blob: 4969a5b1cf3c9aed55e14286c073a7816c7db8fb [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
Alexander Duyck86d5d382009-02-06 23:23:12 +00004 Copyright(c) 2007-2009 Intel Corporation.
Auke Kok9d5c8242008-01-24 02:22:38 -08005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
Auke Kok9d5c8242008-01-24 02:22:38 -080039
Auke Kok9d5c8242008-01-24 02:22:38 -080040/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070041 * igb_get_bus_info_pcie - Get PCIe bus information
Auke Kok9d5c8242008-01-24 02:22:38 -080042 * @hw: pointer to the HW structure
43 *
44 * Determines and stores the system bus information for a particular
45 * network interface. The following bus information is determined and stored:
46 * bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49{
50 struct e1000_bus_info *bus = &hw->bus;
51 s32 ret_val;
Alexander Duyck5e8427e2008-12-10 01:09:53 -080052 u32 reg;
53 u16 pcie_link_status;
Auke Kok9d5c8242008-01-24 02:22:38 -080054
55 bus->type = e1000_bus_type_pci_express;
56 bus->speed = e1000_bus_speed_2500;
57
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCIE_LINK_STATUS,
60 &pcie_link_status);
61 if (ret_val)
62 bus->width = e1000_bus_width_unknown;
63 else
64 bus->width = (enum e1000_bus_width)((pcie_link_status &
65 PCIE_LINK_WIDTH_MASK) >>
66 PCIE_LINK_WIDTH_SHIFT);
67
Alexander Duyck5e8427e2008-12-10 01:09:53 -080068 reg = rd32(E1000_STATUS);
69 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
Auke Kok9d5c8242008-01-24 02:22:38 -080070
71 return 0;
72}
73
74/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070075 * igb_clear_vfta - Clear VLAN filter table
Auke Kok9d5c8242008-01-24 02:22:38 -080076 * @hw: pointer to the HW structure
77 *
78 * Clears the register array which contains the VLAN filter table by
79 * setting all the values to 0.
80 **/
81void igb_clear_vfta(struct e1000_hw *hw)
82{
83 u32 offset;
84
85 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
86 array_wr32(E1000_VFTA, offset, 0);
87 wrfl();
88 }
89}
90
91/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070092 * igb_write_vfta - Write value to VLAN filter table
Auke Kok9d5c8242008-01-24 02:22:38 -080093 * @hw: pointer to the HW structure
94 * @offset: register offset in VLAN filter table
95 * @value: register value written to VLAN filter table
96 *
97 * Writes value at the given offset in the register array which stores
98 * the VLAN filter table.
99 **/
Alexander Duyckff6f63d2009-04-09 22:49:02 +0000100static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
Auke Kok9d5c8242008-01-24 02:22:38 -0800101{
102 array_wr32(E1000_VFTA, offset, value);
103 wrfl();
104}
105
106/**
Alexander Duyck5ac16652009-07-23 18:09:12 +0000107 * igb_init_rx_addrs - Initialize receive address's
108 * @hw: pointer to the HW structure
109 * @rar_count: receive address registers
110 *
111 * Setups the receive address registers by setting the base receive address
112 * register to the devices MAC address and clearing all the other receive
113 * address registers to 0.
114 **/
115void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
116{
117 u32 i;
118 u8 mac_addr[ETH_ALEN] = {0};
119
120 /* Setup the receive address */
121 hw_dbg("Programming MAC Address into RAR[0]\n");
122
123 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
124
125 /* Zero out the other (rar_entry_count - 1) receive addresses */
126 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
127 for (i = 1; i < rar_count; i++)
128 hw->mac.ops.rar_set(hw, mac_addr, i);
129}
130
131/**
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800132 * igb_vfta_set - enable or disable vlan in VLAN filter table
133 * @hw: pointer to the HW structure
134 * @vid: VLAN id to add or remove
135 * @add: if true add filter, if false remove
136 *
137 * Sets or clears a bit in the VLAN filter table array based on VLAN id
138 * and if we are adding or removing the filter
139 **/
Alexander Duyckcad6d052009-03-13 20:41:37 +0000140s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800141{
142 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
Alexander Duyck75f4f382009-03-13 20:41:55 +0000143 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
Alexander Duyckcad6d052009-03-13 20:41:37 +0000144 u32 vfta = array_rd32(E1000_VFTA, index);
145 s32 ret_val = 0;
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800146
Alexander Duyckcad6d052009-03-13 20:41:37 +0000147 /* bit was set/cleared before we started */
148 if ((!!(vfta & mask)) == add) {
149 ret_val = -E1000_ERR_CONFIG;
150 } else {
151 if (add)
152 vfta |= mask;
153 else
154 vfta &= ~mask;
155 }
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800156
157 igb_write_vfta(hw, index, vfta);
Alexander Duyckcad6d052009-03-13 20:41:37 +0000158
159 return ret_val;
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800160}
161
162/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700163 * igb_check_alt_mac_addr - Check for alternate MAC addr
Auke Kok9d5c8242008-01-24 02:22:38 -0800164 * @hw: pointer to the HW structure
165 *
166 * Checks the nvm for an alternate MAC address. An alternate MAC address
167 * can be setup by pre-boot software and must be treated like a permanent
168 * address and must override the actual permanent MAC address. If an
169 * alternate MAC address is fopund it is saved in the hw struct and
170 * prgrammed into RAR0 and the cuntion returns success, otherwise the
171 * fucntion returns an error.
172 **/
173s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
174{
175 u32 i;
176 s32 ret_val = 0;
177 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
178 u8 alt_mac_addr[ETH_ALEN];
179
Alexander Duyck312c75a2009-02-06 23:17:47 +0000180 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
Auke Kok9d5c8242008-01-24 02:22:38 -0800181 &nvm_alt_mac_addr_offset);
182 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700183 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800184 goto out;
185 }
186
187 if (nvm_alt_mac_addr_offset == 0xFFFF) {
Alexander Duyck22896632009-10-05 06:34:25 +0000188 /* There is no Alternate MAC Address */
Auke Kok9d5c8242008-01-24 02:22:38 -0800189 goto out;
190 }
191
192 if (hw->bus.func == E1000_FUNC_1)
Alexander Duyck22896632009-10-05 06:34:25 +0000193 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
Auke Kok9d5c8242008-01-24 02:22:38 -0800194 for (i = 0; i < ETH_ALEN; i += 2) {
195 offset = nvm_alt_mac_addr_offset + (i >> 1);
Alexander Duyck312c75a2009-02-06 23:17:47 +0000196 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800197 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700198 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800199 goto out;
200 }
201
202 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
203 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
204 }
205
206 /* if multicast bit is set, the alternate address will not be used */
207 if (alt_mac_addr[0] & 0x01) {
Alexander Duyck22896632009-10-05 06:34:25 +0000208 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800209 goto out;
210 }
211
Alexander Duyck22896632009-10-05 06:34:25 +0000212 /*
213 * We have a valid alternate MAC address, and we want to treat it the
214 * same as the normal permanent MAC address stored by the HW into the
215 * RAR. Do this by mapping this address into RAR0.
