CNTR_ELEM(#name, \
1217 (counter * 8 + CCE_COUNTER_ARRAY32), \
1218 0, flags | CNTR_32BIT, \
1219 dev_access_u32_csr)
1220
1221#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1222CNTR_ELEM(#name, \
1223 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1224 0, flags | CNTR_32BIT, \
1225 dev_access_u32_csr)
1226
1227/* DC */
1228#define DC_PERF_CNTR(name, counter, flags) \
1229CNTR_ELEM(#name, \
1230 counter, \
1231 0, \
1232 flags, \
1233 dev_access_u64_csr)
1234
1235#define DC_PERF_CNTR_LCB(name, counter, flags) \
1236CNTR_ELEM(#name, \
1237 counter, \
1238 0, \
1239 flags, \
1240 dc_access_lcb_cntr)
1241
1242/* ibp counters */
1243#define SW_IBP_CNTR(name, cntr) \
1244CNTR_ELEM(#name, \
1245 0, \
1246 0, \
1247 CNTR_SYNTH, \
1248 access_ibp_##cntr)
1249
1250u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1251{
1252 u64 val;
1253
1254 if (dd->flags & HFI1_PRESENT) {
1255 val = readq((void __iomem *)dd->kregbase + offset);
1256 return val;
1257 }
1258 return -1;
1259}
1260
1261void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1262{
1263 if (dd->flags & HFI1_PRESENT)
1264 writeq(value, (void __iomem *)dd->kregbase + offset);
1265}
1266
1267void __iomem *get_csr_addr(
1268 struct hfi1_devdata *dd,
1269 u32 offset)
1270{
1271 return (void __iomem *)dd->kregbase + offset;
1272}
1273
1274static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1275 int mode, u64 value)
1276{
1277 u64 ret;
1278
1279
1280 if (mode == CNTR_MODE_R) {
1281 ret = read_csr(dd, csr);
1282 } else if (mode == CNTR_MODE_W) {
1283 write_csr(dd, csr, value);
1284 ret = value;
1285 } else {
1286 dd_dev_err(dd, "Invalid cntr register access mode");
1287 return 0;
1288 }
1289
1290 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1291 return ret;
1292}
1293
1294/* Dev Access */
1295static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1296 void *context, int vl, int mode, u64 data)
1297{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301298 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001299
1300 if (vl != CNTR_INVALID_VL)
1301 return 0;
1302 return read_write_csr(dd, entry->csr, mode, data);
1303}
1304
1305static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1306 int vl, int mode, u64 data)
1307{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301308 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001309
1310 u64 val = 0;
1311 u64 csr = entry->csr;
1312
1313 if (entry->flags & CNTR_VL) {
1314 if (vl == CNTR_INVALID_VL)
1315 return 0;
1316 csr += 8 * vl;
1317 } else {
1318 if (vl != CNTR_INVALID_VL)
1319 return 0;
1320 }
1321
1322 val = read_write_csr(dd, csr, mode, data);
1323 return val;
1324}
1325
1326static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1327 int vl, int mode, u64 data)
1328{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301329 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001330 u32 csr = entry->csr;
1331 int ret = 0;
1332
1333 if (vl != CNTR_INVALID_VL)
1334 return 0;
1335 if (mode == CNTR_MODE_R)
1336 ret = read_lcb_csr(dd, csr, &data);
1337 else if (mode == CNTR_MODE_W)
1338 ret = write_lcb_csr(dd, csr, data);
1339
1340 if (ret) {
1341 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1342 return 0;
1343 }
1344
1345 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1346 return data;
1347}
1348
1349/* Port Access */
1350static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1351 int vl, int mode, u64 data)
1352{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301353 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001354
1355 if (vl != CNTR_INVALID_VL)
1356 return 0;
1357 return read_write_csr(ppd->dd, entry->csr, mode, data);
1358}
1359
1360static u64 port_access_u64_csr(const struct cntr_entry *entry,
1361 void *context, int vl, int mode, u64 data)
1362{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301363 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001364 u64 val;
1365 u64 csr = entry->csr;
1366
1367 if (entry->flags & CNTR_VL) {
1368 if (vl == CNTR_INVALID_VL)
1369 return 0;
1370 csr += 8 * vl;
1371 } else {
1372 if (vl != CNTR_INVALID_VL)
1373 return 0;
1374 }
1375 val = read_write_csr(ppd->dd, csr, mode, data);
1376 return val;
1377}
1378
1379/* Software defined */
1380static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1381 u64 data)
1382{
1383 u64 ret;
1384
1385 if (mode == CNTR_MODE_R) {
1386 ret = *cntr;
1387 } else if (mode == CNTR_MODE_W) {
1388 *cntr = data;
1389 ret = data;
1390 } else {
1391 dd_dev_err(dd, "Invalid cntr sw access mode");
1392 return 0;
1393 }
1394
1395 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1396
1397 return ret;
1398}
1399
1400static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1401 int vl, int mode, u64 data)
1402{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301403 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001404
1405 if (vl != CNTR_INVALID_VL)
1406 return 0;
1407 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1408}
1409
1410static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1411 int vl, int mode, u64 data)
1412{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301413 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001414
1415 if (vl != CNTR_INVALID_VL)
1416 return 0;
1417 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1418}
1419
1420static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1421 void *context, int vl, int mode, u64 data)
1422{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301423 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001424
1425 if (vl != CNTR_INVALID_VL)
1426 return 0;
1427
1428 return read_write_sw(ppd->dd, &ppd->port_xmit_discards, mode, data);
1429}
1430
1431static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1432 void *context, int vl, int mode, u64 data)
1433{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301434 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001435
1436 if (vl != CNTR_INVALID_VL)
1437 return 0;
1438
1439 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1440 mode, data);
1441}
1442
1443static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1444 void *context, int vl, int mode, u64 data)
1445{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301446 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001447
1448 if (vl != CNTR_INVALID_VL)
1449 return 0;
1450
1451 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1452 mode, data);
1453}
1454
1455u64 get_all_cpu_total(u64 __percpu *cntr)
1456{
1457 int cpu;
1458 u64 counter = 0;
1459
1460 for_each_possible_cpu(cpu)
1461 counter += *per_cpu_ptr(cntr, cpu);
1462 return counter;
1463}
1464
1465static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1466 u64 __percpu *cntr,
1467 int vl, int mode, u64 data)
1468{
1469
1470 u64 ret = 0;
1471
1472 if (vl != CNTR_INVALID_VL)
1473 return 0;
1474
1475 if (mode == CNTR_MODE_R) {
1476 ret = get_all_cpu_total(cntr) - *z_val;
1477 } else if (mode == CNTR_MODE_W) {
1478 /* A write can only zero the counter */
1479 if (data == 0)
1480 *z_val = get_all_cpu_total(cntr);
1481 else
1482 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1483 } else {
1484 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1485 return 0;
1486 }
1487
1488 return ret;
1489}
1490
1491static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1492 void *context, int vl, int mode, u64 data)
1493{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301494 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001495
1496 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1497 mode, data);
1498}
1499
1500static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1501 void *context, int vl, int mode, u64 data)
1502{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301503 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001504
1505 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1506 mode, data);
1507}
1508
1509static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1510 void *context, int vl, int mode, u64 data)
1511{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301512 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001513
1514 return dd->verbs_dev.n_piowait;
1515}
1516
1517static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1518 void *context, int vl, int mode, u64 data)
1519{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301520 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001521
1522 return dd->verbs_dev.n_txwait;
1523}
1524
1525static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1526 void *context, int vl, int mode, u64 data)
1527{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301528 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001529
1530 return dd->verbs_dev.n_kmem_wait;
1531}
1532
Dean Luickb4219222015-10-26 10:28:35 -04001533static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1534 void *context, int vl, int mode, u64 data)
1535{
1536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1537
1538 return dd->verbs_dev.n_send_schedule;
1539}
1540
Mike Marciniszyn77241052015-07-30 15:17:43 -04001541#define def_access_sw_cpu(cntr) \
1542static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
1543 void *context, int vl, int mode, u64 data) \
1544{ \
1545 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1546 return read_write_cpu(ppd->dd, &ppd->ibport_data.z_ ##cntr, \
1547 ppd->ibport_data.cntr, vl, \
1548 mode, data); \
1549}
1550
1551def_access_sw_cpu(rc_acks);
1552def_access_sw_cpu(rc_qacks);
1553def_access_sw_cpu(rc_delayed_comp);
1554
1555#define def_access_ibp_counter(cntr) \
1556static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
1557 void *context, int vl, int mode, u64 data) \
1558{ \
1559 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1560 \
1561 if (vl != CNTR_INVALID_VL) \
1562 return 0; \
1563 \
1564 return read_write_sw(ppd->dd, &ppd->ibport_data.n_ ##cntr, \
1565 mode, data); \
1566}
1567
1568def_access_ibp_counter(loop_pkts);
1569def_access_ibp_counter(rc_resends);
1570def_access_ibp_counter(rnr_naks);
1571def_access_ibp_counter(other_naks);
1572def_access_ibp_counter(rc_timeouts);
1573def_access_ibp_counter(pkt_drops);
1574def_access_ibp_counter(dmawait);
1575def_access_ibp_counter(rc_seqnak);
1576def_access_ibp_counter(rc_dupreq);
1577def_access_ibp_counter(rdma_seq);
1578def_access_ibp_counter(unaligned);
1579def_access_ibp_counter(seq_naks);
1580
1581static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
1582[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
1583[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
1584 CNTR_NORMAL),
1585[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
1586 CNTR_NORMAL),
1587[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
1588 RCV_TID_FLOW_GEN_MISMATCH_CNT,
1589 CNTR_NORMAL),
1590[C_RX_CTX_RHQS] = RXE32_DEV_CNTR_ELEM(RxCtxRHQS, RCV_CONTEXT_RHQ_STALL,
1591 CNTR_NORMAL),
1592[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
1593 CNTR_NORMAL),
1594[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
1595 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
1596[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
1597 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
1598[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
1599 CNTR_NORMAL),
1600[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
1601 CNTR_NORMAL),
1602[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
1603 CNTR_NORMAL),
1604[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
1605 CNTR_NORMAL),
1606[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
1607 CNTR_NORMAL),
1608[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
1609 CNTR_NORMAL),
1610[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
1611 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
1612[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
1613 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
1614[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
1615 CNTR_SYNTH),
1616[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
1617[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
1618 CNTR_SYNTH),
1619[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
1620 CNTR_SYNTH),
1621[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
1622 CNTR_SYNTH),
1623[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
1624 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
1625[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
1626 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
1627 CNTR_SYNTH),
1628[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
1629 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
1630[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
1631 CNTR_SYNTH),
1632[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
1633 CNTR_SYNTH),
1634[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
1635 CNTR_SYNTH),
1636[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
1637 CNTR_SYNTH),
1638[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
1639 CNTR_SYNTH),
1640[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
1641 CNTR_SYNTH),
1642[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
1643 CNTR_SYNTH),
1644[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
1645 CNTR_SYNTH | CNTR_VL),
1646[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
1647 CNTR_SYNTH | CNTR_VL),
1648[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
1649[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
1650 CNTR_SYNTH | CNTR_VL),
1651[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
1652[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
1653 CNTR_SYNTH | CNTR_VL),
1654[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
1655 CNTR_SYNTH),
1656[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
1657 CNTR_SYNTH | CNTR_VL),
1658[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
1659 CNTR_SYNTH),
1660[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
1661 CNTR_SYNTH | CNTR_VL),
1662[C_DC_TOTAL_CRC] =
1663 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
1664 CNTR_SYNTH),
1665[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
1666 CNTR_SYNTH),
1667[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
1668 CNTR_SYNTH),
1669[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
1670 CNTR_SYNTH),
1671[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
1672 CNTR_SYNTH),
1673[C_DC_CRC_MULT_LN] =
1674 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
1675 CNTR_SYNTH),
1676[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
1677 CNTR_SYNTH),
1678[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
1679 CNTR_SYNTH),
1680[C_DC_SEQ_CRC_CNT] =
1681 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
1682 CNTR_SYNTH),
1683[C_DC_ESC0_ONLY_CNT] =
1684 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
1685 CNTR_SYNTH),
1686[C_DC_ESC0_PLUS1_CNT] =
1687 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
1688 CNTR_SYNTH),
1689[C_DC_ESC0_PLUS2_CNT] =
1690 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
1691 CNTR_SYNTH),
1692[C_DC_REINIT_FROM_PEER_CNT] =
1693 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
1694 CNTR_SYNTH),
1695[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
1696 CNTR_SYNTH),
1697[C_DC_MISC_FLG_CNT] =
1698 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
1699 CNTR_SYNTH),
1700[C_DC_PRF_GOOD_LTP_CNT] =
1701 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
1702[C_DC_PRF_ACCEPTED_LTP_CNT] =
1703 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
1704 CNTR_SYNTH),
1705[C_DC_PRF_RX_FLIT_CNT] =
1706 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
1707[C_DC_PRF_TX_FLIT_CNT] =
1708 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
1709[C_DC_PRF_CLK_CNTR] =
1710 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
1711[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
1712 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
1713[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
1714 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
1715 CNTR_SYNTH),
1716[C_DC_PG_STS_TX_SBE_CNT] =
1717 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
1718[C_DC_PG_STS_TX_MBE_CNT] =
1719 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
1720 CNTR_SYNTH),
1721[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
1722 access_sw_cpu_intr),
1723[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
1724 access_sw_cpu_rcv_limit),
1725[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
1726 access_sw_vtx_wait),
1727[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
1728 access_sw_pio_wait),
1729[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
1730 access_sw_kmem_wait),
Dean Luickb4219222015-10-26 10:28:35 -04001731[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
1732 access_sw_send_schedule),
Mike Marciniszyn77241052015-07-30 15:17:43 -04001733};
1734
1735static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
1736[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
1737 CNTR_NORMAL),
1738[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
1739 CNTR_NORMAL),
1740[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
1741 CNTR_NORMAL),
1742[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
1743 CNTR_NORMAL),
1744[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
1745 CNTR_NORMAL),
1746[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
1747 CNTR_NORMAL),
1748[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
1749 CNTR_NORMAL),
1750[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
1751[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
1752[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
1753[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
1754 CNTR_SYNTH | CNTR_VL),
1755[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
1756 CNTR_SYNTH | CNTR_VL),
1757[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
1758 CNTR_SYNTH | CNTR_VL),
1759[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
1760[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
1761[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1762 access_sw_link_dn_cnt),
1763[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1764 access_sw_link_up_cnt),
1765[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1766 access_sw_xmit_discards),
1767[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
1768 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
1769 access_sw_xmit_discards),
1770[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
1771 access_xmit_constraint_errs),
1772[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
1773 access_rcv_constraint_errs),
1774[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
1775[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
1776[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
1777[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
1778[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
1779[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
1780[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
1781[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
1782[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
1783[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
1784[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
1785[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
1786[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
1787 access_sw_cpu_rc_acks),
1788[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
1789 access_sw_cpu_rc_qacks),
1790[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
1791 access_sw_cpu_rc_delayed_comp),
1792[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
1793[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
1794[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
1795[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
1796[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
1797[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
1798[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
1799[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
1800[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
1801[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
1802[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
1803[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
1804[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
1805[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
1806[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
1807[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
1808[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
1809[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
1810[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
1811[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
1812[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
1813[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
1814[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
1815[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
1816[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
1817[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
1818[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
1819[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
1820[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
1821[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
1822[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
1823[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
1824[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
1825[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
1826[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
1827[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
1828[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
1829[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
1830[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
1831[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
1832[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
1833[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
1834[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
1835[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
1836[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
1837[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
1838[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
1839[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
1840[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
1841[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
1842[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
1843[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
1844[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
1845[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
1846[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
1847[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
1848[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
1849[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
1850[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
1851[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
1852[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
1853[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
1854[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
1855[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
1856[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
1857[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
1858[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
1859[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
1860[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
1861[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
1862[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
1863[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
1864[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
1865[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
1866[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
1867[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
1868[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
1869[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
1870[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
1871[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
1872};
1873
1874/* ======================================================================== */
1875
1876/* return true if this is chip revision revision a0 */
1877int is_a0(struct hfi1_devdata *dd)
1878{
1879 return ((dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
1880 & CCE_REVISION_CHIP_REV_MINOR_MASK) == 0;
1881}
1882
1883/* return true if this is chip revision revision a */
1884int is_ax(struct hfi1_devdata *dd)
1885{
1886 u8 chip_rev_minor =
1887 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1888 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1889 return (chip_rev_minor & 0xf0) == 0;
1890}
1891
1892/* return true if this is chip revision revision b */
1893int is_bx(struct hfi1_devdata *dd)
1894{
1895 u8 chip_rev_minor =
1896 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1897 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1898 return !!(chip_rev_minor & 0x10);
1899}
1900
1901/*
1902 * Append string s to buffer buf. Arguments curp and len are the current
1903 * position and remaining length, respectively.
1904 *
1905 * return 0 on success, 1 on out of room
1906 */
1907static int append_str(char *buf, char **curp, int *lenp, const char *s)
1908{
1909 char *p = *curp;
1910 int len = *lenp;
1911 int result = 0; /* success */
1912 char c;
1913
1914 /* add a comma, if first in the buffer */
1915 if (p != buf) {
1916 if (len == 0) {
1917 result = 1; /* out of room */
1918 goto done;
1919 }
1920 *p++ = ',';
1921 len--;
1922 }
1923
1924 /* copy the string */
1925 while ((c = *s++) != 0) {
1926 if (len == 0) {
1927 result = 1; /* out of room */
1928 goto done;
1929 }
1930 *p++ = c;
1931 len--;
1932 }
1933
1934done:
1935 /* write return values */
1936 *curp = p;
1937 *lenp = len;
1938
1939 return result;
1940}
1941
1942/*
1943 * Using the given flag table, print a comma separated string into
1944 * the buffer. End in '*' if the buffer is too short.
1945 */
1946static char *flag_string(char *buf, int buf_len, u64 flags,
1947 struct flag_table *table, int table_size)
1948{
1949 char extra[32];
1950 char *p = buf;
1951 int len = buf_len;
1952 int no_room = 0;
1953 int i;
1954
1955 /* make sure there is at least 2 so we can form "*" */
1956 if (len < 2)
1957 return "";
1958
1959 len--; /* leave room for a nul */
1960 for (i = 0; i < table_size; i++) {
1961 if (flags & table[i].flag) {
1962 no_room = append_str(buf, &p, &len, table[i].str);
1963 if (no_room)
1964 break;
1965 flags &= ~table[i].flag;
1966 }
1967 }
1968
1969 /* any undocumented bits left? */
1970 if (!no_room && flags) {
1971 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
1972 no_room = append_str(buf, &p, &len, extra);
1973 }
1974
1975 /* add * if ran out of room */
1976 if (no_room) {
1977 /* may need to back up to add space for a '*' */
1978 if (len == 0)
1979 --p;
1980 *p++ = '*';
1981 }
1982
1983 /* add final nul - space already allocated above */
1984 *p = 0;
1985 return buf;
1986}
1987
1988/* first 8 CCE error interrupt source names */
1989static const char * const cce_misc_names[] = {
1990 "CceErrInt", /* 0 */
1991 "RxeErrInt", /* 1 */
1992 "MiscErrInt", /* 2 */
1993 "Reserved3", /* 3 */
1994 "PioErrInt", /* 4 */
1995 "SDmaErrInt", /* 5 */
1996 "EgressErrInt", /* 6 */
1997 "TxeErrInt" /* 7 */
1998};
1999
2000/*
2001 * Return the miscellaneous error interrupt name.
2002 */
2003static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
2004{
2005 if (source < ARRAY_SIZE(cce_misc_names))
2006 strncpy(buf, cce_misc_names[source], bsize);
2007 else
2008 snprintf(buf,
2009 bsize,
2010 "Reserved%u",
2011 source + IS_GENERAL_ERR_START);
2012
2013 return buf;
2014}
2015
2016/*
2017 * Return the SDMA engine error interrupt name.
2018 */
2019static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
2020{
2021 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
2022 return buf;
2023}
2024
2025/*
2026 * Return the send context error interrupt name.
2027 */
2028static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
2029{
2030 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
2031 return buf;
2032}
2033
2034static const char * const various_names[] = {
2035 "PbcInt",
2036 "GpioAssertInt",
2037 "Qsfp1Int",
2038 "Qsfp2Int",
2039 "TCritInt"
2040};
2041
2042/*
2043 * Return the various interrupt name.
2044 */
2045static char *is_various_name(char *buf, size_t bsize, unsigned int source)
2046{
2047 if (source < ARRAY_SIZE(various_names))
2048 strncpy(buf, various_names[source], bsize);
2049 else
2050 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
2051 return buf;
2052}
2053
2054/*
2055 * Return the DC interrupt name.
2056 */
2057static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
2058{
2059 static const char * const dc_int_names[] = {
2060 "common",
2061 "lcb",
2062 "8051",
2063 "lbm" /* local block merge */
2064 };
2065
2066 if (source < ARRAY_SIZE(dc_int_names))
2067 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
2068 else
2069 snprintf(buf, bsize, "DCInt%u", source);
2070 return buf;
2071}
2072
2073static const char * const sdma_int_names[] = {
2074 "SDmaInt",
2075 "SdmaIdleInt",
2076 "SdmaProgressInt",
2077};
2078
2079/*
2080 * Return the SDMA engine interrupt name.
2081 */
2082static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
2083{
2084 /* what interrupt */
2085 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
2086 /* which engine */
2087 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
2088
2089 if (likely(what < 3))
2090 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
2091 else
2092 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
2093 return buf;
2094}
2095
2096/*
2097 * Return the receive available interrupt name.
2098 */
2099static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
2100{
2101 snprintf(buf, bsize, "RcvAvailInt%u", source);
2102 return buf;
2103}
2104
2105/*
2106 * Return the receive urgent interrupt name.
2107 */
2108static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
2109{
2110 snprintf(buf, bsize, "RcvUrgentInt%u", source);
2111 return buf;
2112}
2113
2114/*
2115 * Return the send credit interrupt name.
2116 */
2117static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
2118{
2119 snprintf(buf, bsize, "SendCreditInt%u", source);
2120 return buf;
2121}
2122
2123/*
2124 * Return the reserved interrupt name.
2125 */
2126static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
2127{
2128 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
2129 return buf;
2130}
2131
2132static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
2133{
2134 return flag_string(buf, buf_len, flags,
2135 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
2136}
2137
2138static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
2139{
2140 return flag_string(buf, buf_len, flags,
2141 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
2142}
2143
2144static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
2145{
2146 return flag_string(buf, buf_len, flags, misc_err_status_flags,
2147 ARRAY_SIZE(misc_err_status_flags));
2148}
2149
2150static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
2151{
2152 return flag_string(buf, buf_len, flags,
2153 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
2154}
2155
2156static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
2157{
2158 return flag_string(buf, buf_len, flags,
2159 sdma_err_status_flags,
2160 ARRAY_SIZE(sdma_err_status_flags));
2161}
2162
2163static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
2164{
2165 return flag_string(buf, buf_len, flags,
2166 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
2167}
2168
2169static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
2170{
2171 return flag_string(buf, buf_len, flags,
2172 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
2173}
2174
2175static char *send_err_status_string(char *buf, int buf_len, u64 flags)
2176{
2177 return flag_string(buf, buf_len, flags,
2178 send_err_status_flags,
2179 ARRAY_SIZE(send_err_status_flags));
2180}
2181
2182static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2183{
2184 char buf[96];
2185
2186 /*
2187 * For most these errors, there is nothing that can be done except
2188 * report or record it.
2189 */
2190 dd_dev_info(dd, "CCE Error: %s\n",
2191 cce_err_status_string(buf, sizeof(buf), reg));
2192
2193 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK)
2194 && is_a0(dd)
2195 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
2196 /* this error requires a manual drop into SPC freeze mode */
2197 /* then a fix up */
2198 start_freeze_handling(dd->pport, FREEZE_SELF);
2199 }
2200}
2201
2202/*
2203 * Check counters for receive errors that do not have an interrupt
2204 * associated with them.
2205 */
2206#define RCVERR_CHECK_TIME 10
2207static void update_rcverr_timer(unsigned long opaque)
2208{
2209 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
2210 struct hfi1_pportdata *ppd = dd->pport;
2211 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
2212
2213 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
2214 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
2215 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
2216 set_link_down_reason(ppd,
2217 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
2218 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
2219 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
2220 }
2221 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
2222
2223 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2224}
2225
2226static int init_rcverr(struct hfi1_devdata *dd)
2227{
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05302228 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04002229 /* Assume the hardware counter has been reset */
2230 dd->rcv_ovfl_cnt = 0;
2231 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2232}
2233
2234static void free_rcverr(struct hfi1_devdata *dd)
2235{
2236 if (dd->rcverr_timer.data)
2237 del_timer_sync(&dd->rcverr_timer);
2238 dd->rcverr_timer.data = 0;
2239}
2240
2241static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2242{
2243 char buf[96];
2244
2245 dd_dev_info(dd, "Receive Error: %s\n",
2246 rxe_err_status_string(buf, sizeof(buf), reg));
2247
2248 if (reg & ALL_RXE_FREEZE_ERR) {
2249 int flags = 0;
2250
2251 /*
2252 * Freeze mode recovery is disabled for the errors
2253 * in RXE_FREEZE_ABORT_MASK
2254 */
2255 if (is_a0(dd) && (reg & RXE_FREEZE_ABORT_MASK))
2256 flags = FREEZE_ABORT;
2257
2258 start_freeze_handling(dd->pport, flags);
2259 }
2260}
2261
2262static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2263{
2264 char buf[96];
2265
2266 dd_dev_info(dd, "Misc Error: %s",
2267 misc_err_status_string(buf, sizeof(buf), reg));
2268}
2269
2270static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2271{
2272 char buf[96];
2273
2274 dd_dev_info(dd, "PIO Error: %s\n",
2275 pio_err_status_string(buf, sizeof(buf), reg));
2276
2277 if (reg & ALL_PIO_FREEZE_ERR)
2278 start_freeze_handling(dd->pport, 0);
2279}
2280
2281static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2282{
2283 char buf[96];
2284
2285 dd_dev_info(dd, "SDMA Error: %s\n",
2286 sdma_err_status_string(buf, sizeof(buf), reg));
2287
2288 if (reg & ALL_SDMA_FREEZE_ERR)
2289 start_freeze_handling(dd->pport, 0);
2290}
2291
2292static void count_port_inactive(struct hfi1_devdata *dd)
2293{
2294 struct hfi1_pportdata *ppd = dd->pport;
2295
2296 if (ppd->port_xmit_discards < ~(u64)0)
2297 ppd->port_xmit_discards++;
2298}
2299
2300/*
2301 * We have had a "disallowed packet" error during egress. Determine the
2302 * integrity check which failed, and update relevant error counter, etc.
2303 *
2304 * Note that the SEND_EGRESS_ERR_INFO register has only a single
2305 * bit of state per integrity check, and so we can miss the reason for an
2306 * egress error if more than one packet fails the same integrity check
2307 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
2308 */
2309static void handle_send_egress_err_info(struct hfi1_devdata *dd)
2310{
2311 struct hfi1_pportdata *ppd = dd->pport;
2312 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
2313 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
2314 char buf[96];
2315
2316 /* clear down all observed info as quickly as possible after read */
2317 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
2318
2319 dd_dev_info(dd,
2320 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
2321 info, egress_err_info_string(buf, sizeof(buf), info), src);
2322
2323 /* Eventually add other counters for each bit */
2324
2325 if (info & SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK) {
2326 if (ppd->port_xmit_discards < ~(u64)0)
2327 ppd->port_xmit_discards++;
2328 }
2329}
2330
2331/*
2332 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2333 * register. Does it represent a 'port inactive' error?
2334 */
2335static inline int port_inactive_err(u64 posn)
2336{
2337 return (posn >= SEES(TX_LINKDOWN) &&
2338 posn <= SEES(TX_INCORRECT_LINK_STATE));
2339}
2340
2341/*
2342 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2343 * register. Does it represent a 'disallowed packet' error?
2344 */
2345static inline int disallowed_pkt_err(u64 posn)
2346{
2347 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
2348 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
2349}
2350
2351static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2352{
2353 u64 reg_copy = reg, handled = 0;
2354 char buf[96];
2355
2356 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
2357 start_freeze_handling(dd->pport, 0);
2358 if (is_a0(dd) && (reg &
2359 SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK)
2360 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
2361 start_freeze_handling(dd->pport, 0);
2362
2363 while (reg_copy) {
2364 int posn = fls64(reg_copy);
2365 /*
2366 * fls64() returns a 1-based offset, but we generally
2367 * want 0-based offsets.
2368 */
2369 int shift = posn - 1;
2370
2371 if (port_inactive_err(shift)) {
2372 count_port_inactive(dd);
2373 handled |= (1ULL << shift);
2374 } else if (disallowed_pkt_err(shift)) {
2375 handle_send_egress_err_info(dd);
2376 handled |= (1ULL << shift);
2377 }
2378 clear_bit(shift, (unsigned long *)&reg_copy);
2379 }
2380
2381 reg &= ~handled;
2382
2383 if (reg)
2384 dd_dev_info(dd, "Egress Error: %s\n",
2385 egress_err_status_string(buf, sizeof(buf), reg));
2386}
2387
2388static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2389{
2390 char buf[96];
2391
2392 dd_dev_info(dd, "Send Error: %s\n",
2393 send_err_status_string(buf, sizeof(buf), reg));
2394
2395}
2396
2397/*
2398 * The maximum number of times the error clear down will loop before
2399 * blocking a repeating error. This value is arbitrary.
2400 */
2401#define MAX_CLEAR_COUNT 20
2402
2403/*
2404 * Clear and handle an error register. All error interrupts are funneled
2405 * through here to have a central location to correctly handle single-
2406 * or multi-shot errors.
2407 *
2408 * For non per-context registers, call this routine with a context value
2409 * of 0 so the per-context offset is zero.
2410 *
2411 * If the handler loops too many times, assume that something is wrong
2412 * and can't be fixed, so mask the error bits.
2413 */
2414static void interrupt_clear_down(struct hfi1_devdata *dd,
2415 u32 context,
2416 const struct err_reg_info *eri)
2417{
2418 u64 reg;
2419 u32 count;
2420
2421 /* read in a loop until no more errors are seen */
2422 count = 0;
2423 while (1) {
2424 reg = read_kctxt_csr(dd, context, eri->status);
2425 if (reg == 0)
2426 break;
2427 write_kctxt_csr(dd, context, eri->clear, reg);
2428 if (likely(eri->handler))
2429 eri->handler(dd, context, reg);
2430 count++;
2431 if (count > MAX_CLEAR_COUNT) {
2432 u64 mask;
2433
2434 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
2435 eri->desc, reg);
2436 /*
2437 * Read-modify-write so any other masked bits
2438 * remain masked.
2439 */
2440 mask = read_kctxt_csr(dd, context, eri->mask);
2441 mask &= ~reg;
2442 write_kctxt_csr(dd, context, eri->mask, mask);
2443 break;
2444 }
2445 }
2446}
2447
2448/*
2449 * CCE block "misc" interrupt. Source is < 16.
2450 */
2451static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
2452{
2453 const struct err_reg_info *eri = &misc_errs[source];
2454
2455 if (eri->handler) {
2456 interrupt_clear_down(dd, 0, eri);
2457 } else {
2458 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
2459 source);
2460 }
2461}
2462
2463static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
2464{
2465 return flag_string(buf, buf_len, flags,
2466 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
2467}
2468
2469/*
2470 * Send context error interrupt. Source (hw_context) is < 160.
2471 *
2472 * All send context errors cause the send context to halt. The normal
2473 * clear-down mechanism cannot be used because we cannot clear the
2474 * error bits until several other long-running items are done first.
2475 * This is OK because with the context halted, nothing else is going
2476 * to happen on it anyway.
2477 */
2478static void is_sendctxt_err_int(struct hfi1_devdata *dd,
2479 unsigned int hw_context)
2480{
2481 struct send_context_info *sci;
2482 struct send_context *sc;
2483 char flags[96];
2484 u64 status;
2485 u32 sw_index;
2486
2487 sw_index = dd->hw_to_sw[hw_context];
2488 if (sw_index >= dd->num_send_contexts) {
2489 dd_dev_err(dd,
2490 "out of range sw index %u for send context %u\n",
2491 sw_index, hw_context);
2492 return;
2493 }
2494 sci = &dd->send_contexts[sw_index];
2495 sc = sci->sc;
2496 if (!sc) {
2497 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
2498 sw_index, hw_context);
2499 return;
2500 }
2501
2502 /* tell the software that a halt has begun */
2503 sc_stop(sc, SCF_HALTED);
2504
2505 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
2506
2507 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
2508 send_context_err_status_string(flags, sizeof(flags), status));
2509
2510 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
2511 handle_send_egress_err_info(dd);
2512
2513 /*
2514 * Automatically restart halted kernel contexts out of interrupt
2515 * context. User contexts must ask the driver to restart the context.
2516 */
2517 if (sc->type != SC_USER)
2518 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2519}
2520
2521static void handle_sdma_eng_err(struct hfi1_devdata *dd,
2522 unsigned int source, u64 status)
2523{
2524 struct sdma_engine *sde;
2525
2526 sde = &dd->per_sdma[source];
2527#ifdef CONFIG_SDMA_VERBOSITY
2528 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2529 slashstrip(__FILE__), __LINE__, __func__);
2530 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
2531 sde->this_idx, source, (unsigned long long)status);
2532#endif
2533 sdma_engine_error(sde, status);
2534}
2535
2536/*
2537 * CCE block SDMA error interrupt. Source is < 16.
2538 */
2539static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
2540{
2541#ifdef CONFIG_SDMA_VERBOSITY
2542 struct sdma_engine *sde = &dd->per_sdma[source];
2543
2544 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2545 slashstrip(__FILE__), __LINE__, __func__);
2546 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
2547 source);
2548 sdma_dumpstate(sde);
2549#endif
2550 interrupt_clear_down(dd, source, &sdma_eng_err);
2551}
2552
2553/*
2554 * CCE block "various" interrupt. Source is < 8.
2555 */
2556static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
2557{
2558 const struct err_reg_info *eri = &various_err[source];
2559
2560 /*
2561 * TCritInt cannot go through interrupt_clear_down()
2562 * because it is not a second tier interrupt. The handler
2563 * should be called directly.
2564 */
2565 if (source == TCRIT_INT_SOURCE)
2566 handle_temp_err(dd);
2567 else if (eri->handler)
2568 interrupt_clear_down(dd, 0, eri);
2569 else
2570 dd_dev_info(dd,
2571 "%s: Unimplemented/reserved interrupt %d\n",
2572 __func__, source);
2573}
2574
2575static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
2576{
2577 /* source is always zero */
2578 struct hfi1_pportdata *ppd = dd->pport;
2579 unsigned long flags;
2580 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
2581
2582 if (reg & QSFP_HFI0_MODPRST_N) {
2583
2584 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
2585 __func__);
2586
2587 if (!qsfp_mod_present(ppd)) {
2588 ppd->driver_link_ready = 0;
2589 /*
2590 * Cable removed, reset all our information about the
2591 * cache and cable capabilities
2592 */
2593
2594 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2595 /*
2596 * We don't set cache_refresh_required here as we expect
2597 * an interrupt when a cable is inserted
2598 */
2599 ppd->qsfp_info.cache_valid = 0;
2600 ppd->qsfp_info.qsfp_interrupt_functional = 0;
2601 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2602 flags);
2603 write_csr(dd,
2604 dd->hfi1_id ?
