blob: 46e27e98254abfc24f2c706b5edfe10a85efb679 [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
Alexander Duyck86d5d382009-02-06 23:23:12 +00004 Copyright(c) 2007-2009 Intel Corporation.
Auke Kok9d5c8242008-01-24 02:22:38 -08005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
Auke Kok9d5c8242008-01-24 02:22:38 -080039
Auke Kok9d5c8242008-01-24 02:22:38 -080040/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070041 * igb_get_bus_info_pcie - Get PCIe bus information
Auke Kok9d5c8242008-01-24 02:22:38 -080042 * @hw: pointer to the HW structure
43 *
44 * Determines and stores the system bus information for a particular
45 * network interface. The following bus information is determined and stored:
46 * bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49{
50 struct e1000_bus_info *bus = &hw->bus;
51 s32 ret_val;
Alexander Duyck5e8427e2008-12-10 01:09:53 -080052 u32 reg;
53 u16 pcie_link_status;
Auke Kok9d5c8242008-01-24 02:22:38 -080054
55 bus->type = e1000_bus_type_pci_express;
56 bus->speed = e1000_bus_speed_2500;
57
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCIE_LINK_STATUS,
60 &pcie_link_status);
61 if (ret_val)
62 bus->width = e1000_bus_width_unknown;
63 else
64 bus->width = (enum e1000_bus_width)((pcie_link_status &
65 PCIE_LINK_WIDTH_MASK) >>
66 PCIE_LINK_WIDTH_SHIFT);
67
Alexander Duyck5e8427e2008-12-10 01:09:53 -080068 reg = rd32(E1000_STATUS);
69 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
Auke Kok9d5c8242008-01-24 02:22:38 -080070
71 return 0;
72}
73
74/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070075 * igb_clear_vfta - Clear VLAN filter table
Auke Kok9d5c8242008-01-24 02:22:38 -080076 * @hw: pointer to the HW structure
77 *
78 * Clears the register array which contains the VLAN filter table by
79 * setting all the values to 0.
80 **/
81void igb_clear_vfta(struct e1000_hw *hw)
82{
83 u32 offset;
84
85 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
86 array_wr32(E1000_VFTA, offset, 0);
87 wrfl();
88 }
89}
90
91/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070092 * igb_write_vfta - Write value to VLAN filter table
Auke Kok9d5c8242008-01-24 02:22:38 -080093 * @hw: pointer to the HW structure
94 * @offset: register offset in VLAN filter table
95 * @value: register value written to VLAN filter table
96 *
97 * Writes value at the given offset in the register array which stores
98 * the VLAN filter table.
99 **/
Alexander Duyckff6f63d2009-04-09 22:49:02 +0000100static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
Auke Kok9d5c8242008-01-24 02:22:38 -0800101{
102 array_wr32(E1000_VFTA, offset, value);
103 wrfl();
104}
105
106/**
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800107 * igb_vfta_set - enable or disable vlan in VLAN filter table
108 * @hw: pointer to the HW structure
109 * @vid: VLAN id to add or remove
110 * @add: if true add filter, if false remove
111 *
112 * Sets or clears a bit in the VLAN filter table array based on VLAN id
113 * and if we are adding or removing the filter
114 **/
Alexander Duyckcad6d052009-03-13 20:41:37 +0000115s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800116{
117 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
Alexander Duyck75f4f382009-03-13 20:41:55 +0000118 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
Alexander Duyckcad6d052009-03-13 20:41:37 +0000119 u32 vfta = array_rd32(E1000_VFTA, index);
120 s32 ret_val = 0;
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800121
Alexander Duyckcad6d052009-03-13 20:41:37 +0000122 /* bit was set/cleared before we started */
123 if ((!!(vfta & mask)) == add) {
124 ret_val = -E1000_ERR_CONFIG;
125 } else {
126 if (add)
127 vfta |= mask;
128 else
129 vfta &= ~mask;
130 }
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800131
132 igb_write_vfta(hw, index, vfta);
Alexander Duyckcad6d052009-03-13 20:41:37 +0000133
134 return ret_val;
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800135}
136
137/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700138 * igb_check_alt_mac_addr - Check for alternate MAC addr
Auke Kok9d5c8242008-01-24 02:22:38 -0800139 * @hw: pointer to the HW structure
140 *
141 * Checks the nvm for an alternate MAC address. An alternate MAC address
142 * can be setup by pre-boot software and must be treated like a permanent
143 * address and must override the actual permanent MAC address. If an
144 * alternate MAC address is fopund it is saved in the hw struct and
145 * prgrammed into RAR0 and the cuntion returns success, otherwise the
146 * fucntion returns an error.