216 */
217 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
Auke Kok9d5c8242008-01-24 02:22:38 -0800218
219out:
220 return ret_val;
221}
222
223/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700224 * igb_rar_set - Set receive address register
Auke Kok9d5c8242008-01-24 02:22:38 -0800225 * @hw: pointer to the HW structure
226 * @addr: pointer to the receive address
227 * @index: receive address array register
228 *
229 * Sets the receive address array register at index to the address passed
230 * in by addr.
231 **/
232void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
233{
234 u32 rar_low, rar_high;
235
236 /*
237 * HW expects these in little endian so we reverse the byte order
238 * from network order (big endian) to little endian
239 */
240 rar_low = ((u32) addr[0] |
241 ((u32) addr[1] << 8) |
242 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
243
244 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
245
Alexander Duyck86757372009-02-06 23:21:51 +0000246 /* If MAC address zero, no need to set the AV bit */
247 if (rar_low || rar_high)
Auke Kok9d5c8242008-01-24 02:22:38 -0800248 rar_high |= E1000_RAH_AV;
249
Alexander Duyck5e8427e2008-12-10 01:09:53 -0800250 wr32(E1000_RAL(index), rar_low);
251 wr32(E1000_RAH(index), rar_high);
Auke Kok9d5c8242008-01-24 02:22:38 -0800252}
253
254/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700255 * igb_mta_set - Set multicast filter table address
Auke Kok9d5c8242008-01-24 02:22:38 -0800256 * @hw: pointer to the HW structure
257 * @hash_value: determines the MTA register and bit to set
258 *
259 * The multicast table address is a register array of 32-bit registers.
260 * The hash_value is used to determine what register the bit is in, the
261 * current value is read, the new bit is OR'd in and the new value is
262 * written back into the register.
263 **/
Alexander Duyck549bdd82008-08-04 15:00:06 -0700264void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
Auke Kok9d5c8242008-01-24 02:22:38 -0800265{
266 u32 hash_bit, hash_reg, mta;
267
268 /*
269 * The MTA is a register array of 32-bit registers. It is
270 * treated like an array of (32*mta_reg_count) bits. We want to
271 * set bit BitArray[hash_value]. So we figure out what register
272 * the bit is in, read it, OR in the new bit, then write
273 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
274 * mask to bits 31:5 of the hash value which gives us the
275 * register we're modifying. The hash bit within that register
276 * is determined by the lower 5 bits of the hash value.
277 */
278 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
279 hash_bit = hash_value & 0x1F;
280
281 mta = array_rd32(E1000_MTA, hash_reg);
282
283 mta |= (1 << hash_bit);
284
285 array_wr32(E1000_MTA, hash_reg, mta);
286 wrfl();
287}
288
289/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700290 * igb_hash_mc_addr - Generate a multicast hash value
Auke Kok9d5c8242008-01-24 02:22:38 -0800291 * @hw: pointer to the HW structure
292 * @mc_addr: pointer to a multicast address
293 *
294 * Generates a multicast address hash value which is used to determine
295 * the multicast filter table array address and new table value. See
296 * igb_mta_set()
297 **/
Alexander Duyck44c852e2009-09-17 14:52:29 +0000298static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
Auke Kok9d5c8242008-01-24 02:22:38 -0800299{
300 u32 hash_value, hash_mask;
301 u8 bit_shift = 0;
302
303 /* Register count multiplied by bits per register */
304 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
305
306 /*
307 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
308 * where 0xFF would still fall within the hash mask.
309 */
310 while (hash_mask >> bit_shift != 0xFF)
311 bit_shift++;
312
313 /*
314 * The portion of the address that is used for the hash table
315 * is determined by the mc_filter_type setting.
316 * The algorithm is such that there is a total of 8 bits of shifting.
317 * The bit_shift for a mc_filter_type of 0 represents the number of
318 * left-shifts where the MSB of mc_addr[5] would still fall within
319 * the hash_mask. Case 0 does this exactly. Since there are a total
320 * of 8 bits of shifting, then mc_addr[4] will shift right the
321 * remaining number of bits. Thus 8 - bit_shift. The rest of the
322 * cases are a variation of this algorithm...essentially raising the
323 * number of bits to shift mc_addr[5] left, while still keeping the
324 * 8-bit shifting total.
325 *
326 * For example, given the following Destination MAC Address and an
327 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
328 * we can see that the bit_shift for case 0 is 4. These are the hash
329 * values resulting from each mc_filter_type...
330 * [0] [1] [2] [3] [4] [5]
331 * 01 AA 00 12 34 56
332 * LSB MSB
333 *
334 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
335 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
336 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
337 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
338 */
339 switch (hw->mac.mc_filter_type) {
340 default:
341 case 0:
342 break;
343 case 1:
344 bit_shift += 1;
345 break;
346 case 2:
347 bit_shift += 2;
348 break;
349 case 3:
350 bit_shift += 4;
351 break;
352 }
353
354 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
355 (((u16) mc_addr[5]) << bit_shift)));
356
357 return hash_value;
358}
359
360/**
Alexander Duyck44c852e2009-09-17 14:52:29 +0000361 * igb_update_mc_addr_list - Update Multicast addresses
362 * @hw: pointer to the HW structure
363 * @mc_addr_list: array of multicast addresses to program
364 * @mc_addr_count: number of multicast addresses to program
365 *
366 * Updates entire Multicast Table Array.
367 * The caller must have a packed mc_addr_list of multicast addresses.