2605 ASIC_QSFP2_INVERT :
2606 ASIC_QSFP1_INVERT,
2607 qsfp_int_mgmt);
2608 if (ppd->host_link_state == HLS_DN_POLL) {
2609 /*
2610 * The link is still in POLL. This means
2611 * that the normal link down processing
2612 * will not happen. We have to do it here
2613 * before turning the DC off.
2614 */
2615 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
2616 }
2617 } else {
2618 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2619 ppd->qsfp_info.cache_valid = 0;
2620 ppd->qsfp_info.cache_refresh_required = 1;
2621 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2622 flags);
2623
2624 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
2625 write_csr(dd,
2626 dd->hfi1_id ?
2627 ASIC_QSFP2_INVERT :
2628 ASIC_QSFP1_INVERT,
2629 qsfp_int_mgmt);
2630 }
2631 }
2632
2633 if (reg & QSFP_HFI0_INT_N) {
2634
2635 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
2636 __func__);
2637 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2638 ppd->qsfp_info.check_interrupt_flags = 1;
2639 ppd->qsfp_info.qsfp_interrupt_functional = 1;
2640 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
2641 }
2642
2643 /* Schedule the QSFP work only if there is a cable attached. */
2644 if (qsfp_mod_present(ppd))
2645 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
2646}
2647
2648static int request_host_lcb_access(struct hfi1_devdata *dd)
2649{
2650 int ret;
2651
2652 ret = do_8051_command(dd, HCMD_MISC,
2653 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2654 NULL);
2655 if (ret != HCMD_SUCCESS) {
2656 dd_dev_err(dd, "%s: command failed with error %d\n",
2657 __func__, ret);
2658 }
2659 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2660}
2661
2662static int request_8051_lcb_access(struct hfi1_devdata *dd)
2663{
2664 int ret;
2665
2666 ret = do_8051_command(dd, HCMD_MISC,
2667 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2668 NULL);
2669 if (ret != HCMD_SUCCESS) {
2670 dd_dev_err(dd, "%s: command failed with error %d\n",
2671 __func__, ret);
2672 }
2673 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2674}
2675
2676/*
2677 * Set the LCB selector - allow host access. The DCC selector always
2678 * points to the host.
2679 */
2680static inline void set_host_lcb_access(struct hfi1_devdata *dd)
2681{
2682 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2683 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
2684 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
2685}
2686
2687/*
2688 * Clear the LCB selector - allow 8051 access. The DCC selector always
2689 * points to the host.
2690 */
2691static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
2692{
2693 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2694 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
2695}
2696
2697/*
2698 * Acquire LCB access from the 8051. If the host already has access,
2699 * just increment a counter. Otherwise, inform the 8051 that the
2700 * host is taking access.
2701 *
2702 * Returns:
2703 * 0 on success
2704 * -EBUSY if the 8051 has control and cannot be disturbed
2705 * -errno if unable to acquire access from the 8051
2706 */
2707int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2708{
2709 struct hfi1_pportdata *ppd = dd->pport;
2710 int ret = 0;
2711
2712 /*
2713 * Use the host link state lock so the operation of this routine
2714 * { link state check, selector change, count increment } can occur
2715 * as a unit against a link state change. Otherwise there is a
2716 * race between the state change and the count increment.
2717 */
2718 if (sleep_ok) {
2719 mutex_lock(&ppd->hls_lock);
2720 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03002721 while (!mutex_trylock(&ppd->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04002722 udelay(1);
2723 }
2724
2725 /* this access is valid only when the link is up */
2726 if ((ppd->host_link_state & HLS_UP) == 0) {
2727 dd_dev_info(dd, "%s: link state %s not up\n",
2728 __func__, link_state_name(ppd->host_link_state));
2729 ret = -EBUSY;
2730 goto done;
2731 }
2732
2733 if (dd->lcb_access_count == 0) {
2734 ret = request_host_lcb_access(dd);
2735 if (ret) {
2736 dd_dev_err(dd,
2737 "%s: unable to acquire LCB access, err %d\n",
2738 __func__, ret);
2739 goto done;
2740 }
2741 set_host_lcb_access(dd);
2742 }
2743 dd->lcb_access_count++;
2744done:
2745 mutex_unlock(&ppd->hls_lock);
2746 return ret;
2747}
2748
2749/*
2750 * Release LCB access by decrementing the use count. If the count is moving
2751 * from 1 to 0, inform 8051 that it has control back.
2752 *
2753 * Returns:
2754 * 0 on success
2755 * -errno if unable to release access to the 8051
2756 */
2757int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2758{
2759 int ret = 0;
2760
2761 /*
2762 * Use the host link state lock because the acquire needed it.
2763 * Here, we only need to keep { selector change, count decrement }
2764 * as a unit.
2765 */
2766 if (sleep_ok) {
2767 mutex_lock(&dd->pport->hls_lock);
2768 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03002769 while (!mutex_trylock(&dd->pport->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04002770 udelay(1);
2771 }
2772
2773 if (dd->lcb_access_count == 0) {
2774 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
2775 __func__);
2776 goto done;
2777 }
2778
2779 if (dd->lcb_access_count == 1) {
2780 set_8051_lcb_access(dd);
2781 ret = request_8051_lcb_access(dd);
2782 if (ret) {
2783 dd_dev_err(dd,
2784 "%s: unable to release LCB access, err %d\n",
2785 __func__, ret);
2786 /* restore host access if the grant didn't work */
2787 set_host_lcb_access(dd);
2788 goto done;
2789 }
2790 }
2791 dd->lcb_access_count--;
2792done:
2793 mutex_unlock(&dd->pport->hls_lock);
2794 return ret;
2795}
2796
2797/*
2798 * Initialize LCB access variables and state. Called during driver load,
2799 * after most of the initialization is finished.
2800 *
2801 * The DC default is LCB access on for the host. The driver defaults to
2802 * leaving access to the 8051. Assign access now - this constrains the call
2803 * to this routine to be after all LCB set-up is done. In particular, after
2804 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
2805 */
2806static void init_lcb_access(struct hfi1_devdata *dd)
2807{
2808 dd->lcb_access_count = 0;
2809}
2810
2811/*
2812 * Write a response back to a 8051 request.
2813 */
2814static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
2815{
2816 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
2817 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
2818 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
2819 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
2820}
2821
2822/*
2823 * Handle requests from the 8051.
2824 */
2825static void handle_8051_request(struct hfi1_devdata *dd)
2826{
2827 u64 reg;
2828 u16 data;
2829 u8 type;
2830
2831 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
2832 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
2833 return; /* no request */
2834
2835 /* zero out COMPLETED so the response is seen */
2836 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
2837
2838 /* extract request details */
2839 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
2840 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
2841 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
2842 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
2843
2844 switch (type) {
2845 case HREQ_LOAD_CONFIG:
2846 case HREQ_SAVE_CONFIG:
2847 case HREQ_READ_CONFIG:
2848 case HREQ_SET_TX_EQ_ABS:
2849 case HREQ_SET_TX_EQ_REL:
2850 case HREQ_ENABLE:
2851 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
2852 type);
2853 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2854 break;
2855
2856 case HREQ_CONFIG_DONE:
2857 hreq_response(dd, HREQ_SUCCESS, 0);
2858 break;
2859
2860 case HREQ_INTERFACE_TEST:
2861 hreq_response(dd, HREQ_SUCCESS, data);
2862 break;
2863
2864 default:
2865 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
2866 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2867 break;
2868 }
2869}
2870
2871static void write_global_credit(struct hfi1_devdata *dd,
2872 u8 vau, u16 total, u16 shared)
2873{
2874 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
2875 ((u64)total
2876 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
2877 | ((u64)shared
2878 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
2879 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
2880}
2881
2882/*
2883 * Set up initial VL15 credits of the remote. Assumes the rest of
2884 * the CM credit registers are zero from a previous global or credit reset .
2885 */
2886void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
2887{
2888 /* leave shared count at zero for both global and VL15 */
2889 write_global_credit(dd, vau, vl15buf, 0);
2890
2891 /* We may need some credits for another VL when sending packets
2892 * with the snoop interface. Dividing it down the middle for VL15
2893 * and VL0 should suffice.
2894 */
2895 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
2896 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
2897 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2898 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
2899 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
2900 } else {
2901 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
2902 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2903 }
2904}
2905
2906/*
2907 * Zero all credit details from the previous connection and
2908 * reset the CM manager's internal counters.
2909 */
2910void reset_link_credits(struct hfi1_devdata *dd)
2911{
2912 int i;
2913
2914 /* remove all previous VL credit limits */
2915 for (i = 0; i < TXE_NUM_DATA_VL; i++)
2916 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
2917 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
2918 write_global_credit(dd, 0, 0, 0);
2919 /* reset the CM block */
2920 pio_send_control(dd, PSC_CM_RESET);
2921}
2922
2923/* convert a vCU to a CU */
2924static u32 vcu_to_cu(u8 vcu)
2925{
2926 return 1 << vcu;
2927}
2928
2929/* convert a CU to a vCU */
2930static u8 cu_to_vcu(u32 cu)
2931{
2932 return ilog2(cu);
2933}
2934
2935/* convert a vAU to an AU */
2936static u32 vau_to_au(u8 vau)
2937{
2938 return 8 * (1 << vau);
2939}
2940
2941static void set_linkup_defaults(struct hfi1_pportdata *ppd)
2942{
2943 ppd->sm_trap_qp = 0x0;
2944 ppd->sa_qp = 0x1;
2945}
2946
2947/*
2948 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
2949 */
2950static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
2951{
2952 u64 reg;
2953
2954 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
2955 write_csr(dd, DC_LCB_CFG_RUN, 0);
2956 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
2957 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
2958 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
2959 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
2960 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
2961 reg = read_csr(dd, DCC_CFG_RESET);
2962 write_csr(dd, DCC_CFG_RESET,
2963 reg
2964 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
2965 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
2966 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
2967 if (!abort) {
2968 udelay(1); /* must hold for the longer of 16cclks or 20ns */
2969 write_csr(dd, DCC_CFG_RESET, reg);
2970 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
2971 }
2972}
2973
2974/*
2975 * This routine should be called after the link has been transitioned to
2976 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
2977 * reset).
2978 *
2979 * The expectation is that the caller of this routine would have taken
2980 * care of properly transitioning the link into the correct state.
2981 */
2982static void dc_shutdown(struct hfi1_devdata *dd)
2983{
2984 unsigned long flags;
2985
2986 spin_lock_irqsave(&dd->dc8051_lock, flags);
2987 if (dd->dc_shutdown) {
2988 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2989 return;
2990 }
2991 dd->dc_shutdown = 1;
2992 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2993 /* Shutdown the LCB */
2994 lcb_shutdown(dd, 1);
2995 /* Going to OFFLINE would have causes the 8051 to put the
2996 * SerDes into reset already. Just need to shut down the 8051,
2997 * itself. */
2998 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
2999}
3000
3001/* Calling this after the DC has been brought out of reset should not
3002 * do any damage. */
3003static void dc_start(struct hfi1_devdata *dd)
3004{
3005 unsigned long flags;
3006 int ret;
3007
3008 spin_lock_irqsave(&dd->dc8051_lock, flags);
3009 if (!dd->dc_shutdown)
3010 goto done;
3011 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3012 /* Take the 8051 out of reset */
3013 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
3014 /* Wait until 8051 is ready */
3015 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
3016 if (ret) {
3017 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
3018 __func__);
3019 }
3020 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
3021 write_csr(dd, DCC_CFG_RESET, 0x10);
3022 /* lcb_shutdown() with abort=1 does not restore these */
3023 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
3024 spin_lock_irqsave(&dd->dc8051_lock, flags);
3025 dd->dc_shutdown = 0;
3026done:
3027 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3028}
3029
3030/*
3031 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
3032 */
3033static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
3034{
3035 u64 rx_radr, tx_radr;
3036 u32 version;
3037
3038 if (dd->icode != ICODE_FPGA_EMULATION)
3039 return;
3040
3041 /*
3042 * These LCB defaults on emulator _s are good, nothing to do here:
3043 * LCB_CFG_TX_FIFOS_RADR
3044 * LCB_CFG_RX_FIFOS_RADR
3045 * LCB_CFG_LN_DCLK
3046 * LCB_CFG_IGNORE_LOST_RCLK
3047 */
3048 if (is_emulator_s(dd))
3049 return;
3050 /* else this is _p */
3051
3052 version = emulator_rev(dd);
3053 if (!is_a0(dd))
3054 version = 0x2d; /* all B0 use 0x2d or higher settings */
3055
3056 if (version <= 0x12) {
3057 /* release 0x12 and below */
3058
3059 /*
3060 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
3061 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
3062 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
3063 */
3064 rx_radr =
3065 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3066 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3067 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3068 /*
3069 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
3070 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
3071 */
3072 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3073 } else if (version <= 0x18) {
3074 /* release 0x13 up to 0x18 */
3075 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3076 rx_radr =
3077 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3078 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3079 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3080 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3081 } else if (version == 0x19) {
3082 /* release 0x19 */
3083 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
3084 rx_radr =
3085 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3086 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3087 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3088 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3089 } else if (version == 0x1a) {
3090 /* release 0x1a */
3091 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3092 rx_radr =
3093 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3094 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3095 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3096 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3097 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
3098 } else {
3099 /* release 0x1b and higher */
3100 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
3101 rx_radr =
3102 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3103 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3104 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3105 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3106 }
3107
3108 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
3109 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
3110 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
3111 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
3112 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
3113}
3114
3115/*
3116 * Handle a SMA idle message
3117 *
3118 * This is a work-queue function outside of the interrupt.
3119 */
3120void handle_sma_message(struct work_struct *work)
3121{
3122 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3123 sma_message_work);
3124 struct hfi1_devdata *dd = ppd->dd;
3125 u64 msg;
3126 int ret;
3127
3128 /* msg is bytes 1-4 of the 40-bit idle message - the command code
3129 is stripped off */
3130 ret = read_idle_sma(dd, &msg);
3131 if (ret)
3132 return;
3133 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
3134 /*
3135 * React to the SMA message. Byte[1] (0 for us) is the command.
3136 */
3137 switch (msg & 0xff) {
3138 case SMA_IDLE_ARM:
3139 /*
3140 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3141 * State Transitions
3142 *
3143 * Only expected in INIT or ARMED, discard otherwise.
3144 */
3145 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
3146 ppd->neighbor_normal = 1;
3147 break;
3148 case SMA_IDLE_ACTIVE:
3149 /*
3150 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3151 * State Transitions
3152 *
3153 * Can activate the node. Discard otherwise.
3154 */
3155 if (ppd->host_link_state == HLS_UP_ARMED
3156 && ppd->is_active_optimize_enabled) {
3157 ppd->neighbor_normal = 1;
3158 ret = set_link_state(ppd, HLS_UP_ACTIVE);
3159 if (ret)
3160 dd_dev_err(
3161 dd,
3162 "%s: received Active SMA idle message, couldn't set link to Active\n",
3163 __func__);
3164 }
3165 break;
3166 default:
3167 dd_dev_err(dd,
3168 "%s: received unexpected SMA idle message 0x%llx\n",
3169 __func__, msg);
3170 break;
3171 }
3172}
3173
3174static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
3175{
3176 u64 rcvctrl;
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
3180 rcvctrl = read_csr(dd, RCV_CTRL);
3181 rcvctrl |= add;
3182 rcvctrl &= ~clear;
3183 write_csr(dd, RCV_CTRL, rcvctrl);
3184 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
3185}
3186
3187static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
3188{
3189 adjust_rcvctrl(dd, add, 0);
3190}
3191
3192static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
3193{
3194 adjust_rcvctrl(dd, 0, clear);
3195}
3196
3197/*
3198 * Called from all interrupt handlers to start handling an SPC freeze.
3199 */
3200void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
3201{
3202 struct hfi1_devdata *dd = ppd->dd;
3203 struct send_context *sc;
3204 int i;
3205
3206 if (flags & FREEZE_SELF)
3207 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3208
3209 /* enter frozen mode */
3210 dd->flags |= HFI1_FROZEN;
3211
3212 /* notify all SDMA engines that they are going into a freeze */
3213 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
3214
3215 /* do halt pre-handling on all enabled send contexts */
3216 for (i = 0; i < dd->num_send_contexts; i++) {
3217 sc = dd->send_contexts[i].sc;
3218 if (sc && (sc->flags & SCF_ENABLED))
3219 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
3220 }
3221
3222 /* Send context are frozen. Notify user space */
3223 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
3224
3225 if (flags & FREEZE_ABORT) {
3226 dd_dev_err(dd,
3227 "Aborted freeze recovery. Please REBOOT system\n");
3228 return;
3229 }
3230 /* queue non-interrupt handler */
3231 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
3232}
3233
3234/*
3235 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
3236 * depending on the "freeze" parameter.
3237 *
3238 * No need to return an error if it times out, our only option
3239 * is to proceed anyway.
3240 */
3241static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
3242{
3243 unsigned long timeout;
3244 u64 reg;
3245
3246 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
3247 while (1) {
3248 reg = read_csr(dd, CCE_STATUS);
3249 if (freeze) {
3250 /* waiting until all indicators are set */
3251 if ((reg & ALL_FROZE) == ALL_FROZE)
3252 return; /* all done */
3253 } else {
3254 /* waiting until all indicators are clear */
3255 if ((reg & ALL_FROZE) == 0)
3256 return; /* all done */
3257 }
3258
3259 if (time_after(jiffies, timeout)) {
3260 dd_dev_err(dd,
3261 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
3262 freeze ? "" : "un",
3263 reg & ALL_FROZE,
3264 freeze ? ALL_FROZE : 0ull);
3265 return;
3266 }
3267 usleep_range(80, 120);
3268 }
3269}
3270
3271/*
3272 * Do all freeze handling for the RXE block.
3273 */
3274static void rxe_freeze(struct hfi1_devdata *dd)
3275{
3276 int i;
3277
3278 /* disable port */
3279 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3280
3281 /* disable all receive contexts */
3282 for (i = 0; i < dd->num_rcv_contexts; i++)
3283 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
3284}
3285
3286/*
3287 * Unfreeze handling for the RXE block - kernel contexts only.
3288 * This will also enable the port. User contexts will do unfreeze
3289 * handling on a per-context basis as they call into the driver.
3290 *
3291 */
3292static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
3293{
3294 int i;
3295
3296 /* enable all kernel contexts */
3297 for (i = 0; i < dd->n_krcv_queues; i++)
3298 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, i);
3299
3300 /* enable port */
3301 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3302}
3303
3304/*
3305 * Non-interrupt SPC freeze handling.
3306 *
3307 * This is a work-queue function outside of the triggering interrupt.
3308 */
3309void handle_freeze(struct work_struct *work)
3310{
3311 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3312 freeze_work);
3313 struct hfi1_devdata *dd = ppd->dd;
3314
3315 /* wait for freeze indicators on all affected blocks */
3316 dd_dev_info(dd, "Entering SPC freeze\n");
3317 wait_for_freeze_status(dd, 1);
3318
3319 /* SPC is now frozen */
3320
3321 /* do send PIO freeze steps */
3322 pio_freeze(dd);
3323
3324 /* do send DMA freeze steps */
3325 sdma_freeze(dd);
3326
3327 /* do send egress freeze steps - nothing to do */
3328
3329 /* do receive freeze steps */
3330 rxe_freeze(dd);
3331
3332 /*
3333 * Unfreeze the hardware - clear the freeze, wait for each
3334 * block's frozen bit to clear, then clear the frozen flag.
3335 */
3336 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3337 wait_for_freeze_status(dd, 0);
3338
3339 if (is_a0(dd)) {
3340 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3341 wait_for_freeze_status(dd, 1);
3342 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3343 wait_for_freeze_status(dd, 0);
3344 }
3345
3346 /* do send PIO unfreeze steps for kernel contexts */
3347 pio_kernel_unfreeze(dd);
3348
3349 /* do send DMA unfreeze steps */
3350 sdma_unfreeze(dd);
3351
3352 /* do send egress unfreeze steps - nothing to do */
3353
3354 /* do receive unfreeze steps for kernel contexts */
3355 rxe_kernel_unfreeze(dd);
3356
3357 /*
3358 * The unfreeze procedure touches global device registers when
3359 * it disables and re-enables RXE. Mark the device unfrozen
3360 * after all that is done so other parts of the driver waiting
3361 * for the device to unfreeze don't do things out of order.
3362 *
3363 * The above implies that the meaning of HFI1_FROZEN flag is
3364 * "Device has gone into freeze mode and freeze mode handling
3365 * is still in progress."
3366 *
3367 * The flag will be removed when freeze mode processing has
3368 * completed.
3369 */
3370 dd->flags &= ~HFI1_FROZEN;
3371 wake_up(&dd->event_queue);
3372
3373 /* no longer frozen */
3374 dd_dev_err(dd, "Exiting SPC freeze\n");
3375}
3376
3377/*
3378 * Handle a link up interrupt from the 8051.
3379 *
3380 * This is a work-queue function outside of the interrupt.
3381 */
3382void handle_link_up(struct work_struct *work)
3383{
3384 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3385 link_up_work);
3386 set_link_state(ppd, HLS_UP_INIT);
3387
3388 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
3389 read_ltp_rtt(ppd->dd);
3390 /*
3391 * OPA specifies that certain counters are cleared on a transition
3392 * to link up, so do that.
3393 */
3394 clear_linkup_counters(ppd->dd);
3395 /*
3396 * And (re)set link up default values.
3397 */
3398 set_linkup_defaults(ppd);
3399
3400 /* enforce link speed enabled */
3401 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
3402 /* oops - current speed is not enabled, bounce */
3403 dd_dev_err(ppd->dd,
3404 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
3405 ppd->link_speed_active, ppd->link_speed_enabled);
3406 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
3407 OPA_LINKDOWN_REASON_SPEED_POLICY);
3408 set_link_state(ppd, HLS_DN_OFFLINE);
3409 start_link(ppd);
3410 }
3411}
3412
3413/* Several pieces of LNI information were cached for SMA in ppd.
3414 * Reset these on link down */
3415static void reset_neighbor_info(struct hfi1_pportdata *ppd)
3416{
3417 ppd->neighbor_guid = 0;
3418 ppd->neighbor_port_number = 0;
3419 ppd->neighbor_type = 0;
3420 ppd->neighbor_fm_security = 0;
3421}
3422
3423/*
3424 * Handle a link down interrupt from the 8051.
3425 *
3426 * This is a work-queue function outside of the interrupt.
3427 */
3428void handle_link_down(struct work_struct *work)
3429{
3430 u8 lcl_reason, neigh_reason = 0;
3431 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3432 link_down_work);
3433
3434 /* go offline first, then deal with reasons */
3435 set_link_state(ppd, HLS_DN_OFFLINE);
3436
3437 lcl_reason = 0;
3438 read_planned_down_reason_code(ppd->dd, &neigh_reason);
3439
3440 /*
3441 * If no reason, assume peer-initiated but missed
3442 * LinkGoingDown idle flits.
3443 */
3444 if (neigh_reason == 0)
3445 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
3446
3447 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
3448
3449 reset_neighbor_info(ppd);
3450
3451 /* disable the port */
3452 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3453
3454 /* If there is no cable attached, turn the DC off. Otherwise,
3455 * start the link bring up. */
3456 if (!qsfp_mod_present(ppd))
3457 dc_shutdown(ppd->dd);
3458 else
3459 start_link(ppd);
3460}
3461
3462void handle_link_bounce(struct work_struct *work)
3463{
3464 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3465 link_bounce_work);
3466
3467 /*
3468 * Only do something if the link is currently up.
3469 */
3470 if (ppd->host_link_state & HLS_UP) {
3471 set_link_state(ppd, HLS_DN_OFFLINE);
3472 start_link(ppd);
3473 } else {
3474 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
3475 __func__, link_state_name(ppd->host_link_state));
3476 }
3477}
3478
3479/*
3480 * Mask conversion: Capability exchange to Port LTP. The capability
3481 * exchange has an implicit 16b CRC that is mandatory.
3482 */
3483static int cap_to_port_ltp(int cap)
3484{
3485 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
3486
3487 if (cap & CAP_CRC_14B)
3488 port_ltp |= PORT_LTP_CRC_MODE_14;
3489 if (cap & CAP_CRC_48B)
3490 port_ltp |= PORT_LTP_CRC_MODE_48;
3491 if (cap & CAP_CRC_12B_16B_PER_LANE)
3492 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
3493
3494 return port_ltp;
3495}
3496
3497/*
3498 * Convert an OPA Port LTP mask to capability mask
3499 */
3500int port_ltp_to_cap(int port_ltp)
3501{
3502 int cap_mask = 0;
3503
3504 if (port_ltp & PORT_LTP_CRC_MODE_14)
3505 cap_mask |= CAP_CRC_14B;
3506 if (port_ltp & PORT_LTP_CRC_MODE_48)
3507 cap_mask |= CAP_CRC_48B;
3508 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
3509 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
3510
3511 return cap_mask;
3512}
3513
3514/*
3515 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
3516 */
3517static int lcb_to_port_ltp(int lcb_crc)
3518{
3519 int port_ltp = 0;
3520
3521 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
3522 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
3523 else if (lcb_crc == LCB_CRC_48B)
3524 port_ltp = PORT_LTP_CRC_MODE_48;
3525 else if (lcb_crc == LCB_CRC_14B)
3526 port_ltp = PORT_LTP_CRC_MODE_14;
3527 else
3528 port_ltp = PORT_LTP_CRC_MODE_16;
3529
3530 return port_ltp;
3531}
3532
3533/*
3534 * Our neighbor has indicated that we are allowed to act as a fabric
3535 * manager, so place the full management partition key in the second
3536 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
3537 * that we should already have the limited management partition key in
3538 * array element 1, and also that the port is not yet up when
3539 * add_full_mgmt_pkey() is invoked.
3540 */
3541static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
3542{
3543 struct hfi1_devdata *dd = ppd->dd;
3544
3545 /* Sanity check - ppd->pkeys[2] should be 0 */
3546 if (ppd->pkeys[2] != 0)
3547 dd_dev_err(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
3548 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
3549 ppd->pkeys[2] = FULL_MGMT_P_KEY;
3550 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
3551}
3552
3553/*
3554 * Convert the given link width to the OPA link width bitmask.
3555 */
3556static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
3557{
3558 switch (width) {
3559 case 0:
3560 /*
3561 * Simulator and quick linkup do not set the width.
3562 * Just set it to 4x without complaint.
3563 */
3564 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
3565 return OPA_LINK_WIDTH_4X;
3566 return 0; /* no lanes up */
3567 case 1: return OPA_LINK_WIDTH_1X;
3568 case 2: return OPA_LINK_WIDTH_2X;
3569 case 3: return OPA_LINK_WIDTH_3X;
3570 default:
3571 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
3572 __func__, width);
3573 /* fall through */
3574 case 4: return OPA_LINK_WIDTH_4X;
3575 }
3576}
3577
3578/*
3579 * Do a population count on the bottom nibble.
3580 */
3581static const u8 bit_counts[16] = {
3582 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
3583};
3584static inline u8 nibble_to_count(u8 nibble)
3585{
3586 return bit_counts[nibble & 0xf];
3587}
3588
3589/*
3590 * Read the active lane information from the 8051 registers and return
3591 * their widths.
3592 *
3593 * Active lane information is found in these 8051 registers:
3594 * enable_lane_tx
3595 * enable_lane_rx
3596 */
3597static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
3598 u16 *rx_width)
3599{
3600 u16 tx, rx;
3601 u8 enable_lane_rx;
3602 u8 enable_lane_tx;
3603 u8 tx_polarity_inversion;
3604 u8 rx_polarity_inversion;
3605 u8 max_rate;
3606
3607 /* read the active lanes */
3608 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
3609 &rx_polarity_inversion, &max_rate);
3610 read_local_lni(dd, &enable_lane_rx);
3611
3612 /* convert to counts */
3613 tx = nibble_to_count(enable_lane_tx);
3614 rx = nibble_to_count(enable_lane_rx);
3615
3616 /*
3617 * Set link_speed_active here, overriding what was set in
3618 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
3619 * set the max_rate field in handle_verify_cap until v0.19.
3620 */
3621 if ((dd->icode == ICODE_RTL_SILICON)
3622 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
3623 /* max_rate: 0 = 12.5G, 1 = 25G */
3624 switch (max_rate) {
3625 case 0:
3626 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
3627 break;
3628 default:
3629 dd_dev_err(dd,
3630 "%s: unexpected max rate %d, using 25Gb\n",
3631 __func__, (int)max_rate);
3632 /* fall through */
3633 case 1:
3634 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
3635 break;
3636 }
3637 }
3638
3639 dd_dev_info(dd,
3640 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
3641 enable_lane_tx, tx, enable_lane_rx, rx);
3642 *tx_width = link_width_to_bits(dd, tx);
3643 *rx_width = link_width_to_bits(dd, rx);
3644}
3645
3646/*
3647 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
3648 * Valid after the end of VerifyCap and during LinkUp. Does not change
3649 * after link up. I.e. look elsewhere for downgrade information.
3650 *
3651 * Bits are:
3652 * + bits [7:4] contain the number of active transmitters
3653 * + bits [3:0] contain the number of active receivers
3654 * These are numbers 1 through 4 and can be different values if the
3655 * link is asymmetric.
3656 *
3657 * verify_cap_local_fm_link_width[0] retains its original value.
3658 */
3659static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
3660 u16 *rx_width)
3661{
3662 u16 widths, tx, rx;
3663 u8 misc_bits, local_flags;
3664 u16 active_tx, active_rx;
3665
3666 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
3667 tx = widths >> 12;
3668 rx = (widths >> 8) & 0xf;
3669
3670 *tx_width = link_width_to_bits(dd, tx);
3671 *rx_width = link_width_to_bits(dd, rx);
3672
3673 /* print the active widths */
3674 get_link_widths(dd, &active_tx, &active_rx);
3675}
3676
3677/*
3678 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
3679 * hardware information when the link first comes up.
3680 *
3681 * The link width is not available until after VerifyCap.AllFramesReceived
3682 * (the trigger for handle_verify_cap), so this is outside that routine
3683 * and should be called when the 8051 signals linkup.
3684 */
3685void get_linkup_link_widths(struct hfi1_pportdata *ppd)
3686{
3687 u16 tx_width, rx_width;
3688
3689 /* get end-of-LNI link widths */
3690 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
3691
3692 /* use tx_width as the link is supposed to be symmetric on link up */
3693 ppd->link_width_active = tx_width;
3694 /* link width downgrade active (LWD.A) starts out matching LW.A */
3695 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
3696 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
3697 /* per OPA spec, on link up LWD.E resets to LWD.S */
3698 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
3699 /* cache the active egress rate (units {10^6 bits/sec]) */
3700 ppd->current_egress_rate = active_egress_rate(ppd);
3701}
3702
3703/*
3704 * Handle a verify capabilities interrupt from the 8051.
3705 *
3706 * This is a work-queue function outside of the interrupt.
3707 */
3708void handle_verify_cap(struct work_struct *work)
3709{
3710 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3711 link_vc_work);
3712 struct hfi1_devdata *dd = ppd->dd;
3713 u64 reg;
3714 u8 power_management;
3715 u8 continious;
3716 u8 vcu;
3717 u8 vau;
3718 u8 z;
3719 u16 vl15buf;
3720 u16 link_widths;
3721 u16 crc_mask;
3722 u16 crc_val;
3723 u16 device_id;
3724 u16 active_tx, active_rx;
3725 u8 partner_supported_crc;
3726 u8 remote_tx_rate;
3727 u8 device_rev;
3728
3729 set_link_state(ppd, HLS_VERIFY_CAP);
3730
3731 lcb_shutdown(dd, 0);
3732 adjust_lcb_for_fpga_serdes(dd);
3733
3734 /*
3735 * These are now valid:
3736 * remote VerifyCap fields in the general LNI config
3737 * CSR DC8051_STS_REMOTE_GUID
3738 * CSR DC8051_STS_REMOTE_NODE_TYPE
3739 * CSR DC8051_STS_REMOTE_FM_SECURITY
3740 * CSR DC8051_STS_REMOTE_PORT_NO
3741 */
3742
3743 read_vc_remote_phy(dd, &power_management, &continious);
3744 read_vc_remote_fabric(
3745 dd,
3746 &vau,
3747 &z,
3748 &vcu,
3749 &vl15buf,
3750 &partner_supported_crc);
3751 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
3752 read_remote_device_id(dd, &device_id, &device_rev);
3753 /*
3754 * And the 'MgmtAllowed' information, which is exchanged during
3755 * LNI, is also be available at this point.
3756 */
3757 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
3758 /* print the active widths */
3759 get_link_widths(dd, &active_tx, &active_rx);
3760 dd_dev_info(dd,
3761 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
3762 (int)power_management, (int)continious);
3763 dd_dev_info(dd,
3764 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
3765 (int)vau,
3766 (int)z,
3767 (int)vcu,
3768 (int)vl15buf,
3769 (int)partner_supported_crc);
3770 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
3771 (u32)remote_tx_rate, (u32)link_widths);
3772 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
3773 (u32)device_id, (u32)device_rev);
3774 /*
3775 * The peer vAU value just read is the peer receiver value. HFI does
3776 * not support a transmit vAU of 0 (AU == 8). We advertised that
3777 * with Z=1 in the fabric capabilities sent to the peer. The peer
3778 * will see our Z=1, and, if it advertised a vAU of 0, will move its
3779 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
3780 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
3781 * subject to the Z value exception.