147 **/
148s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
149{
150 u32 i;
151 s32 ret_val = 0;
152 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
153 u8 alt_mac_addr[ETH_ALEN];
154
Alexander Duyck312c75a2009-02-06 23:17:47 +0000155 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
Auke Kok9d5c8242008-01-24 02:22:38 -0800156 &nvm_alt_mac_addr_offset);
157 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700158 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800159 goto out;
160 }
161
162 if (nvm_alt_mac_addr_offset == 0xFFFF) {
163 ret_val = -(E1000_NOT_IMPLEMENTED);
164 goto out;
165 }
166
167 if (hw->bus.func == E1000_FUNC_1)
168 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
169
170 for (i = 0; i < ETH_ALEN; i += 2) {
171 offset = nvm_alt_mac_addr_offset + (i >> 1);
Alexander Duyck312c75a2009-02-06 23:17:47 +0000172 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800173 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700174 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800175 goto out;
176 }
177
178 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
179 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
180 }
181
182 /* if multicast bit is set, the alternate address will not be used */
183 if (alt_mac_addr[0] & 0x01) {
184 ret_val = -(E1000_NOT_IMPLEMENTED);
185 goto out;
186 }
187
188 for (i = 0; i < ETH_ALEN; i++)
189 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
190
191 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
192
193out:
194 return ret_val;
195}
196
197/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700198 * igb_rar_set - Set receive address register
Auke Kok9d5c8242008-01-24 02:22:38 -0800199 * @hw: pointer to the HW structure
200 * @addr: pointer to the receive address
201 * @index: receive address array register
202 *
203 * Sets the receive address array register at index to the address passed
204 * in by addr.
205 **/
206void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
207{
208 u32 rar_low, rar_high;
209
210 /*
211 * HW expects these in little endian so we reverse the byte order
212 * from network order (big endian) to little endian
213 */
214 rar_low = ((u32) addr[0] |
215 ((u32) addr[1] << 8) |
216 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
217
218 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
219
Alexander Duyck86757372009-02-06 23:21:51 +0000220 /* If MAC address zero, no need to set the AV bit */
221 if (rar_low || rar_high)
Auke Kok9d5c8242008-01-24 02:22:38 -0800222 rar_high |= E1000_RAH_AV;
223
Alexander Duyck5e8427e2008-12-10 01:09:53 -0800224 wr32(E1000_RAL(index), rar_low);
225 wr32(E1000_RAH(index), rar_high);
Auke Kok9d5c8242008-01-24 02:22:38 -0800226}
227
228/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700229 * igb_mta_set - Set multicast filter table address
Auke Kok9d5c8242008-01-24 02:22:38 -0800230 * @hw: pointer to the HW structure
231 * @hash_value: determines the MTA register and bit to set
232 *
233 * The multicast table address is a register array of 32-bit registers.
234 * The hash_value is used to determine what register the bit is in, the
235 * current value is read, the new bit is OR'd in and the new value is
236 * written back into the register.