368 **/
369void igb_update_mc_addr_list(struct e1000_hw *hw,
370 u8 *mc_addr_list, u32 mc_addr_count)
371{
372 u32 hash_value, hash_bit, hash_reg;
373 int i;
374
375 /* clear mta_shadow */
376 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
377
378 /* update mta_shadow from mc_addr_list */
379 for (i = 0; (u32) i < mc_addr_count; i++) {
380 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
381
382 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
383 hash_bit = hash_value & 0x1F;
384
385 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
386 mc_addr_list += (ETH_ALEN);
387 }
388
389 /* replace the entire MTA table */
390 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
391 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
392 wrfl();
393}
394
395/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700396 * igb_clear_hw_cntrs_base - Clear base hardware counters
Auke Kok9d5c8242008-01-24 02:22:38 -0800397 * @hw: pointer to the HW structure
398 *
399 * Clears the base hardware counters by reading the counter registers.
400 **/
401void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
402{
Alexander Duyckcc9073b2009-10-05 06:31:25 +0000403 rd32(E1000_CRCERRS);
404 rd32(E1000_SYMERRS);
405 rd32(E1000_MPC);
406 rd32(E1000_SCC);
407 rd32(E1000_ECOL);
408 rd32(E1000_MCC);
409 rd32(E1000_LATECOL);
410 rd32(E1000_COLC);
411 rd32(E1000_DC);
412 rd32(E1000_SEC);
413 rd32(E1000_RLEC);
414 rd32(E1000_XONRXC);
415 rd32(E1000_XONTXC);
416 rd32(E1000_XOFFRXC);
417 rd32(E1000_XOFFTXC);
418 rd32(E1000_FCRUC);
419 rd32(E1000_GPRC);
420 rd32(E1000_BPRC);
421 rd32(E1000_MPRC);
422 rd32(E1000_GPTC);
423 rd32(E1000_GORCL);
424 rd32(E1000_GORCH);
425 rd32(E1000_GOTCL);
426 rd32(E1000_GOTCH);
427 rd32(E1000_RNBC);
428 rd32(E1000_RUC);
429 rd32(E1000_RFC);
430 rd32(E1000_ROC);
431 rd32(E1000_RJC);
432 rd32(E1000_TORL);
433 rd32(E1000_TORH);
434 rd32(E1000_TOTL);
435 rd32(E1000_TOTH);
436 rd32(E1000_TPR);
437 rd32(E1000_TPT);
438 rd32(E1000_MPTC);
439 rd32(E1000_BPTC);
Auke Kok9d5c8242008-01-24 02:22:38 -0800440}
441
442/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700443 * igb_check_for_copper_link - Check for link (Copper)
Auke Kok9d5c8242008-01-24 02:22:38 -0800444 * @hw: pointer to the HW structure
445 *
446 * Checks to see of the link status of the hardware has changed. If a
447 * change in link status has been detected, then we read the PHY registers
448 * to get the current speed/duplex if link exists.
449 **/
450s32 igb_check_for_copper_link(struct e1000_hw *hw)
451{
452 struct e1000_mac_info *mac = &hw->mac;
453 s32 ret_val;
454 bool link;
455
456 /*
457 * We only want to go out to the PHY registers to see if Auto-Neg
458 * has completed and/or if our link status has changed. The
459 * get_link_status flag is set upon receiving a Link Status
460 * Change or Rx Sequence Error interrupt.
461 */
462 if (!mac->get_link_status) {
463 ret_val = 0;
464 goto out;
465 }
466
467 /*
468 * First we want to see if the MII Status Register reports
469 * link. If so, then we want to get the current speed/duplex
470 * of the PHY.
471 */
472 ret_val = igb_phy_has_link(hw, 1, 0, &link);
473 if (ret_val)
474 goto out;
475
476 if (!link)
477 goto out; /* No link detected */
478
479 mac->get_link_status = false;
480
481 /*
482 * Check if there was DownShift, must be checked
483 * immediately after link-up
484 */
485 igb_check_downshift(hw);
486
487 /*
488 * If we are forcing speed/duplex, then we simply return since
489 * we have already determined whether we have link or not.
490 */
491 if (!mac->autoneg) {
492 ret_val = -E1000_ERR_CONFIG;
493 goto out;
494 }
495
496 /*
497 * Auto-Neg is enabled. Auto Speed Detection takes care
498 * of MAC speed/duplex configuration. So we only need to
499 * configure Collision Distance in the MAC.
500 */
501 igb_config_collision_dist(hw);
502
503 /*
504 * Configure Flow Control now that Auto-Neg has completed.
505 * First, we need to restore the desired flow control
506 * settings because we may have had to re-autoneg with a
507 * different link partner.
508 */
509 ret_val = igb_config_fc_after_link_up(hw);
510 if (ret_val)
Auke Kok652fff32008-06-27 11:00:18 -0700511 hw_dbg("Error configuring flow control\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800512
513out:
514 return ret_val;
515}
516
517/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700518 * igb_setup_link - Setup flow control and link settings
Auke Kok9d5c8242008-01-24 02:22:38 -0800519 * @hw: pointer to the HW structure
520 *
521 * Determines which flow control settings to use, then configures flow
522 * control. Calls the appropriate media-specific link configuration
523 * function. Assuming the adapter has a valid link partner, a valid link
524 * should be established. Assumes the hardware has previously been reset
525 * and the transmitter and receiver are not enabled.
526 **/
527s32 igb_setup_link(struct e1000_hw *hw)
528{
529 s32 ret_val = 0;
530
531 /*
532 * In the case of the phy reset being blocked, we already have a link.
533 * We do not need to set it up again.
534 */
535 if (igb_check_reset_block(hw))
536 goto out;
537
Alexander Duyck0cce1192009-07-23 18:10:24 +0000538 /*
539 * If requested flow control is set to default, set flow control
540 * based on the EEPROM flow control settings.
541 */
542 if (hw->fc.requested_mode == e1000_fc_default) {
543 ret_val = igb_set_default_fc(hw);
544 if (ret_val)
545 goto out;
546 }
Auke Kok9d5c8242008-01-24 02:22:38 -0800547
548 /*
549 * We want to save off the original Flow Control configuration just
550 * in case we get disconnected and then reconnected into a different
551 * hub or switch with different Flow Control capabilities.
552 */
Alexander Duyck0cce1192009-07-23 18:10:24 +0000553 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kok9d5c8242008-01-24 02:22:38 -0800554
Alexander Duyck0cce1192009-07-23 18:10:24 +0000555 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
Auke Kok9d5c8242008-01-24 02:22:38 -0800556
557 /* Call the necessary media_type subroutine to configure the link. */
558 ret_val = hw->mac.ops.setup_physical_interface(hw);
559 if (ret_val)
560 goto out;
561
562 /*
563 * Initialize the flow control address, type, and PAUSE timer
564 * registers to their default values. This is done even if flow
565 * control is disabled, because it does not hurt anything to
566 * initialize these registers.