3782 */
3783 if (vau == 0)
3784 vau = 1;
3785 set_up_vl15(dd, vau, vl15buf);
3786
3787 /* set up the LCB CRC mode */
3788 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
3789
3790 /* order is important: use the lowest bit in common */
3791 if (crc_mask & CAP_CRC_14B)
3792 crc_val = LCB_CRC_14B;
3793 else if (crc_mask & CAP_CRC_48B)
3794 crc_val = LCB_CRC_48B;
3795 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
3796 crc_val = LCB_CRC_12B_16B_PER_LANE;
3797 else
3798 crc_val = LCB_CRC_16B;
3799
3800 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
3801 write_csr(dd, DC_LCB_CFG_CRC_MODE,
3802 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
3803
3804 /* set (14b only) or clear sideband credit */
3805 reg = read_csr(dd, SEND_CM_CTRL);
3806 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
3807 write_csr(dd, SEND_CM_CTRL,
3808 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3809 } else {
3810 write_csr(dd, SEND_CM_CTRL,
3811 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3812 }
3813
3814 ppd->link_speed_active = 0; /* invalid value */
3815 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
3816 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
3817 switch (remote_tx_rate) {
3818 case 0:
3819 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3820 break;
3821 case 1:
3822 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3823 break;
3824 }
3825 } else {
3826 /* actual rate is highest bit of the ANDed rates */
3827 u8 rate = remote_tx_rate & ppd->local_tx_rate;
3828
3829 if (rate & 2)
3830 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3831 else if (rate & 1)
3832 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3833 }
3834 if (ppd->link_speed_active == 0) {
3835 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
3836 __func__, (int)remote_tx_rate);
3837 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3838 }
3839
3840 /*
3841 * Cache the values of the supported, enabled, and active
3842 * LTP CRC modes to return in 'portinfo' queries. But the bit
3843 * flags that are returned in the portinfo query differ from
3844 * what's in the link_crc_mask, crc_sizes, and crc_val
3845 * variables. Convert these here.
3846 */
3847 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
3848 /* supported crc modes */
3849 ppd->port_ltp_crc_mode |=
3850 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
3851 /* enabled crc modes */
3852 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
3853 /* active crc mode */
3854
3855 /* set up the remote credit return table */
3856 assign_remote_cm_au_table(dd, vcu);
3857
3858 /*
3859 * The LCB is reset on entry to handle_verify_cap(), so this must
3860 * be applied on every link up.
3861 *
3862 * Adjust LCB error kill enable to kill the link if
3863 * these RBUF errors are seen:
3864 * REPLAY_BUF_MBE_SMASK
3865 * FLIT_INPUT_BUF_MBE_SMASK
3866 */
3867 if (is_a0(dd)) { /* fixed in B0 */
3868 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
3869 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
3870 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
3871 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
3872 }
3873
3874 /* pull LCB fifos out of reset - all fifo clocks must be stable */
3875 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
3876
3877 /* give 8051 access to the LCB CSRs */
3878 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
3879 set_8051_lcb_access(dd);
3880
3881 ppd->neighbor_guid =
3882 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
3883 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
3884 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
3885 ppd->neighbor_type =
3886 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
3887 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
3888 ppd->neighbor_fm_security =
3889 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
3890 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
3891 dd_dev_info(dd,
3892 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
3893 ppd->neighbor_guid, ppd->neighbor_type,
3894 ppd->mgmt_allowed, ppd->neighbor_fm_security);
3895 if (ppd->mgmt_allowed)
3896 add_full_mgmt_pkey(ppd);
3897
3898 /* tell the 8051 to go to LinkUp */
3899 set_link_state(ppd, HLS_GOING_UP);
3900}
3901
3902/*
3903 * Apply the link width downgrade enabled policy against the current active
3904 * link widths.
3905 *
3906 * Called when the enabled policy changes or the active link widths change.
3907 */
3908void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
3909{
3910 int skip = 1;
3911 int do_bounce = 0;
3912 u16 lwde = ppd->link_width_downgrade_enabled;
3913 u16 tx, rx;
3914
3915 mutex_lock(&ppd->hls_lock);
3916 /* only apply if the link is up */
3917 if (ppd->host_link_state & HLS_UP)
3918 skip = 0;
3919 mutex_unlock(&ppd->hls_lock);
3920 if (skip)
3921 return;
3922
3923 if (refresh_widths) {
3924 get_link_widths(ppd->dd, &tx, &rx);
3925 ppd->link_width_downgrade_tx_active = tx;
3926 ppd->link_width_downgrade_rx_active = rx;
3927 }
3928
3929 if (lwde == 0) {
3930 /* downgrade is disabled */
3931
3932 /* bounce if not at starting active width */
3933 if ((ppd->link_width_active !=
3934 ppd->link_width_downgrade_tx_active)
3935 || (ppd->link_width_active !=
3936 ppd->link_width_downgrade_rx_active)) {
3937 dd_dev_err(ppd->dd,
3938 "Link downgrade is disabled and link has downgraded, downing link\n");
3939 dd_dev_err(ppd->dd,
3940 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
3941 ppd->link_width_active,
3942 ppd->link_width_downgrade_tx_active,
3943 ppd->link_width_downgrade_rx_active);
3944 do_bounce = 1;
3945 }
3946 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
3947 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
3948 /* Tx or Rx is outside the enabled policy */
3949 dd_dev_err(ppd->dd,
3950 "Link is outside of downgrade allowed, downing link\n");
3951 dd_dev_err(ppd->dd,
3952 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
3953 lwde,
3954 ppd->link_width_downgrade_tx_active,
3955 ppd->link_width_downgrade_rx_active);
3956 do_bounce = 1;
3957 }
3958
3959 if (do_bounce) {
3960 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
3961 OPA_LINKDOWN_REASON_WIDTH_POLICY);
3962 set_link_state(ppd, HLS_DN_OFFLINE);
3963 start_link(ppd);
3964 }
3965}
3966
3967/*
3968 * Handle a link downgrade interrupt from the 8051.
3969 *
3970 * This is a work-queue function outside of the interrupt.
3971 */
3972void handle_link_downgrade(struct work_struct *work)
3973{
3974 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3975 link_downgrade_work);
3976
3977 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
3978 apply_link_downgrade_policy(ppd, 1);
3979}
3980
3981static char *dcc_err_string(char *buf, int buf_len, u64 flags)
3982{
3983 return flag_string(buf, buf_len, flags, dcc_err_flags,
3984 ARRAY_SIZE(dcc_err_flags));
3985}
3986
3987static char *lcb_err_string(char *buf, int buf_len, u64 flags)
3988{
3989 return flag_string(buf, buf_len, flags, lcb_err_flags,
3990 ARRAY_SIZE(lcb_err_flags));
3991}
3992
3993static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
3994{
3995 return flag_string(buf, buf_len, flags, dc8051_err_flags,
3996 ARRAY_SIZE(dc8051_err_flags));
3997}
3998
3999static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
4000{
4001 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
4002 ARRAY_SIZE(dc8051_info_err_flags));
4003}
4004
4005static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
4006{
4007 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
4008 ARRAY_SIZE(dc8051_info_host_msg_flags));
4009}
4010
4011static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
4012{
4013 struct hfi1_pportdata *ppd = dd->pport;
4014 u64 info, err, host_msg;
4015 int queue_link_down = 0;
4016 char buf[96];
4017
4018 /* look at the flags */
4019 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
4020 /* 8051 information set by firmware */
4021 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
4022 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
4023 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
4024 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
4025 host_msg = (info >>
4026 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
4027 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
4028
4029 /*
4030 * Handle error flags.
4031 */
4032 if (err & FAILED_LNI) {
4033 /*
4034 * LNI error indications are cleared by the 8051
4035 * only when starting polling. Only pay attention
4036 * to them when in the states that occur during
4037 * LNI.
4038 */
4039 if (ppd->host_link_state
4040 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
4041 queue_link_down = 1;
4042 dd_dev_info(dd, "Link error: %s\n",
4043 dc8051_info_err_string(buf,
4044 sizeof(buf),
4045 err & FAILED_LNI));
4046 }
4047 err &= ~(u64)FAILED_LNI;
4048 }
4049 if (err) {
4050 /* report remaining errors, but do not do anything */
4051 dd_dev_err(dd, "8051 info error: %s\n",
4052 dc8051_info_err_string(buf, sizeof(buf), err));
4053 }
4054
4055 /*
4056 * Handle host message flags.
4057 */
4058 if (host_msg & HOST_REQ_DONE) {
4059 /*
4060 * Presently, the driver does a busy wait for
4061 * host requests to complete. This is only an
4062 * informational message.
4063 * NOTE: The 8051 clears the host message
4064 * information *on the next 8051 command*.
4065 * Therefore, when linkup is achieved,
4066 * this flag will still be set.
4067 */
4068 host_msg &= ~(u64)HOST_REQ_DONE;
4069 }
4070 if (host_msg & BC_SMA_MSG) {
4071 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
4072 host_msg &= ~(u64)BC_SMA_MSG;
4073 }
4074 if (host_msg & LINKUP_ACHIEVED) {
4075 dd_dev_info(dd, "8051: Link up\n");
4076 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
4077 host_msg &= ~(u64)LINKUP_ACHIEVED;
4078 }
4079 if (host_msg & EXT_DEVICE_CFG_REQ) {
4080 handle_8051_request(dd);
4081 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
4082 }
4083 if (host_msg & VERIFY_CAP_FRAME) {
4084 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
4085 host_msg &= ~(u64)VERIFY_CAP_FRAME;
4086 }
4087 if (host_msg & LINK_GOING_DOWN) {
4088 const char *extra = "";
4089 /* no downgrade action needed if going down */
4090 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4091 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4092 extra = " (ignoring downgrade)";
4093 }
4094 dd_dev_info(dd, "8051: Link down%s\n", extra);
4095 queue_link_down = 1;
4096 host_msg &= ~(u64)LINK_GOING_DOWN;
4097 }
4098 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4099 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
4100 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4101 }
4102 if (host_msg) {
4103 /* report remaining messages, but do not do anything */
4104 dd_dev_info(dd, "8051 info host message: %s\n",
4105 dc8051_info_host_msg_string(buf, sizeof(buf),
4106 host_msg));
4107 }
4108
4109 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
4110 }
4111 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
4112 /*
4113 * Lost the 8051 heartbeat. If this happens, we
4114 * receive constant interrupts about it. Disable
4115 * the interrupt after the first.
4116 */
4117 dd_dev_err(dd, "Lost 8051 heartbeat\n");
4118 write_csr(dd, DC_DC8051_ERR_EN,
4119 read_csr(dd, DC_DC8051_ERR_EN)
4120 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
4121
4122 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
4123 }
4124 if (reg) {
4125 /* report the error, but do not do anything */
4126 dd_dev_err(dd, "8051 error: %s\n",
4127 dc8051_err_string(buf, sizeof(buf), reg));
4128 }
4129
4130 if (queue_link_down) {
4131 /* if the link is already going down or disabled, do not
4132 * queue another */
4133 if ((ppd->host_link_state
4134 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
4135 || ppd->link_enabled == 0) {
4136 dd_dev_info(dd, "%s: not queuing link down\n",
4137 __func__);
4138 } else {
4139 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
4140 }
4141 }
4142}
4143
4144static const char * const fm_config_txt[] = {
4145[0] =
4146 "BadHeadDist: Distance violation between two head flits",
4147[1] =
4148 "BadTailDist: Distance violation between two tail flits",
4149[2] =
4150 "BadCtrlDist: Distance violation between two credit control flits",
4151[3] =
4152 "BadCrdAck: Credits return for unsupported VL",
4153[4] =
4154 "UnsupportedVLMarker: Received VL Marker",
4155[5] =
4156 "BadPreempt: Exceeded the preemption nesting level",
4157[6] =
4158 "BadControlFlit: Received unsupported control flit",
4159/* no 7 */
4160[8] =
4161 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
4162};
4163
4164static const char * const port_rcv_txt[] = {
4165[1] =
4166 "BadPktLen: Illegal PktLen",
4167[2] =
4168 "PktLenTooLong: Packet longer than PktLen",
4169[3] =
4170 "PktLenTooShort: Packet shorter than PktLen",
4171[4] =
4172 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
4173[5] =
4174 "BadDLID: Illegal DLID (0, doesn't match HFI)",
4175[6] =
4176 "BadL2: Illegal L2 opcode",
4177[7] =
4178 "BadSC: Unsupported SC",
4179[9] =
4180 "BadRC: Illegal RC",
4181[11] =
4182 "PreemptError: Preempting with same VL",
4183[12] =
4184 "PreemptVL15: Preempting a VL15 packet",
4185};
4186
4187#define OPA_LDR_FMCONFIG_OFFSET 16
4188#define OPA_LDR_PORTRCV_OFFSET 0
4189static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4190{
4191 u64 info, hdr0, hdr1;
4192 const char *extra;
4193 char buf[96];
4194 struct hfi1_pportdata *ppd = dd->pport;
4195 u8 lcl_reason = 0;
4196 int do_bounce = 0;
4197
4198 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
4199 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
4200 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
4201 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
4202 /* set status bit */
4203 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
4204 }
4205 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
4206 }
4207
4208 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
4209 struct hfi1_pportdata *ppd = dd->pport;
4210 /* this counter saturates at (2^32) - 1 */
4211 if (ppd->link_downed < (u32)UINT_MAX)
4212 ppd->link_downed++;
4213 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
4214 }
4215
4216 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
4217 u8 reason_valid = 1;
4218
4219 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
4220 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
4221 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
4222 /* set status bit */
4223 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
4224 }
4225 switch (info) {
4226 case 0:
4227 case 1:
4228 case 2:
4229 case 3:
4230 case 4:
4231 case 5:
4232 case 6:
4233 extra = fm_config_txt[info];
4234 break;
4235 case 8:
4236 extra = fm_config_txt[info];
4237 if (ppd->port_error_action &
4238 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
4239 do_bounce = 1;
4240 /*
4241 * lcl_reason cannot be derived from info
4242 * for this error
4243 */
4244 lcl_reason =
4245 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
4246 }
4247 break;
4248 default:
4249 reason_valid = 0;
4250 snprintf(buf, sizeof(buf), "reserved%lld", info);
4251 extra = buf;
4252 break;
4253 }
4254
4255 if (reason_valid && !do_bounce) {
4256 do_bounce = ppd->port_error_action &
4257 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
4258 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
4259 }
4260
4261 /* just report this */
4262 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
4263 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
4264 }
4265
4266 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
4267 u8 reason_valid = 1;
4268
4269 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
4270 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
4271 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
4272 if (!(dd->err_info_rcvport.status_and_code &
4273 OPA_EI_STATUS_SMASK)) {
4274 dd->err_info_rcvport.status_and_code =
4275 info & OPA_EI_CODE_SMASK;
4276 /* set status bit */
4277 dd->err_info_rcvport.status_and_code |=
4278 OPA_EI_STATUS_SMASK;
4279 /* save first 2 flits in the packet that caused
4280 * the error */
4281 dd->err_info_rcvport.packet_flit1 = hdr0;
4282 dd->err_info_rcvport.packet_flit2 = hdr1;
4283 }
4284 switch (info) {
4285 case 1:
4286 case 2:
4287 case 3:
4288 case 4:
4289 case 5:
4290 case 6:
4291 case 7:
4292 case 9:
4293 case 11:
4294 case 12:
4295 extra = port_rcv_txt[info];
4296 break;
4297 default:
4298 reason_valid = 0;
4299 snprintf(buf, sizeof(buf), "reserved%lld", info);
4300 extra = buf;
4301 break;
4302 }
4303
4304 if (reason_valid && !do_bounce) {
4305 do_bounce = ppd->port_error_action &
4306 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
4307 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
4308 }
4309
4310 /* just report this */
4311 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
4312 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
4313 hdr0, hdr1);
4314
4315 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
4316 }
4317
4318 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
4319 /* informative only */
4320 dd_dev_info(dd, "8051 access to LCB blocked\n");
4321 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
4322 }
4323 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
4324 /* informative only */
4325 dd_dev_info(dd, "host access to LCB blocked\n");
4326 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
4327 }
4328
4329 /* report any remaining errors */
4330 if (reg)
4331 dd_dev_info(dd, "DCC Error: %s\n",
4332 dcc_err_string(buf, sizeof(buf), reg));
4333
4334 if (lcl_reason == 0)
4335 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
4336
4337 if (do_bounce) {
4338 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
4339 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
4340 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
4341 }
4342}
4343
4344static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4345{
4346 char buf[96];
4347
4348 dd_dev_info(dd, "LCB Error: %s\n",
4349 lcb_err_string(buf, sizeof(buf), reg));
4350}
4351
4352/*
4353 * CCE block DC interrupt. Source is < 8.
4354 */
4355static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
4356{
4357 const struct err_reg_info *eri = &dc_errs[source];
4358
4359 if (eri->handler) {
4360 interrupt_clear_down(dd, 0, eri);
4361 } else if (source == 3 /* dc_lbm_int */) {
4362 /*
4363 * This indicates that a parity error has occurred on the
4364 * address/control lines presented to the LBM. The error
4365 * is a single pulse, there is no associated error flag,
4366 * and it is non-maskable. This is because if a parity
4367 * error occurs on the request the request is dropped.
4368 * This should never occur, but it is nice to know if it
4369 * ever does.
4370 */
4371 dd_dev_err(dd, "Parity error in DC LBM block\n");
4372 } else {
4373 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
4374 }
4375}
4376
4377/*
4378 * TX block send credit interrupt. Source is < 160.
4379 */
4380static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
4381{
4382 sc_group_release_update(dd, source);
4383}
4384
4385/*
4386 * TX block SDMA interrupt. Source is < 48.
4387 *
4388 * SDMA interrupts are grouped by type:
4389 *
4390 * 0 - N-1 = SDma
4391 * N - 2N-1 = SDmaProgress
4392 * 2N - 3N-1 = SDmaIdle
4393 */
4394static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
4395{
4396 /* what interrupt */
4397 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
4398 /* which engine */
4399 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
4400
4401#ifdef CONFIG_SDMA_VERBOSITY
4402 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
4403 slashstrip(__FILE__), __LINE__, __func__);
4404 sdma_dumpstate(&dd->per_sdma[which]);
4405#endif
4406
4407 if (likely(what < 3 && which < dd->num_sdma)) {
4408 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
4409 } else {
4410 /* should not happen */
4411 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
4412 }
4413}
4414
4415/*
4416 * RX block receive available interrupt. Source is < 160.
4417 */
4418static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
4419{
4420 struct hfi1_ctxtdata *rcd;
4421 char *err_detail;
4422
4423 if (likely(source < dd->num_rcv_contexts)) {
4424 rcd = dd->rcd[source];
4425 if (rcd) {
4426 if (source < dd->first_user_ctxt)
4427 rcd->do_interrupt(rcd);
4428 else
4429 handle_user_interrupt(rcd);
4430 return; /* OK */
4431 }
4432 /* received an interrupt, but no rcd */
4433 err_detail = "dataless";
4434 } else {
4435 /* received an interrupt, but are not using that context */
4436 err_detail = "out of range";
4437 }
4438 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
4439 err_detail, source);
4440}
4441
4442/*
4443 * RX block receive urgent interrupt. Source is < 160.
4444 */
4445static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
4446{
4447 struct hfi1_ctxtdata *rcd;
4448 char *err_detail;
4449
4450 if (likely(source < dd->num_rcv_contexts)) {
4451 rcd = dd->rcd[source];
4452 if (rcd) {
4453 /* only pay attention to user urgent interrupts */
4454 if (source >= dd->first_user_ctxt)
4455 handle_user_interrupt(rcd);
4456 return; /* OK */
4457 }
4458 /* received an interrupt, but no rcd */
4459 err_detail = "dataless";
4460 } else {
4461 /* received an interrupt, but are not using that context */
4462 err_detail = "out of range";
4463 }
4464 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
4465 err_detail, source);
4466}
4467
4468/*
4469 * Reserved range interrupt. Should not be called in normal operation.
4470 */
4471static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
4472{
4473 char name[64];
4474
4475 dd_dev_err(dd, "unexpected %s interrupt\n",
4476 is_reserved_name(name, sizeof(name), source));
4477}
4478
4479static const struct is_table is_table[] = {
4480/* start end
4481 name func interrupt func */
4482{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
4483 is_misc_err_name, is_misc_err_int },
4484{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
4485 is_sdma_eng_err_name, is_sdma_eng_err_int },
4486{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
4487 is_sendctxt_err_name, is_sendctxt_err_int },
4488{ IS_SDMA_START, IS_SDMA_END,
4489 is_sdma_eng_name, is_sdma_eng_int },
4490{ IS_VARIOUS_START, IS_VARIOUS_END,
4491 is_various_name, is_various_int },
4492{ IS_DC_START, IS_DC_END,
4493 is_dc_name, is_dc_int },
4494{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
4495 is_rcv_avail_name, is_rcv_avail_int },
4496{ IS_RCVURGENT_START, IS_RCVURGENT_END,
4497 is_rcv_urgent_name, is_rcv_urgent_int },
4498{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
4499 is_send_credit_name, is_send_credit_int},
4500{ IS_RESERVED_START, IS_RESERVED_END,
4501 is_reserved_name, is_reserved_int},
4502};
4503
4504/*
4505 * Interrupt source interrupt - called when the given source has an interrupt.
4506 * Source is a bit index into an array of 64-bit integers.
4507 */
4508static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
4509{
4510 const struct is_table *entry;
4511
4512 /* avoids a double compare by walking the table in-order */
4513 for (entry = &is_table[0]; entry->is_name; entry++) {
4514 if (source < entry->end) {
4515 trace_hfi1_interrupt(dd, entry, source);
4516 entry->is_int(dd, source - entry->start);
4517 return;
4518 }
4519 }
4520 /* fell off the end */
4521 dd_dev_err(dd, "invalid interrupt source %u\n", source);
4522}
4523
4524/*
4525 * General interrupt handler. This is able to correctly handle
4526 * all interrupts in case INTx is used.
4527 */
4528static irqreturn_t general_interrupt(int irq, void *data)
4529{
4530 struct hfi1_devdata *dd = data;
4531 u64 regs[CCE_NUM_INT_CSRS];
4532 u32 bit;
4533 int i;
4534
4535 this_cpu_inc(*dd->int_counter);
4536
4537 /* phase 1: scan and clear all handled interrupts */
4538 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
4539 if (dd->gi_mask[i] == 0) {
4540 regs[i] = 0; /* used later */
4541 continue;
4542 }
4543 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
4544 dd->gi_mask[i];
4545 /* only clear if anything is set */
4546 if (regs[i])
4547 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
4548 }
4549
4550 /* phase 2: call the appropriate handler */
4551 for_each_set_bit(bit, (unsigned long *)&regs[0],
4552 CCE_NUM_INT_CSRS*64) {
4553 is_interrupt(dd, bit);
4554 }
4555
4556 return IRQ_HANDLED;
4557}
4558
4559static irqreturn_t sdma_interrupt(int irq, void *data)
4560{
4561 struct sdma_engine *sde = data;
4562 struct hfi1_devdata *dd = sde->dd;
4563 u64 status;
4564
4565#ifdef CONFIG_SDMA_VERBOSITY
4566 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
4567 slashstrip(__FILE__), __LINE__, __func__);
4568 sdma_dumpstate(sde);
4569#endif
4570
4571 this_cpu_inc(*dd->int_counter);
4572
4573 /* This read_csr is really bad in the hot path */
4574 status = read_csr(dd,
4575 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
4576 & sde->imask;
4577 if (likely(status)) {
4578 /* clear the interrupt(s) */
4579 write_csr(dd,
4580 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
4581 status);
4582
4583 /* handle the interrupt(s) */
4584 sdma_engine_interrupt(sde, status);
4585 } else
4586 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
4587 sde->this_idx);
4588
4589 return IRQ_HANDLED;
4590}
4591
4592/*
4593 * NOTE: this routine expects to be on its own MSI-X interrupt. If
4594 * multiple receive contexts share the same MSI-X interrupt, then this
4595 * routine must check for who received it.
4596 */
4597static irqreturn_t receive_context_interrupt(int irq, void *data)
4598{
4599 struct hfi1_ctxtdata *rcd = data;
4600 struct hfi1_devdata *dd = rcd->dd;
4601
4602 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
4603 this_cpu_inc(*dd->int_counter);
4604
4605 /* clear the interrupt */
4606 write_csr(rcd->dd, CCE_INT_CLEAR + (8*rcd->ireg), rcd->imask);
4607
4608 /* handle the interrupt */
4609 rcd->do_interrupt(rcd);
4610
4611 return IRQ_HANDLED;
4612}
4613
4614/* ========================================================================= */
4615
4616u32 read_physical_state(struct hfi1_devdata *dd)
4617{
4618 u64 reg;
4619
4620 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
4621 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
4622 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
4623}
4624
4625static u32 read_logical_state(struct hfi1_devdata *dd)
4626{
4627 u64 reg;
4628
4629 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4630 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
4631 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
4632}
4633
4634static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
4635{
4636 u64 reg;
4637
4638 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4639 /* clear current state, set new state */
4640 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
4641 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
4642 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
4643}
4644
4645/*
4646 * Use the 8051 to read a LCB CSR.
4647 */
4648static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
4649{
4650 u32 regno;
4651 int ret;
4652
4653 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
4654 if (acquire_lcb_access(dd, 0) == 0) {
4655 *data = read_csr(dd, addr);
4656 release_lcb_access(dd, 0);
4657 return 0;
4658 }
4659 return -EBUSY;
4660 }
4661
4662 /* register is an index of LCB registers: (offset - base) / 8 */
4663 regno = (addr - DC_LCB_CFG_RUN) >> 3;
4664 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
4665 if (ret != HCMD_SUCCESS)
4666 return -EBUSY;
4667 return 0;
4668}
4669
4670/*
4671 * Read an LCB CSR. Access may not be in host control, so check.
4672 * Return 0 on success, -EBUSY on failure.
4673 */
4674int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
4675{
4676 struct hfi1_pportdata *ppd = dd->pport;
4677
4678 /* if up, go through the 8051 for the value */
4679 if (ppd->host_link_state & HLS_UP)
4680 return read_lcb_via_8051(dd, addr, data);
4681 /* if going up or down, no access */
4682 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4683 return -EBUSY;
4684 /* otherwise, host has access */
4685 *data = read_csr(dd, addr);
4686 return 0;
4687}
4688
4689/*
4690 * Use the 8051 to write a LCB CSR.
4691 */
4692static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
4693{
4694
4695 if (acquire_lcb_access(dd, 0) == 0) {
4696 write_csr(dd, addr, data);
4697 release_lcb_access(dd, 0);
4698 return 0;
4699 }
4700 return -EBUSY;
4701}
4702
4703/*
4704 * Write an LCB CSR. Access may not be in host control, so check.
4705 * Return 0 on success, -EBUSY on failure.
4706 */
4707int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
4708{
4709 struct hfi1_pportdata *ppd = dd->pport;
4710
4711 /* if up, go through the 8051 for the value */
4712 if (ppd->host_link_state & HLS_UP)
4713 return write_lcb_via_8051(dd, addr, data);
4714 /* if going up or down, no access */
4715 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4716 return -EBUSY;
4717 /* otherwise, host has access */
4718 write_csr(dd, addr, data);
4719 return 0;
4720}
4721
4722/*
4723 * Returns:
4724 * < 0 = Linux error, not able to get access
4725 * > 0 = 8051 command RETURN_CODE
4726 */
4727static int do_8051_command(
4728 struct hfi1_devdata *dd,
4729 u32 type,
4730 u64 in_data,
4731 u64 *out_data)
4732{
4733 u64 reg, completed;
4734 int return_code;
4735 unsigned long flags;
4736 unsigned long timeout;
4737
4738 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
4739
4740 /*
4741 * Alternative to holding the lock for a long time:
4742 * - keep busy wait - have other users bounce off
4743 */
4744 spin_lock_irqsave(&dd->dc8051_lock, flags);
4745
4746 /* We can't send any commands to the 8051 if it's in reset */
4747 if (dd->dc_shutdown) {
4748 return_code = -ENODEV;
4749 goto fail;
4750 }
4751
4752 /*
4753 * If an 8051 host command timed out previously, then the 8051 is
4754 * stuck.
4755 *
4756 * On first timeout, attempt to reset and restart the entire DC
4757 * block (including 8051). (Is this too big of a hammer?)
4758 *
4759 * If the 8051 times out a second time, the reset did not bring it
4760 * back to healthy life. In that case, fail any subsequent commands.
4761 */
4762 if (dd->dc8051_timed_out) {
4763 if (dd->dc8051_timed_out > 1) {
4764 dd_dev_err(dd,
4765 "Previous 8051 host command timed out, skipping command %u\n",
4766 type);
4767 return_code = -ENXIO;
4768 goto fail;
4769 }
4770 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4771 dc_shutdown(dd);
4772 dc_start(dd);
4773 spin_lock_irqsave(&dd->dc8051_lock, flags);
4774 }
4775
4776 /*
4777 * If there is no timeout, then the 8051 command interface is
4778 * waiting for a command.
4779 */
4780
4781 /*
4782 * Do two writes: the first to stabilize the type and req_data, the
4783 * second to activate.
4784 */
4785 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
4786 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
4787 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
4788 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
4789 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4790 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
4791 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4792
4793 /* wait for completion, alternate: interrupt */
4794 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
4795 while (1) {
4796 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
4797 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
4798 if (completed)
4799 break;
4800 if (time_after(jiffies, timeout)) {
4801 dd->dc8051_timed_out++;
4802 dd_dev_err(dd, "8051 host command %u timeout\n", type);
4803 if (out_data)
4804 *out_data = 0;
4805 return_code = -ETIMEDOUT;
4806 goto fail;
4807 }
4808 udelay(2);
4809 }
4810
4811 if (out_data) {
4812 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
4813 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
4814 if (type == HCMD_READ_LCB_CSR) {
4815 /* top 16 bits are in a different register */
4816 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
4817 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
4818 << (48
4819 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
4820 }
4821 }
4822 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
4823 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
4824 dd->dc8051_timed_out = 0;
4825 /*
4826 * Clear command for next user.
4827 */
4828 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
4829
4830fail:
4831 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4832
4833 return return_code;
4834}
4835
4836static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
4837{
4838 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
4839}
4840
4841static int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
4842 u8 lane_id, u32 config_data)
4843{
4844 u64 data;
4845 int ret;
4846
4847 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
4848 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
4849 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
4850 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
4851 if (ret != HCMD_SUCCESS) {
4852 dd_dev_err(dd,
4853 "load 8051 config: field id %d, lane %d, err %d\n",
4854 (int)field_id, (int)lane_id, ret);
4855 }
4856 return ret;
4857}
4858
4859/*
4860 * Read the 8051 firmware "registers". Use the RAM directly. Always
4861 * set the result, even on error.
4862 * Return 0 on success, -errno on failure
4863 */
4864static int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
4865 u32 *result)
4866{
4867 u64 big_data;
4868 u32 addr;
4869 int ret;
4870
4871 /* address start depends on the lane_id */
4872 if (lane_id < 4)
4873 addr = (4 * NUM_GENERAL_FIELDS)
4874 + (lane_id * 4 * NUM_LANE_FIELDS);
4875 else
4876 addr = 0;
4877 addr += field_id * 4;
4878
4879 /* read is in 8-byte chunks, hardware will truncate the address down */
4880 ret = read_8051_data(dd, addr, 8, &big_data);
4881
4882 if (ret == 0) {
4883 /* extract the 4 bytes we want */
4884 if (addr & 0x4)
4885 *result = (u32)(big_data >> 32);
4886 else
4887 *result = (u32)big_data;
4888 } else {
4889 *result = 0;
4890 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
4891 __func__, lane_id, field_id);
4892 }
4893
4894 return ret;
4895}
4896
4897static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
4898 u8 continuous)
4899{
4900 u32 frame;
4901
4902 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
4903 | power_management << POWER_MANAGEMENT_SHIFT;
4904 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
4905 GENERAL_CONFIG, frame);
4906}
4907
4908static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
4909 u16 vl15buf, u8 crc_sizes)
4910{
4911 u32 frame;
4912
4913 frame = (u32)vau << VAU_SHIFT
4914 | (u32)z << Z_SHIFT
4915 | (u32)vcu << VCU_SHIFT
4916 | (u32)vl15buf << VL15BUF_SHIFT
4917 | (u32)crc_sizes << CRC_SIZES_SHIFT;
4918 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
4919 GENERAL_CONFIG, frame);
4920}
4921
4922static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
4923 u8 *flag_bits, u16 *link_widths)
4924{
4925 u32 frame;
4926
4927 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
4928 &frame);
4929 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
4930 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
4931 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
4932}
4933
4934static int write_vc_local_link_width(struct hfi1_devdata *dd,
4935 u8 misc_bits,
4936 u8 flag_bits,
4937 u16 link_widths)
4938{
4939 u32 frame;
4940
4941 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
4942 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
4943 | (u32)link_widths << LINK_WIDTH_SHIFT;
4944 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
4945 frame);
4946}
4947
4948static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
4949 u8 device_rev)
4950{
4951 u32 frame;
4952
4953 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
4954 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
4955 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
4956}
4957
4958static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
4959 u8 *device_rev)
4960{
4961 u32 frame;
4962
4963 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
4964 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
4965 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
4966 & REMOTE_DEVICE_REV_MASK;
4967}
4968
4969void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
4970{
4971 u32 frame;
4972
4973 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
4974 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
4975 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
4976}
4977
4978static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
4979 u8 *continuous)
4980{
4981 u32 frame;
4982
4983 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
4984 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
4985 & POWER_MANAGEMENT_MASK;
4986 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
4987 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
4988}
4989
4990static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
4991 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
4992{
4993 u32 frame;
4994
4995 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
4996 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
4997 *z = (frame >> Z_SHIFT) & Z_MASK;
4998 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
4999 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
5000 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
5001}
5002
5003static void read_vc_remote_link_width(struct hfi1_devdata *dd,
5004 u8 *remote_tx_rate,
5005 u16 *link_widths)
5006{
5007 u32 frame;
5008
5009 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
5010 &frame);
5011 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
5012 & REMOTE_TX_RATE_MASK;
5013 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
5014}
5015
5016static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
5017{
5018 u32 frame;
5019
5020 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
5021 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
5022}
5023
5024static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
5025{
5026 u32 frame;
5027
5028 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
5029 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
5030}
5031
5032static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
5033{
5034 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
5035}
5036
5037static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
5038{
5039 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
5040}
5041
5042void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
5043{
5044 u32 frame;
5045 int ret;
5046
5047 *link_quality = 0;
5048 if (dd->pport->host_link_state & HLS_UP) {
5049 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
5050 &frame);
5051 if (ret == 0)
5052 *link_quality = (frame >> LINK_QUALITY_SHIFT)
5053 & LINK_QUALITY_MASK;
5054 }
5055}
5056
5057static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
5058{
5059 u32 frame;
5060
5061 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
5062 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
5063}
5064
5065static int read_tx_settings(struct hfi1_devdata *dd,
5066 u8 *enable_lane_tx,
5067 u8 *tx_polarity_inversion,
5068 u8 *rx_polarity_inversion,
5069 u8 *max_rate)
5070{
5071 u32 frame;
5072 int ret;
5073
5074 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
5075 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
5076 & ENABLE_LANE_TX_MASK;
5077 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
5078 & TX_POLARITY_INVERSION_MASK;
5079 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
5080 & RX_POLARITY_INVERSION_MASK;
5081 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
5082 return ret;
5083}
5084
5085static int write_tx_settings(struct hfi1_devdata *dd,
5086 u8 enable_lane_tx,
5087 u8 tx_polarity_inversion,
5088 u8 rx_polarity_inversion,
5089 u8 max_rate)
5090{
5091 u32 frame;
5092
5093 /* no need to mask, all variable sizes match field widths */
5094 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
5095 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
5096 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
5097 | max_rate << MAX_RATE_SHIFT;
5098 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
5099}
5100
5101static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
5102{
5103 u32 frame, version, prod_id;
5104 int ret, lane;
5105
5106 /* 4 lanes */
5107 for (lane = 0; lane < 4; lane++) {
5108 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
5109 if (ret) {
5110 dd_dev_err(
5111 dd,
5112 "Unable to read lane %d firmware details\n",
5113 lane);
5114 continue;
5115 }
5116 version = (frame >> SPICO_ROM_VERSION_SHIFT)
5117 & SPICO_ROM_VERSION_MASK;
5118 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
5119 & SPICO_ROM_PROD_ID_MASK;
5120 dd_dev_info(dd,
5121 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
5122 lane, version, prod_id);
5123 }
5124}
5125
5126/*
5127 * Read an idle LCB message.