237 **/
Alexander Duyck549bdd82008-08-04 15:00:06 -0700238void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
Auke Kok9d5c8242008-01-24 02:22:38 -0800239{
240 u32 hash_bit, hash_reg, mta;
241
242 /*
243 * The MTA is a register array of 32-bit registers. It is
244 * treated like an array of (32*mta_reg_count) bits. We want to
245 * set bit BitArray[hash_value]. So we figure out what register
246 * the bit is in, read it, OR in the new bit, then write
247 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
248 * mask to bits 31:5 of the hash value which gives us the
249 * register we're modifying. The hash bit within that register
250 * is determined by the lower 5 bits of the hash value.
251 */
252 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
253 hash_bit = hash_value & 0x1F;
254
255 mta = array_rd32(E1000_MTA, hash_reg);
256
257 mta |= (1 << hash_bit);
258
259 array_wr32(E1000_MTA, hash_reg, mta);
260 wrfl();
261}
262
263/**
Alexander Duyck28fc06f2009-07-23 18:08:54 +0000264 * igb_update_mc_addr_list - Update Multicast addresses
265 * @hw: pointer to the HW structure
266 * @mc_addr_list: array of multicast addresses to program
267 * @mc_addr_count: number of multicast addresses to program
268 *
269 * Updates entire Multicast Table Array.
270 * The caller must have a packed mc_addr_list of multicast addresses.
271 **/
272void igb_update_mc_addr_list(struct e1000_hw *hw,
273 u8 *mc_addr_list, u32 mc_addr_count)
274{
275 u32 hash_value, hash_bit, hash_reg;
276 int i;
277
278 /* clear mta_shadow */
279 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
280
281 /* update mta_shadow from mc_addr_list */
282 for (i = 0; (u32) i < mc_addr_count; i++) {
283 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
284
285 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
286 hash_bit = hash_value & 0x1F;
287
288 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
289 mc_addr_list += (ETH_ALEN);
290 }
291
292 /* replace the entire MTA table */
293 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
294 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
295 wrfl();
296}
297
298/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700299 * igb_hash_mc_addr - Generate a multicast hash value
Auke Kok9d5c8242008-01-24 02:22:38 -0800300 * @hw: pointer to the HW structure
301 * @mc_addr: pointer to a multicast address
302 *
303 * Generates a multicast address hash value which is used to determine
304 * the multicast filter table array address and new table value. See
305 * igb_mta_set()
306 **/
Alexander Duyck2d064c02008-07-08 15:10:12 -0700307u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
Auke Kok9d5c8242008-01-24 02:22:38 -0800308{
309 u32 hash_value, hash_mask;
310 u8 bit_shift = 0;
311
312 /* Register count multiplied by bits per register */
313 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
314
315 /*
316 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
317 * where 0xFF would still fall within the hash mask.
318 */
319 while (hash_mask >> bit_shift != 0xFF)
320 bit_shift++;
321
322 /*
323 * The portion of the address that is used for the hash table
324 * is determined by the mc_filter_type setting.
325 * The algorithm is such that there is a total of 8 bits of shifting.
326 * The bit_shift for a mc_filter_type of 0 represents the number of
327 * left-shifts where the MSB of mc_addr[5] would still fall within
328 * the hash_mask. Case 0 does this exactly. Since there are a total
329 * of 8 bits of shifting, then mc_addr[4] will shift right the
330 * remaining number of bits. Thus 8 - bit_shift. The rest of the
331 * cases are a variation of this algorithm...essentially raising the
332 * number of bits to shift mc_addr[5] left, while still keeping the
333 * 8-bit shifting total.
334 *
335 * For example, given the following Destination MAC Address and an
336 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
337 * we can see that the bit_shift for case 0 is 4. These are the hash
338 * values resulting from each mc_filter_type...