567 */
Auke Kok652fff32008-06-27 11:00:18 -0700568 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800569 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
570 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
571 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
572
573 wr32(E1000_FCTTV, hw->fc.pause_time);
574
575 ret_val = igb_set_fc_watermarks(hw);
576
577out:
578 return ret_val;
579}
580
581/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700582 * igb_config_collision_dist - Configure collision distance
Auke Kok9d5c8242008-01-24 02:22:38 -0800583 * @hw: pointer to the HW structure
584 *
585 * Configures the collision distance to the default value and is used
586 * during link setup. Currently no func pointer exists and all
587 * implementations are handled in the generic version of this function.
588 **/
589void igb_config_collision_dist(struct e1000_hw *hw)
590{
591 u32 tctl;
592
593 tctl = rd32(E1000_TCTL);
594
595 tctl &= ~E1000_TCTL_COLD;
596 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
597
598 wr32(E1000_TCTL, tctl);
599 wrfl();
600}
601
602/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700603 * igb_set_fc_watermarks - Set flow control high/low watermarks
Auke Kok9d5c8242008-01-24 02:22:38 -0800604 * @hw: pointer to the HW structure
605 *
606 * Sets the flow control high/low threshold (watermark) registers. If
607 * flow control XON frame transmission is enabled, then set XON frame
608 * tansmission as well.
609 **/
610static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
611{
612 s32 ret_val = 0;
613 u32 fcrtl = 0, fcrth = 0;
614
615 /*
616 * Set the flow control receive threshold registers. Normally,
617 * these registers will be set to a default threshold that may be
618 * adjusted later by the driver's runtime code. However, if the
619 * ability to transmit pause frames is not enabled, then these
620 * registers will be set to 0.
621 */
Alexander Duyck0cce1192009-07-23 18:10:24 +0000622 if (hw->fc.current_mode & e1000_fc_tx_pause) {
Auke Kok9d5c8242008-01-24 02:22:38 -0800623 /*
624 * We need to set up the Receive Threshold high and low water
625 * marks as well as (optionally) enabling the transmission of
626 * XON frames.
627 */
628 fcrtl = hw->fc.low_water;
629 if (hw->fc.send_xon)
630 fcrtl |= E1000_FCRTL_XONE;
631
632 fcrth = hw->fc.high_water;
633 }
634 wr32(E1000_FCRTL, fcrtl);
635 wr32(E1000_FCRTH, fcrth);
636
637 return ret_val;
638}
639
640/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700641 * igb_set_default_fc - Set flow control default values
Auke Kok9d5c8242008-01-24 02:22:38 -0800642 * @hw: pointer to the HW structure
643 *
644 * Read the EEPROM for the default values for flow control and store the
645 * values.
646 **/
647static s32 igb_set_default_fc(struct e1000_hw *hw)
648{
649 s32 ret_val = 0;
650 u16 nvm_data;
651
652 /*
653 * Read and store word 0x0F of the EEPROM. This word contains bits
654 * that determine the hardware's default PAUSE (flow control) mode,
655 * a bit that determines whether the HW defaults to enabling or
656 * disabling auto-negotiation, and the direction of the
657 * SW defined pins. If there is no SW over-ride of the flow
658 * control setting, then the variable hw->fc will
659 * be initialized based on a value in the EEPROM.
660 */
Alexander Duyck312c75a2009-02-06 23:17:47 +0000661 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800662
663 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700664 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800665 goto out;
666 }
667
668 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
Alexander Duyck0cce1192009-07-23 18:10:24 +0000669 hw->fc.requested_mode = e1000_fc_none;
Auke Kok9d5c8242008-01-24 02:22:38 -0800670 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
671 NVM_WORD0F_ASM_DIR)
Alexander Duyck0cce1192009-07-23 18:10:24 +0000672 hw->fc.requested_mode = e1000_fc_tx_pause;
Auke Kok9d5c8242008-01-24 02:22:38 -0800673 else
Alexander Duyck0cce1192009-07-23 18:10:24 +0000674 hw->fc.requested_mode = e1000_fc_full;
Auke Kok9d5c8242008-01-24 02:22:38 -0800675
676out:
677 return ret_val;
678}
679
680/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700681 * igb_force_mac_fc - Force the MAC's flow control settings
Auke Kok9d5c8242008-01-24 02:22:38 -0800682 * @hw: pointer to the HW structure
683 *
684 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
685 * device control register to reflect the adapter settings. TFCE and RFCE
686 * need to be explicitly set by software when a copper PHY is used because
687 * autonegotiation is managed by the PHY rather than the MAC. Software must
688 * also configure these bits when link is forced on a fiber connection.
689 **/
690s32 igb_force_mac_fc(struct e1000_hw *hw)
691{
692 u32 ctrl;
693 s32 ret_val = 0;
694
695 ctrl = rd32(E1000_CTRL);
696
697 /*
698 * Because we didn't get link via the internal auto-negotiation
699 * mechanism (we either forced link or we got link via PHY
700 * auto-neg), we have to manually enable/disable transmit an
701 * receive flow control.
702 *
703 * The "Case" statement below enables/disable flow control
Alexander Duyck0cce1192009-07-23 18:10:24 +0000704 * according to the "hw->fc.current_mode" parameter.
Auke Kok9d5c8242008-01-24 02:22:38 -0800705 *
706 * The possible values of the "fc" parameter are:
707 * 0: Flow control is completely disabled
708 * 1: Rx flow control is enabled (we can receive pause
709 * frames but not send pause frames).
710 * 2: Tx flow control is enabled (we can send pause frames
711 * frames but we do not receive pause frames).
712 * 3: Both Rx and TX flow control (symmetric) is enabled.
713 * other: No other values should be possible at this point.