5128 *
5129 * Returns 0 on success, -EINVAL on error
5130 */
5131static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
5132{
5133 int ret;
5134
5135 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
5136 type, data_out);
5137 if (ret != HCMD_SUCCESS) {
5138 dd_dev_err(dd, "read idle message: type %d, err %d\n",
5139 (u32)type, ret);
5140 return -EINVAL;
5141 }
5142 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
5143 /* return only the payload as we already know the type */
5144 *data_out >>= IDLE_PAYLOAD_SHIFT;
5145 return 0;
5146}
5147
5148/*
5149 * Read an idle SMA message. To be done in response to a notification from
5150 * the 8051.
5151 *
5152 * Returns 0 on success, -EINVAL on error
5153 */
5154static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
5155{
5156 return read_idle_message(dd,
5157 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
5158}
5159
5160/*
5161 * Send an idle LCB message.
5162 *
5163 * Returns 0 on success, -EINVAL on error
5164 */
5165static int send_idle_message(struct hfi1_devdata *dd, u64 data)
5166{
5167 int ret;
5168
5169 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
5170 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
5171 if (ret != HCMD_SUCCESS) {
5172 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
5173 data, ret);
5174 return -EINVAL;
5175 }
5176 return 0;
5177}
5178
5179/*
5180 * Send an idle SMA message.
5181 *
5182 * Returns 0 on success, -EINVAL on error
5183 */
5184int send_idle_sma(struct hfi1_devdata *dd, u64 message)
5185{
5186 u64 data;
5187
5188 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
5189 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
5190 return send_idle_message(dd, data);
5191}
5192
5193/*
5194 * Initialize the LCB then do a quick link up. This may or may not be
5195 * in loopback.
5196 *
5197 * return 0 on success, -errno on error
5198 */
5199static int do_quick_linkup(struct hfi1_devdata *dd)
5200{
5201 u64 reg;
5202 unsigned long timeout;
5203 int ret;
5204
5205 lcb_shutdown(dd, 0);
5206
5207 if (loopback) {
5208 /* LCB_CFG_LOOPBACK.VAL = 2 */
5209 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
5210 write_csr(dd, DC_LCB_CFG_LOOPBACK,
5211 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
5212 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
5213 }
5214
5215 /* start the LCBs */
5216 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
5217 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
5218
5219 /* simulator only loopback steps */
5220 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
5221 /* LCB_CFG_RUN.EN = 1 */
5222 write_csr(dd, DC_LCB_CFG_RUN,
5223 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
5224
5225 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
5226 timeout = jiffies + msecs_to_jiffies(10);
5227 while (1) {
5228 reg = read_csr(dd,
5229 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
5230 if (reg)
5231 break;
5232 if (time_after(jiffies, timeout)) {
5233 dd_dev_err(dd,
5234 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
5235 return -ETIMEDOUT;
5236 }
5237 udelay(2);
5238 }
5239
5240 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
5241 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
5242 }
5243
5244 if (!loopback) {
5245 /*
5246 * When doing quick linkup and not in loopback, both
5247 * sides must be done with LCB set-up before either
5248 * starts the quick linkup. Put a delay here so that
5249 * both sides can be started and have a chance to be
5250 * done with LCB set up before resuming.
5251 */
5252 dd_dev_err(dd,
5253 "Pausing for peer to be finished with LCB set up\n");
5254 msleep(5000);
5255 dd_dev_err(dd,
5256 "Continuing with quick linkup\n");
5257 }
5258
5259 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
5260 set_8051_lcb_access(dd);
5261
5262 /*
5263 * State "quick" LinkUp request sets the physical link state to
5264 * LinkUp without a verify capability sequence.
5265 * This state is in simulator v37 and later.
5266 */
5267 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
5268 if (ret != HCMD_SUCCESS) {
5269 dd_dev_err(dd,
5270 "%s: set physical link state to quick LinkUp failed with return %d\n",
5271 __func__, ret);
5272
5273 set_host_lcb_access(dd);
5274 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
5275
5276 if (ret >= 0)
5277 ret = -EINVAL;
5278 return ret;
5279 }
5280
5281 return 0; /* success */
5282}
5283
5284/*
5285 * Set the SerDes to internal loopback mode.
5286 * Returns 0 on success, -errno on error.
5287 */
5288static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
5289{
5290 int ret;
5291
5292 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
5293 if (ret == HCMD_SUCCESS)
5294 return 0;
5295 dd_dev_err(dd,
5296 "Set physical link state to SerDes Loopback failed with return %d\n",
5297 ret);
5298 if (ret >= 0)
5299 ret = -EINVAL;
5300 return ret;
5301}
5302
5303/*
5304 * Do all special steps to set up loopback.
5305 */
5306static int init_loopback(struct hfi1_devdata *dd)
5307{
5308 dd_dev_info(dd, "Entering loopback mode\n");
5309
5310 /* all loopbacks should disable self GUID check */
5311 write_csr(dd, DC_DC8051_CFG_MODE,
5312 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
5313
5314 /*
5315 * The simulator has only one loopback option - LCB. Switch
5316 * to that option, which includes quick link up.
5317 *
5318 * Accept all valid loopback values.
5319 */
5320 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5321 && (loopback == LOOPBACK_SERDES
5322 || loopback == LOOPBACK_LCB
5323 || loopback == LOOPBACK_CABLE)) {
5324 loopback = LOOPBACK_LCB;
5325 quick_linkup = 1;
5326 return 0;
5327 }
5328
5329 /* handle serdes loopback */
5330 if (loopback == LOOPBACK_SERDES) {
5331 /* internal serdes loopack needs quick linkup on RTL */
5332 if (dd->icode == ICODE_RTL_SILICON)
5333 quick_linkup = 1;
5334 return set_serdes_loopback_mode(dd);
5335 }
5336
5337 /* LCB loopback - handled at poll time */
5338 if (loopback == LOOPBACK_LCB) {
5339 quick_linkup = 1; /* LCB is always quick linkup */
5340
5341 /* not supported in emulation due to emulation RTL changes */
5342 if (dd->icode == ICODE_FPGA_EMULATION) {
5343 dd_dev_err(dd,
5344 "LCB loopback not supported in emulation\n");
5345 return -EINVAL;
5346 }
5347 return 0;
5348 }
5349
5350 /* external cable loopback requires no extra steps */
5351 if (loopback == LOOPBACK_CABLE)
5352 return 0;
5353
5354 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
5355 return -EINVAL;
5356}
5357
5358/*
5359 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
5360 * used in the Verify Capability link width attribute.
5361 */
5362static u16 opa_to_vc_link_widths(u16 opa_widths)
5363{
5364 int i;
5365 u16 result = 0;
5366
5367 static const struct link_bits {
5368 u16 from;
5369 u16 to;
5370 } opa_link_xlate[] = {
5371 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
5372 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
5373 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
5374 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
5375 };
5376
5377 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
5378 if (opa_widths & opa_link_xlate[i].from)
5379 result |= opa_link_xlate[i].to;
5380 }
5381 return result;
5382}
5383
5384/*
5385 * Set link attributes before moving to polling.
5386 */
5387static int set_local_link_attributes(struct hfi1_pportdata *ppd)
5388{
5389 struct hfi1_devdata *dd = ppd->dd;
5390 u8 enable_lane_tx;
5391 u8 tx_polarity_inversion;
5392 u8 rx_polarity_inversion;
5393 int ret;
5394
5395 /* reset our fabric serdes to clear any lingering problems */
5396 fabric_serdes_reset(dd);
5397
5398 /* set the local tx rate - need to read-modify-write */
5399 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
5400 &rx_polarity_inversion, &ppd->local_tx_rate);
5401 if (ret)
5402 goto set_local_link_attributes_fail;
5403
5404 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
5405 /* set the tx rate to the fastest enabled */
5406 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5407 ppd->local_tx_rate = 1;
5408 else
5409 ppd->local_tx_rate = 0;
5410 } else {
5411 /* set the tx rate to all enabled */
5412 ppd->local_tx_rate = 0;
5413 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5414 ppd->local_tx_rate |= 2;
5415 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
5416 ppd->local_tx_rate |= 1;
5417 }
Easwar Hariharanfebffe22015-10-26 10:28:36 -04005418
5419 enable_lane_tx = 0xF; /* enable all four lanes */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005420 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
5421 rx_polarity_inversion, ppd->local_tx_rate);
5422 if (ret != HCMD_SUCCESS)
5423 goto set_local_link_attributes_fail;
5424
5425 /*
5426 * DC supports continuous updates.
5427 */
5428 ret = write_vc_local_phy(dd, 0 /* no power management */,
5429 1 /* continuous updates */);
5430 if (ret != HCMD_SUCCESS)
5431 goto set_local_link_attributes_fail;
5432
5433 /* z=1 in the next call: AU of 0 is not supported by the hardware */
5434 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
5435 ppd->port_crc_mode_enabled);
5436 if (ret != HCMD_SUCCESS)
5437 goto set_local_link_attributes_fail;
5438
5439 ret = write_vc_local_link_width(dd, 0, 0,
5440 opa_to_vc_link_widths(ppd->link_width_enabled));
5441 if (ret != HCMD_SUCCESS)
5442 goto set_local_link_attributes_fail;
5443
5444 /* let peer know who we are */
5445 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
5446 if (ret == HCMD_SUCCESS)
5447 return 0;
5448
5449set_local_link_attributes_fail:
5450 dd_dev_err(dd,
5451 "Failed to set local link attributes, return 0x%x\n",
5452 ret);
5453 return ret;
5454}
5455
5456/*
5457 * Call this to start the link. Schedule a retry if the cable is not
5458 * present or if unable to start polling. Do not do anything if the
5459 * link is disabled. Returns 0 if link is disabled or moved to polling
5460 */
5461int start_link(struct hfi1_pportdata *ppd)
5462{
5463 if (!ppd->link_enabled) {
5464 dd_dev_info(ppd->dd,
5465 "%s: stopping link start because link is disabled\n",
5466 __func__);
5467 return 0;
5468 }
5469 if (!ppd->driver_link_ready) {
5470 dd_dev_info(ppd->dd,
5471 "%s: stopping link start because driver is not ready\n",
5472 __func__);
5473 return 0;
5474 }
5475
5476 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
5477 loopback == LOOPBACK_LCB ||
5478 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5479 return set_link_state(ppd, HLS_DN_POLL);
5480
5481 dd_dev_info(ppd->dd,
5482 "%s: stopping link start because no cable is present\n",
5483 __func__);
5484 return -EAGAIN;
5485}
5486
5487static void reset_qsfp(struct hfi1_pportdata *ppd)
5488{
5489 struct hfi1_devdata *dd = ppd->dd;
5490 u64 mask, qsfp_mask;
5491
5492 mask = (u64)QSFP_HFI0_RESET_N;
5493 qsfp_mask = read_csr(dd,
5494 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
5495 qsfp_mask |= mask;
5496 write_csr(dd,
5497 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE,
5498 qsfp_mask);
5499
5500 qsfp_mask = read_csr(dd,
5501 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
5502 qsfp_mask &= ~mask;
5503 write_csr(dd,
5504 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5505 qsfp_mask);
5506
5507 udelay(10);
5508
5509 qsfp_mask |= mask;
5510 write_csr(dd,
5511 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5512 qsfp_mask);
5513}
5514
5515static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
5516 u8 *qsfp_interrupt_status)
5517{
5518 struct hfi1_devdata *dd = ppd->dd;
5519
5520 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
5521 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
5522 dd_dev_info(dd,
5523 "%s: QSFP cable on fire\n",
5524 __func__);
5525
5526 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
5527 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
5528 dd_dev_info(dd,
5529 "%s: QSFP cable temperature too low\n",
5530 __func__);
5531
5532 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
5533 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
5534 dd_dev_info(dd,
5535 "%s: QSFP supply voltage too high\n",
5536 __func__);
5537
5538 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
5539 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
5540 dd_dev_info(dd,
5541 "%s: QSFP supply voltage too low\n",
5542 __func__);
5543
5544 /* Byte 2 is vendor specific */
5545
5546 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
5547 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
5548 dd_dev_info(dd,
5549 "%s: Cable RX channel 1/2 power too high\n",
5550 __func__);
5551
5552 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
5553 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
5554 dd_dev_info(dd,
5555 "%s: Cable RX channel 1/2 power too low\n",
5556 __func__);
5557
5558 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
5559 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
5560 dd_dev_info(dd,
5561 "%s: Cable RX channel 3/4 power too high\n",
5562 __func__);
5563
5564 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
5565 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
5566 dd_dev_info(dd,
5567 "%s: Cable RX channel 3/4 power too low\n",
5568 __func__);
5569
5570 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
5571 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
5572 dd_dev_info(dd,
5573 "%s: Cable TX channel 1/2 bias too high\n",
5574 __func__);
5575
5576 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
5577 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
5578 dd_dev_info(dd,
5579 "%s: Cable TX channel 1/2 bias too low\n",
5580 __func__);
5581
5582 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
5583 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
5584 dd_dev_info(dd,
5585 "%s: Cable TX channel 3/4 bias too high\n",
5586 __func__);
5587
5588 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
5589 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
5590 dd_dev_info(dd,
5591 "%s: Cable TX channel 3/4 bias too low\n",
5592 __func__);
5593
5594 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
5595 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
5596 dd_dev_info(dd,
5597 "%s: Cable TX channel 1/2 power too high\n",
5598 __func__);
5599
5600 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
5601 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
5602 dd_dev_info(dd,
5603 "%s: Cable TX channel 1/2 power too low\n",
5604 __func__);
5605
5606 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
5607 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
5608 dd_dev_info(dd,
5609 "%s: Cable TX channel 3/4 power too high\n",
5610 __func__);
5611
5612 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
5613 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
5614 dd_dev_info(dd,
5615 "%s: Cable TX channel 3/4 power too low\n",
5616 __func__);
5617
5618 /* Bytes 9-10 and 11-12 are reserved */
5619 /* Bytes 13-15 are vendor specific */
5620
5621 return 0;
5622}
5623
5624static int do_pre_lni_host_behaviors(struct hfi1_pportdata *ppd)
5625{
5626 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
5627
5628 return 0;
5629}
5630
5631static int do_qsfp_intr_fallback(struct hfi1_pportdata *ppd)
5632{
5633 struct hfi1_devdata *dd = ppd->dd;
5634 u8 qsfp_interrupt_status = 0;
5635
5636 if (qsfp_read(ppd, dd->hfi1_id, 2, &qsfp_interrupt_status, 1)
5637 != 1) {
5638 dd_dev_info(dd,
5639 "%s: Failed to read status of QSFP module\n",
5640 __func__);
5641 return -EIO;
5642 }
5643
5644 /* We don't care about alarms & warnings with a non-functional INT_N */
5645 if (!(qsfp_interrupt_status & QSFP_DATA_NOT_READY))
5646 do_pre_lni_host_behaviors(ppd);
5647
5648 return 0;
5649}
5650
5651/* This routine will only be scheduled if the QSFP module is present */
5652static void qsfp_event(struct work_struct *work)
5653{
5654 struct qsfp_data *qd;
5655 struct hfi1_pportdata *ppd;
5656 struct hfi1_devdata *dd;
5657
5658 qd = container_of(work, struct qsfp_data, qsfp_work);
5659 ppd = qd->ppd;
5660 dd = ppd->dd;
5661
5662 /* Sanity check */
5663 if (!qsfp_mod_present(ppd))
5664 return;
5665
5666 /*
5667 * Turn DC back on after cables has been
5668 * re-inserted. Up until now, the DC has been in
5669 * reset to save power.
5670 */
5671 dc_start(dd);
5672
5673 if (qd->cache_refresh_required) {
5674 msleep(3000);
5675 reset_qsfp(ppd);
5676
5677 /* Check for QSFP interrupt after t_init (SFF 8679)
5678 * + extra
5679 */
5680 msleep(3000);
5681 if (!qd->qsfp_interrupt_functional) {
5682 if (do_qsfp_intr_fallback(ppd) < 0)
5683 dd_dev_info(dd, "%s: QSFP fallback failed\n",
5684 __func__);
5685 ppd->driver_link_ready = 1;
5686 start_link(ppd);
5687 }
5688 }
5689
5690 if (qd->check_interrupt_flags) {
5691 u8 qsfp_interrupt_status[16] = {0,};
5692
5693 if (qsfp_read(ppd, dd->hfi1_id, 6,
5694 &qsfp_interrupt_status[0], 16) != 16) {
5695 dd_dev_info(dd,
5696 "%s: Failed to read status of QSFP module\n",
5697 __func__);
5698 } else {
5699 unsigned long flags;
5700 u8 data_status;
5701
5702 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5703 ppd->qsfp_info.check_interrupt_flags = 0;
5704 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5705 flags);
5706
5707 if (qsfp_read(ppd, dd->hfi1_id, 2, &data_status, 1)
5708 != 1) {
5709 dd_dev_info(dd,
5710 "%s: Failed to read status of QSFP module\n",
5711 __func__);
5712 }
5713 if (!(data_status & QSFP_DATA_NOT_READY)) {
5714 do_pre_lni_host_behaviors(ppd);
5715 start_link(ppd);
5716 } else
5717 handle_qsfp_error_conditions(ppd,
5718 qsfp_interrupt_status);
5719 }
5720 }
5721}
5722
5723void init_qsfp(struct hfi1_pportdata *ppd)
5724{
5725 struct hfi1_devdata *dd = ppd->dd;
5726 u64 qsfp_mask;
5727
5728 if (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
Easwar Hariharan3c2f85b2015-10-26 10:28:31 -04005729 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005730 ppd->driver_link_ready = 1;
5731 return;
5732 }
5733
5734 ppd->qsfp_info.ppd = ppd;
5735 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
5736
5737 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5738 /* Clear current status to avoid spurious interrupts */
5739 write_csr(dd,
5740 dd->hfi1_id ?
5741 ASIC_QSFP2_CLEAR :
5742 ASIC_QSFP1_CLEAR,
5743 qsfp_mask);
5744
5745 /* Handle active low nature of INT_N and MODPRST_N pins */
5746 if (qsfp_mod_present(ppd))
5747 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
5748 write_csr(dd,
5749 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
5750 qsfp_mask);
5751
5752 /* Allow only INT_N and MODPRST_N to trigger QSFP interrupts */
5753 qsfp_mask |= (u64)QSFP_HFI0_MODPRST_N;
5754 write_csr(dd,
5755 dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
5756 qsfp_mask);
5757
5758 if (qsfp_mod_present(ppd)) {
5759 msleep(3000);
5760 reset_qsfp(ppd);
5761
5762 /* Check for QSFP interrupt after t_init (SFF 8679)
5763 * + extra
5764 */
5765 msleep(3000);
5766 if (!ppd->qsfp_info.qsfp_interrupt_functional) {
5767 if (do_qsfp_intr_fallback(ppd) < 0)
5768 dd_dev_info(dd,
5769 "%s: QSFP fallback failed\n",
5770 __func__);
5771 ppd->driver_link_ready = 1;
5772 }
5773 }
5774}
5775
5776int bringup_serdes(struct hfi1_pportdata *ppd)
5777{
5778 struct hfi1_devdata *dd = ppd->dd;
5779 u64 guid;
5780 int ret;
5781
5782 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
5783 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
5784
5785 guid = ppd->guid;
5786 if (!guid) {
5787 if (dd->base_guid)
5788 guid = dd->base_guid + ppd->port - 1;
5789 ppd->guid = guid;
5790 }
5791
5792 /* the link defaults to enabled */
5793 ppd->link_enabled = 1;
5794 /* Set linkinit_reason on power up per OPA spec */
5795 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
5796
5797 if (loopback) {
5798 ret = init_loopback(dd);
5799 if (ret < 0)
5800 return ret;
5801 }
5802
5803 return start_link(ppd);
5804}
5805
5806void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
5807{
5808 struct hfi1_devdata *dd = ppd->dd;
5809
5810 /*
5811 * Shut down the link and keep it down. First turn off that the
5812 * driver wants to allow the link to be up (driver_link_ready).
5813 * Then make sure the link is not automatically restarted
5814 * (link_enabled). Cancel any pending restart. And finally
5815 * go offline.
5816 */
5817 ppd->driver_link_ready = 0;
5818 ppd->link_enabled = 0;
5819
5820 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
5821 OPA_LINKDOWN_REASON_SMA_DISABLED);
5822 set_link_state(ppd, HLS_DN_OFFLINE);
5823
5824 /* disable the port */
5825 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
5826}
5827
5828static inline int init_cpu_counters(struct hfi1_devdata *dd)
5829{
5830 struct hfi1_pportdata *ppd;
5831 int i;
5832
5833 ppd = (struct hfi1_pportdata *)(dd + 1);
5834 for (i = 0; i < dd->num_pports; i++, ppd++) {
5835 ppd->ibport_data.rc_acks = NULL;
5836 ppd->ibport_data.rc_qacks = NULL;
5837 ppd->ibport_data.rc_acks = alloc_percpu(u64);
5838 ppd->ibport_data.rc_qacks = alloc_percpu(u64);
5839 ppd->ibport_data.rc_delayed_comp = alloc_percpu(u64);
5840 if ((ppd->ibport_data.rc_acks == NULL) ||
5841 (ppd->ibport_data.rc_delayed_comp == NULL) ||
5842 (ppd->ibport_data.rc_qacks == NULL))
5843 return -ENOMEM;
5844 }
5845
5846 return 0;
5847}
5848
5849static const char * const pt_names[] = {
5850 "expected",
5851 "eager",
5852 "invalid"
5853};
5854
5855static const char *pt_name(u32 type)
5856{
5857 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
5858}
5859
5860/*
5861 * index is the index into the receive array
5862 */
5863void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
5864 u32 type, unsigned long pa, u16 order)
5865{
5866 u64 reg;
5867 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
5868 (dd->kregbase + RCV_ARRAY));
5869
5870 if (!(dd->flags & HFI1_PRESENT))
5871 goto done;
5872
5873 if (type == PT_INVALID) {
5874 pa = 0;
5875 } else if (type > PT_INVALID) {
5876 dd_dev_err(dd,
5877 "unexpected receive array type %u for index %u, not handled\n",
5878 type, index);
5879 goto done;
5880 }
5881
5882 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
5883 pt_name(type), index, pa, (unsigned long)order);
5884
5885#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
5886 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
5887 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
5888 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
5889 << RCV_ARRAY_RT_ADDR_SHIFT;
5890 writeq(reg, base + (index * 8));
5891
5892 if (type == PT_EAGER)
5893 /*
5894 * Eager entries are written one-by-one so we have to push them
5895 * after we write the entry.
5896 */
5897 flush_wc();
5898done:
5899 return;
5900}
5901
5902void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
5903{
5904 struct hfi1_devdata *dd = rcd->dd;
5905 u32 i;
5906
5907 /* this could be optimized */
5908 for (i = rcd->eager_base; i < rcd->eager_base +
5909 rcd->egrbufs.alloced; i++)
5910 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
5911
5912 for (i = rcd->expected_base;
5913 i < rcd->expected_base + rcd->expected_count; i++)
5914 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
5915}
5916
5917int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
5918 struct hfi1_ctxt_info *kinfo)
5919{
5920 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
5921 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
5922 return 0;
5923}
5924
5925struct hfi1_message_header *hfi1_get_msgheader(
5926 struct hfi1_devdata *dd, __le32 *rhf_addr)
5927{
5928 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
5929
5930 return (struct hfi1_message_header *)
5931 (rhf_addr - dd->rhf_offset + offset);
5932}
5933
5934static const char * const ib_cfg_name_strings[] = {
5935 "HFI1_IB_CFG_LIDLMC",
5936 "HFI1_IB_CFG_LWID_DG_ENB",
5937 "HFI1_IB_CFG_LWID_ENB",
5938 "HFI1_IB_CFG_LWID",
5939 "HFI1_IB_CFG_SPD_ENB",
5940 "HFI1_IB_CFG_SPD",
5941 "HFI1_IB_CFG_RXPOL_ENB",
5942 "HFI1_IB_CFG_LREV_ENB",
5943 "HFI1_IB_CFG_LINKLATENCY",
5944 "HFI1_IB_CFG_HRTBT",
5945 "HFI1_IB_CFG_OP_VLS",
5946 "HFI1_IB_CFG_VL_HIGH_CAP",
5947 "HFI1_IB_CFG_VL_LOW_CAP",
5948 "HFI1_IB_CFG_OVERRUN_THRESH",
5949 "HFI1_IB_CFG_PHYERR_THRESH",
5950 "HFI1_IB_CFG_LINKDEFAULT",
5951 "HFI1_IB_CFG_PKEYS",
5952 "HFI1_IB_CFG_MTU",
5953 "HFI1_IB_CFG_LSTATE",
5954 "HFI1_IB_CFG_VL_HIGH_LIMIT",
5955 "HFI1_IB_CFG_PMA_TICKS",
5956 "HFI1_IB_CFG_PORT"
5957};
5958
5959static const char *ib_cfg_name(int which)
5960{
5961 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
5962 return "invalid";
5963 return ib_cfg_name_strings[which];
5964}
5965
5966int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
5967{
5968 struct hfi1_devdata *dd = ppd->dd;
5969 int val = 0;
5970
5971 switch (which) {
5972 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
5973 val = ppd->link_width_enabled;
5974 break;
5975 case HFI1_IB_CFG_LWID: /* currently active Link-width */
5976 val = ppd->link_width_active;
5977 break;
5978 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
5979 val = ppd->link_speed_enabled;
5980 break;
5981 case HFI1_IB_CFG_SPD: /* current Link speed */
5982 val = ppd->link_speed_active;
5983 break;
5984
5985 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
5986 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
5987 case HFI1_IB_CFG_LINKLATENCY:
5988 goto unimplemented;
5989
5990 case HFI1_IB_CFG_OP_VLS:
5991 val = ppd->vls_operational;
5992 break;
5993 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
5994 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
5995 break;
5996 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
5997 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
5998 break;
5999 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6000 val = ppd->overrun_threshold;
6001 break;
6002 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6003 val = ppd->phy_error_threshold;
6004 break;
6005 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6006 val = dd->link_default;
6007 break;
6008
6009 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
6010 case HFI1_IB_CFG_PMA_TICKS:
6011 default:
6012unimplemented:
6013 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6014 dd_dev_info(
6015 dd,
6016 "%s: which %s: not implemented\n",
6017 __func__,
6018 ib_cfg_name(which));
6019 break;
6020 }
6021
6022 return val;
6023}
6024
6025/*
6026 * The largest MAD packet size.
6027 */
6028#define MAX_MAD_PACKET 2048
6029
6030/*
6031 * Return the maximum header bytes that can go on the _wire_
6032 * for this device. This count includes the ICRC which is
6033 * not part of the packet held in memory but it is appended
6034 * by the HW.
6035 * This is dependent on the device's receive header entry size.
6036 * HFI allows this to be set per-receive context, but the
6037 * driver presently enforces a global value.
6038 */
6039u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
6040{
6041 /*
6042 * The maximum non-payload (MTU) bytes in LRH.PktLen are
6043 * the Receive Header Entry Size minus the PBC (or RHF) size
6044 * plus one DW for the ICRC appended by HW.
6045 *
6046 * dd->rcd[0].rcvhdrqentsize is in DW.
6047 * We use rcd[0] as all context will have the same value. Also,
6048 * the first kernel context would have been allocated by now so
6049 * we are guaranteed a valid value.
6050 */
6051 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
6052}
6053
6054/*
6055 * Set Send Length
6056 * @ppd - per port data
6057 *
6058 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
6059 * registers compare against LRH.PktLen, so use the max bytes included
6060 * in the LRH.
6061 *
6062 * This routine changes all VL values except VL15, which it maintains at
6063 * the same value.
6064 */
6065static void set_send_length(struct hfi1_pportdata *ppd)
6066{
6067 struct hfi1_devdata *dd = ppd->dd;
6068 u32 max_hb = lrh_max_header_bytes(dd), maxvlmtu = 0, dcmtu;
6069 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
6070 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
6071 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
6072 int i;
6073
6074 for (i = 0; i < ppd->vls_supported; i++) {
6075 if (dd->vld[i].mtu > maxvlmtu)
6076 maxvlmtu = dd->vld[i].mtu;
6077 if (i <= 3)
6078 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
6079 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
6080 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
6081 else
6082 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
6083 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
6084 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
6085 }
6086 write_csr(dd, SEND_LEN_CHECK0, len1);
6087 write_csr(dd, SEND_LEN_CHECK1, len2);
6088 /* adjust kernel credit return thresholds based on new MTUs */
6089 /* all kernel receive contexts have the same hdrqentsize */
6090 for (i = 0; i < ppd->vls_supported; i++) {
6091 sc_set_cr_threshold(dd->vld[i].sc,
6092 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
6093 dd->rcd[0]->rcvhdrqentsize));
6094 }
6095 sc_set_cr_threshold(dd->vld[15].sc,
6096 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
6097 dd->rcd[0]->rcvhdrqentsize));
6098
6099 /* Adjust maximum MTU for the port in DC */
6100 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
6101 (ilog2(maxvlmtu >> 8) + 1);
6102 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
6103 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
6104 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
6105 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
6106 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
6107}
6108
6109static void set_lidlmc(struct hfi1_pportdata *ppd)
6110{
6111 int i;
6112 u64 sreg = 0;
6113 struct hfi1_devdata *dd = ppd->dd;
6114 u32 mask = ~((1U << ppd->lmc) - 1);
6115 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
6116
6117 if (dd->hfi1_snoop.mode_flag)
6118 dd_dev_info(dd, "Set lid/lmc while snooping");
6119
6120 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
6121 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
6122 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
6123 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
6124 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
6125 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
6126 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
6127
6128 /*
6129 * Iterate over all the send contexts and set their SLID check
6130 */
6131 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
6132 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
6133 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
6134 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
6135
6136 for (i = 0; i < dd->chip_send_contexts; i++) {
6137 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
6138 i, (u32)sreg);
6139 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
6140 }
6141
6142 /* Now we have to do the same thing for the sdma engines */
6143 sdma_update_lmc(dd, mask, ppd->lid);
6144}
6145
6146static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
6147{
6148 unsigned long timeout;
6149 u32 curr_state;
6150
6151 timeout = jiffies + msecs_to_jiffies(msecs);
6152 while (1) {
6153 curr_state = read_physical_state(dd);
6154 if (curr_state == state)
6155 break;
6156 if (time_after(jiffies, timeout)) {
6157 dd_dev_err(dd,
6158 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
6159 state, curr_state);
6160 return -ETIMEDOUT;
6161 }
6162 usleep_range(1950, 2050); /* sleep 2ms-ish */
6163 }
6164
6165 return 0;
6166}
6167
6168/*
6169 * Helper for set_link_state(). Do not call except from that routine.
6170 * Expects ppd->hls_mutex to be held.
6171 *
6172 * @rem_reason value to be sent to the neighbor
6173 *
6174 * LinkDownReasons only set if transition succeeds.
6175 */
6176static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
6177{
6178 struct hfi1_devdata *dd = ppd->dd;
6179 u32 pstate, previous_state;
6180 u32 last_local_state;
6181 u32 last_remote_state;
6182 int ret;
6183 int do_transition;
6184 int do_wait;
6185
6186 previous_state = ppd->host_link_state;
6187 ppd->host_link_state = HLS_GOING_OFFLINE;
6188 pstate = read_physical_state(dd);
6189 if (pstate == PLS_OFFLINE) {
6190 do_transition = 0; /* in right state */
6191 do_wait = 0; /* ...no need to wait */
6192 } else if ((pstate & 0xff) == PLS_OFFLINE) {
6193 do_transition = 0; /* in an offline transient state */
6194 do_wait = 1; /* ...wait for it to settle */
6195 } else {
6196 do_transition = 1; /* need to move to offline */
6197 do_wait = 1; /* ...will need to wait */
6198 }
6199
6200 if (do_transition) {
6201 ret = set_physical_link_state(dd,
6202 PLS_OFFLINE | (rem_reason << 8));
6203
6204 if (ret != HCMD_SUCCESS) {
6205 dd_dev_err(dd,
6206 "Failed to transition to Offline link state, return %d\n",
6207 ret);
6208 return -EINVAL;
6209 }
6210 if (ppd->offline_disabled_reason == OPA_LINKDOWN_REASON_NONE)
6211 ppd->offline_disabled_reason =
6212 OPA_LINKDOWN_REASON_TRANSIENT;
6213 }
6214
6215 if (do_wait) {
6216 /* it can take a while for the link to go down */
Dean Luickdc060242015-10-26 10:28:29 -04006217 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006218 if (ret < 0)
6219 return ret;
6220 }
6221
6222 /* make sure the logical state is also down */
6223 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
6224
6225 /*
6226 * Now in charge of LCB - must be after the physical state is
6227 * offline.quiet and before host_link_state is changed.
6228 */
6229 set_host_lcb_access(dd);
6230 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
6231 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
6232
6233 /*
6234 * The LNI has a mandatory wait time after the physical state
6235 * moves to Offline.Quiet. The wait time may be different
6236 * depending on how the link went down. The 8051 firmware
6237 * will observe the needed wait time and only move to ready
6238 * when that is completed. The largest of the quiet timeouts
6239 * is 2.5s, so wait that long and then a bit more.
6240 */
6241 ret = wait_fm_ready(dd, 3000);
6242 if (ret) {
6243 dd_dev_err(dd,
6244 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
6245 /* state is really offline, so make it so */
6246 ppd->host_link_state = HLS_DN_OFFLINE;
6247 return ret;
6248 }
6249
6250 /*
6251 * The state is now offline and the 8051 is ready to accept host
6252 * requests.