339 * [0] [1] [2] [3] [4] [5]
340 * 01 AA 00 12 34 56
341 * LSB MSB
342 *
343 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
344 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
345 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
346 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
347 */
348 switch (hw->mac.mc_filter_type) {
349 default:
350 case 0:
351 break;
352 case 1:
353 bit_shift += 1;
354 break;
355 case 2:
356 bit_shift += 2;
357 break;
358 case 3:
359 bit_shift += 4;
360 break;
361 }
362
363 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
364 (((u16) mc_addr[5]) << bit_shift)));
365
366 return hash_value;
367}
368
369/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700370 * igb_clear_hw_cntrs_base - Clear base hardware counters
Auke Kok9d5c8242008-01-24 02:22:38 -0800371 * @hw: pointer to the HW structure
372 *
373 * Clears the base hardware counters by reading the counter registers.
374 **/
375void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
376{
377 u32 temp;
378
379 temp = rd32(E1000_CRCERRS);
380 temp = rd32(E1000_SYMERRS);
381 temp = rd32(E1000_MPC);
382 temp = rd32(E1000_SCC);
383 temp = rd32(E1000_ECOL);
384 temp = rd32(E1000_MCC);
385 temp = rd32(E1000_LATECOL);
386 temp = rd32(E1000_COLC);
387 temp = rd32(E1000_DC);
388 temp = rd32(E1000_SEC);
389 temp = rd32(E1000_RLEC);
390 temp = rd32(E1000_XONRXC);
391 temp = rd32(E1000_XONTXC);
392 temp = rd32(E1000_XOFFRXC);
393 temp = rd32(E1000_XOFFTXC);
394 temp = rd32(E1000_FCRUC);
395 temp = rd32(E1000_GPRC);
396 temp = rd32(E1000_BPRC);
397 temp = rd32(E1000_MPRC);
398 temp = rd32(E1000_GPTC);
399 temp = rd32(E1000_GORCL);
400 temp = rd32(E1000_GORCH);
401 temp = rd32(E1000_GOTCL);
402 temp = rd32(E1000_GOTCH);
403 temp = rd32(E1000_RNBC);
404 temp = rd32(E1000_RUC);
405 temp = rd32(E1000_RFC);
406 temp = rd32(E1000_ROC);
407 temp = rd32(E1000_RJC);
408 temp = rd32(E1000_TORL);
409 temp = rd32(E1000_TORH);
410 temp = rd32(E1000_TOTL);
411 temp = rd32(E1000_TOTH);
412 temp = rd32(E1000_TPR);
413 temp = rd32(E1000_TPT);
414 temp = rd32(E1000_MPTC);
415 temp = rd32(E1000_BPTC);
416}
417
418/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700419 * igb_check_for_copper_link - Check for link (Copper)
Auke Kok9d5c8242008-01-24 02:22:38 -0800420 * @hw: pointer to the HW structure
421 *
422 * Checks to see of the link status of the hardware has changed. If a
423 * change in link status has been detected, then we read the PHY registers
424 * to get the current speed/duplex if link exists.
425 **/
426s32 igb_check_for_copper_link(struct e1000_hw *hw)
427{
428 struct e1000_mac_info *mac = &hw->mac;
429 s32 ret_val;
430 bool link;
431
432 /*
433 * We only want to go out to the PHY registers to see if Auto-Neg
434 * has completed and/or if our link status has changed. The
435 * get_link_status flag is set upon receiving a Link Status
436 * Change or Rx Sequence Error interrupt.
437 */
438 if (!mac->get_link_status) {
439 ret_val = 0;
440 goto out;
441 }
442
443 /*
444 * First we want to see if the MII Status Register reports
445 * link. If so, then we want to get the current speed/duplex
446 * of the PHY.
447 */
448 ret_val = igb_phy_has_link(hw, 1, 0, &link);
449 if (ret_val)
450 goto out;
451
452 if (!link)
453 goto out; /* No link detected */
454
455 mac->get_link_status = false;
456
457 /*
458 * Check if there was DownShift, must be checked
459 * immediately after link-up
460 */
461 igb_check_downshift(hw);
462
463 /*
464 * If we are forcing speed/duplex, then we simply return since
465 * we have already determined whether we have link or not.