714 */
Alexander Duyck0cce1192009-07-23 18:10:24 +0000715 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
Auke Kok9d5c8242008-01-24 02:22:38 -0800716
Alexander Duyck0cce1192009-07-23 18:10:24 +0000717 switch (hw->fc.current_mode) {
Auke Kok9d5c8242008-01-24 02:22:38 -0800718 case e1000_fc_none:
719 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
720 break;
721 case e1000_fc_rx_pause:
722 ctrl &= (~E1000_CTRL_TFCE);
723 ctrl |= E1000_CTRL_RFCE;
724 break;
725 case e1000_fc_tx_pause:
726 ctrl &= (~E1000_CTRL_RFCE);
727 ctrl |= E1000_CTRL_TFCE;
728 break;
729 case e1000_fc_full:
730 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
731 break;
732 default:
Auke Kok652fff32008-06-27 11:00:18 -0700733 hw_dbg("Flow control param set incorrectly\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800734 ret_val = -E1000_ERR_CONFIG;
735 goto out;
736 }
737
738 wr32(E1000_CTRL, ctrl);
739
740out:
741 return ret_val;
742}
743
744/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700745 * igb_config_fc_after_link_up - Configures flow control after link
Auke Kok9d5c8242008-01-24 02:22:38 -0800746 * @hw: pointer to the HW structure
747 *
748 * Checks the status of auto-negotiation after link up to ensure that the
749 * speed and duplex were not forced. If the link needed to be forced, then
750 * flow control needs to be forced also. If auto-negotiation is enabled
751 * and did not fail, then we configure flow control based on our link
752 * partner.
753 **/
754s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
755{
756 struct e1000_mac_info *mac = &hw->mac;
757 s32 ret_val = 0;
758 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
759 u16 speed, duplex;
760
761 /*
762 * Check for the case where we have fiber media and auto-neg failed
763 * so we had to force link. In this case, we need to force the
764 * configuration of the MAC to match the "fc" parameter.
765 */
766 if (mac->autoneg_failed) {
Alexander Duyckdcc3ae92009-07-23 18:07:20 +0000767 if (hw->phy.media_type == e1000_media_type_internal_serdes)
Auke Kok9d5c8242008-01-24 02:22:38 -0800768 ret_val = igb_force_mac_fc(hw);
769 } else {
770 if (hw->phy.media_type == e1000_media_type_copper)
771 ret_val = igb_force_mac_fc(hw);
772 }
773
774 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700775 hw_dbg("Error forcing flow control settings\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800776 goto out;
777 }
778
779 /*
780 * Check for the case where we have copper media and auto-neg is
781 * enabled. In this case, we need to check and see if Auto-Neg
782 * has completed, and if so, how the PHY and link partner has
783 * flow control configured.
784 */
785 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
786 /*
787 * Read the MII Status Register and check to see if AutoNeg
788 * has completed. We read this twice because this reg has
789 * some "sticky" (latched) bits.
790 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000791 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
Auke Kok9d5c8242008-01-24 02:22:38 -0800792 &mii_status_reg);
793 if (ret_val)
794 goto out;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000795 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
Auke Kok9d5c8242008-01-24 02:22:38 -0800796 &mii_status_reg);
797 if (ret_val)
798 goto out;
799
800 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
Auke Kok652fff32008-06-27 11:00:18 -0700801 hw_dbg("Copper PHY and Auto Neg "
Auke Kok9d5c8242008-01-24 02:22:38 -0800802 "has not completed.\n");
803 goto out;
804 }
805
806 /*
807 * The AutoNeg process has completed, so we now need to
808 * read both the Auto Negotiation Advertisement
809 * Register (Address 4) and the Auto_Negotiation Base
810 * Page Ability Register (Address 5) to determine how
811 * flow control was negotiated.
812 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000813 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
Auke Kok9d5c8242008-01-24 02:22:38 -0800814 &mii_nway_adv_reg);
815 if (ret_val)
816 goto out;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000817 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
Auke Kok9d5c8242008-01-24 02:22:38 -0800818 &mii_nway_lp_ability_reg);
819 if (ret_val)
820 goto out;
821
822 /*
823 * Two bits in the Auto Negotiation Advertisement Register
824 * (Address 4) and two bits in the Auto Negotiation Base
825 * Page Ability Register (Address 5) determine flow control
826 * for both the PHY and the link partner. The following
827 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
828 * 1999, describes these PAUSE resolution bits and how flow
829 * control is determined based upon these settings.
830 * NOTE: DC = Don't Care
831 *
832 * LOCAL DEVICE | LINK PARTNER
833 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
834 *-------|---------|-------|---------|--------------------
835 * 0 | 0 | DC | DC | e1000_fc_none
836 * 0 | 1 | 0 | DC | e1000_fc_none
837 * 0 | 1 | 1 | 0 | e1000_fc_none
838 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
839 * 1 | 0 | 0 | DC | e1000_fc_none
840 * 1 | DC | 1 | DC | e1000_fc_full
841 * 1 | 1 | 0 | 0 | e1000_fc_none
842 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
843 *
844 * Are both PAUSE bits set to 1? If so, this implies
845 * Symmetric Flow Control is enabled at both ends. The
846 * ASM_DIR bits are irrelevant per the spec.
847 *
848 * For Symmetric Flow Control:
849 *
850 * LOCAL DEVICE | LINK PARTNER
851 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
852 *-------|---------|-------|---------|--------------------
853 * 1 | DC | 1 | DC | E1000_fc_full
854 *
855 */
856 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
857 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
858 /*
859 * Now we need to check if the user selected RX ONLY
860 * of pause frames. In this case, we had to advertise
861 * FULL flow control because we could not advertise RX
862 * ONLY. Hence, we must now check to see if we need to
863 * turn OFF the TRANSMISSION of PAUSE frames.
864 */
Alexander Duyck0cce1192009-07-23 18:10:24 +0000865 if (hw->fc.requested_mode == e1000_fc_full) {
866 hw->fc.current_mode = e1000_fc_full;
Auke Kok652fff32008-06-27 11:00:18 -0700867 hw_dbg("Flow Control = FULL.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800868 } else {
Alexander Duyck0cce1192009-07-23 18:10:24 +0000869 hw->fc.current_mode = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700870 hw_dbg("Flow Control = "
871 "RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800872 }
873 }
874 /*
875 * For receiving PAUSE frames ONLY.
876 *
877 * LOCAL DEVICE | LINK PARTNER
878 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
879 *-------|---------|-------|---------|--------------------
880 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
881 */
882 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
883 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
884 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
885 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Alexander Duyck0cce1192009-07-23 18:10:24 +0000886 hw->fc.current_mode = e1000_fc_tx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700887 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800888 }
889 /*
890 * For transmitting PAUSE frames ONLY.