6253 * - change our state
6254 * - notify others if we were previously in a linkup state
6255 */
6256 ppd->host_link_state = HLS_DN_OFFLINE;
6257 if (previous_state & HLS_UP) {
6258 /* went down while link was up */
6259 handle_linkup_change(dd, 0);
6260 } else if (previous_state
6261 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
6262 /* went down while attempting link up */
6263 /* byte 1 of last_*_state is the failure reason */
6264 read_last_local_state(dd, &last_local_state);
6265 read_last_remote_state(dd, &last_remote_state);
6266 dd_dev_err(dd,
6267 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
6268 last_local_state, last_remote_state);
6269 }
6270
6271 /* the active link width (downgrade) is 0 on link down */
6272 ppd->link_width_active = 0;
6273 ppd->link_width_downgrade_tx_active = 0;
6274 ppd->link_width_downgrade_rx_active = 0;
6275 ppd->current_egress_rate = 0;
6276 return 0;
6277}
6278
6279/* return the link state name */
6280static const char *link_state_name(u32 state)
6281{
6282 const char *name;
6283 int n = ilog2(state);
6284 static const char * const names[] = {
6285 [__HLS_UP_INIT_BP] = "INIT",
6286 [__HLS_UP_ARMED_BP] = "ARMED",
6287 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
6288 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
6289 [__HLS_DN_POLL_BP] = "POLL",
6290 [__HLS_DN_DISABLE_BP] = "DISABLE",
6291 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
6292 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
6293 [__HLS_GOING_UP_BP] = "GOING_UP",
6294 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
6295 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
6296 };
6297
6298 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
6299 return name ? name : "unknown";
6300}
6301
6302/* return the link state reason name */
6303static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
6304{
6305 if (state == HLS_UP_INIT) {
6306 switch (ppd->linkinit_reason) {
6307 case OPA_LINKINIT_REASON_LINKUP:
6308 return "(LINKUP)";
6309 case OPA_LINKINIT_REASON_FLAPPING:
6310 return "(FLAPPING)";
6311 case OPA_LINKINIT_OUTSIDE_POLICY:
6312 return "(OUTSIDE_POLICY)";
6313 case OPA_LINKINIT_QUARANTINED:
6314 return "(QUARANTINED)";
6315 case OPA_LINKINIT_INSUFIC_CAPABILITY:
6316 return "(INSUFIC_CAPABILITY)";
6317 default:
6318 break;
6319 }
6320 }
6321 return "";
6322}
6323
6324/*
6325 * driver_physical_state - convert the driver's notion of a port's
6326 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
6327 * Return -1 (converted to a u32) to indicate error.
6328 */
6329u32 driver_physical_state(struct hfi1_pportdata *ppd)
6330{
6331 switch (ppd->host_link_state) {
6332 case HLS_UP_INIT:
6333 case HLS_UP_ARMED:
6334 case HLS_UP_ACTIVE:
6335 return IB_PORTPHYSSTATE_LINKUP;
6336 case HLS_DN_POLL:
6337 return IB_PORTPHYSSTATE_POLLING;
6338 case HLS_DN_DISABLE:
6339 return IB_PORTPHYSSTATE_DISABLED;
6340 case HLS_DN_OFFLINE:
6341 return OPA_PORTPHYSSTATE_OFFLINE;
6342 case HLS_VERIFY_CAP:
6343 return IB_PORTPHYSSTATE_POLLING;
6344 case HLS_GOING_UP:
6345 return IB_PORTPHYSSTATE_POLLING;
6346 case HLS_GOING_OFFLINE:
6347 return OPA_PORTPHYSSTATE_OFFLINE;
6348 case HLS_LINK_COOLDOWN:
6349 return OPA_PORTPHYSSTATE_OFFLINE;
6350 case HLS_DN_DOWNDEF:
6351 default:
6352 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6353 ppd->host_link_state);
6354 return -1;
6355 }
6356}
6357
6358/*
6359 * driver_logical_state - convert the driver's notion of a port's
6360 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
6361 * (converted to a u32) to indicate error.
6362 */
6363u32 driver_logical_state(struct hfi1_pportdata *ppd)
6364{
6365 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
6366 return IB_PORT_DOWN;
6367
6368 switch (ppd->host_link_state & HLS_UP) {
6369 case HLS_UP_INIT:
6370 return IB_PORT_INIT;
6371 case HLS_UP_ARMED:
6372 return IB_PORT_ARMED;
6373 case HLS_UP_ACTIVE:
6374 return IB_PORT_ACTIVE;
6375 default:
6376 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6377 ppd->host_link_state);
6378 return -1;
6379 }
6380}
6381
6382void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
6383 u8 neigh_reason, u8 rem_reason)
6384{
6385 if (ppd->local_link_down_reason.latest == 0 &&
6386 ppd->neigh_link_down_reason.latest == 0) {
6387 ppd->local_link_down_reason.latest = lcl_reason;
6388 ppd->neigh_link_down_reason.latest = neigh_reason;
6389 ppd->remote_link_down_reason = rem_reason;
6390 }
6391}
6392
6393/*
6394 * Change the physical and/or logical link state.
6395 *
6396 * Do not call this routine while inside an interrupt. It contains
6397 * calls to routines that can take multiple seconds to finish.
6398 *
6399 * Returns 0 on success, -errno on failure.
6400 */
6401int set_link_state(struct hfi1_pportdata *ppd, u32 state)
6402{
6403 struct hfi1_devdata *dd = ppd->dd;
6404 struct ib_event event = {.device = NULL};
6405 int ret1, ret = 0;
6406 int was_up, is_down;
6407 int orig_new_state, poll_bounce;
6408
6409 mutex_lock(&ppd->hls_lock);
6410
6411 orig_new_state = state;
6412 if (state == HLS_DN_DOWNDEF)
6413 state = dd->link_default;
6414
6415 /* interpret poll -> poll as a link bounce */
6416 poll_bounce = ppd->host_link_state == HLS_DN_POLL
6417 && state == HLS_DN_POLL;
6418
6419 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
6420 link_state_name(ppd->host_link_state),
6421 link_state_name(orig_new_state),
6422 poll_bounce ? "(bounce) " : "",
6423 link_state_reason_name(ppd, state));
6424
6425 was_up = !!(ppd->host_link_state & HLS_UP);
6426
6427 /*
6428 * If we're going to a (HLS_*) link state that implies the logical
6429 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
6430 * reset is_sm_config_started to 0.
6431 */
6432 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
6433 ppd->is_sm_config_started = 0;
6434
6435 /*
6436 * Do nothing if the states match. Let a poll to poll link bounce
6437 * go through.
6438 */
6439 if (ppd->host_link_state == state && !poll_bounce)
6440 goto done;
6441
6442 switch (state) {
6443 case HLS_UP_INIT:
6444 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
6445 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
6446 /*
6447 * Quick link up jumps from polling to here.
6448 *
6449 * Whether in normal or loopback mode, the
6450 * simulator jumps from polling to link up.
6451 * Accept that here.
6452 */
6453 /* OK */;
6454 } else if (ppd->host_link_state != HLS_GOING_UP) {
6455 goto unexpected;
6456 }
6457
6458 ppd->host_link_state = HLS_UP_INIT;
6459 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
6460 if (ret) {
6461 /* logical state didn't change, stay at going_up */
6462 ppd->host_link_state = HLS_GOING_UP;
6463 dd_dev_err(dd,
6464 "%s: logical state did not change to INIT\n",
6465 __func__);
6466 } else {
6467 /* clear old transient LINKINIT_REASON code */
6468 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
6469 ppd->linkinit_reason =
6470 OPA_LINKINIT_REASON_LINKUP;
6471
6472 /* enable the port */
6473 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6474
6475 handle_linkup_change(dd, 1);
6476 }
6477 break;
6478 case HLS_UP_ARMED:
6479 if (ppd->host_link_state != HLS_UP_INIT)
6480 goto unexpected;
6481
6482 ppd->host_link_state = HLS_UP_ARMED;
6483 set_logical_state(dd, LSTATE_ARMED);
6484 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
6485 if (ret) {
6486 /* logical state didn't change, stay at init */
6487 ppd->host_link_state = HLS_UP_INIT;
6488 dd_dev_err(dd,
6489 "%s: logical state did not change to ARMED\n",
6490 __func__);
6491 }
6492 /*
6493 * The simulator does not currently implement SMA messages,
6494 * so neighbor_normal is not set. Set it here when we first
6495 * move to Armed.
6496 */
6497 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
6498 ppd->neighbor_normal = 1;
6499 break;
6500 case HLS_UP_ACTIVE:
6501 if (ppd->host_link_state != HLS_UP_ARMED)
6502 goto unexpected;
6503
6504 ppd->host_link_state = HLS_UP_ACTIVE;
6505 set_logical_state(dd, LSTATE_ACTIVE);
6506 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
6507 if (ret) {
6508 /* logical state didn't change, stay at armed */
6509 ppd->host_link_state = HLS_UP_ARMED;
6510 dd_dev_err(dd,
6511 "%s: logical state did not change to ACTIVE\n",
6512 __func__);
6513 } else {
6514
6515 /* tell all engines to go running */
6516 sdma_all_running(dd);
6517
6518 /* Signal the IB layer that the port has went active */
6519 event.device = &dd->verbs_dev.ibdev;
6520 event.element.port_num = ppd->port;
6521 event.event = IB_EVENT_PORT_ACTIVE;
6522 }
6523 break;
6524 case HLS_DN_POLL:
6525 if ((ppd->host_link_state == HLS_DN_DISABLE ||
6526 ppd->host_link_state == HLS_DN_OFFLINE) &&
6527 dd->dc_shutdown)
6528 dc_start(dd);
6529 /* Hand LED control to the DC */
6530 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
6531
6532 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6533 u8 tmp = ppd->link_enabled;
6534
6535 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6536 if (ret) {
6537 ppd->link_enabled = tmp;
6538 break;
6539 }
6540 ppd->remote_link_down_reason = 0;
6541
6542 if (ppd->driver_link_ready)
6543 ppd->link_enabled = 1;
6544 }
6545
6546 ret = set_local_link_attributes(ppd);
6547 if (ret)
6548 break;
6549
6550 ppd->port_error_action = 0;
6551 ppd->host_link_state = HLS_DN_POLL;
6552
6553 if (quick_linkup) {
6554 /* quick linkup does not go into polling */
6555 ret = do_quick_linkup(dd);
6556 } else {
6557 ret1 = set_physical_link_state(dd, PLS_POLLING);
6558 if (ret1 != HCMD_SUCCESS) {
6559 dd_dev_err(dd,
6560 "Failed to transition to Polling link state, return 0x%x\n",
6561 ret1);
6562 ret = -EINVAL;
6563 }
6564 }
6565 ppd->offline_disabled_reason = OPA_LINKDOWN_REASON_NONE;
6566 /*
6567 * If an error occurred above, go back to offline. The
6568 * caller may reschedule another attempt.
6569 */
6570 if (ret)
6571 goto_offline(ppd, 0);
6572 break;
6573 case HLS_DN_DISABLE:
6574 /* link is disabled */
6575 ppd->link_enabled = 0;
6576
6577 /* allow any state to transition to disabled */
6578
6579 /* must transition to offline first */
6580 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6581 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6582 if (ret)
6583 break;
6584 ppd->remote_link_down_reason = 0;
6585 }
6586
6587 ret1 = set_physical_link_state(dd, PLS_DISABLED);
6588 if (ret1 != HCMD_SUCCESS) {
6589 dd_dev_err(dd,
6590 "Failed to transition to Disabled link state, return 0x%x\n",
6591 ret1);
6592 ret = -EINVAL;
6593 break;
6594 }
6595 ppd->host_link_state = HLS_DN_DISABLE;
6596 dc_shutdown(dd);
6597 break;
6598 case HLS_DN_OFFLINE:
6599 if (ppd->host_link_state == HLS_DN_DISABLE)
6600 dc_start(dd);
6601
6602 /* allow any state to transition to offline */
6603 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6604 if (!ret)
6605 ppd->remote_link_down_reason = 0;
6606 break;
6607 case HLS_VERIFY_CAP:
6608 if (ppd->host_link_state != HLS_DN_POLL)
6609 goto unexpected;
6610 ppd->host_link_state = HLS_VERIFY_CAP;
6611 break;
6612 case HLS_GOING_UP:
6613 if (ppd->host_link_state != HLS_VERIFY_CAP)
6614 goto unexpected;
6615
6616 ret1 = set_physical_link_state(dd, PLS_LINKUP);
6617 if (ret1 != HCMD_SUCCESS) {
6618 dd_dev_err(dd,
6619 "Failed to transition to link up state, return 0x%x\n",
6620 ret1);
6621 ret = -EINVAL;
6622 break;
6623 }
6624 ppd->host_link_state = HLS_GOING_UP;
6625 break;
6626
6627 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
6628 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
6629 default:
6630 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
6631 __func__, state);
6632 ret = -EINVAL;
6633 break;
6634 }
6635
6636 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
6637 HLS_DN_DISABLE | HLS_DN_OFFLINE));
6638
6639 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
6640 ppd->neigh_link_down_reason.sma == 0) {
6641 ppd->local_link_down_reason.sma =
6642 ppd->local_link_down_reason.latest;
6643 ppd->neigh_link_down_reason.sma =
6644 ppd->neigh_link_down_reason.latest;
6645 }
6646
6647 goto done;
6648
6649unexpected:
6650 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
6651 __func__, link_state_name(ppd->host_link_state),
6652 link_state_name(state));
6653 ret = -EINVAL;
6654
6655done:
6656 mutex_unlock(&ppd->hls_lock);
6657
6658 if (event.device)
6659 ib_dispatch_event(&event);
6660
6661 return ret;
6662}
6663
6664int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
6665{
6666 u64 reg;
6667 int ret = 0;
6668
6669 switch (which) {
6670 case HFI1_IB_CFG_LIDLMC:
6671 set_lidlmc(ppd);
6672 break;
6673 case HFI1_IB_CFG_VL_HIGH_LIMIT:
6674 /*
6675 * The VL Arbitrator high limit is sent in units of 4k
6676 * bytes, while HFI stores it in units of 64 bytes.
6677 */
6678 val *= 4096/64;
6679 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
6680 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
6681 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
6682 break;
6683 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6684 /* HFI only supports POLL as the default link down state */
6685 if (val != HLS_DN_POLL)
6686 ret = -EINVAL;
6687 break;
6688 case HFI1_IB_CFG_OP_VLS:
6689 if (ppd->vls_operational != val) {
6690 ppd->vls_operational = val;
6691 if (!ppd->port)
6692 ret = -EINVAL;
6693 else
6694 ret = sdma_map_init(
6695 ppd->dd,
6696 ppd->port - 1,
6697 val,
6698 NULL);
6699 }
6700 break;
6701 /*
6702 * For link width, link width downgrade, and speed enable, always AND
6703 * the setting with what is actually supported. This has two benefits.
6704 * First, enabled can't have unsupported values, no matter what the
6705 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
6706 * "fill in with your supported value" have all the bits in the
6707 * field set, so simply ANDing with supported has the desired result.
6708 */
6709 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
6710 ppd->link_width_enabled = val & ppd->link_width_supported;
6711 break;
6712 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
6713 ppd->link_width_downgrade_enabled =
6714 val & ppd->link_width_downgrade_supported;
6715 break;
6716 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
6717 ppd->link_speed_enabled = val & ppd->link_speed_supported;
6718 break;
6719 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6720 /*
6721 * HFI does not follow IB specs, save this value
6722 * so we can report it, if asked.
6723 */
6724 ppd->overrun_threshold = val;
6725 break;
6726 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6727 /*
6728 * HFI does not follow IB specs, save this value
6729 * so we can report it, if asked.
6730 */
6731 ppd->phy_error_threshold = val;
6732 break;
6733
6734 case HFI1_IB_CFG_MTU:
6735 set_send_length(ppd);
6736 break;
6737
6738 case HFI1_IB_CFG_PKEYS:
6739 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
6740 set_partition_keys(ppd);
6741 break;
6742
6743 default:
6744 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6745 dd_dev_info(ppd->dd,
6746 "%s: which %s, val 0x%x: not implemented\n",
6747 __func__, ib_cfg_name(which), val);
6748 break;
6749 }
6750 return ret;
6751}
6752
6753/* begin functions related to vl arbitration table caching */
6754static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
6755{
6756 int i;
6757
6758 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6759 VL_ARB_LOW_PRIO_TABLE_SIZE);
6760 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6761 VL_ARB_HIGH_PRIO_TABLE_SIZE);
6762
6763 /*
6764 * Note that we always return values directly from the
6765 * 'vl_arb_cache' (and do no CSR reads) in response to a
6766 * 'Get(VLArbTable)'. This is obviously correct after a
6767 * 'Set(VLArbTable)', since the cache will then be up to
6768 * date. But it's also correct prior to any 'Set(VLArbTable)'
6769 * since then both the cache, and the relevant h/w registers
6770 * will be zeroed.
6771 */
6772
6773 for (i = 0; i < MAX_PRIO_TABLE; i++)
6774 spin_lock_init(&ppd->vl_arb_cache[i].lock);
6775}
6776
6777/*
6778 * vl_arb_lock_cache
6779 *
6780 * All other vl_arb_* functions should be called only after locking
6781 * the cache.
6782 */
6783static inline struct vl_arb_cache *
6784vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
6785{
6786 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
6787 return NULL;
6788 spin_lock(&ppd->vl_arb_cache[idx].lock);
6789 return &ppd->vl_arb_cache[idx];
6790}
6791
6792static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
6793{
6794 spin_unlock(&ppd->vl_arb_cache[idx].lock);
6795}
6796
6797static void vl_arb_get_cache(struct vl_arb_cache *cache,
6798 struct ib_vl_weight_elem *vl)
6799{
6800 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
6801}
6802
6803static void vl_arb_set_cache(struct vl_arb_cache *cache,
6804 struct ib_vl_weight_elem *vl)
6805{
6806 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6807}
6808
6809static int vl_arb_match_cache(struct vl_arb_cache *cache,
6810 struct ib_vl_weight_elem *vl)
6811{
6812 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6813}
6814/* end functions related to vl arbitration table caching */
6815
6816static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
6817 u32 size, struct ib_vl_weight_elem *vl)
6818{
6819 struct hfi1_devdata *dd = ppd->dd;
6820 u64 reg;
6821 unsigned int i, is_up = 0;
6822 int drain, ret = 0;
6823
6824 mutex_lock(&ppd->hls_lock);
6825
6826 if (ppd->host_link_state & HLS_UP)
6827 is_up = 1;
6828
6829 drain = !is_ax(dd) && is_up;
6830
6831 if (drain)
6832 /*
6833 * Before adjusting VL arbitration weights, empty per-VL
6834 * FIFOs, otherwise a packet whose VL weight is being
6835 * set to 0 could get stuck in a FIFO with no chance to
6836 * egress.
6837 */
6838 ret = stop_drain_data_vls(dd);
6839
6840 if (ret) {
6841 dd_dev_err(
6842 dd,
6843 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
6844 __func__);
6845 goto err;
6846 }
6847
6848 for (i = 0; i < size; i++, vl++) {
6849 /*
6850 * NOTE: The low priority shift and mask are used here, but
6851 * they are the same for both the low and high registers.
6852 */
6853 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
6854 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
6855 | (((u64)vl->weight
6856 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
6857 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
6858 write_csr(dd, target + (i * 8), reg);
6859 }
6860 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
6861
6862 if (drain)
6863 open_fill_data_vls(dd); /* reopen all VLs */
6864
6865err:
6866 mutex_unlock(&ppd->hls_lock);
6867
6868 return ret;
6869}
6870
6871/*
6872 * Read one credit merge VL register.
6873 */
6874static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
6875 struct vl_limit *vll)
6876{
6877 u64 reg = read_csr(dd, csr);
6878
6879 vll->dedicated = cpu_to_be16(
6880 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
6881 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
6882 vll->shared = cpu_to_be16(
6883 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
6884 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
6885}
6886
6887/*
6888 * Read the current credit merge limits.
6889 */
6890static int get_buffer_control(struct hfi1_devdata *dd,
6891 struct buffer_control *bc, u16 *overall_limit)
6892{
6893 u64 reg;
6894 int i;
6895
6896 /* not all entries are filled in */
6897 memset(bc, 0, sizeof(*bc));
6898
6899 /* OPA and HFI have a 1-1 mapping */
6900 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6901 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
6902
6903 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
6904 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
6905
6906 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6907 bc->overall_shared_limit = cpu_to_be16(
6908 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6909 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
6910 if (overall_limit)
6911 *overall_limit = (reg
6912 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6913 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
6914 return sizeof(struct buffer_control);
6915}
6916
6917static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
6918{
6919 u64 reg;
6920 int i;
6921
6922 /* each register contains 16 SC->VLnt mappings, 4 bits each */
6923 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
6924 for (i = 0; i < sizeof(u64); i++) {
6925 u8 byte = *(((u8 *)&reg) + i);
6926
6927 dp->vlnt[2 * i] = byte & 0xf;
6928 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
6929 }
6930
6931 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
6932 for (i = 0; i < sizeof(u64); i++) {
6933 u8 byte = *(((u8 *)&reg) + i);
6934
6935 dp->vlnt[16 + (2 * i)] = byte & 0xf;
6936 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
6937 }
6938 return sizeof(struct sc2vlnt);
6939}
6940
6941static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
6942 struct ib_vl_weight_elem *vl)
6943{
6944 unsigned int i;
6945
6946 for (i = 0; i < nelems; i++, vl++) {
6947 vl->vl = 0xf;
6948 vl->weight = 0;
6949 }
6950}
6951
6952static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
6953{
6954 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
6955 DC_SC_VL_VAL(15_0,
6956 0, dp->vlnt[0] & 0xf,
6957 1, dp->vlnt[1] & 0xf,
6958 2, dp->vlnt[2] & 0xf,
6959 3, dp->vlnt[3] & 0xf,
6960 4, dp->vlnt[4] & 0xf,
6961 5, dp->vlnt[5] & 0xf,
6962 6, dp->vlnt[6] & 0xf,
6963 7, dp->vlnt[7] & 0xf,
6964 8, dp->vlnt[8] & 0xf,
6965 9, dp->vlnt[9] & 0xf,
6966 10, dp->vlnt[10] & 0xf,
6967 11, dp->vlnt[11] & 0xf,
6968 12, dp->vlnt[12] & 0xf,
6969 13, dp->vlnt[13] & 0xf,
6970 14, dp->vlnt[14] & 0xf,
6971 15, dp->vlnt[15] & 0xf));
6972 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
6973 DC_SC_VL_VAL(31_16,
6974 16, dp->vlnt[16] & 0xf,
6975 17, dp->vlnt[17] & 0xf,
6976 18, dp->vlnt[18] & 0xf,
6977 19, dp->vlnt[19] & 0xf,
6978 20, dp->vlnt[20] & 0xf,
6979 21, dp->vlnt[21] & 0xf,
6980 22, dp->vlnt[22] & 0xf,
6981 23, dp->vlnt[23] & 0xf,
6982 24, dp->vlnt[24] & 0xf,
6983 25, dp->vlnt[25] & 0xf,
6984 26, dp->vlnt[26] & 0xf,
6985 27, dp->vlnt[27] & 0xf,
6986 28, dp->vlnt[28] & 0xf,
6987 29, dp->vlnt[29] & 0xf,
6988 30, dp->vlnt[30] & 0xf,
6989 31, dp->vlnt[31] & 0xf));
6990}
6991
6992static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
6993 u16 limit)
6994{
6995 if (limit != 0)
6996 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
6997 what, (int)limit, idx);
6998}
6999
7000/* change only the shared limit portion of SendCmGLobalCredit */
7001static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
7002{
7003 u64 reg;
7004
7005 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7006 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
7007 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
7008 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7009}
7010
7011/* change only the total credit limit portion of SendCmGLobalCredit */
7012static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
7013{
7014 u64 reg;
7015
7016 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7017 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
7018 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
7019 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7020}
7021
7022/* set the given per-VL shared limit */
7023static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
7024{
7025 u64 reg;
7026 u32 addr;
7027
7028 if (vl < TXE_NUM_DATA_VL)
7029 addr = SEND_CM_CREDIT_VL + (8 * vl);
7030 else
7031 addr = SEND_CM_CREDIT_VL15;
7032
7033 reg = read_csr(dd, addr);
7034 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
7035 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
7036 write_csr(dd, addr, reg);
7037}
7038
7039/* set the given per-VL dedicated limit */
7040static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
7041{
7042 u64 reg;
7043 u32 addr;
7044
7045 if (vl < TXE_NUM_DATA_VL)
7046 addr = SEND_CM_CREDIT_VL + (8 * vl);
7047 else
7048 addr = SEND_CM_CREDIT_VL15;
7049
7050 reg = read_csr(dd, addr);
7051 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
7052 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
7053 write_csr(dd, addr, reg);
7054}
7055
7056/* spin until the given per-VL status mask bits clear */
7057static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
7058 const char *which)
7059{
7060 unsigned long timeout;
7061 u64 reg;
7062
7063 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
7064 while (1) {
7065 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
7066
7067 if (reg == 0)
7068 return; /* success */
7069 if (time_after(jiffies, timeout))
7070 break; /* timed out */
7071 udelay(1);
7072 }
7073
7074 dd_dev_err(dd,
7075 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
7076 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
7077 /*
7078 * If this occurs, it is likely there was a credit loss on the link.
7079 * The only recovery from that is a link bounce.
7080 */
7081 dd_dev_err(dd,
7082 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
7083}
7084
7085/*
7086 * The number of credits on the VLs may be changed while everything
7087 * is "live", but the following algorithm must be followed due to
7088 * how the hardware is actually implemented. In particular,
7089 * Return_Credit_Status[] is the only correct status check.
7090 *
7091 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
7092 * set Global_Shared_Credit_Limit = 0
7093 * use_all_vl = 1
7094 * mask0 = all VLs that are changing either dedicated or shared limits
7095 * set Shared_Limit[mask0] = 0
7096 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
7097 * if (changing any dedicated limit)
7098 * mask1 = all VLs that are lowering dedicated limits
7099 * lower Dedicated_Limit[mask1]
7100 * spin until Return_Credit_Status[mask1] == 0
7101 * raise Dedicated_Limits
7102 * raise Shared_Limits
7103 * raise Global_Shared_Credit_Limit
7104 *
7105 * lower = if the new limit is lower, set the limit to the new value
7106 * raise = if the new limit is higher than the current value (may be changed
7107 * earlier in the algorithm), set the new limit to the new value
7108 */
7109static int set_buffer_control(struct hfi1_devdata *dd,
7110 struct buffer_control *new_bc)
7111{
7112 u64 changing_mask, ld_mask, stat_mask;
7113 int change_count;
7114 int i, use_all_mask;
7115 int this_shared_changing;
7116 /*
7117 * A0: add the variable any_shared_limit_changing below and in the
7118 * algorithm above. If removing A0 support, it can be removed.
7119 */
7120 int any_shared_limit_changing;
7121 struct buffer_control cur_bc;
7122 u8 changing[OPA_MAX_VLS];
7123 u8 lowering_dedicated[OPA_MAX_VLS];
7124 u16 cur_total;
7125 u32 new_total = 0;
7126 const u64 all_mask =
7127 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
7128 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
7129 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
7130 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
7131 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
7132 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
7133 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
7134 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
7135 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
7136
7137#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
7138#define NUM_USABLE_VLS 16 /* look at VL15 and less */
7139
7140
7141 /* find the new total credits, do sanity check on unused VLs */
7142 for (i = 0; i < OPA_MAX_VLS; i++) {
7143 if (valid_vl(i)) {
7144 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
7145 continue;
7146 }
7147 nonzero_msg(dd, i, "dedicated",
7148 be16_to_cpu(new_bc->vl[i].dedicated));
7149 nonzero_msg(dd, i, "shared",
7150 be16_to_cpu(new_bc->vl[i].shared));
7151 new_bc->vl[i].dedicated = 0;
7152 new_bc->vl[i].shared = 0;
7153 }
7154 new_total += be16_to_cpu(new_bc->overall_shared_limit);
7155 if (new_total > (u32)dd->link_credits)
7156 return -EINVAL;
7157 /* fetch the current values */
7158 get_buffer_control(dd, &cur_bc, &cur_total);
7159
7160 /*
7161 * Create the masks we will use.
7162 */
7163 memset(changing, 0, sizeof(changing));
7164 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
7165 /* NOTE: Assumes that the individual VL bits are adjacent and in
7166 increasing order */
7167 stat_mask =
7168 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
7169 changing_mask = 0;
7170 ld_mask = 0;
7171 change_count = 0;
7172 any_shared_limit_changing = 0;
7173 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
7174 if (!valid_vl(i))
7175 continue;
7176 this_shared_changing = new_bc->vl[i].shared
7177 != cur_bc.vl[i].shared;
7178 if (this_shared_changing)
7179 any_shared_limit_changing = 1;
7180 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
7181 || this_shared_changing) {
7182 changing[i] = 1;
7183 changing_mask |= stat_mask;
7184 change_count++;
7185 }
7186 if (be16_to_cpu(new_bc->vl[i].dedicated) <
7187 be16_to_cpu(cur_bc.vl[i].dedicated)) {
7188 lowering_dedicated[i] = 1;
7189 ld_mask |= stat_mask;
7190 }
7191 }
7192
7193 /* bracket the credit change with a total adjustment */
7194 if (new_total > cur_total)
7195 set_global_limit(dd, new_total);
7196
7197 /*
7198 * Start the credit change algorithm.
7199 */
7200 use_all_mask = 0;
7201 if ((be16_to_cpu(new_bc->overall_shared_limit) <
7202 be16_to_cpu(cur_bc.overall_shared_limit))
7203 || (is_a0(dd) && any_shared_limit_changing)) {
7204 set_global_shared(dd, 0);
7205 cur_bc.overall_shared_limit = 0;
7206 use_all_mask = 1;
7207 }
7208
7209 for (i = 0; i < NUM_USABLE_VLS; i++) {
7210 if (!valid_vl(i))
7211 continue;
7212
7213 if (changing[i]) {
7214 set_vl_shared(dd, i, 0);
7215 cur_bc.vl[i].shared = 0;
7216 }
7217 }
7218
7219 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
7220 "shared");
7221
7222 if (change_count > 0) {
7223 for (i = 0; i < NUM_USABLE_VLS; i++) {
7224 if (!valid_vl(i))
7225 continue;
7226
7227 if (lowering_dedicated[i]) {
7228 set_vl_dedicated(dd, i,
7229 be16_to_cpu(new_bc->vl[i].dedicated));
7230 cur_bc.vl[i].dedicated =
7231 new_bc->vl[i].dedicated;
7232 }
7233 }
7234
7235 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
7236
7237 /* now raise all dedicated that are going up */
7238 for (i = 0; i < NUM_USABLE_VLS; i++) {
7239 if (!valid_vl(i))
7240 continue;
7241
7242 if (be16_to_cpu(new_bc->vl[i].dedicated) >
7243 be16_to_cpu(cur_bc.vl[i].dedicated))
7244 set_vl_dedicated(dd, i,
7245 be16_to_cpu(new_bc->vl[i].dedicated));
7246 }
7247 }
7248
7249 /* next raise all shared that are going up */
7250 for (i = 0; i < NUM_USABLE_VLS; i++) {
7251 if (!valid_vl(i))
7252 continue;
7253
7254 if (be16_to_cpu(new_bc->vl[i].shared) >
7255 be16_to_cpu(cur_bc.vl[i].shared))
7256 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
7257 }
7258
7259 /* finally raise the global shared */
7260 if (be16_to_cpu(new_bc->overall_shared_limit) >
7261 be16_to_cpu(cur_bc.overall_shared_limit))
7262 set_global_shared(dd,
7263 be16_to_cpu(new_bc->overall_shared_limit));
7264
7265 /* bracket the credit change with a total adjustment */
7266 if (new_total < cur_total)
7267 set_global_limit(dd, new_total);
7268 return 0;
7269}
7270
7271/*
7272 * Read the given fabric manager table. Return the size of the
7273 * table (in bytes) on success, and a negative error code on
7274 * failure.
7275 */
7276int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
7277
7278{
7279 int size;
7280 struct vl_arb_cache *vlc;
7281
7282 switch (which) {
7283 case FM_TBL_VL_HIGH_ARB:
7284 size = 256;
7285 /*
7286 * OPA specifies 128 elements (of 2 bytes each), though
7287 * HFI supports only 16 elements in h/w.
7288 */
7289 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7290 vl_arb_get_cache(vlc, t);
7291 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7292 break;
7293 case FM_TBL_VL_LOW_ARB:
7294 size = 256;
7295 /*
7296 * OPA specifies 128 elements (of 2 bytes each), though
7297 * HFI supports only 16 elements in h/w.
7298 */
7299 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7300 vl_arb_get_cache(vlc, t);
7301 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7302 break;
7303 case FM_TBL_BUFFER_CONTROL:
7304 size = get_buffer_control(ppd->dd, t, NULL);
7305 break;
7306 case FM_TBL_SC2VLNT:
7307 size = get_sc2vlnt(ppd->dd, t);
7308 break;
7309 case FM_TBL_VL_PREEMPT_ELEMS:
7310 size = 256;
7311 /* OPA specifies 128 elements, of 2 bytes each */
7312 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
7313 break;
7314 case FM_TBL_VL_PREEMPT_MATRIX:
7315 size = 256;
7316 /*
7317 * OPA specifies that this is the same size as the VL
7318 * arbitration tables (i.e., 256 bytes).
7319 */
7320 break;
7321 default:
7322 return -EINVAL;
7323 }
7324 return size;
7325}
7326
7327/*
7328 * Write the given fabric manager table.
7329 */
7330int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
7331{
7332 int ret = 0;
7333 struct vl_arb_cache *vlc;
7334
7335 switch (which) {
7336 case FM_TBL_VL_HIGH_ARB:
7337 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7338 if (vl_arb_match_cache(vlc, t)) {
7339 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7340 break;
7341 }
7342 vl_arb_set_cache(vlc, t);
7343 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7344 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
7345 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
7346 break;
7347 case FM_TBL_VL_LOW_ARB:
7348 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7349 if (vl_arb_match_cache(vlc, t)) {
7350 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7351 break;
7352 }
7353 vl_arb_set_cache(vlc, t);
7354 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7355 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
7356 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
7357 break;
7358 case FM_TBL_BUFFER_CONTROL:
7359 ret = set_buffer_control(ppd->dd, t);
7360 break;
7361 case FM_TBL_SC2VLNT:
7362 set_sc2vlnt(ppd->dd, t);
7363 break;
7364 default:
7365 ret = -EINVAL;
7366 }
7367 return ret;
7368}
7369
7370/*
7371 * Disable all data VLs.
7372 *
7373 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
7374 */
7375static int disable_data_vls(struct hfi1_devdata *dd)
7376{
7377 if (is_a0(dd))
7378 return 1;
7379
7380 pio_send_control(dd, PSC_DATA_VL_DISABLE);
7381
7382 return 0;
7383}
7384
7385/*
7386 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
7387 * Just re-enables all data VLs (the "fill" part happens
7388 * automatically - the name was chosen for symmetry with
7389 * stop_drain_data_vls()).
7390 *
7391 * Return 0 if successful, non-zero if the VLs cannot be enabled.
7392 */
7393int open_fill_data_vls(struct hfi1_devdata *dd)
7394{
7395 if (is_a0(dd))
7396 return 1;
7397
7398 pio_send_control(dd, PSC_DATA_VL_ENABLE);
7399
7400 return 0;
7401}
7402
7403/*
7404 * drain_data_vls() - assumes that disable_data_vls() has been called,
7405 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
7406 * engines to drop to 0.