466 */
467 if (!mac->autoneg) {
468 ret_val = -E1000_ERR_CONFIG;
469 goto out;
470 }
471
472 /*
473 * Auto-Neg is enabled. Auto Speed Detection takes care
474 * of MAC speed/duplex configuration. So we only need to
475 * configure Collision Distance in the MAC.
476 */
477 igb_config_collision_dist(hw);
478
479 /*
480 * Configure Flow Control now that Auto-Neg has completed.
481 * First, we need to restore the desired flow control
482 * settings because we may have had to re-autoneg with a
483 * different link partner.
484 */
485 ret_val = igb_config_fc_after_link_up(hw);
486 if (ret_val)
Auke Kok652fff32008-06-27 11:00:18 -0700487 hw_dbg("Error configuring flow control\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800488
489out:
490 return ret_val;
491}
492
493/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700494 * igb_setup_link - Setup flow control and link settings
Auke Kok9d5c8242008-01-24 02:22:38 -0800495 * @hw: pointer to the HW structure
496 *
497 * Determines which flow control settings to use, then configures flow
498 * control. Calls the appropriate media-specific link configuration
499 * function. Assuming the adapter has a valid link partner, a valid link
500 * should be established. Assumes the hardware has previously been reset
501 * and the transmitter and receiver are not enabled.
502 **/
503s32 igb_setup_link(struct e1000_hw *hw)
504{
505 s32 ret_val = 0;
506
507 /*
508 * In the case of the phy reset being blocked, we already have a link.
509 * We do not need to set it up again.
510 */
511 if (igb_check_reset_block(hw))
512 goto out;
513
514 ret_val = igb_set_default_fc(hw);
515 if (ret_val)
516 goto out;
517
518 /*
519 * We want to save off the original Flow Control configuration just
520 * in case we get disconnected and then reconnected into a different
521 * hub or switch with different Flow Control capabilities.
522 */
523 hw->fc.original_type = hw->fc.type;
524
Auke Kok652fff32008-06-27 11:00:18 -0700525 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
Auke Kok9d5c8242008-01-24 02:22:38 -0800526
527 /* Call the necessary media_type subroutine to configure the link. */
528 ret_val = hw->mac.ops.setup_physical_interface(hw);
529 if (ret_val)
530 goto out;
531
532 /*
533 * Initialize the flow control address, type, and PAUSE timer
534 * registers to their default values. This is done even if flow
535 * control is disabled, because it does not hurt anything to
536 * initialize these registers.
537 */
Auke Kok652fff32008-06-27 11:00:18 -0700538 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800539 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
540 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
541 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
542
543 wr32(E1000_FCTTV, hw->fc.pause_time);
544
545 ret_val = igb_set_fc_watermarks(hw);
546
547out:
548 return ret_val;
549}
550
551/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700552 * igb_config_collision_dist - Configure collision distance
Auke Kok9d5c8242008-01-24 02:22:38 -0800553 * @hw: pointer to the HW structure
554 *
555 * Configures the collision distance to the default value and is used
556 * during link setup. Currently no func pointer exists and all
557 * implementations are handled in the generic version of this function.
558 **/
559void igb_config_collision_dist(struct e1000_hw *hw)
560{
561 u32 tctl;
562
563 tctl = rd32(E1000_TCTL);
564
565 tctl &= ~E1000_TCTL_COLD;
566 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
567
568 wr32(E1000_TCTL, tctl);
569 wrfl();
570}
571
572/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700573 * igb_set_fc_watermarks - Set flow control high/low watermarks
Auke Kok9d5c8242008-01-24 02:22:38 -0800574 * @hw: pointer to the HW structure
575 *
576 * Sets the flow control high/low threshold (watermark) registers. If
577 * flow control XON frame transmission is enabled, then set XON frame
578 * tansmission as well.