891 *
892 * LOCAL DEVICE | LINK PARTNER
893 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
894 *-------|---------|-------|---------|--------------------
895 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
896 */
897 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
898 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
899 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
900 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Alexander Duyck0cce1192009-07-23 18:10:24 +0000901 hw->fc.current_mode = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700902 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800903 }
904 /*
905 * Per the IEEE spec, at this point flow control should be
906 * disabled. However, we want to consider that we could
907 * be connected to a legacy switch that doesn't advertise
908 * desired flow control, but can be forced on the link
909 * partner. So if we advertised no flow control, that is
910 * what we will resolve to. If we advertised some kind of
911 * receive capability (Rx Pause Only or Full Flow Control)
912 * and the link partner advertised none, we will configure
913 * ourselves to enable Rx Flow Control only. We can do
914 * this safely for two reasons: If the link partner really
915 * didn't want flow control enabled, and we enable Rx, no
916 * harm done since we won't be receiving any PAUSE frames
917 * anyway. If the intent on the link partner was to have
918 * flow control enabled, then by us enabling RX only, we
919 * can at least receive pause frames and process them.
920 * This is a good idea because in most cases, since we are
921 * predominantly a server NIC, more times than not we will
922 * be asked to delay transmission of packets than asking
923 * our link partner to pause transmission of frames.
924 */
Alexander Duyck0cce1192009-07-23 18:10:24 +0000925 else if ((hw->fc.requested_mode == e1000_fc_none ||
926 hw->fc.requested_mode == e1000_fc_tx_pause) ||
Auke Kok9d5c8242008-01-24 02:22:38 -0800927 hw->fc.strict_ieee) {
Alexander Duyck0cce1192009-07-23 18:10:24 +0000928 hw->fc.current_mode = e1000_fc_none;
Auke Kok652fff32008-06-27 11:00:18 -0700929 hw_dbg("Flow Control = NONE.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800930 } else {
Alexander Duyck0cce1192009-07-23 18:10:24 +0000931 hw->fc.current_mode = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700932 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800933 }
934
935 /*
936 * Now we need to do one last check... If we auto-
937 * negotiated to HALF DUPLEX, flow control should not be
938 * enabled per IEEE 802.3 spec.
939 */
940 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
941 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700942 hw_dbg("Error getting link speed and duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800943 goto out;
944 }
945
946 if (duplex == HALF_DUPLEX)
Alexander Duyck0cce1192009-07-23 18:10:24 +0000947 hw->fc.current_mode = e1000_fc_none;
Auke Kok9d5c8242008-01-24 02:22:38 -0800948
949 /*
950 * Now we call a subroutine to actually force the MAC
951 * controller to use the correct flow control settings.
952 */
953 ret_val = igb_force_mac_fc(hw);
954 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700955 hw_dbg("Error forcing flow control settings\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800956 goto out;
957 }
958 }
959
960out:
961 return ret_val;
962}
963
964/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700965 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
Auke Kok9d5c8242008-01-24 02:22:38 -0800966 * @hw: pointer to the HW structure
967 * @speed: stores the current speed
968 * @duplex: stores the current duplex
969 *
970 * Read the status register for the current speed/duplex and store the current
971 * speed and duplex for copper connections.
972 **/
973s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
974 u16 *duplex)
975{
976 u32 status;
977
978 status = rd32(E1000_STATUS);
979 if (status & E1000_STATUS_SPEED_1000) {
980 *speed = SPEED_1000;
Auke Kok652fff32008-06-27 11:00:18 -0700981 hw_dbg("1000 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800982 } else if (status & E1000_STATUS_SPEED_100) {
983 *speed = SPEED_100;
Auke Kok652fff32008-06-27 11:00:18 -0700984 hw_dbg("100 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800985 } else {
986 *speed = SPEED_10;
Auke Kok652fff32008-06-27 11:00:18 -0700987 hw_dbg("10 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800988 }
989
990 if (status & E1000_STATUS_FD) {
991 *duplex = FULL_DUPLEX;
Auke Kok652fff32008-06-27 11:00:18 -0700992 hw_dbg("Full Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800993 } else {
994 *duplex = HALF_DUPLEX;
Auke Kok652fff32008-06-27 11:00:18 -0700995 hw_dbg("Half Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800996 }
997
998 return 0;
999}
1000
1001/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001002 * igb_get_hw_semaphore - Acquire hardware semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -08001003 * @hw: pointer to the HW structure
1004 *
1005 * Acquire the HW semaphore to access the PHY or NVM
1006 **/
1007s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1008{
1009 u32 swsm;
1010 s32 ret_val = 0;
1011 s32 timeout = hw->nvm.word_size + 1;
1012 s32 i = 0;
1013
1014 /* Get the SW semaphore */
1015 while (i < timeout) {
1016 swsm = rd32(E1000_SWSM);
1017 if (!(swsm & E1000_SWSM_SMBI))
1018 break;
1019
1020 udelay(50);
1021 i++;
1022 }
1023
1024 if (i == timeout) {
Auke Kok652fff32008-06-27 11:00:18 -07001025 hw_dbg("Driver can't access device - SMBI bit is set.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001026 ret_val = -E1000_ERR_NVM;
1027 goto out;
1028 }
1029
1030 /* Get the FW semaphore. */
1031 for (i = 0; i < timeout; i++) {
1032 swsm = rd32(E1000_SWSM);
1033 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1034
1035 /* Semaphore acquired if bit latched */
1036 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1037 break;
1038
1039 udelay(50);
1040 }
1041
1042 if (i == timeout) {
1043 /* Release semaphores */
1044 igb_put_hw_semaphore(hw);
Auke Kok652fff32008-06-27 11:00:18 -07001045 hw_dbg("Driver can't access the NVM\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001046 ret_val = -E1000_ERR_NVM;
1047 goto out;
1048 }
1049
1050out:
1051 return ret_val;
1052}
1053
1054/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001055 * igb_put_hw_semaphore - Release hardware semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -08001056 * @hw: pointer to the HW structure
1057 *
1058 * Release hardware semaphore used to access the PHY or NVM
1059 **/
1060void igb_put_hw_semaphore(struct e1000_hw *hw)
1061{
1062 u32 swsm;
1063
1064 swsm = rd32(E1000_SWSM);
1065
1066 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1067
1068 wr32(E1000_SWSM, swsm);
1069}
1070
1071/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001072 * igb_get_auto_rd_done - Check for auto read completion
Auke Kok9d5c8242008-01-24 02:22:38 -08001073 * @hw: pointer to the HW structure
1074 *
1075 * Check EEPROM for Auto Read done bit.