7407 */
7408static void drain_data_vls(struct hfi1_devdata *dd)
7409{
7410 sc_wait(dd);
7411 sdma_wait(dd);
7412 pause_for_credit_return(dd);
7413}
7414
7415/*
7416 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
7417 *
7418 * Use open_fill_data_vls() to resume using data VLs. This pair is
7419 * meant to be used like this:
7420 *
7421 * stop_drain_data_vls(dd);
7422 * // do things with per-VL resources
7423 * open_fill_data_vls(dd);
7424 */
7425int stop_drain_data_vls(struct hfi1_devdata *dd)
7426{
7427 int ret;
7428
7429 ret = disable_data_vls(dd);
7430 if (ret == 0)
7431 drain_data_vls(dd);
7432
7433 return ret;
7434}
7435
7436/*
7437 * Convert a nanosecond time to a cclock count. No matter how slow
7438 * the cclock, a non-zero ns will always have a non-zero result.
7439 */
7440u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
7441{
7442 u32 cclocks;
7443
7444 if (dd->icode == ICODE_FPGA_EMULATION)
7445 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
7446 else /* simulation pretends to be ASIC */
7447 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
7448 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
7449 cclocks = 1;
7450 return cclocks;
7451}
7452
7453/*
7454 * Convert a cclock count to nanoseconds. Not matter how slow
7455 * the cclock, a non-zero cclocks will always have a non-zero result.
7456 */
7457u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
7458{
7459 u32 ns;
7460
7461 if (dd->icode == ICODE_FPGA_EMULATION)
7462 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
7463 else /* simulation pretends to be ASIC */
7464 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
7465 if (cclocks && !ns)
7466 ns = 1;
7467 return ns;
7468}
7469
7470/*
7471 * Dynamically adjust the receive interrupt timeout for a context based on
7472 * incoming packet rate.
7473 *
7474 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
7475 */
7476static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
7477{
7478 struct hfi1_devdata *dd = rcd->dd;
7479 u32 timeout = rcd->rcvavail_timeout;
7480
7481 /*
7482 * This algorithm doubles or halves the timeout depending on whether
7483 * the number of packets received in this interrupt were less than or
7484 * greater equal the interrupt count.
7485 *
7486 * The calculations below do not allow a steady state to be achieved.
7487 * Only at the endpoints it is possible to have an unchanging
7488 * timeout.
7489 */
7490 if (npkts < rcv_intr_count) {
7491 /*
7492 * Not enough packets arrived before the timeout, adjust
7493 * timeout downward.
7494 */
7495 if (timeout < 2) /* already at minimum? */
7496 return;
7497 timeout >>= 1;
7498 } else {
7499 /*
7500 * More than enough packets arrived before the timeout, adjust
7501 * timeout upward.
7502 */
7503 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
7504 return;
7505 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
7506 }
7507
7508 rcd->rcvavail_timeout = timeout;
7509 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
7510 been verified to be in range */
7511 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
7512 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7513}
7514
7515void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
7516 u32 intr_adjust, u32 npkts)
7517{
7518 struct hfi1_devdata *dd = rcd->dd;
7519 u64 reg;
7520 u32 ctxt = rcd->ctxt;
7521
7522 /*
7523 * Need to write timeout register before updating RcvHdrHead to ensure
7524 * that a new value is used when the HW decides to restart counting.
7525 */
7526 if (intr_adjust)
7527 adjust_rcv_timeout(rcd, npkts);
7528 if (updegr) {
7529 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
7530 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
7531 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
7532 }
7533 mmiowb();
7534 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
7535 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
7536 << RCV_HDR_HEAD_HEAD_SHIFT);
7537 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7538 mmiowb();
7539}
7540
7541u32 hdrqempty(struct hfi1_ctxtdata *rcd)
7542{
7543 u32 head, tail;
7544
7545 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
7546 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
7547
7548 if (rcd->rcvhdrtail_kvaddr)
7549 tail = get_rcvhdrtail(rcd);
7550 else
7551 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
7552
7553 return head == tail;
7554}
7555
7556/*
7557 * Context Control and Receive Array encoding for buffer size:
7558 * 0x0 invalid
7559 * 0x1 4 KB
7560 * 0x2 8 KB
7561 * 0x3 16 KB
7562 * 0x4 32 KB
7563 * 0x5 64 KB
7564 * 0x6 128 KB
7565 * 0x7 256 KB
7566 * 0x8 512 KB (Receive Array only)
7567 * 0x9 1 MB (Receive Array only)
7568 * 0xa 2 MB (Receive Array only)
7569 *
7570 * 0xB-0xF - reserved (Receive Array only)
7571 *
7572 *
7573 * This routine assumes that the value has already been sanity checked.
7574 */
7575static u32 encoded_size(u32 size)
7576{
7577 switch (size) {
7578 case 4*1024: return 0x1;
7579 case 8*1024: return 0x2;
7580 case 16*1024: return 0x3;
7581 case 32*1024: return 0x4;
7582 case 64*1024: return 0x5;
7583 case 128*1024: return 0x6;
7584 case 256*1024: return 0x7;
7585 case 512*1024: return 0x8;
7586 case 1*1024*1024: return 0x9;
7587 case 2*1024*1024: return 0xa;
7588 }
7589 return 0x1; /* if invalid, go with the minimum size */
7590}
7591
7592void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
7593{
7594 struct hfi1_ctxtdata *rcd;
7595 u64 rcvctrl, reg;
7596 int did_enable = 0;
7597
7598 rcd = dd->rcd[ctxt];
7599 if (!rcd)
7600 return;
7601
7602 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
7603
7604 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
7605 /* if the context already enabled, don't do the extra steps */
7606 if ((op & HFI1_RCVCTRL_CTXT_ENB)
7607 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
7608 /* reset the tail and hdr addresses, and sequence count */
7609 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
7610 rcd->rcvhdrq_phys);
7611 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
7612 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
7613 rcd->rcvhdrqtailaddr_phys);
7614 rcd->seq_cnt = 1;
7615
7616 /* reset the cached receive header queue head value */
7617 rcd->head = 0;
7618
7619 /*
7620 * Zero the receive header queue so we don't get false
7621 * positives when checking the sequence number. The
7622 * sequence numbers could land exactly on the same spot.
7623 * E.g. a rcd restart before the receive header wrapped.
7624 */
7625 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
7626
7627 /* starting timeout */
7628 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
7629
7630 /* enable the context */
7631 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
7632
7633 /* clean the egr buffer size first */
7634 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7635 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
7636 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
7637 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
7638
7639 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
7640 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
7641 did_enable = 1;
7642
7643 /* zero RcvEgrIndexHead */
7644 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
7645
7646 /* set eager count and base index */
7647 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
7648 & RCV_EGR_CTRL_EGR_CNT_MASK)
7649 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
7650 (((rcd->eager_base >> RCV_SHIFT)
7651 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
7652 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
7653 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
7654
7655 /*
7656 * Set TID (expected) count and base index.
7657 * rcd->expected_count is set to individual RcvArray entries,
7658 * not pairs, and the CSR takes a pair-count in groups of
7659 * four, so divide by 8.
7660 */
7661 reg = (((rcd->expected_count >> RCV_SHIFT)
7662 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
7663 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
7664 (((rcd->expected_base >> RCV_SHIFT)
7665 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
7666 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
7667 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
7668 if (ctxt == VL15CTXT)
7669 write_csr(dd, RCV_VL15, VL15CTXT);
7670 }
7671 if (op & HFI1_RCVCTRL_CTXT_DIS) {
7672 write_csr(dd, RCV_VL15, 0);
7673 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
7674 }
7675 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
7676 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7677 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
7678 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7679 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
7680 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7681 if (op & HFI1_RCVCTRL_TAILUPD_DIS)
7682 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7683 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
7684 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7685 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
7686 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7687 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
7688 /* In one-packet-per-eager mode, the size comes from
7689 the RcvArray entry. */
7690 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7691 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7692 }
7693 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
7694 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7695 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
7696 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7697 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
7698 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7699 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
7700 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7701 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
7702 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7703 rcd->rcvctrl = rcvctrl;
7704 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
7705 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
7706
7707 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
7708 if (did_enable
7709 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
7710 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7711 if (reg != 0) {
7712 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
7713 ctxt, reg);
7714 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7715 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
7716 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
7717 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7718 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7719 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
7720 ctxt, reg, reg == 0 ? "not" : "still");
7721 }
7722 }
7723
7724 if (did_enable) {
7725 /*
7726 * The interrupt timeout and count must be set after
7727 * the context is enabled to take effect.
7728 */
7729 /* set interrupt timeout */
7730 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
7731 (u64)rcd->rcvavail_timeout <<
7732 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7733
7734 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
7735 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
7736 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7737 }
7738
7739 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
7740 /*
7741 * If the context has been disabled and the Tail Update has
7742 * been cleared, clear the RCV_HDR_TAIL_ADDR CSR so
7743 * it doesn't contain an address that is invalid.
7744 */
7745 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 0);
7746}
7747
7748u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
7749 u64 **cntrp)
7750{
7751 int ret;
7752 u64 val = 0;
7753
7754 if (namep) {
7755 ret = dd->cntrnameslen;
7756 if (pos != 0) {
7757 dd_dev_err(dd, "read_cntrs does not support indexing");
7758 return 0;
7759 }
7760 *namep = dd->cntrnames;
7761 } else {
7762 const struct cntr_entry *entry;
7763 int i, j;
7764
7765 ret = (dd->ndevcntrs) * sizeof(u64);
7766 if (pos != 0) {
7767 dd_dev_err(dd, "read_cntrs does not support indexing");
7768 return 0;
7769 }
7770
7771 /* Get the start of the block of counters */
7772 *cntrp = dd->cntrs;
7773
7774 /*
7775 * Now go and fill in each counter in the block.
7776 */
7777 for (i = 0; i < DEV_CNTR_LAST; i++) {
7778 entry = &dev_cntrs[i];
7779 hfi1_cdbg(CNTR, "reading %s", entry->name);
7780 if (entry->flags & CNTR_DISABLED) {
7781 /* Nothing */
7782 hfi1_cdbg(CNTR, "\tDisabled\n");
7783 } else {
7784 if (entry->flags & CNTR_VL) {
7785 hfi1_cdbg(CNTR, "\tPer VL\n");
7786 for (j = 0; j < C_VL_COUNT; j++) {
7787 val = entry->rw_cntr(entry,
7788 dd, j,
7789 CNTR_MODE_R,
7790 0);
7791 hfi1_cdbg(
7792 CNTR,
7793 "\t\tRead 0x%llx for %d\n",
7794 val, j);
7795 dd->cntrs[entry->offset + j] =
7796 val;
7797 }
7798 } else {
7799 val = entry->rw_cntr(entry, dd,
7800 CNTR_INVALID_VL,
7801 CNTR_MODE_R, 0);
7802 dd->cntrs[entry->offset] = val;
7803 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7804 }
7805 }
7806 }
7807 }
7808 return ret;
7809}
7810
7811/*
7812 * Used by sysfs to create files for hfi stats to read
7813 */
7814u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
7815 char **namep, u64 **cntrp)
7816{
7817 int ret;
7818 u64 val = 0;
7819
7820 if (namep) {
7821 ret = dd->portcntrnameslen;
7822 if (pos != 0) {
7823 dd_dev_err(dd, "index not supported");
7824 return 0;
7825 }
7826 *namep = dd->portcntrnames;
7827 } else {
7828 const struct cntr_entry *entry;
7829 struct hfi1_pportdata *ppd;
7830 int i, j;
7831
7832 ret = (dd->nportcntrs) * sizeof(u64);
7833 if (pos != 0) {
7834 dd_dev_err(dd, "indexing not supported");
7835 return 0;
7836 }
7837 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
7838 *cntrp = ppd->cntrs;
7839
7840 for (i = 0; i < PORT_CNTR_LAST; i++) {
7841 entry = &port_cntrs[i];
7842 hfi1_cdbg(CNTR, "reading %s", entry->name);
7843 if (entry->flags & CNTR_DISABLED) {
7844 /* Nothing */
7845 hfi1_cdbg(CNTR, "\tDisabled\n");
7846 continue;
7847 }
7848
7849 if (entry->flags & CNTR_VL) {
7850 hfi1_cdbg(CNTR, "\tPer VL");
7851 for (j = 0; j < C_VL_COUNT; j++) {
7852 val = entry->rw_cntr(entry, ppd, j,
7853 CNTR_MODE_R,
7854 0);
7855 hfi1_cdbg(
7856 CNTR,
7857 "\t\tRead 0x%llx for %d",
7858 val, j);
7859 ppd->cntrs[entry->offset + j] = val;
7860 }
7861 } else {
7862 val = entry->rw_cntr(entry, ppd,
7863 CNTR_INVALID_VL,
7864 CNTR_MODE_R,
7865 0);
7866 ppd->cntrs[entry->offset] = val;
7867 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7868 }
7869 }
7870 }
7871 return ret;
7872}
7873
7874static void free_cntrs(struct hfi1_devdata *dd)
7875{
7876 struct hfi1_pportdata *ppd;
7877 int i;
7878
7879 if (dd->synth_stats_timer.data)
7880 del_timer_sync(&dd->synth_stats_timer);
7881 dd->synth_stats_timer.data = 0;
7882 ppd = (struct hfi1_pportdata *)(dd + 1);
7883 for (i = 0; i < dd->num_pports; i++, ppd++) {
7884 kfree(ppd->cntrs);
7885 kfree(ppd->scntrs);
7886 free_percpu(ppd->ibport_data.rc_acks);
7887 free_percpu(ppd->ibport_data.rc_qacks);
7888 free_percpu(ppd->ibport_data.rc_delayed_comp);
7889 ppd->cntrs = NULL;
7890 ppd->scntrs = NULL;
7891 ppd->ibport_data.rc_acks = NULL;
7892 ppd->ibport_data.rc_qacks = NULL;
7893 ppd->ibport_data.rc_delayed_comp = NULL;
7894 }
7895 kfree(dd->portcntrnames);
7896 dd->portcntrnames = NULL;
7897 kfree(dd->cntrs);
7898 dd->cntrs = NULL;
7899 kfree(dd->scntrs);
7900 dd->scntrs = NULL;
7901 kfree(dd->cntrnames);
7902 dd->cntrnames = NULL;
7903}
7904
7905#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
7906#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
7907
7908static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
7909 u64 *psval, void *context, int vl)
7910{
7911 u64 val;
7912 u64 sval = *psval;
7913
7914 if (entry->flags & CNTR_DISABLED) {
7915 dd_dev_err(dd, "Counter %s not enabled", entry->name);
7916 return 0;
7917 }
7918
7919 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
7920
7921 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
7922
7923 /* If its a synthetic counter there is more work we need to do */
7924 if (entry->flags & CNTR_SYNTH) {
7925 if (sval == CNTR_MAX) {
7926 /* No need to read already saturated */
7927 return CNTR_MAX;
7928 }
7929
7930 if (entry->flags & CNTR_32BIT) {
7931 /* 32bit counters can wrap multiple times */
7932 u64 upper = sval >> 32;
7933 u64 lower = (sval << 32) >> 32;
7934
7935 if (lower > val) { /* hw wrapped */
7936 if (upper == CNTR_32BIT_MAX)
7937 val = CNTR_MAX;
7938 else
7939 upper++;
7940 }
7941
7942 if (val != CNTR_MAX)
7943 val = (upper << 32) | val;
7944
7945 } else {
7946 /* If we rolled we are saturated */
7947 if ((val < sval) || (val > CNTR_MAX))
7948 val = CNTR_MAX;
7949 }
7950 }
7951
7952 *psval = val;
7953
7954 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
7955
7956 return val;
7957}
7958
7959static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
7960 struct cntr_entry *entry,
7961 u64 *psval, void *context, int vl, u64 data)
7962{
7963 u64 val;
7964
7965 if (entry->flags & CNTR_DISABLED) {
7966 dd_dev_err(dd, "Counter %s not enabled", entry->name);
7967 return 0;
7968 }
7969
7970 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
7971
7972 if (entry->flags & CNTR_SYNTH) {
7973 *psval = data;
7974 if (entry->flags & CNTR_32BIT) {
7975 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
7976 (data << 32) >> 32);
7977 val = data; /* return the full 64bit value */
7978 } else {
7979 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
7980 data);
7981 }
7982 } else {
7983 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
7984 }
7985
7986 *psval = val;
7987
7988 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
7989
7990 return val;
7991}
7992
7993u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
7994{
7995 struct cntr_entry *entry;
7996 u64 *sval;
7997
7998 entry = &dev_cntrs[index];
7999 sval = dd->scntrs + entry->offset;
8000
8001 if (vl != CNTR_INVALID_VL)
8002 sval += vl;
8003
8004 return read_dev_port_cntr(dd, entry, sval, dd, vl);
8005}
8006
8007u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
8008{
8009 struct cntr_entry *entry;
8010 u64 *sval;
8011
8012 entry = &dev_cntrs[index];
8013 sval = dd->scntrs + entry->offset;
8014
8015 if (vl != CNTR_INVALID_VL)
8016 sval += vl;
8017
8018 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
8019}
8020
8021u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
8022{
8023 struct cntr_entry *entry;
8024 u64 *sval;
8025
8026 entry = &port_cntrs[index];
8027 sval = ppd->scntrs + entry->offset;
8028
8029 if (vl != CNTR_INVALID_VL)
8030 sval += vl;
8031
8032 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8033 (index <= C_RCV_HDR_OVF_LAST)) {
8034 /* We do not want to bother for disabled contexts */
8035 return 0;
8036 }
8037
8038 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
8039}
8040
8041u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
8042{
8043 struct cntr_entry *entry;
8044 u64 *sval;
8045
8046 entry = &port_cntrs[index];
8047 sval = ppd->scntrs + entry->offset;
8048
8049 if (vl != CNTR_INVALID_VL)
8050 sval += vl;
8051
8052 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8053 (index <= C_RCV_HDR_OVF_LAST)) {
8054 /* We do not want to bother for disabled contexts */
8055 return 0;
8056 }
8057
8058 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
8059}
8060
8061static void update_synth_timer(unsigned long opaque)
8062{
8063 u64 cur_tx;
8064 u64 cur_rx;
8065 u64 total_flits;
8066 u8 update = 0;
8067 int i, j, vl;
8068 struct hfi1_pportdata *ppd;
8069 struct cntr_entry *entry;
8070
8071 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
8072
8073 /*
8074 * Rather than keep beating on the CSRs pick a minimal set that we can
8075 * check to watch for potential roll over. We can do this by looking at
8076 * the number of flits sent/recv. If the total flits exceeds 32bits then
8077 * we have to iterate all the counters and update.
8078 */
8079 entry = &dev_cntrs[C_DC_RCV_FLITS];
8080 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8081
8082 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8083 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8084
8085 hfi1_cdbg(
8086 CNTR,
8087 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
8088 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
8089
8090 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
8091 /*
8092 * May not be strictly necessary to update but it won't hurt and
8093 * simplifies the logic here.
8094 */
8095 update = 1;
8096 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
8097 dd->unit);
8098 } else {
8099 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
8100 hfi1_cdbg(CNTR,
8101 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
8102 total_flits, (u64)CNTR_32BIT_MAX);
8103 if (total_flits >= CNTR_32BIT_MAX) {
8104 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
8105 dd->unit);
8106 update = 1;
8107 }
8108 }
8109
8110 if (update) {
8111 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
8112 for (i = 0; i < DEV_CNTR_LAST; i++) {
8113 entry = &dev_cntrs[i];
8114 if (entry->flags & CNTR_VL) {
8115 for (vl = 0; vl < C_VL_COUNT; vl++)
8116 read_dev_cntr(dd, i, vl);
8117 } else {
8118 read_dev_cntr(dd, i, CNTR_INVALID_VL);
8119 }
8120 }
8121 ppd = (struct hfi1_pportdata *)(dd + 1);
8122 for (i = 0; i < dd->num_pports; i++, ppd++) {
8123 for (j = 0; j < PORT_CNTR_LAST; j++) {
8124 entry = &port_cntrs[j];
8125 if (entry->flags & CNTR_VL) {
8126 for (vl = 0; vl < C_VL_COUNT; vl++)
8127 read_port_cntr(ppd, j, vl);
8128 } else {
8129 read_port_cntr(ppd, j, CNTR_INVALID_VL);
8130 }
8131 }
8132 }
8133
8134 /*
8135 * We want the value in the register. The goal is to keep track
8136 * of the number of "ticks" not the counter value. In other
8137 * words if the register rolls we want to notice it and go ahead
8138 * and force an update.
8139 */
8140 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8141 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8142 CNTR_MODE_R, 0);
8143
8144 entry = &dev_cntrs[C_DC_RCV_FLITS];
8145 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8146 CNTR_MODE_R, 0);
8147
8148 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
8149 dd->unit, dd->last_tx, dd->last_rx);
8150
8151 } else {
8152 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
8153 }
8154
8155mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8156}
8157
8158#define C_MAX_NAME 13 /* 12 chars + one for /0 */
8159static int init_cntrs(struct hfi1_devdata *dd)
8160{
8161 int i, rcv_ctxts, index, j;
8162 size_t sz;
8163 char *p;
8164 char name[C_MAX_NAME];
8165 struct hfi1_pportdata *ppd;
8166
8167 /* set up the stats timer; the add_timer is done at the end */
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05308168 setup_timer(&dd->synth_stats_timer, update_synth_timer,
8169 (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008170
8171 /***********************/
8172 /* per device counters */
8173 /***********************/
8174
8175 /* size names and determine how many we have*/
8176 dd->ndevcntrs = 0;
8177 sz = 0;
8178 index = 0;
8179
8180 for (i = 0; i < DEV_CNTR_LAST; i++) {
8181 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
8182 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8183 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
8184 continue;
8185 }
8186
8187 if (dev_cntrs[i].flags & CNTR_VL) {
8188 hfi1_dbg_early("\tProcessing VL cntr\n");
8189 dev_cntrs[i].offset = index;
8190 for (j = 0; j < C_VL_COUNT; j++) {
8191 memset(name, '\0', C_MAX_NAME);
8192 snprintf(name, C_MAX_NAME, "%s%d",
8193 dev_cntrs[i].name,
8194 vl_from_idx(j));
8195 sz += strlen(name);
8196 sz++;
8197 hfi1_dbg_early("\t\t%s\n", name);
8198 dd->ndevcntrs++;
8199 index++;
8200 }
8201 } else {
8202 /* +1 for newline */
8203 sz += strlen(dev_cntrs[i].name) + 1;
8204 dd->ndevcntrs++;
8205 dev_cntrs[i].offset = index;
8206 index++;
8207 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
8208 }
8209 }
8210
8211 /* allocate space for the counter values */
8212 dd->cntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8213 if (!dd->cntrs)
8214 goto bail;
8215
8216 dd->scntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8217 if (!dd->scntrs)
8218 goto bail;
8219
8220
8221 /* allocate space for the counter names */
8222 dd->cntrnameslen = sz;
8223 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
8224 if (!dd->cntrnames)
8225 goto bail;
8226
8227 /* fill in the names */
8228 for (p = dd->cntrnames, i = 0, index = 0; i < DEV_CNTR_LAST; i++) {
8229 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8230 /* Nothing */
8231 } else {
8232 if (dev_cntrs[i].flags & CNTR_VL) {
8233 for (j = 0; j < C_VL_COUNT; j++) {
8234 memset(name, '\0', C_MAX_NAME);
8235 snprintf(name, C_MAX_NAME, "%s%d",
8236 dev_cntrs[i].name,
8237 vl_from_idx(j));
8238 memcpy(p, name, strlen(name));
8239 p += strlen(name);
8240 *p++ = '\n';
8241 }
8242 } else {
8243 memcpy(p, dev_cntrs[i].name,
8244 strlen(dev_cntrs[i].name));
8245 p += strlen(dev_cntrs[i].name);
8246 *p++ = '\n';
8247 }
8248 index++;
8249 }
8250 }
8251
8252 /*********************/
8253 /* per port counters */
8254 /*********************/
8255
8256 /*
8257 * Go through the counters for the overflows and disable the ones we
8258 * don't need. This varies based on platform so we need to do it
8259 * dynamically here.
8260 */
8261 rcv_ctxts = dd->num_rcv_contexts;
8262 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
8263 i <= C_RCV_HDR_OVF_LAST; i++) {
8264 port_cntrs[i].flags |= CNTR_DISABLED;
8265 }
8266
8267 /* size port counter names and determine how many we have*/
8268 sz = 0;
8269 dd->nportcntrs = 0;
8270 for (i = 0; i < PORT_CNTR_LAST; i++) {
8271 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
8272 if (port_cntrs[i].flags & CNTR_DISABLED) {
8273 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
8274 continue;
8275 }
8276
8277 if (port_cntrs[i].flags & CNTR_VL) {
8278 hfi1_dbg_early("\tProcessing VL cntr\n");
8279 port_cntrs[i].offset = dd->nportcntrs;
8280 for (j = 0; j < C_VL_COUNT; j++) {
8281 memset(name, '\0', C_MAX_NAME);
8282 snprintf(name, C_MAX_NAME, "%s%d",
8283 port_cntrs[i].name,
8284 vl_from_idx(j));
8285 sz += strlen(name);
8286 sz++;
8287 hfi1_dbg_early("\t\t%s\n", name);
8288 dd->nportcntrs++;
8289 }
8290 } else {
8291 /* +1 for newline */
8292 sz += strlen(port_cntrs[i].name) + 1;
8293 port_cntrs[i].offset = dd->nportcntrs;
8294 dd->nportcntrs++;
8295 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
8296 }
8297 }
8298
8299 /* allocate space for the counter names */
8300 dd->portcntrnameslen = sz;
8301 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
8302 if (!dd->portcntrnames)
8303 goto bail;
8304
8305 /* fill in port cntr names */
8306 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
8307 if (port_cntrs[i].flags & CNTR_DISABLED)
8308 continue;
8309
8310 if (port_cntrs[i].flags & CNTR_VL) {
8311 for (j = 0; j < C_VL_COUNT; j++) {
8312 memset(name, '\0', C_MAX_NAME);
8313 snprintf(name, C_MAX_NAME, "%s%d",
8314 port_cntrs[i].name,
8315 vl_from_idx(j));
8316 memcpy(p, name, strlen(name));
8317 p += strlen(name);
8318 *p++ = '\n';
8319 }
8320 } else {
8321 memcpy(p, port_cntrs[i].name,
8322 strlen(port_cntrs[i].name));
8323 p += strlen(port_cntrs[i].name);
8324 *p++ = '\n';
8325 }
8326 }
8327
8328 /* allocate per port storage for counter values */
8329 ppd = (struct hfi1_pportdata *)(dd + 1);
8330 for (i = 0; i < dd->num_pports; i++, ppd++) {
8331 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8332 if (!ppd->cntrs)
8333 goto bail;
8334
8335 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8336 if (!ppd->scntrs)
8337 goto bail;
8338 }
8339
8340 /* CPU counters need to be allocated and zeroed */
8341 if (init_cpu_counters(dd))
8342 goto bail;
8343
8344 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8345 return 0;
8346bail:
8347 free_cntrs(dd);
8348 return -ENOMEM;
8349}
8350
8351
8352static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
8353{
8354 switch (chip_lstate) {
8355 default:
8356 dd_dev_err(dd,
8357 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
8358 chip_lstate);
8359 /* fall through */
8360 case LSTATE_DOWN:
8361 return IB_PORT_DOWN;
8362 case LSTATE_INIT:
8363 return IB_PORT_INIT;
8364 case LSTATE_ARMED:
8365 return IB_PORT_ARMED;
8366 case LSTATE_ACTIVE:
8367 return IB_PORT_ACTIVE;
8368 }
8369}
8370
8371u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
8372{
8373 /* look at the HFI meta-states only */
8374 switch (chip_pstate & 0xf0) {
8375 default:
8376 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
8377 chip_pstate);
8378 /* fall through */
8379 case PLS_DISABLED:
8380 return IB_PORTPHYSSTATE_DISABLED;
8381 case PLS_OFFLINE:
8382 return OPA_PORTPHYSSTATE_OFFLINE;
8383 case PLS_POLLING:
8384 return IB_PORTPHYSSTATE_POLLING;
8385 case PLS_CONFIGPHY:
8386 return IB_PORTPHYSSTATE_TRAINING;
8387 case PLS_LINKUP:
8388 return IB_PORTPHYSSTATE_LINKUP;
8389 case PLS_PHYTEST:
8390 return IB_PORTPHYSSTATE_PHY_TEST;
8391 }
8392}
8393
8394/* return the OPA port logical state name */
8395const char *opa_lstate_name(u32 lstate)
8396{
8397 static const char * const port_logical_names[] = {
8398 "PORT_NOP",
8399 "PORT_DOWN",
8400 "PORT_INIT",
8401 "PORT_ARMED",
8402 "PORT_ACTIVE",
8403 "PORT_ACTIVE_DEFER",
8404 };
8405 if (lstate < ARRAY_SIZE(port_logical_names))
8406 return port_logical_names[lstate];
8407 return "unknown";
8408}
8409
8410/* return the OPA port physical state name */
8411const char *opa_pstate_name(u32 pstate)
8412{
8413 static const char * const port_physical_names[] = {
8414 "PHYS_NOP",
8415 "reserved1",
8416 "PHYS_POLL",
8417 "PHYS_DISABLED",
8418 "PHYS_TRAINING",
8419 "PHYS_LINKUP",
8420 "PHYS_LINK_ERR_RECOVER",
8421 "PHYS_PHY_TEST",
8422 "reserved8",
8423 "PHYS_OFFLINE",
8424 "PHYS_GANGED",
8425 "PHYS_TEST",
8426 };
8427 if (pstate < ARRAY_SIZE(port_physical_names))
8428 return port_physical_names[pstate];
8429 return "unknown";
8430}
8431
8432/*
8433 * Read the hardware link state and set the driver's cached value of it.
8434 * Return the (new) current value.
8435 */
8436u32 get_logical_state(struct hfi1_pportdata *ppd)
8437{
8438 u32 new_state;
8439
8440 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
8441 if (new_state != ppd->lstate) {
8442 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
8443 opa_lstate_name(new_state), new_state);
8444 ppd->lstate = new_state;
8445 }
8446 /*
8447 * Set port status flags in the page mapped into userspace
8448 * memory. Do it here to ensure a reliable state - this is
8449 * the only function called by all state handling code.
8450 * Always set the flags due to the fact that the cache value
8451 * might have been changed explicitly outside of this
8452 * function.
8453 */
8454 if (ppd->statusp) {
8455 switch (ppd->lstate) {
8456 case IB_PORT_DOWN:
8457 case IB_PORT_INIT:
8458 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
8459 HFI1_STATUS_IB_READY);
8460 break;
8461 case IB_PORT_ARMED:
8462 *ppd->statusp |= HFI1_STATUS_IB_CONF;
8463 break;
8464 case IB_PORT_ACTIVE:
8465 *ppd->statusp |= HFI1_STATUS_IB_READY;
8466 break;
8467 }
8468 }
8469 return ppd->lstate;
8470}
8471
8472/**
8473 * wait_logical_linkstate - wait for an IB link state change to occur
8474 * @ppd: port device
8475 * @state: the state to wait for
8476 * @msecs: the number of milliseconds to wait
8477 *
8478 * Wait up to msecs milliseconds for IB link state change to occur.
8479 * For now, take the easy polling route.
8480 * Returns 0 if state reached, otherwise -ETIMEDOUT.
8481 */
8482static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
8483 int msecs)
8484{
8485 unsigned long timeout;
8486
8487 timeout = jiffies + msecs_to_jiffies(msecs);
8488 while (1) {
8489 if (get_logical_state(ppd) == state)
8490 return 0;
8491 if (time_after(jiffies, timeout))
8492 break;
8493 msleep(20);
8494 }
8495 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
8496
8497 return -ETIMEDOUT;
8498}
8499
8500u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
8501{
8502 static u32 remembered_state = 0xff;
8503 u32 pstate;
8504 u32 ib_pstate;
8505
8506 pstate = read_physical_state(ppd->dd);
8507 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
8508 if (remembered_state != ib_pstate) {
8509 dd_dev_info(ppd->dd,
8510 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
8511 __func__, opa_pstate_name(ib_pstate), ib_pstate,
8512 pstate);
8513 remembered_state = ib_pstate;
8514 }
8515 return ib_pstate;
8516}
8517
8518/*
8519 * Read/modify/write ASIC_QSFP register bits as selected by mask
8520 * data: 0 or 1 in the positions depending on what needs to be written
8521 * dir: 0 for read, 1 for write
8522 * mask: select by setting
8523 * I2CCLK (bit 0)
8524 * I2CDATA (bit 1)
8525 */
8526u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
8527 u32 mask)
8528{
8529 u64 qsfp_oe, target_oe;
8530
8531 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
8532 if (mask) {
8533 /* We are writing register bits, so lock access */
8534 dir &= mask;
8535 data &= mask;
8536
8537 qsfp_oe = read_csr(dd, target_oe);
8538 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
8539 write_csr(dd, target_oe, qsfp_oe);
8540 }
8541 /* We are exclusively reading bits here, but it is unlikely
8542 * we'll get valid data when we set the direction of the pin
8543 * in the same call, so read should call this function again
8544 * to get valid data
8545 */
8546 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
8547}
8548
8549#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
8550(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8551
8552#define SET_STATIC_RATE_CONTROL_SMASK(r) \
8553(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8554
8555int hfi1_init_ctxt(struct send_context *sc)
8556{
8557 if (sc != NULL) {
8558 struct hfi1_devdata *dd = sc->dd;
8559 u64 reg;
8560 u8 set = (sc->type == SC_USER ?
8561 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
8562 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
8563 reg = read_kctxt_csr(dd, sc->hw_context,
8564 SEND_CTXT_CHECK_ENABLE);
8565 if (set)
8566 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
8567 else
8568 SET_STATIC_RATE_CONTROL_SMASK(reg);
8569 write_kctxt_csr(dd, sc->hw_context,
8570 SEND_CTXT_CHECK_ENABLE, reg);
8571 }
8572 return 0;
8573}
8574
8575int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
8576{
8577 int ret = 0;
8578 u64 reg;
8579
8580 if (dd->icode != ICODE_RTL_SILICON) {
8581 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
8582 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
8583 __func__);
8584 return -EINVAL;
8585 }
8586 reg = read_csr(dd, ASIC_STS_THERM);
8587 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
8588 ASIC_STS_THERM_CURR_TEMP_MASK);
8589 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
8590 ASIC_STS_THERM_LO_TEMP_MASK);
8591 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
8592 ASIC_STS_THERM_HI_TEMP_MASK);
8593 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
8594 ASIC_STS_THERM_CRIT_TEMP_MASK);
8595 /* triggers is a 3-bit value - 1 bit per trigger. */
8596 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
8597
8598 return ret;
8599}
8600
8601/* ========================================================================= */
8602
8603/*
8604 * Enable/disable chip from delivering interrupts.