579 **/
580static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
581{
582 s32 ret_val = 0;
583 u32 fcrtl = 0, fcrth = 0;
584
585 /*
586 * Set the flow control receive threshold registers. Normally,
587 * these registers will be set to a default threshold that may be
588 * adjusted later by the driver's runtime code. However, if the
589 * ability to transmit pause frames is not enabled, then these
590 * registers will be set to 0.
591 */
592 if (hw->fc.type & e1000_fc_tx_pause) {
593 /*
594 * We need to set up the Receive Threshold high and low water
595 * marks as well as (optionally) enabling the transmission of
596 * XON frames.
597 */
598 fcrtl = hw->fc.low_water;
599 if (hw->fc.send_xon)
600 fcrtl |= E1000_FCRTL_XONE;
601
602 fcrth = hw->fc.high_water;
603 }
604 wr32(E1000_FCRTL, fcrtl);
605 wr32(E1000_FCRTH, fcrth);
606
607 return ret_val;
608}
609
610/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700611 * igb_set_default_fc - Set flow control default values
Auke Kok9d5c8242008-01-24 02:22:38 -0800612 * @hw: pointer to the HW structure
613 *
614 * Read the EEPROM for the default values for flow control and store the
615 * values.
616 **/
617static s32 igb_set_default_fc(struct e1000_hw *hw)
618{
619 s32 ret_val = 0;
620 u16 nvm_data;
621
622 /*
623 * Read and store word 0x0F of the EEPROM. This word contains bits
624 * that determine the hardware's default PAUSE (flow control) mode,
625 * a bit that determines whether the HW defaults to enabling or
626 * disabling auto-negotiation, and the direction of the
627 * SW defined pins. If there is no SW over-ride of the flow
628 * control setting, then the variable hw->fc will
629 * be initialized based on a value in the EEPROM.
630 */
Alexander Duyck312c75a2009-02-06 23:17:47 +0000631 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800632
633 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700634 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800635 goto out;
636 }
637
638 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
639 hw->fc.type = e1000_fc_none;
640 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
641 NVM_WORD0F_ASM_DIR)
642 hw->fc.type = e1000_fc_tx_pause;
643 else
644 hw->fc.type = e1000_fc_full;
645
646out:
647 return ret_val;
648}
649
650/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700651 * igb_force_mac_fc - Force the MAC's flow control settings
Auke Kok9d5c8242008-01-24 02:22:38 -0800652 * @hw: pointer to the HW structure
653 *
654 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
655 * device control register to reflect the adapter settings. TFCE and RFCE
656 * need to be explicitly set by software when a copper PHY is used because
657 * autonegotiation is managed by the PHY rather than the MAC. Software must
658 * also configure these bits when link is forced on a fiber connection.
659 **/
660s32 igb_force_mac_fc(struct e1000_hw *hw)
661{
662 u32 ctrl;
663 s32 ret_val = 0;
664
665 ctrl = rd32(E1000_CTRL);
666
667 /*
668 * Because we didn't get link via the internal auto-negotiation
669 * mechanism (we either forced link or we got link via PHY
670 * auto-neg), we have to manually enable/disable transmit an
671 * receive flow control.
672 *
673 * The "Case" statement below enables/disable flow control
674 * according to the "hw->fc.type" parameter.
675 *
676 * The possible values of the "fc" parameter are:
677 * 0: Flow control is completely disabled
678 * 1: Rx flow control is enabled (we can receive pause
679 * frames but not send pause frames).
680 * 2: Tx flow control is enabled (we can send pause frames
681 * frames but we do not receive pause frames).
682 * 3: Both Rx and TX flow control (symmetric) is enabled.
683 * other: No other values should be possible at this point.