1076 **/
1077s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1078{
1079 s32 i = 0;
1080 s32 ret_val = 0;
1081
1082
1083 while (i < AUTO_READ_DONE_TIMEOUT) {
1084 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1085 break;
1086 msleep(1);
1087 i++;
1088 }
1089
1090 if (i == AUTO_READ_DONE_TIMEOUT) {
Auke Kok652fff32008-06-27 11:00:18 -07001091 hw_dbg("Auto read by HW from NVM has not completed.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001092 ret_val = -E1000_ERR_RESET;
1093 goto out;
1094 }
1095
1096out:
1097 return ret_val;
1098}
1099
1100/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001101 * igb_valid_led_default - Verify a valid default LED config
Auke Kok9d5c8242008-01-24 02:22:38 -08001102 * @hw: pointer to the HW structure
1103 * @data: pointer to the NVM (EEPROM)
1104 *
1105 * Read the EEPROM for the current default LED configuration. If the
1106 * LED configuration is not valid, set to a valid LED configuration.
1107 **/
1108static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1109{
1110 s32 ret_val;
1111
Alexander Duyck312c75a2009-02-06 23:17:47 +00001112 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
Auke Kok9d5c8242008-01-24 02:22:38 -08001113 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -07001114 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001115 goto out;
1116 }
1117
Alexander Duyck099e1cb2009-07-23 18:07:40 +00001118 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1119 switch(hw->phy.media_type) {
1120 case e1000_media_type_internal_serdes:
1121 *data = ID_LED_DEFAULT_82575_SERDES;
1122 break;
1123 case e1000_media_type_copper:
1124 default:
1125 *data = ID_LED_DEFAULT;
1126 break;
1127 }
1128 }
Auke Kok9d5c8242008-01-24 02:22:38 -08001129out:
1130 return ret_val;
1131}
1132
1133/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001134 * igb_id_led_init -
Auke Kok9d5c8242008-01-24 02:22:38 -08001135 * @hw: pointer to the HW structure
1136 *
1137 **/
1138s32 igb_id_led_init(struct e1000_hw *hw)
1139{
1140 struct e1000_mac_info *mac = &hw->mac;
1141 s32 ret_val;
1142 const u32 ledctl_mask = 0x000000FF;
1143 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1144 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1145 u16 data, i, temp;
1146 const u16 led_mask = 0x0F;
1147
1148 ret_val = igb_valid_led_default(hw, &data);
1149 if (ret_val)
1150 goto out;
1151
1152 mac->ledctl_default = rd32(E1000_LEDCTL);
1153 mac->ledctl_mode1 = mac->ledctl_default;
1154 mac->ledctl_mode2 = mac->ledctl_default;
1155
1156 for (i = 0; i < 4; i++) {
1157 temp = (data >> (i << 2)) & led_mask;
1158 switch (temp) {
1159 case ID_LED_ON1_DEF2:
1160 case ID_LED_ON1_ON2:
1161 case ID_LED_ON1_OFF2:
1162 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1163 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1164 break;
1165 case ID_LED_OFF1_DEF2:
1166 case ID_LED_OFF1_ON2:
1167 case ID_LED_OFF1_OFF2:
1168 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1169 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1170 break;
1171 default:
1172 /* Do nothing */
1173 break;
1174 }
1175 switch (temp) {
1176 case ID_LED_DEF1_ON2:
1177 case ID_LED_ON1_ON2:
1178 case ID_LED_OFF1_ON2:
1179 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1180 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1181 break;
1182 case ID_LED_DEF1_OFF2:
1183 case ID_LED_ON1_OFF2:
1184 case ID_LED_OFF1_OFF2:
1185 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1186 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1187 break;
1188 default:
1189 /* Do nothing */
1190 break;
1191 }
1192 }
1193
1194out:
1195 return ret_val;
1196}
1197
1198/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001199 * igb_cleanup_led - Set LED config to default operation
Auke Kok9d5c8242008-01-24 02:22:38 -08001200 * @hw: pointer to the HW structure
1201 *
1202 * Remove the current LED configuration and set the LED configuration
1203 * to the default value, saved from the EEPROM.
1204 **/
1205s32 igb_cleanup_led(struct e1000_hw *hw)
1206{
1207 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1208 return 0;
1209}
1210
1211/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001212 * igb_blink_led - Blink LED
Auke Kok9d5c8242008-01-24 02:22:38 -08001213 * @hw: pointer to the HW structure
1214 *
1215 * Blink the led's which are set to be on.
1216 **/
1217s32 igb_blink_led(struct e1000_hw *hw)
1218{
1219 u32 ledctl_blink = 0;
1220 u32 i;
1221
Alexander Duyckdcc3ae92009-07-23 18:07:20 +00001222 /*
1223 * set the blink bit for each LED that's "on" (0x0E)
1224 * in ledctl_mode2
1225 */
1226 ledctl_blink = hw->mac.ledctl_mode2;
1227 for (i = 0; i < 4; i++)
1228 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1229 E1000_LEDCTL_MODE_LED_ON)
1230 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1231 (i * 8));
Auke Kok9d5c8242008-01-24 02:22:38 -08001232
1233 wr32(E1000_LEDCTL, ledctl_blink);
1234
1235 return 0;
1236}
1237
1238/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001239 * igb_led_off - Turn LED off
Auke Kok9d5c8242008-01-24 02:22:38 -08001240 * @hw: pointer to the HW structure
1241 *
1242 * Turn LED off.
1243 **/
1244s32 igb_led_off(struct e1000_hw *hw)
1245{
Auke Kok9d5c8242008-01-24 02:22:38 -08001246 switch (hw->phy.media_type) {
Auke Kok9d5c8242008-01-24 02:22:38 -08001247 case e1000_media_type_copper:
1248 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1249 break;
1250 default:
1251 break;
1252 }
1253
1254 return 0;
1255}
1256
1257/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001258 * igb_disable_pcie_master - Disables PCI-express master access
Auke Kok9d5c8242008-01-24 02:22:38 -08001259 * @hw: pointer to the HW structure
1260 *
1261 * Returns 0 (0) if successful, else returns -10
1262 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1263 * the master requests to be disabled.
1264 *
1265 * Disables PCI-Express master access and verifies there are no pending
1266 * requests.