8605 */
8606void set_intr_state(struct hfi1_devdata *dd, u32 enable)
8607{
8608 int i;
8609
8610 /*
8611 * In HFI, the mask needs to be 1 to allow interrupts.
8612 */
8613 if (enable) {
8614 u64 cce_int_mask;
8615 const int qsfp1_int_smask = QSFP1_INT % 64;
8616 const int qsfp2_int_smask = QSFP2_INT % 64;
8617
8618 /* enable all interrupts */
8619 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8620 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
8621
8622 /*
8623 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
8624 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
8625 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
8626 * the index of the appropriate CSR in the CCEIntMask CSR array
8627 */
8628 cce_int_mask = read_csr(dd, CCE_INT_MASK +
8629 (8*(QSFP1_INT/64)));
8630 if (dd->hfi1_id) {
8631 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
8632 write_csr(dd, CCE_INT_MASK + (8*(QSFP1_INT/64)),
8633 cce_int_mask);
8634 } else {
8635 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
8636 write_csr(dd, CCE_INT_MASK + (8*(QSFP2_INT/64)),
8637 cce_int_mask);
8638 }
8639 } else {
8640 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8641 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
8642 }
8643}
8644
8645/*
8646 * Clear all interrupt sources on the chip.
8647 */
8648static void clear_all_interrupts(struct hfi1_devdata *dd)
8649{
8650 int i;
8651
8652 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8653 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
8654
8655 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
8656 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
8657 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
8658 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
8659 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
8660 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
8661 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
8662 for (i = 0; i < dd->chip_send_contexts; i++)
8663 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
8664 for (i = 0; i < dd->chip_sdma_engines; i++)
8665 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
8666
8667 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
8668 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
8669 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
8670}
8671
8672/* Move to pcie.c? */
8673static void disable_intx(struct pci_dev *pdev)
8674{
8675 pci_intx(pdev, 0);
8676}
8677
8678static void clean_up_interrupts(struct hfi1_devdata *dd)
8679{
8680 int i;
8681
8682 /* remove irqs - must happen before disabling/turning off */
8683 if (dd->num_msix_entries) {
8684 /* MSI-X */
8685 struct hfi1_msix_entry *me = dd->msix_entries;
8686
8687 for (i = 0; i < dd->num_msix_entries; i++, me++) {
8688 if (me->arg == NULL) /* => no irq, no affinity */
8689 break;
8690 irq_set_affinity_hint(dd->msix_entries[i].msix.vector,
8691 NULL);
8692 free_irq(me->msix.vector, me->arg);
8693 }
8694 } else {
8695 /* INTx */
8696 if (dd->requested_intx_irq) {
8697 free_irq(dd->pcidev->irq, dd);
8698 dd->requested_intx_irq = 0;
8699 }
8700 }
8701
8702 /* turn off interrupts */
8703 if (dd->num_msix_entries) {
8704 /* MSI-X */
8705 hfi1_nomsix(dd);
8706 } else {
8707 /* INTx */
8708 disable_intx(dd->pcidev);
8709 }
8710
8711 /* clean structures */
8712 for (i = 0; i < dd->num_msix_entries; i++)
8713 free_cpumask_var(dd->msix_entries[i].mask);
8714 kfree(dd->msix_entries);
8715 dd->msix_entries = NULL;
8716 dd->num_msix_entries = 0;
8717}
8718
8719/*
8720 * Remap the interrupt source from the general handler to the given MSI-X
8721 * interrupt.
8722 */
8723static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
8724{
8725 u64 reg;
8726 int m, n;
8727
8728 /* clear from the handled mask of the general interrupt */
8729 m = isrc / 64;
8730 n = isrc % 64;
8731 dd->gi_mask[m] &= ~((u64)1 << n);
8732
8733 /* direct the chip source to the given MSI-X interrupt */
8734 m = isrc / 8;
8735 n = isrc % 8;
8736 reg = read_csr(dd, CCE_INT_MAP + (8*m));
8737 reg &= ~((u64)0xff << (8*n));
8738 reg |= ((u64)msix_intr & 0xff) << (8*n);
8739 write_csr(dd, CCE_INT_MAP + (8*m), reg);
8740}
8741
8742static void remap_sdma_interrupts(struct hfi1_devdata *dd,
8743 int engine, int msix_intr)
8744{
8745 /*
8746 * SDMA engine interrupt sources grouped by type, rather than
8747 * engine. Per-engine interrupts are as follows:
8748 * SDMA
8749 * SDMAProgress
8750 * SDMAIdle
8751 */
8752 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
8753 msix_intr);
8754 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
8755 msix_intr);
8756 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
8757 msix_intr);
8758}
8759
8760static void remap_receive_available_interrupt(struct hfi1_devdata *dd,
8761 int rx, int msix_intr)
8762{
8763 remap_intr(dd, IS_RCVAVAIL_START + rx, msix_intr);
8764}
8765
8766static int request_intx_irq(struct hfi1_devdata *dd)
8767{
8768 int ret;
8769
8770 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME"_%d",
8771 dd->unit);
8772 ret = request_irq(dd->pcidev->irq, general_interrupt,
8773 IRQF_SHARED, dd->intx_name, dd);
8774 if (ret)
8775 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
8776 ret);
8777 else
8778 dd->requested_intx_irq = 1;
8779 return ret;
8780}
8781
8782static int request_msix_irqs(struct hfi1_devdata *dd)
8783{
8784 const struct cpumask *local_mask;
8785 cpumask_var_t def, rcv;
8786 bool def_ret, rcv_ret;
8787 int first_general, last_general;
8788 int first_sdma, last_sdma;
8789 int first_rx, last_rx;
8790 int first_cpu, restart_cpu, curr_cpu;
8791 int rcv_cpu, sdma_cpu;
8792 int i, ret = 0, possible;
8793 int ht;
8794
8795 /* calculate the ranges we are going to use */
8796 first_general = 0;
8797 first_sdma = last_general = first_general + 1;
8798 first_rx = last_sdma = first_sdma + dd->num_sdma;
8799 last_rx = first_rx + dd->n_krcv_queues;
8800
8801 /*
8802 * Interrupt affinity.
8803 *
8804 * non-rcv avail gets a default mask that
8805 * starts as possible cpus with threads reset
8806 * and each rcv avail reset.
8807 *
8808 * rcv avail gets node relative 1 wrapping back
8809 * to the node relative 1 as necessary.
8810 *
8811 */
8812 local_mask = cpumask_of_pcibus(dd->pcidev->bus);
8813 /* if first cpu is invalid, use NUMA 0 */
8814 if (cpumask_first(local_mask) >= nr_cpu_ids)
8815 local_mask = topology_core_cpumask(0);
8816
8817 def_ret = zalloc_cpumask_var(&def, GFP_KERNEL);
8818 rcv_ret = zalloc_cpumask_var(&rcv, GFP_KERNEL);
8819 if (!def_ret || !rcv_ret)
8820 goto bail;
8821 /* use local mask as default */
8822 cpumask_copy(def, local_mask);
8823 possible = cpumask_weight(def);
8824 /* disarm threads from default */
8825 ht = cpumask_weight(
8826 topology_sibling_cpumask(cpumask_first(local_mask)));
8827 for (i = possible/ht; i < possible; i++)
8828 cpumask_clear_cpu(i, def);
8829 /* reset possible */
8830 possible = cpumask_weight(def);
8831 /* def now has full cores on chosen node*/
8832 first_cpu = cpumask_first(def);
8833 if (nr_cpu_ids >= first_cpu)
8834 first_cpu++;
8835 restart_cpu = first_cpu;
8836 curr_cpu = restart_cpu;
8837
8838 for (i = first_cpu; i < dd->n_krcv_queues + first_cpu; i++) {
8839 cpumask_clear_cpu(curr_cpu, def);
8840 cpumask_set_cpu(curr_cpu, rcv);
8841 if (curr_cpu >= possible)
8842 curr_cpu = restart_cpu;
8843 else
8844 curr_cpu++;
8845 }
8846 /* def mask has non-rcv, rcv has recv mask */
8847 rcv_cpu = cpumask_first(rcv);
8848 sdma_cpu = cpumask_first(def);
8849
8850 /*
8851 * Sanity check - the code expects all SDMA chip source
8852 * interrupts to be in the same CSR, starting at bit 0. Verify
8853 * that this is true by checking the bit location of the start.
8854 */
8855 BUILD_BUG_ON(IS_SDMA_START % 64);
8856
8857 for (i = 0; i < dd->num_msix_entries; i++) {
8858 struct hfi1_msix_entry *me = &dd->msix_entries[i];
8859 const char *err_info;
8860 irq_handler_t handler;
8861 void *arg;
8862 int idx;
8863 struct hfi1_ctxtdata *rcd = NULL;
8864 struct sdma_engine *sde = NULL;
8865
8866 /* obtain the arguments to request_irq */
8867 if (first_general <= i && i < last_general) {
8868 idx = i - first_general;
8869 handler = general_interrupt;
8870 arg = dd;
8871 snprintf(me->name, sizeof(me->name),
8872 DRIVER_NAME"_%d", dd->unit);
8873 err_info = "general";
8874 } else if (first_sdma <= i && i < last_sdma) {
8875 idx = i - first_sdma;
8876 sde = &dd->per_sdma[idx];
8877 handler = sdma_interrupt;
8878 arg = sde;
8879 snprintf(me->name, sizeof(me->name),
8880 DRIVER_NAME"_%d sdma%d", dd->unit, idx);
8881 err_info = "sdma";
8882 remap_sdma_interrupts(dd, idx, i);
8883 } else if (first_rx <= i && i < last_rx) {
8884 idx = i - first_rx;
8885 rcd = dd->rcd[idx];
8886 /* no interrupt if no rcd */
8887 if (!rcd)
8888 continue;
8889 /*
8890 * Set the interrupt register and mask for this
8891 * context's interrupt.
8892 */
8893 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
8894 rcd->imask = ((u64)1) <<
8895 ((IS_RCVAVAIL_START+idx) % 64);
8896 handler = receive_context_interrupt;
8897 arg = rcd;
8898 snprintf(me->name, sizeof(me->name),
8899 DRIVER_NAME"_%d kctxt%d", dd->unit, idx);
8900 err_info = "receive context";
8901 remap_receive_available_interrupt(dd, idx, i);
8902 } else {
8903 /* not in our expected range - complain, then
8904 ignore it */
8905 dd_dev_err(dd,
8906 "Unexpected extra MSI-X interrupt %d\n", i);
8907 continue;
8908 }
8909 /* no argument, no interrupt */
8910 if (arg == NULL)
8911 continue;
8912 /* make sure the name is terminated */
8913 me->name[sizeof(me->name)-1] = 0;
8914
8915 ret = request_irq(me->msix.vector, handler, 0, me->name, arg);
8916 if (ret) {
8917 dd_dev_err(dd,
8918 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
8919 err_info, me->msix.vector, idx, ret);
8920 return ret;
8921 }
8922 /*
8923 * assign arg after request_irq call, so it will be
8924 * cleaned up
8925 */
8926 me->arg = arg;
8927
8928 if (!zalloc_cpumask_var(
8929 &dd->msix_entries[i].mask,
8930 GFP_KERNEL))
8931 goto bail;
8932 if (handler == sdma_interrupt) {
8933 dd_dev_info(dd, "sdma engine %d cpu %d\n",
8934 sde->this_idx, sdma_cpu);
8935 cpumask_set_cpu(sdma_cpu, dd->msix_entries[i].mask);
8936 sdma_cpu = cpumask_next(sdma_cpu, def);
8937 if (sdma_cpu >= nr_cpu_ids)
8938 sdma_cpu = cpumask_first(def);
8939 } else if (handler == receive_context_interrupt) {
8940 dd_dev_info(dd, "rcv ctxt %d cpu %d\n",
8941 rcd->ctxt, rcv_cpu);
8942 cpumask_set_cpu(rcv_cpu, dd->msix_entries[i].mask);
8943 rcv_cpu = cpumask_next(rcv_cpu, rcv);
8944 if (rcv_cpu >= nr_cpu_ids)
8945 rcv_cpu = cpumask_first(rcv);
8946 } else {
8947 /* otherwise first def */
8948 dd_dev_info(dd, "%s cpu %d\n",
8949 err_info, cpumask_first(def));
8950 cpumask_set_cpu(
8951 cpumask_first(def), dd->msix_entries[i].mask);
8952 }
8953 irq_set_affinity_hint(
8954 dd->msix_entries[i].msix.vector,
8955 dd->msix_entries[i].mask);
8956 }
8957
8958out:
8959 free_cpumask_var(def);
8960 free_cpumask_var(rcv);
8961 return ret;
8962bail:
8963 ret = -ENOMEM;
8964 goto out;
8965}
8966
8967/*
8968 * Set the general handler to accept all interrupts, remap all
8969 * chip interrupts back to MSI-X 0.
8970 */
8971static void reset_interrupts(struct hfi1_devdata *dd)
8972{
8973 int i;
8974
8975 /* all interrupts handled by the general handler */
8976 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8977 dd->gi_mask[i] = ~(u64)0;
8978
8979 /* all chip interrupts map to MSI-X 0 */
8980 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8981 write_csr(dd, CCE_INT_MAP + (8*i), 0);
8982}
8983
8984static int set_up_interrupts(struct hfi1_devdata *dd)
8985{
8986 struct hfi1_msix_entry *entries;
8987 u32 total, request;
8988 int i, ret;
8989 int single_interrupt = 0; /* we expect to have all the interrupts */
8990
8991 /*
8992 * Interrupt count:
8993 * 1 general, "slow path" interrupt (includes the SDMA engines
8994 * slow source, SDMACleanupDone)
8995 * N interrupts - one per used SDMA engine
8996 * M interrupt - one per kernel receive context
8997 */
8998 total = 1 + dd->num_sdma + dd->n_krcv_queues;
8999
9000 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
9001 if (!entries) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04009002 ret = -ENOMEM;
9003 goto fail;
9004 }
9005 /* 1-1 MSI-X entry assignment */
9006 for (i = 0; i < total; i++)
9007 entries[i].msix.entry = i;
9008
9009 /* ask for MSI-X interrupts */
9010 request = total;
9011 request_msix(dd, &request, entries);
9012
9013 if (request == 0) {
9014 /* using INTx */
9015 /* dd->num_msix_entries already zero */
9016 kfree(entries);
9017 single_interrupt = 1;
9018 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
9019 } else {
9020 /* using MSI-X */
9021 dd->num_msix_entries = request;
9022 dd->msix_entries = entries;
9023
9024 if (request != total) {
9025 /* using MSI-X, with reduced interrupts */
9026 dd_dev_err(
9027 dd,
9028 "cannot handle reduced interrupt case, want %u, got %u\n",
9029 total, request);
9030 ret = -EINVAL;
9031 goto fail;
9032 }
9033 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
9034 }
9035
9036 /* mask all interrupts */
9037 set_intr_state(dd, 0);
9038 /* clear all pending interrupts */
9039 clear_all_interrupts(dd);
9040
9041 /* reset general handler mask, chip MSI-X mappings */
9042 reset_interrupts(dd);
9043
9044 if (single_interrupt)
9045 ret = request_intx_irq(dd);
9046 else
9047 ret = request_msix_irqs(dd);
9048 if (ret)
9049 goto fail;
9050
9051 return 0;
9052
9053fail:
9054 clean_up_interrupts(dd);
9055 return ret;
9056}
9057
9058/*
9059 * Set up context values in dd. Sets:
9060 *
9061 * num_rcv_contexts - number of contexts being used
9062 * n_krcv_queues - number of kernel contexts
9063 * first_user_ctxt - first non-kernel context in array of contexts
9064 * freectxts - number of free user contexts
9065 * num_send_contexts - number of PIO send contexts being used
9066 */
9067static int set_up_context_variables(struct hfi1_devdata *dd)
9068{
9069 int num_kernel_contexts;
9070 int num_user_contexts;
9071 int total_contexts;
9072 int ret;
9073 unsigned ngroups;
9074
9075 /*
9076 * Kernel contexts: (to be fixed later):
9077 * - min or 2 or 1 context/numa
9078 * - Context 0 - default/errors
9079 * - Context 1 - VL15
9080 */
9081 if (n_krcvqs)
9082 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS;
9083 else
9084 num_kernel_contexts = num_online_nodes();
9085 num_kernel_contexts =
9086 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
9087 /*
9088 * Every kernel receive context needs an ACK send context.
9089 * one send context is allocated for each VL{0-7} and VL15
9090 */
9091 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
9092 dd_dev_err(dd,
9093 "Reducing # kernel rcv contexts to: %d, from %d\n",
9094 (int)(dd->chip_send_contexts - num_vls - 1),
9095 (int)num_kernel_contexts);
9096 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
9097 }
9098 /*
9099 * User contexts: (to be fixed later)
9100 * - set to num_rcv_contexts if non-zero
9101 * - default to 1 user context per CPU
9102 */
9103 if (num_rcv_contexts)
9104 num_user_contexts = num_rcv_contexts;
9105 else
9106 num_user_contexts = num_online_cpus();
9107
9108 total_contexts = num_kernel_contexts + num_user_contexts;
9109
9110 /*
9111 * Adjust the counts given a global max.
9112 */
9113 if (total_contexts > dd->chip_rcv_contexts) {
9114 dd_dev_err(dd,
9115 "Reducing # user receive contexts to: %d, from %d\n",
9116 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
9117 (int)num_user_contexts);
9118 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
9119 /* recalculate */
9120 total_contexts = num_kernel_contexts + num_user_contexts;
9121 }
9122
9123 /* the first N are kernel contexts, the rest are user contexts */
9124 dd->num_rcv_contexts = total_contexts;
9125 dd->n_krcv_queues = num_kernel_contexts;
9126 dd->first_user_ctxt = num_kernel_contexts;
9127 dd->freectxts = num_user_contexts;
9128 dd_dev_info(dd,
9129 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
9130 (int)dd->chip_rcv_contexts,
9131 (int)dd->num_rcv_contexts,
9132 (int)dd->n_krcv_queues,
9133 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
9134
9135 /*
9136 * Receive array allocation:
9137 * All RcvArray entries are divided into groups of 8. This
9138 * is required by the hardware and will speed up writes to
9139 * consecutive entries by using write-combining of the entire
9140 * cacheline.
9141 *
9142 * The number of groups are evenly divided among all contexts.
9143 * any left over groups will be given to the first N user
9144 * contexts.
9145 */
9146 dd->rcv_entries.group_size = RCV_INCREMENT;
9147 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
9148 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
9149 dd->rcv_entries.nctxt_extra = ngroups -
9150 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
9151 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
9152 dd->rcv_entries.ngroups,
9153 dd->rcv_entries.nctxt_extra);
9154 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
9155 MAX_EAGER_ENTRIES * 2) {
9156 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
9157 dd->rcv_entries.group_size;
9158 dd_dev_info(dd,
9159 "RcvArray group count too high, change to %u\n",
9160 dd->rcv_entries.ngroups);
9161 dd->rcv_entries.nctxt_extra = 0;
9162 }
9163 /*
9164 * PIO send contexts
9165 */
9166 ret = init_sc_pools_and_sizes(dd);
9167 if (ret >= 0) { /* success */
9168 dd->num_send_contexts = ret;
9169 dd_dev_info(
9170 dd,
9171 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
9172 dd->chip_send_contexts,
9173 dd->num_send_contexts,
9174 dd->sc_sizes[SC_KERNEL].count,
9175 dd->sc_sizes[SC_ACK].count,
9176 dd->sc_sizes[SC_USER].count);
9177 ret = 0; /* success */
9178 }
9179
9180 return ret;
9181}
9182
9183/*
9184 * Set the device/port partition key table. The MAD code
9185 * will ensure that, at least, the partial management
9186 * partition key is present in the table.
9187 */
9188static void set_partition_keys(struct hfi1_pportdata *ppd)
9189{
9190 struct hfi1_devdata *dd = ppd->dd;
9191 u64 reg = 0;
9192 int i;
9193
9194 dd_dev_info(dd, "Setting partition keys\n");
9195 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
9196 reg |= (ppd->pkeys[i] &
9197 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
9198 ((i % 4) *
9199 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
9200 /* Each register holds 4 PKey values. */
9201 if ((i % 4) == 3) {
9202 write_csr(dd, RCV_PARTITION_KEY +
9203 ((i - 3) * 2), reg);
9204 reg = 0;
9205 }
9206 }
9207
9208 /* Always enable HW pkeys check when pkeys table is set */
9209 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
9210}
9211
9212/*
9213 * These CSRs and memories are uninitialized on reset and must be
9214 * written before reading to set the ECC/parity bits.
9215 *
9216 * NOTE: All user context CSRs that are not mmaped write-only
9217 * (e.g. the TID flows) must be initialized even if the driver never
9218 * reads them.
9219 */
9220static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
9221{
9222 int i, j;
9223
9224 /* CceIntMap */
9225 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9226 write_csr(dd, CCE_INT_MAP+(8*i), 0);
9227
9228 /* SendCtxtCreditReturnAddr */
9229 for (i = 0; i < dd->chip_send_contexts; i++)
9230 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9231
9232 /* PIO Send buffers */
9233 /* SDMA Send buffers */
9234 /* These are not normally read, and (presently) have no method
9235 to be read, so are not pre-initialized */
9236
9237 /* RcvHdrAddr */
9238 /* RcvHdrTailAddr */
9239 /* RcvTidFlowTable */
9240 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9241 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9242 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9243 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
9244 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
9245 }
9246
9247 /* RcvArray */
9248 for (i = 0; i < dd->chip_rcv_array_count; i++)
9249 write_csr(dd, RCV_ARRAY + (8*i),
9250 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
9251
9252 /* RcvQPMapTable */
9253 for (i = 0; i < 32; i++)
9254 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9255}
9256
9257/*
9258 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
9259 */
9260static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
9261 u64 ctrl_bits)
9262{
9263 unsigned long timeout;
9264 u64 reg;
9265
9266 /* is the condition present? */
9267 reg = read_csr(dd, CCE_STATUS);
9268 if ((reg & status_bits) == 0)
9269 return;
9270
9271 /* clear the condition */
9272 write_csr(dd, CCE_CTRL, ctrl_bits);
9273
9274 /* wait for the condition to clear */
9275 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
9276 while (1) {
9277 reg = read_csr(dd, CCE_STATUS);
9278 if ((reg & status_bits) == 0)
9279 return;
9280 if (time_after(jiffies, timeout)) {
9281 dd_dev_err(dd,
9282 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
9283 status_bits, reg & status_bits);
9284 return;
9285 }
9286 udelay(1);
9287 }
9288}
9289
9290/* set CCE CSRs to chip reset defaults */
9291static void reset_cce_csrs(struct hfi1_devdata *dd)
9292{
9293 int i;
9294
9295 /* CCE_REVISION read-only */
9296 /* CCE_REVISION2 read-only */
9297 /* CCE_CTRL - bits clear automatically */
9298 /* CCE_STATUS read-only, use CceCtrl to clear */
9299 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
9300 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
9301 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
9302 for (i = 0; i < CCE_NUM_SCRATCH; i++)
9303 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
9304 /* CCE_ERR_STATUS read-only */
9305 write_csr(dd, CCE_ERR_MASK, 0);
9306 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
9307 /* CCE_ERR_FORCE leave alone */
9308 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
9309 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
9310 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
9311 /* CCE_PCIE_CTRL leave alone */
9312 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
9313 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
9314 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
9315 CCE_MSIX_TABLE_UPPER_RESETCSR);
9316 }
9317 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
9318 /* CCE_MSIX_PBA read-only */
9319 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
9320 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
9321 }
9322 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9323 write_csr(dd, CCE_INT_MAP, 0);
9324 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
9325 /* CCE_INT_STATUS read-only */
9326 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
9327 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
9328 /* CCE_INT_FORCE leave alone */
9329 /* CCE_INT_BLOCKED read-only */
9330 }
9331 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
9332 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
9333}
9334
9335/* set ASIC CSRs to chip reset defaults */
9336static void reset_asic_csrs(struct hfi1_devdata *dd)
9337{
Mike Marciniszyn77241052015-07-30 15:17:43 -04009338 int i;
9339
9340 /*
9341 * If the HFIs are shared between separate nodes or VMs,
9342 * then more will need to be done here. One idea is a module
9343 * parameter that returns early, letting the first power-on or
9344 * a known first load do the reset and blocking all others.
9345 */
9346
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009347 if (!(dd->flags & HFI1_DO_INIT_ASIC))
9348 return;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009349
9350 if (dd->icode != ICODE_FPGA_EMULATION) {
9351 /* emulation does not have an SBus - leave these alone */
9352 /*
9353 * All writes to ASIC_CFG_SBUS_REQUEST do something.
9354 * Notes:
9355 * o The reset is not zero if aimed at the core. See the
9356 * SBus documentation for details.
9357 * o If the SBus firmware has been updated (e.g. by the BIOS),
9358 * will the reset revert that?
9359 */
9360 /* ASIC_CFG_SBUS_REQUEST leave alone */
9361 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
9362 }
9363 /* ASIC_SBUS_RESULT read-only */
9364 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
9365 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
9366 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
9367 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009368
9369 /* We might want to retain this state across FLR if we ever use it */
Mike Marciniszyn77241052015-07-30 15:17:43 -04009370 write_csr(dd, ASIC_CFG_DRV_STR, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009371
Mike Marciniszyn77241052015-07-30 15:17:43 -04009372 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0);
9373 /* ASIC_STS_THERM read-only */
9374 /* ASIC_CFG_RESET leave alone */
9375
9376 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
9377 /* ASIC_PCIE_SD_HOST_STATUS read-only */
9378 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
9379 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
9380 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
9381 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
9382 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
9383 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
9384 for (i = 0; i < 16; i++)
9385 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
9386
9387 /* ASIC_GPIO_IN read-only */
9388 write_csr(dd, ASIC_GPIO_OE, 0);
9389 write_csr(dd, ASIC_GPIO_INVERT, 0);
9390 write_csr(dd, ASIC_GPIO_OUT, 0);
9391 write_csr(dd, ASIC_GPIO_MASK, 0);
9392 /* ASIC_GPIO_STATUS read-only */
9393 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
9394 /* ASIC_GPIO_FORCE leave alone */
9395
9396 /* ASIC_QSFP1_IN read-only */
9397 write_csr(dd, ASIC_QSFP1_OE, 0);
9398 write_csr(dd, ASIC_QSFP1_INVERT, 0);
9399 write_csr(dd, ASIC_QSFP1_OUT, 0);
9400 write_csr(dd, ASIC_QSFP1_MASK, 0);
9401 /* ASIC_QSFP1_STATUS read-only */
9402 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
9403 /* ASIC_QSFP1_FORCE leave alone */
9404
9405 /* ASIC_QSFP2_IN read-only */
9406 write_csr(dd, ASIC_QSFP2_OE, 0);
9407 write_csr(dd, ASIC_QSFP2_INVERT, 0);
9408 write_csr(dd, ASIC_QSFP2_OUT, 0);
9409 write_csr(dd, ASIC_QSFP2_MASK, 0);
9410 /* ASIC_QSFP2_STATUS read-only */
9411 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
9412 /* ASIC_QSFP2_FORCE leave alone */
9413
9414 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
9415 /* this also writes a NOP command, clearing paging mode */
9416 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
9417 write_csr(dd, ASIC_EEP_DATA, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009418}
9419
9420/* set MISC CSRs to chip reset defaults */
9421static void reset_misc_csrs(struct hfi1_devdata *dd)
9422{
9423 int i;
9424
9425 for (i = 0; i < 32; i++) {
9426 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
9427 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
9428 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
9429 }
9430 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
9431 only be written 128-byte chunks */
9432 /* init RSA engine to clear lingering errors */
9433 write_csr(dd, MISC_CFG_RSA_CMD, 1);
9434 write_csr(dd, MISC_CFG_RSA_MU, 0);
9435 write_csr(dd, MISC_CFG_FW_CTRL, 0);
9436 /* MISC_STS_8051_DIGEST read-only */
9437 /* MISC_STS_SBM_DIGEST read-only */
9438 /* MISC_STS_PCIE_DIGEST read-only */
9439 /* MISC_STS_FAB_DIGEST read-only */
9440 /* MISC_ERR_STATUS read-only */
9441 write_csr(dd, MISC_ERR_MASK, 0);
9442 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
9443 /* MISC_ERR_FORCE leave alone */
9444}
9445
9446/* set TXE CSRs to chip reset defaults */
9447static void reset_txe_csrs(struct hfi1_devdata *dd)
9448{
9449 int i;
9450
9451 /*
9452 * TXE Kernel CSRs
9453 */
9454 write_csr(dd, SEND_CTRL, 0);
9455 __cm_reset(dd, 0); /* reset CM internal state */
9456 /* SEND_CONTEXTS read-only */
9457 /* SEND_DMA_ENGINES read-only */
9458 /* SEND_PIO_MEM_SIZE read-only */
9459 /* SEND_DMA_MEM_SIZE read-only */
9460 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
9461 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
9462 /* SEND_PIO_ERR_STATUS read-only */
9463 write_csr(dd, SEND_PIO_ERR_MASK, 0);
9464 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
9465 /* SEND_PIO_ERR_FORCE leave alone */
9466 /* SEND_DMA_ERR_STATUS read-only */
9467 write_csr(dd, SEND_DMA_ERR_MASK, 0);
9468 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
9469 /* SEND_DMA_ERR_FORCE leave alone */
9470 /* SEND_EGRESS_ERR_STATUS read-only */
9471 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
9472 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
9473 /* SEND_EGRESS_ERR_FORCE leave alone */
9474 write_csr(dd, SEND_BTH_QP, 0);
9475 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
9476 write_csr(dd, SEND_SC2VLT0, 0);
9477 write_csr(dd, SEND_SC2VLT1, 0);
9478 write_csr(dd, SEND_SC2VLT2, 0);
9479 write_csr(dd, SEND_SC2VLT3, 0);
9480 write_csr(dd, SEND_LEN_CHECK0, 0);
9481 write_csr(dd, SEND_LEN_CHECK1, 0);
9482 /* SEND_ERR_STATUS read-only */
9483 write_csr(dd, SEND_ERR_MASK, 0);
9484 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
9485 /* SEND_ERR_FORCE read-only */
9486 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
9487 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
9488 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
9489 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
9490 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
9491 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
9492 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
9493 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
9494 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
9495 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
9496 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
9497 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
9498 SEND_CM_GLOBAL_CREDIT_RESETCSR);
9499 /* SEND_CM_CREDIT_USED_STATUS read-only */
9500 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
9501 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
9502 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
9503 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
9504 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
9505 for (i = 0; i < TXE_NUM_DATA_VL; i++)
9506 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
9507 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
9508 /* SEND_CM_CREDIT_USED_VL read-only */
9509 /* SEND_CM_CREDIT_USED_VL15 read-only */
9510 /* SEND_EGRESS_CTXT_STATUS read-only */
9511 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
9512 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
9513 /* SEND_EGRESS_ERR_INFO read-only */
9514 /* SEND_EGRESS_ERR_SOURCE read-only */
9515
9516 /*
9517 * TXE Per-Context CSRs
9518 */
9519 for (i = 0; i < dd->chip_send_contexts; i++) {
9520 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9521 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
9522 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9523 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
9524 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
9525 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
9526 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
9527 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
9528 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
9529 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
9530 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
9531 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
9532 }
9533
9534 /*
9535 * TXE Per-SDMA CSRs
9536 */
9537 for (i = 0; i < dd->chip_sdma_engines; i++) {
9538 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9539 /* SEND_DMA_STATUS read-only */
9540 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
9541 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
9542 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
9543 /* SEND_DMA_HEAD read-only */
9544 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
9545 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
9546 /* SEND_DMA_IDLE_CNT read-only */
9547 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
9548 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
9549 /* SEND_DMA_DESC_FETCHED_CNT read-only */
9550 /* SEND_DMA_ENG_ERR_STATUS read-only */
9551 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
9552 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
9553 /* SEND_DMA_ENG_ERR_FORCE leave alone */
9554 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
9555 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
9556 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
9557 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
9558 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
9559 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
9560 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
9561 }
9562}
9563
9564/*
9565 * Expect on entry:
9566 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
9567 */
9568static void init_rbufs(struct hfi1_devdata *dd)
9569{
9570 u64 reg;
9571 int count;
9572
9573 /*
9574 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
9575 * clear.
9576 */
9577 count = 0;
9578 while (1) {
9579 reg = read_csr(dd, RCV_STATUS);
9580 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
9581 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
9582 break;
9583 /*
9584 * Give up after 1ms - maximum wait time.
9585 *
9586 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
9587 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
9588 * 148 KB / (66% * 250MB/s) = 920us
9589 */
9590 if (count++ > 500) {
9591 dd_dev_err(dd,
9592 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
9593 __func__, reg);
9594 break;
9595 }
9596 udelay(2); /* do not busy-wait the CSR */
9597 }
9598
9599 /* start the init - expect RcvCtrl to be 0 */
9600 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
9601
9602 /*
9603 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
9604 * period after the write before RcvStatus.RxRbufInitDone is valid.
9605 * The delay in the first run through the loop below is sufficient and
9606 * required before the first read of RcvStatus.RxRbufInintDone.
9607 */
9608 read_csr(dd, RCV_CTRL);
9609
9610 /* wait for the init to finish */
9611 count = 0;
9612 while (1) {
9613 /* delay is required first time through - see above */
9614 udelay(2); /* do not busy-wait the CSR */
9615 reg = read_csr(dd, RCV_STATUS);
9616 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
9617 break;
9618
9619 /* give up after 100us - slowest possible at 33MHz is 73us */
9620 if (count++ > 50) {
9621 dd_dev_err(dd,
9622 "%s: RcvStatus.RxRbufInit not set, continuing\n",
9623 __func__);
9624 break;
9625 }
9626 }
9627}
9628
9629/* set RXE CSRs to chip reset defaults */
9630static void reset_rxe_csrs(struct hfi1_devdata *dd)
9631{
9632 int i, j;
9633
9634 /*
9635 * RXE Kernel CSRs
9636 */
9637 write_csr(dd, RCV_CTRL, 0);
9638 init_rbufs(dd);
9639 /* RCV_STATUS read-only */
9640 /* RCV_CONTEXTS read-only */
9641 /* RCV_ARRAY_CNT read-only */
9642 /* RCV_BUF_SIZE read-only */
9643 write_csr(dd, RCV_BTH_QP, 0);
9644 write_csr(dd, RCV_MULTICAST, 0);
9645 write_csr(dd, RCV_BYPASS, 0);
9646 write_csr(dd, RCV_VL15, 0);
9647 /* this is a clear-down */
9648 write_csr(dd, RCV_ERR_INFO,
9649 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
9650 /* RCV_ERR_STATUS read-only */
9651 write_csr(dd, RCV_ERR_MASK, 0);
9652 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
9653 /* RCV_ERR_FORCE leave alone */
9654 for (i = 0; i < 32; i++)
9655 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9656 for (i = 0; i < 4; i++)
9657 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
9658 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
9659 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
9660 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
9661 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
9662 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
9663 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
9664 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
9665 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
9666 }
9667 for (i = 0; i < 32; i++)
9668 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
9669
9670 /*
9671 * RXE Kernel and User Per-Context CSRs
9672 */
9673 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9674 /* kernel */
9675 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
9676 /* RCV_CTXT_STATUS read-only */
9677 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
9678 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
9679 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
9680 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9681 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
9682 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
9683 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
9684 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9685 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
9686 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
9687
9688 /* user */
9689 /* RCV_HDR_TAIL read-only */
9690 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
9691 /* RCV_EGR_INDEX_TAIL read-only */
9692 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
9693 /* RCV_EGR_OFFSET_TAIL read-only */
9694 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
9695 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
9696 0);
9697 }
9698 }
9699}
9700
9701/*
9702 * Set sc2vl tables.