1267 **/
1268s32 igb_disable_pcie_master(struct e1000_hw *hw)
1269{
1270 u32 ctrl;
1271 s32 timeout = MASTER_DISABLE_TIMEOUT;
1272 s32 ret_val = 0;
1273
1274 if (hw->bus.type != e1000_bus_type_pci_express)
1275 goto out;
1276
1277 ctrl = rd32(E1000_CTRL);
1278 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1279 wr32(E1000_CTRL, ctrl);
1280
1281 while (timeout) {
1282 if (!(rd32(E1000_STATUS) &
1283 E1000_STATUS_GIO_MASTER_ENABLE))
1284 break;
1285 udelay(100);
1286 timeout--;
1287 }
1288
1289 if (!timeout) {
Auke Kok652fff32008-06-27 11:00:18 -07001290 hw_dbg("Master requests are pending.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001291 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1292 goto out;
1293 }
1294
1295out:
1296 return ret_val;
1297}
1298
1299/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001300 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
Auke Kok9d5c8242008-01-24 02:22:38 -08001301 * @hw: pointer to the HW structure
1302 *
1303 * Reset the Adaptive Interframe Spacing throttle to default values.
1304 **/
1305void igb_reset_adaptive(struct e1000_hw *hw)
1306{
1307 struct e1000_mac_info *mac = &hw->mac;
1308
1309 if (!mac->adaptive_ifs) {
Auke Kok652fff32008-06-27 11:00:18 -07001310 hw_dbg("Not in Adaptive IFS mode!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001311 goto out;
1312 }
1313
1314 if (!mac->ifs_params_forced) {
1315 mac->current_ifs_val = 0;
1316 mac->ifs_min_val = IFS_MIN;
1317 mac->ifs_max_val = IFS_MAX;
1318 mac->ifs_step_size = IFS_STEP;
1319 mac->ifs_ratio = IFS_RATIO;
1320 }
1321
1322 mac->in_ifs_mode = false;
1323 wr32(E1000_AIT, 0);
1324out:
1325 return;
1326}
1327
1328/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001329 * igb_update_adaptive - Update Adaptive Interframe Spacing
Auke Kok9d5c8242008-01-24 02:22:38 -08001330 * @hw: pointer to the HW structure
1331 *
1332 * Update the Adaptive Interframe Spacing Throttle value based on the
1333 * time between transmitted packets and time between collisions.
1334 **/
1335void igb_update_adaptive(struct e1000_hw *hw)
1336{
1337 struct e1000_mac_info *mac = &hw->mac;
1338
1339 if (!mac->adaptive_ifs) {
Auke Kok652fff32008-06-27 11:00:18 -07001340 hw_dbg("Not in Adaptive IFS mode!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001341 goto out;
1342 }
1343
1344 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1345 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1346 mac->in_ifs_mode = true;
1347 if (mac->current_ifs_val < mac->ifs_max_val) {
1348 if (!mac->current_ifs_val)
1349 mac->current_ifs_val = mac->ifs_min_val;
1350 else
1351 mac->current_ifs_val +=
1352 mac->ifs_step_size;
1353 wr32(E1000_AIT,
1354 mac->current_ifs_val);
1355 }
1356 }
1357 } else {
1358 if (mac->in_ifs_mode &&
1359 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1360 mac->current_ifs_val = 0;
1361 mac->in_ifs_mode = false;
1362 wr32(E1000_AIT, 0);
1363 }
1364 }
1365out:
1366 return;
1367}
1368
1369/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001370 * igb_validate_mdi_setting - Verify MDI/MDIx settings
Auke Kok9d5c8242008-01-24 02:22:38 -08001371 * @hw: pointer to the HW structure
1372 *
1373 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1374 * set, which is forced to MDI mode only.
1375 **/
1376s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1377{
1378 s32 ret_val = 0;
1379
1380 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
Auke Kok652fff32008-06-27 11:00:18 -07001381 hw_dbg("Invalid MDI setting detected\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001382 hw->phy.mdix = 1;
1383 ret_val = -E1000_ERR_CONFIG;
1384 goto out;
1385 }
1386
1387out:
1388 return ret_val;
1389}
1390
1391/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001392 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
Auke Kok9d5c8242008-01-24 02:22:38 -08001393 * @hw: pointer to the HW structure
1394 * @reg: 32bit register offset such as E1000_SCTL
1395 * @offset: register offset to write to
1396 * @data: data to write at register offset
1397 *
1398 * Writes an address/data control type register. There are several of these
1399 * and they all have the format address << 8 | data and bit 31 is polled for
1400 * completion.
1401 **/
1402s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1403 u32 offset, u8 data)
1404{
1405 u32 i, regvalue = 0;
1406 s32 ret_val = 0;
1407
1408 /* Set up the address and data */
1409 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1410 wr32(reg, regvalue);
1411
1412 /* Poll the ready bit to see if the MDI read completed */
1413 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1414 udelay(5);
1415 regvalue = rd32(reg);
1416 if (regvalue & E1000_GEN_CTL_READY)
1417 break;
1418 }
1419 if (!(regvalue & E1000_GEN_CTL_READY)) {
Auke Kok652fff32008-06-27 11:00:18 -07001420 hw_dbg("Reg %08x did not indicate ready\n", reg);
Auke Kok9d5c8242008-01-24 02:22:38 -08001421 ret_val = -E1000_ERR_PHY;
1422 goto out;
1423 }
1424
1425out:
1426 return ret_val;
1427}
1428
1429/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001430 * igb_enable_mng_pass_thru - Enable processing of ARP's
Auke Kok9d5c8242008-01-24 02:22:38 -08001431 * @hw: pointer to the HW structure
1432 *
1433 * Verifies the hardware needs to allow ARPs to be processed by the host.
1434 **/
1435bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1436{
1437 u32 manc;
1438 u32 fwsm, factps;
1439 bool ret_val = false;
1440
1441 if (!hw->mac.asf_firmware_present)
1442 goto out;
1443
1444 manc = rd32(E1000_MANC);
1445
1446 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1447 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1448 goto out;
1449
1450 if (hw->mac.arc_subsystem_valid) {
1451 fwsm = rd32(E1000_FWSM);
1452 factps = rd32(E1000_FACTPS);
1453
1454 if (!(factps & E1000_FACTPS_MNGCG) &&
1455 ((fwsm & E1000_FWSM_MODE_MASK) ==
1456 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1457 ret_val = true;
1458 goto out;
1459 }
1460 } else {
1461 if ((manc & E1000_MANC_SMBUS_EN) &&
1462 !(manc & E1000_MANC_ASF_EN)) {
1463 ret_val = true;
1464 goto out;
1465 }
1466 }
1467
1468out:
1469 return ret_val;
1470}