9703 *
9704 * They power on to zeros, so to avoid send context errors
9705 * they need to be set:
9706 *
9707 * SC 0-7 -> VL 0-7 (respectively)
9708 * SC 15 -> VL 15
9709 * otherwise
9710 * -> VL 0
9711 */
9712static void init_sc2vl_tables(struct hfi1_devdata *dd)
9713{
9714 int i;
9715 /* init per architecture spec, constrained by hardware capability */
9716
9717 /* HFI maps sent packets */
9718 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
9719 0,
9720 0, 0, 1, 1,
9721 2, 2, 3, 3,
9722 4, 4, 5, 5,
9723 6, 6, 7, 7));
9724 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
9725 1,
9726 8, 0, 9, 0,
9727 10, 0, 11, 0,
9728 12, 0, 13, 0,
9729 14, 0, 15, 15));
9730 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
9731 2,
9732 16, 0, 17, 0,
9733 18, 0, 19, 0,
9734 20, 0, 21, 0,
9735 22, 0, 23, 0));
9736 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
9737 3,
9738 24, 0, 25, 0,
9739 26, 0, 27, 0,
9740 28, 0, 29, 0,
9741 30, 0, 31, 0));
9742
9743 /* DC maps received packets */
9744 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
9745 15_0,
9746 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
9747 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
9748 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
9749 31_16,
9750 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
9751 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
9752
9753 /* initialize the cached sc2vl values consistently with h/w */
9754 for (i = 0; i < 32; i++) {
9755 if (i < 8 || i == 15)
9756 *((u8 *)(dd->sc2vl) + i) = (u8)i;
9757 else
9758 *((u8 *)(dd->sc2vl) + i) = 0;
9759 }
9760}
9761
9762/*
9763 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
9764 * depend on the chip going through a power-on reset - a driver may be loaded
9765 * and unloaded many times.
9766 *
9767 * Do not write any CSR values to the chip in this routine - there may be
9768 * a reset following the (possible) FLR in this routine.
9769 *
9770 */
9771static void init_chip(struct hfi1_devdata *dd)
9772{
9773 int i;
9774
9775 /*
9776 * Put the HFI CSRs in a known state.
9777 * Combine this with a DC reset.
9778 *
9779 * Stop the device from doing anything while we do a
9780 * reset. We know there are no other active users of
9781 * the device since we are now in charge. Turn off
9782 * off all outbound and inbound traffic and make sure
9783 * the device does not generate any interrupts.
9784 */
9785
9786 /* disable send contexts and SDMA engines */
9787 write_csr(dd, SEND_CTRL, 0);
9788 for (i = 0; i < dd->chip_send_contexts; i++)
9789 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9790 for (i = 0; i < dd->chip_sdma_engines; i++)
9791 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9792 /* disable port (turn off RXE inbound traffic) and contexts */
9793 write_csr(dd, RCV_CTRL, 0);
9794 for (i = 0; i < dd->chip_rcv_contexts; i++)
9795 write_csr(dd, RCV_CTXT_CTRL, 0);
9796 /* mask all interrupt sources */
9797 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
9798 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
9799
9800 /*
9801 * DC Reset: do a full DC reset before the register clear.
9802 * A recommended length of time to hold is one CSR read,
9803 * so reread the CceDcCtrl. Then, hold the DC in reset
9804 * across the clear.
9805 */
9806 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
9807 (void) read_csr(dd, CCE_DC_CTRL);
9808
9809 if (use_flr) {
9810 /*
9811 * A FLR will reset the SPC core and part of the PCIe.
9812 * The parts that need to be restored have already been
9813 * saved.
9814 */
9815 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9816
9817 /* do the FLR, the DC reset will remain */
9818 hfi1_pcie_flr(dd);
9819
9820 /* restore command and BARs */
9821 restore_pci_variables(dd);
9822
9823 if (is_a0(dd)) {
9824 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9825 hfi1_pcie_flr(dd);
9826 restore_pci_variables(dd);
9827 }
9828
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009829 reset_asic_csrs(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009830 } else {
9831 dd_dev_info(dd, "Resetting CSRs with writes\n");
9832 reset_cce_csrs(dd);
9833 reset_txe_csrs(dd);
9834 reset_rxe_csrs(dd);
9835 reset_asic_csrs(dd);
9836 reset_misc_csrs(dd);
9837 }
9838 /* clear the DC reset */
9839 write_csr(dd, CCE_DC_CTRL, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009840
Mike Marciniszyn77241052015-07-30 15:17:43 -04009841 /* Set the LED off */
9842 if (is_a0(dd))
9843 setextled(dd, 0);
9844 /*
9845 * Clear the QSFP reset.
9846 * A0 leaves the out lines floating on power on, then on an FLR
9847 * enforces a 0 on all out pins. The driver does not touch
9848 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
9849 * anything plugged constantly in reset, if it pays attention
9850 * to RESET_N.
9851 * A prime example of this is SiPh. For now, set all pins high.
9852 * I2CCLK and I2CDAT will change per direction, and INT_N and
9853 * MODPRS_N are input only and their value is ignored.
9854 */
9855 if (is_a0(dd)) {
9856 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
9857 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
9858 }
9859}
9860
9861static void init_early_variables(struct hfi1_devdata *dd)
9862{
9863 int i;
9864
9865 /* assign link credit variables */
9866 dd->vau = CM_VAU;
9867 dd->link_credits = CM_GLOBAL_CREDITS;
9868 if (is_a0(dd))
9869 dd->link_credits--;
9870 dd->vcu = cu_to_vcu(hfi1_cu);
9871 /* enough room for 8 MAD packets plus header - 17K */
9872 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
9873 if (dd->vl15_init > dd->link_credits)
9874 dd->vl15_init = dd->link_credits;
9875
9876 write_uninitialized_csrs_and_memories(dd);
9877
9878 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
9879 for (i = 0; i < dd->num_pports; i++) {
9880 struct hfi1_pportdata *ppd = &dd->pport[i];
9881
9882 set_partition_keys(ppd);
9883 }
9884 init_sc2vl_tables(dd);
9885}
9886
9887static void init_kdeth_qp(struct hfi1_devdata *dd)
9888{
9889 /* user changed the KDETH_QP */
9890 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
9891 /* out of range or illegal value */
9892 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
9893 kdeth_qp = 0;
9894 }
9895 if (kdeth_qp == 0) /* not set, or failed range check */
9896 kdeth_qp = DEFAULT_KDETH_QP;
9897
9898 write_csr(dd, SEND_BTH_QP,
9899 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
9900 << SEND_BTH_QP_KDETH_QP_SHIFT);
9901
9902 write_csr(dd, RCV_BTH_QP,
9903 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
9904 << RCV_BTH_QP_KDETH_QP_SHIFT);
9905}
9906
9907/**
9908 * init_qpmap_table
9909 * @dd - device data
9910 * @first_ctxt - first context
9911 * @last_ctxt - first context
9912 *
9913 * This return sets the qpn mapping table that
9914 * is indexed by qpn[8:1].
9915 *
9916 * The routine will round robin the 256 settings
9917 * from first_ctxt to last_ctxt.
9918 *
9919 * The first/last looks ahead to having specialized
9920 * receive contexts for mgmt and bypass. Normal
9921 * verbs traffic will assumed to be on a range
9922 * of receive contexts.
9923 */
9924static void init_qpmap_table(struct hfi1_devdata *dd,
9925 u32 first_ctxt,
9926 u32 last_ctxt)
9927{
9928 u64 reg = 0;
9929 u64 regno = RCV_QP_MAP_TABLE;
9930 int i;
9931 u64 ctxt = first_ctxt;
9932
9933 for (i = 0; i < 256;) {
9934 if (ctxt == VL15CTXT) {
9935 ctxt++;
9936 if (ctxt > last_ctxt)
9937 ctxt = first_ctxt;
9938 continue;
9939 }
9940 reg |= ctxt << (8 * (i % 8));
9941 i++;
9942 ctxt++;
9943 if (ctxt > last_ctxt)
9944 ctxt = first_ctxt;
9945 if (i % 8 == 0) {
9946 write_csr(dd, regno, reg);
9947 reg = 0;
9948 regno += 8;
9949 }
9950 }
9951 if (i % 8)
9952 write_csr(dd, regno, reg);
9953
9954 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
9955 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
9956}
9957
9958/**
9959 * init_qos - init RX qos
9960 * @dd - device data
9961 * @first_context
9962 *
9963 * This routine initializes Rule 0 and the
9964 * RSM map table to implement qos.
9965 *
9966 * If all of the limit tests succeed,
9967 * qos is applied based on the array
9968 * interpretation of krcvqs where
9969 * entry 0 is VL0.
9970 *
9971 * The number of vl bits (n) and the number of qpn
9972 * bits (m) are computed to feed both the RSM map table
9973 * and the single rule.
9974 *
9975 */
9976static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
9977{
9978 u8 max_by_vl = 0;
9979 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
9980 u64 *rsmmap;
9981 u64 reg;
9982 u8 rxcontext = is_a0(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
9983
9984 /* validate */
9985 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
9986 num_vls == 1 ||
9987 krcvqsset <= 1)
9988 goto bail;
9989 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
9990 if (krcvqs[i] > max_by_vl)
9991 max_by_vl = krcvqs[i];
9992 if (max_by_vl > 32)
9993 goto bail;
9994 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
9995 /* determine bits vl */
9996 n = ilog2(num_vls);
9997 /* determine bits for qpn */
9998 m = ilog2(qpns_per_vl);
9999 if ((m + n) > 7)
10000 goto bail;
10001 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
10002 goto bail;
10003 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
10004 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
10005 /* init the local copy of the table */
10006 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
10007 unsigned tctxt;
10008
10009 for (qpn = 0, tctxt = ctxt;
10010 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
10011 unsigned idx, regoff, regidx;
10012
10013 /* generate index <= 128 */
10014 idx = (qpn << n) ^ i;
10015 regoff = (idx % 8) * 8;
10016 regidx = idx / 8;
10017 reg = rsmmap[regidx];
10018 /* replace 0xff with context number */
10019 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
10020 << regoff);
10021 reg |= (u64)(tctxt++) << regoff;
10022 rsmmap[regidx] = reg;
10023 if (tctxt == ctxt + krcvqs[i])
10024 tctxt = ctxt;
10025 }
10026 ctxt += krcvqs[i];
10027 }
10028 /* flush cached copies to chip */
10029 for (i = 0; i < NUM_MAP_REGS; i++)
10030 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
10031 /* add rule0 */
10032 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
10033 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
10034 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
10035 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
10036 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
10037 LRH_BTH_MATCH_OFFSET
10038 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
10039 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
10040 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
10041 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
10042 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
10043 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
10044 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
10045 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
10046 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
10047 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
10048 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
10049 /* Enable RSM */
10050 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
10051 kfree(rsmmap);
10052 /* map everything else (non-VL15) to context 0 */
10053 init_qpmap_table(
10054 dd,
10055 0,
10056 0);
10057 dd->qos_shift = n + 1;
10058 return;
10059bail:
10060 dd->qos_shift = 1;
10061 init_qpmap_table(
10062 dd,
10063 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0,
10064 dd->n_krcv_queues - 1);
10065}
10066
10067static void init_rxe(struct hfi1_devdata *dd)
10068{
10069 /* enable all receive errors */
10070 write_csr(dd, RCV_ERR_MASK, ~0ull);
10071 /* setup QPN map table - start where VL15 context leaves off */
10072 init_qos(
10073 dd,
10074 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
10075 /*
10076 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
10077 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
10078 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
10079 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
10080 * Max_PayLoad_Size set to its minimum of 128.
10081 *
10082 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
10083 * (64 bytes). Max_Payload_Size is possibly modified upward in
10084 * tune_pcie_caps() which is called after this routine.
10085 */
10086}
10087
10088static void init_other(struct hfi1_devdata *dd)
10089{
10090 /* enable all CCE errors */
10091 write_csr(dd, CCE_ERR_MASK, ~0ull);
10092 /* enable *some* Misc errors */
10093 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
10094 /* enable all DC errors, except LCB */
10095 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
10096 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
10097}
10098
10099/*
10100 * Fill out the given AU table using the given CU. A CU is defined in terms
10101 * AUs. The table is a an encoding: given the index, how many AUs does that
10102 * represent?
10103 *
10104 * NOTE: Assumes that the register layout is the same for the
10105 * local and remote tables.
10106 */
10107static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
10108 u32 csr0to3, u32 csr4to7)
10109{
10110 write_csr(dd, csr0to3,
10111 0ull <<
10112 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
10113 | 1ull <<
10114 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
10115 | 2ull * cu <<
10116 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
10117 | 4ull * cu <<
10118 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
10119 write_csr(dd, csr4to7,
10120 8ull * cu <<
10121 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
10122 | 16ull * cu <<
10123 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
10124 | 32ull * cu <<
10125 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
10126 | 64ull * cu <<
10127 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
10128
10129}
10130
10131static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10132{
10133 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
10134 SEND_CM_LOCAL_AU_TABLE4_TO7);
10135}
10136
10137void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10138{
10139 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
10140 SEND_CM_REMOTE_AU_TABLE4_TO7);
10141}
10142
10143static void init_txe(struct hfi1_devdata *dd)
10144{
10145 int i;
10146
10147 /* enable all PIO, SDMA, general, and Egress errors */
10148 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
10149 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
10150 write_csr(dd, SEND_ERR_MASK, ~0ull);
10151 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
10152
10153 /* enable all per-context and per-SDMA engine errors */
10154 for (i = 0; i < dd->chip_send_contexts; i++)
10155 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
10156 for (i = 0; i < dd->chip_sdma_engines; i++)
10157 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
10158
10159 /* set the local CU to AU mapping */
10160 assign_local_cm_au_table(dd, dd->vcu);
10161
10162 /*
10163 * Set reasonable default for Credit Return Timer
10164 * Don't set on Simulator - causes it to choke.
10165 */
10166 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
10167 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
10168}
10169
10170int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
10171{
10172 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10173 unsigned sctxt;
10174 int ret = 0;
10175 u64 reg;
10176
10177 if (!rcd || !rcd->sc) {
10178 ret = -EINVAL;
10179 goto done;
10180 }
10181 sctxt = rcd->sc->hw_context;
10182 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
10183 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
10184 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
10185 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
10186 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
10187 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
10188 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
10189 /*
10190 * Enable send-side J_KEY integrity check, unless this is A0 h/w
10191 * (due to A0 erratum).
10192 */
10193 if (!is_a0(dd)) {
10194 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10195 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10196 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10197 }
10198
10199 /* Enable J_KEY check on receive context. */
10200 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
10201 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
10202 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
10203 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
10204done:
10205 return ret;
10206}
10207
10208int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
10209{
10210 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10211 unsigned sctxt;
10212 int ret = 0;
10213 u64 reg;
10214
10215 if (!rcd || !rcd->sc) {
10216 ret = -EINVAL;
10217 goto done;
10218 }
10219 sctxt = rcd->sc->hw_context;
10220 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
10221 /*
10222 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
10223 * This check would not have been enabled for A0 h/w, see
10224 * set_ctxt_jkey().
10225 */
10226 if (!is_a0(dd)) {
10227 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10228 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10229 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10230 }
10231 /* Turn off the J_KEY on the receive side */
10232 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
10233done:
10234 return ret;
10235}
10236
10237int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
10238{
10239 struct hfi1_ctxtdata *rcd;
10240 unsigned sctxt;
10241 int ret = 0;
10242 u64 reg;
10243
10244 if (ctxt < dd->num_rcv_contexts)
10245 rcd = dd->rcd[ctxt];
10246 else {
10247 ret = -EINVAL;
10248 goto done;
10249 }
10250 if (!rcd || !rcd->sc) {
10251 ret = -EINVAL;
10252 goto done;
10253 }
10254 sctxt = rcd->sc->hw_context;
10255 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
10256 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
10257 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
10258 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10259 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10260 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10261done:
10262 return ret;
10263}
10264
10265int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
10266{
10267 struct hfi1_ctxtdata *rcd;
10268 unsigned sctxt;
10269 int ret = 0;
10270 u64 reg;
10271
10272 if (ctxt < dd->num_rcv_contexts)
10273 rcd = dd->rcd[ctxt];
10274 else {
10275 ret = -EINVAL;
10276 goto done;
10277 }
10278 if (!rcd || !rcd->sc) {
10279 ret = -EINVAL;
10280 goto done;
10281 }
10282 sctxt = rcd->sc->hw_context;
10283 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10284 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10285 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10286 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
10287done:
10288 return ret;
10289}
10290
10291/*
10292 * Start doing the clean up the the chip. Our clean up happens in multiple
10293 * stages and this is just the first.
10294 */
10295void hfi1_start_cleanup(struct hfi1_devdata *dd)
10296{
10297 free_cntrs(dd);
10298 free_rcverr(dd);
10299 clean_up_interrupts(dd);
10300}
10301
10302#define HFI_BASE_GUID(dev) \
10303 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
10304
10305/*
10306 * Certain chip functions need to be initialized only once per asic
10307 * instead of per-device. This function finds the peer device and
10308 * checks whether that chip initialization needs to be done by this
10309 * device.
10310 */
10311static void asic_should_init(struct hfi1_devdata *dd)
10312{
10313 unsigned long flags;
10314 struct hfi1_devdata *tmp, *peer = NULL;
10315
10316 spin_lock_irqsave(&hfi1_devs_lock, flags);
10317 /* Find our peer device */
10318 list_for_each_entry(tmp, &hfi1_dev_list, list) {
10319 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
10320 dd->unit != tmp->unit) {
10321 peer = tmp;
10322 break;
10323 }
10324 }
10325
10326 /*
10327 * "Claim" the ASIC for initialization if it hasn't been
10328 " "claimed" yet.
10329 */
10330 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
10331 dd->flags |= HFI1_DO_INIT_ASIC;
10332 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
10333}
10334
10335/**
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010336 * Allocate and initialize the device structure for the hfi.
Mike Marciniszyn77241052015-07-30 15:17:43 -040010337 * @dev: the pci_dev for hfi1_ib device
10338 * @ent: pci_device_id struct for this dev
10339 *
10340 * Also allocates, initializes, and returns the devdata struct for this
10341 * device instance
10342 *
10343 * This is global, and is called directly at init to set up the
10344 * chip-specific function pointers for later use.
10345 */
10346struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
10347 const struct pci_device_id *ent)
10348{
10349 struct hfi1_devdata *dd;
10350 struct hfi1_pportdata *ppd;
10351 u64 reg;
10352 int i, ret;
10353 static const char * const inames[] = { /* implementation names */
10354 "RTL silicon",
10355 "RTL VCS simulation",
10356 "RTL FPGA emulation",
10357 "Functional simulator"
10358 };
10359
10360 dd = hfi1_alloc_devdata(pdev,
10361 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
10362 if (IS_ERR(dd))
10363 goto bail;
10364 ppd = dd->pport;
10365 for (i = 0; i < dd->num_pports; i++, ppd++) {
10366 int vl;
10367 /* init common fields */
10368 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
10369 /* DC supports 4 link widths */
10370 ppd->link_width_supported =
10371 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
10372 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
10373 ppd->link_width_downgrade_supported =
10374 ppd->link_width_supported;
10375 /* start out enabling only 4X */
10376 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
10377 ppd->link_width_downgrade_enabled =
10378 ppd->link_width_downgrade_supported;
10379 /* link width active is 0 when link is down */
10380 /* link width downgrade active is 0 when link is down */
10381
10382 if (num_vls < HFI1_MIN_VLS_SUPPORTED
10383 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
10384 hfi1_early_err(&pdev->dev,
10385 "Invalid num_vls %u, using %u VLs\n",
10386 num_vls, HFI1_MAX_VLS_SUPPORTED);
10387 num_vls = HFI1_MAX_VLS_SUPPORTED;
10388 }
10389 ppd->vls_supported = num_vls;
10390 ppd->vls_operational = ppd->vls_supported;
10391 /* Set the default MTU. */
10392 for (vl = 0; vl < num_vls; vl++)
10393 dd->vld[vl].mtu = hfi1_max_mtu;
10394 dd->vld[15].mtu = MAX_MAD_PACKET;
10395 /*
10396 * Set the initial values to reasonable default, will be set
10397 * for real when link is up.
10398 */
10399 ppd->lstate = IB_PORT_DOWN;
10400 ppd->overrun_threshold = 0x4;
10401 ppd->phy_error_threshold = 0xf;
10402 ppd->port_crc_mode_enabled = link_crc_mask;
10403 /* initialize supported LTP CRC mode */
10404 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
10405 /* initialize enabled LTP CRC mode */
10406 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
10407 /* start in offline */
10408 ppd->host_link_state = HLS_DN_OFFLINE;
10409 init_vl_arb_caches(ppd);
10410 }
10411
10412 dd->link_default = HLS_DN_POLL;
10413
10414 /*
10415 * Do remaining PCIe setup and save PCIe values in dd.
10416 * Any error printing is already done by the init code.
10417 * On return, we have the chip mapped.
10418 */
10419 ret = hfi1_pcie_ddinit(dd, pdev, ent);
10420 if (ret < 0)
10421 goto bail_free;
10422
10423 /* verify that reads actually work, save revision for reset check */
10424 dd->revision = read_csr(dd, CCE_REVISION);
10425 if (dd->revision == ~(u64)0) {
10426 dd_dev_err(dd, "cannot read chip CSRs\n");
10427 ret = -EINVAL;
10428 goto bail_cleanup;
10429 }
10430 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
10431 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
10432 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
10433 & CCE_REVISION_CHIP_REV_MINOR_MASK;
10434
10435 /* obtain the hardware ID - NOT related to unit, which is a
10436 software enumeration */
10437 reg = read_csr(dd, CCE_REVISION2);
10438 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
10439 & CCE_REVISION2_HFI_ID_MASK;
10440 /* the variable size will remove unwanted bits */
10441 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
10442 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
10443 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
10444 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
10445 (int)dd->irev);
10446
10447 /* speeds the hardware can support */
10448 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
10449 /* speeds allowed to run at */
10450 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
10451 /* give a reasonable active value, will be set on link up */
10452 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
10453
10454 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
10455 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
10456 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
10457 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
10458 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
10459 /* fix up link widths for emulation _p */
10460 ppd = dd->pport;
10461 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
10462 ppd->link_width_supported =
10463 ppd->link_width_enabled =
10464 ppd->link_width_downgrade_supported =
10465 ppd->link_width_downgrade_enabled =
10466 OPA_LINK_WIDTH_1X;
10467 }
10468 /* insure num_vls isn't larger than number of sdma engines */
10469 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
10470 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
10471 num_vls, HFI1_MAX_VLS_SUPPORTED);
10472 ppd->vls_supported = num_vls = HFI1_MAX_VLS_SUPPORTED;
10473 ppd->vls_operational = ppd->vls_supported;
10474 }
10475
10476 /*
10477 * Convert the ns parameter to the 64 * cclocks used in the CSR.
10478 * Limit the max if larger than the field holds. If timeout is
10479 * non-zero, then the calculated field will be at least 1.
10480 *
10481 * Must be after icode is set up - the cclock rate depends
10482 * on knowing the hardware being used.
10483 */
10484 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
10485 if (dd->rcv_intr_timeout_csr >
10486 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
10487 dd->rcv_intr_timeout_csr =
10488 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
10489 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
10490 dd->rcv_intr_timeout_csr = 1;
10491
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010492 /* needs to be done before we look for the peer device */
10493 read_guid(dd);
10494
10495 /* should this device init the ASIC block? */
10496 asic_should_init(dd);
10497
Mike Marciniszyn77241052015-07-30 15:17:43 -040010498 /* obtain chip sizes, reset chip CSRs */
10499 init_chip(dd);
10500
10501 /* read in the PCIe link speed information */
10502 ret = pcie_speeds(dd);
10503 if (ret)
10504 goto bail_cleanup;
10505
Mike Marciniszyn77241052015-07-30 15:17:43 -040010506 /* read in firmware */
10507 ret = hfi1_firmware_init(dd);
10508 if (ret)
10509 goto bail_cleanup;
10510
10511 /*
10512 * In general, the PCIe Gen3 transition must occur after the
10513 * chip has been idled (so it won't initiate any PCIe transactions
10514 * e.g. an interrupt) and before the driver changes any registers
10515 * (the transition will reset the registers).
10516 *
10517 * In particular, place this call after:
10518 * - init_chip() - the chip will not initiate any PCIe transactions
10519 * - pcie_speeds() - reads the current link speed
10520 * - hfi1_firmware_init() - the needed firmware is ready to be
10521 * downloaded
10522 */
10523 ret = do_pcie_gen3_transition(dd);
10524 if (ret)
10525 goto bail_cleanup;
10526
10527 /* start setting dd values and adjusting CSRs */
10528 init_early_variables(dd);
10529
10530 parse_platform_config(dd);
10531
10532 /* add board names as they are defined */
10533 dd->boardname = kmalloc(64, GFP_KERNEL);
10534 if (!dd->boardname)
10535 goto bail_cleanup;
10536 snprintf(dd->boardname, 64, "Board ID 0x%llx",
10537 dd->revision >> CCE_REVISION_BOARD_ID_LOWER_NIBBLE_SHIFT
10538 & CCE_REVISION_BOARD_ID_LOWER_NIBBLE_MASK);
10539
10540 snprintf(dd->boardversion, BOARD_VERS_MAX,
10541 "ChipABI %u.%u, %s, ChipRev %u.%u, SW Compat %llu\n",
10542 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
10543 dd->boardname,
10544 (u32)dd->majrev,
10545 (u32)dd->minrev,
10546 (dd->revision >> CCE_REVISION_SW_SHIFT)
10547 & CCE_REVISION_SW_MASK);
10548
10549 ret = set_up_context_variables(dd);
10550 if (ret)
10551 goto bail_cleanup;
10552
10553 /* set initial RXE CSRs */
10554 init_rxe(dd);
10555 /* set initial TXE CSRs */
10556 init_txe(dd);
10557 /* set initial non-RXE, non-TXE CSRs */
10558 init_other(dd);
10559 /* set up KDETH QP prefix in both RX and TX CSRs */
10560 init_kdeth_qp(dd);
10561
10562 /* send contexts must be set up before receive contexts */
10563 ret = init_send_contexts(dd);
10564 if (ret)
10565 goto bail_cleanup;
10566
10567 ret = hfi1_create_ctxts(dd);
10568 if (ret)
10569 goto bail_cleanup;
10570
10571 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
10572 /*
10573 * rcd[0] is guaranteed to be valid by this point. Also, all
10574 * context are using the same value, as per the module parameter.
10575 */
10576 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
10577
10578 ret = init_pervl_scs(dd);
10579 if (ret)
10580 goto bail_cleanup;
10581
10582 /* sdma init */
10583 for (i = 0; i < dd->num_pports; ++i) {
10584 ret = sdma_init(dd, i);
10585 if (ret)
10586 goto bail_cleanup;
10587 }
10588
10589 /* use contexts created by hfi1_create_ctxts */
10590 ret = set_up_interrupts(dd);
10591 if (ret)
10592 goto bail_cleanup;
10593
10594 /* set up LCB access - must be after set_up_interrupts() */
10595 init_lcb_access(dd);
10596
10597 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
10598 dd->base_guid & 0xFFFFFF);
10599
10600 dd->oui1 = dd->base_guid >> 56 & 0xFF;
10601 dd->oui2 = dd->base_guid >> 48 & 0xFF;
10602 dd->oui3 = dd->base_guid >> 40 & 0xFF;
10603
10604 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
10605 if (ret)
10606 goto bail_clear_intr;
10607 check_fabric_firmware_versions(dd);
10608
10609 thermal_init(dd);
10610
10611 ret = init_cntrs(dd);
10612 if (ret)
10613 goto bail_clear_intr;
10614
10615 ret = init_rcverr(dd);
10616 if (ret)
10617 goto bail_free_cntrs;
10618
10619 ret = eprom_init(dd);
10620 if (ret)
10621 goto bail_free_rcverr;
10622
10623 goto bail;
10624
10625bail_free_rcverr:
10626 free_rcverr(dd);
10627bail_free_cntrs:
10628 free_cntrs(dd);
10629bail_clear_intr:
10630 clean_up_interrupts(dd);
10631bail_cleanup:
10632 hfi1_pcie_ddcleanup(dd);
10633bail_free:
10634 hfi1_free_devdata(dd);
10635 dd = ERR_PTR(ret);
10636bail:
10637 return dd;
10638}
10639
10640static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
10641 u32 dw_len)
10642{
10643 u32 delta_cycles;
10644 u32 current_egress_rate = ppd->current_egress_rate;
10645 /* rates here are in units of 10^6 bits/sec */
10646
10647 if (desired_egress_rate == -1)
10648 return 0; /* shouldn't happen */
10649
10650 if (desired_egress_rate >= current_egress_rate)
10651 return 0; /* we can't help go faster, only slower */
10652
10653 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
10654 egress_cycles(dw_len * 4, current_egress_rate);
10655
10656 return (u16)delta_cycles;
10657}
10658
10659
10660/**
10661 * create_pbc - build a pbc for transmission
10662 * @flags: special case flags or-ed in built pbc
10663 * @srate: static rate
10664 * @vl: vl
10665 * @dwlen: dword length (header words + data words + pbc words)
10666 *
10667 * Create a PBC with the given flags, rate, VL, and length.
10668 *
10669 * NOTE: The PBC created will not insert any HCRC - all callers but one are
10670 * for verbs, which does not use this PSM feature. The lone other caller
10671 * is for the diagnostic interface which calls this if the user does not
10672 * supply their own PBC.
10673 */
10674u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
10675 u32 dw_len)
10676{
10677 u64 pbc, delay = 0;
10678
10679 if (unlikely(srate_mbs))
10680 delay = delay_cycles(ppd, srate_mbs, dw_len);
10681
10682 pbc = flags
10683 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
10684 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
10685 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
10686 | (dw_len & PBC_LENGTH_DWS_MASK)
10687 << PBC_LENGTH_DWS_SHIFT;
10688
10689 return pbc;
10690}
10691
10692#define SBUS_THERMAL 0x4f
10693#define SBUS_THERM_MONITOR_MODE 0x1
10694
10695#define THERM_FAILURE(dev, ret, reason) \
10696 dd_dev_err((dd), \
10697 "Thermal sensor initialization failed: %s (%d)\n", \
10698 (reason), (ret))
10699
10700/*
10701 * Initialize the Avago Thermal sensor.
10702 *
10703 * After initialization, enable polling of thermal sensor through
10704 * SBus interface. In order for this to work, the SBus Master
10705 * firmware has to be loaded due to the fact that the HW polling
10706 * logic uses SBus interrupts, which are not supported with
10707 * default firmware. Otherwise, no data will be returned through
10708 * the ASIC_STS_THERM CSR.
10709 */
10710static int thermal_init(struct hfi1_devdata *dd)
10711{
10712 int ret = 0;
10713
10714 if (dd->icode != ICODE_RTL_SILICON ||
10715 !(dd->flags & HFI1_DO_INIT_ASIC))
10716 return ret;
10717
10718 acquire_hw_mutex(dd);
10719 dd_dev_info(dd, "Initializing thermal sensor\n");
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010720
Mike Marciniszyn77241052015-07-30 15:17:43 -040010721 /* Thermal Sensor Initialization */
10722 /* Step 1: Reset the Thermal SBus Receiver */
10723 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10724 RESET_SBUS_RECEIVER, 0);
10725 if (ret) {
10726 THERM_FAILURE(dd, ret, "Bus Reset");
10727 goto done;
10728 }
10729 /* Step 2: Set Reset bit in Thermal block */
10730 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10731 WRITE_SBUS_RECEIVER, 0x1);
10732 if (ret) {
10733 THERM_FAILURE(dd, ret, "Therm Block Reset");
10734 goto done;
10735 }
10736 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
10737 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
10738 WRITE_SBUS_RECEIVER, 0x32);
10739 if (ret) {
10740 THERM_FAILURE(dd, ret, "Write Clock Div");
10741 goto done;
10742 }
10743 /* Step 4: Select temperature mode */
10744 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
10745 WRITE_SBUS_RECEIVER,
10746 SBUS_THERM_MONITOR_MODE);
10747 if (ret) {
10748 THERM_FAILURE(dd, ret, "Write Mode Sel");
10749 goto done;
10750 }
10751 /* Step 5: De-assert block reset and start conversion */
10752 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10753 WRITE_SBUS_RECEIVER, 0x2);
10754 if (ret) {
10755 THERM_FAILURE(dd, ret, "Write Reset Deassert");
10756 goto done;
10757 }
10758 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
10759 msleep(22);
10760
10761 /* Enable polling of thermal readings */
10762 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
10763done:
10764 release_hw_mutex(dd);
10765 return ret;
10766}
10767
10768static void handle_temp_err(struct hfi1_devdata *dd)
10769{
10770 struct hfi1_pportdata *ppd = &dd->pport[0];
10771 /*
10772 * Thermal Critical Interrupt
10773 * Put the device into forced freeze mode, take link down to
10774 * offline, and put DC into reset.
10775 */
10776 dd_dev_emerg(dd,
10777 "Critical temperature reached! Forcing device into freeze mode!\n");
10778 dd->flags |= HFI1_FORCED_FREEZE;
10779 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
10780 /*
10781 * Shut DC down as much and as quickly as possible.
10782 *
10783 * Step 1: Take the link down to OFFLINE. This will cause the
10784 * 8051 to put the Serdes in reset. However, we don't want to
10785 * go through the entire link state machine since we want to
10786 * shutdown ASAP. Furthermore, this is not a graceful shutdown
10787 * but rather an attempt to save the chip.
10788 * Code below is almost the same as quiet_serdes() but avoids
10789 * all the extra work and the sleeps.
10790 */
10791 ppd->driver_link_ready = 0;
10792 ppd->link_enabled = 0;
10793 set_physical_link_state(dd, PLS_OFFLINE |
10794 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
10795 /*
10796 * Step 2: Shutdown LCB and 8051
10797 * After shutdown, do not restore DC_CFG_RESET value.
10798 */
10799 dc_shutdown(dd);
10800}