684 */
Auke Kok652fff32008-06-27 11:00:18 -0700685 hw_dbg("hw->fc.type = %u\n", hw->fc.type);
Auke Kok9d5c8242008-01-24 02:22:38 -0800686
687 switch (hw->fc.type) {
688 case e1000_fc_none:
689 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
690 break;
691 case e1000_fc_rx_pause:
692 ctrl &= (~E1000_CTRL_TFCE);
693 ctrl |= E1000_CTRL_RFCE;
694 break;
695 case e1000_fc_tx_pause:
696 ctrl &= (~E1000_CTRL_RFCE);
697 ctrl |= E1000_CTRL_TFCE;
698 break;
699 case e1000_fc_full:
700 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
701 break;
702 default:
Auke Kok652fff32008-06-27 11:00:18 -0700703 hw_dbg("Flow control param set incorrectly\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800704 ret_val = -E1000_ERR_CONFIG;
705 goto out;
706 }
707
708 wr32(E1000_CTRL, ctrl);
709
710out:
711 return ret_val;
712}
713
714/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700715 * igb_config_fc_after_link_up - Configures flow control after link
Auke Kok9d5c8242008-01-24 02:22:38 -0800716 * @hw: pointer to the HW structure
717 *
718 * Checks the status of auto-negotiation after link up to ensure that the
719 * speed and duplex were not forced. If the link needed to be forced, then
720 * flow control needs to be forced also. If auto-negotiation is enabled
721 * and did not fail, then we configure flow control based on our link
722 * partner.
723 **/
724s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
725{
726 struct e1000_mac_info *mac = &hw->mac;
727 s32 ret_val = 0;
728 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
729 u16 speed, duplex;
730
731 /*
732 * Check for the case where we have fiber media and auto-neg failed
733 * so we had to force link. In this case, we need to force the
734 * configuration of the MAC to match the "fc" parameter.
735 */
736 if (mac->autoneg_failed) {
Alexander Duyckdcc3ae92009-07-23 18:07:20 +0000737 if (hw->phy.media_type == e1000_media_type_internal_serdes)
Auke Kok9d5c8242008-01-24 02:22:38 -0800738 ret_val = igb_force_mac_fc(hw);
739 } else {
740 if (hw->phy.media_type == e1000_media_type_copper)
741 ret_val = igb_force_mac_fc(hw);
742 }
743
744 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700745 hw_dbg("Error forcing flow control settings\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800746 goto out;
747 }
748
749 /*
750 * Check for the case where we have copper media and auto-neg is
751 * enabled. In this case, we need to check and see if Auto-Neg
752 * has completed, and if so, how the PHY and link partner has
753 * flow control configured.
754 */
755 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
756 /*
757 * Read the MII Status Register and check to see if AutoNeg
758 * has completed. We read this twice because this reg has
759 * some "sticky" (latched) bits.
760 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000761 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
Auke Kok9d5c8242008-01-24 02:22:38 -0800762 &mii_status_reg);
763 if (ret_val)
764 goto out;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000765 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
Auke Kok9d5c8242008-01-24 02:22:38 -0800766 &mii_status_reg);
767 if (ret_val)
768 goto out;
769
770 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
Auke Kok652fff32008-06-27 11:00:18 -0700771 hw_dbg("Copper PHY and Auto Neg "
Auke Kok9d5c8242008-01-24 02:22:38 -0800772 "has not completed.\n");
773 goto out;
774 }
775
776 /*
777 * The AutoNeg process has completed, so we now need to
778 * read both the Auto Negotiation Advertisement
779 * Register (Address 4) and the Auto_Negotiation Base
780 * Page Ability Register (Address 5) to determine how
781 * flow control was negotiated.
782 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000783 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
Auke Kok9d5c8242008-01-24 02:22:38 -0800784 &mii_nway_adv_reg);
785 if (ret_val)
786 goto out;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000787 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
Auke Kok9d5c8242008-01-24 02:22:38 -0800788 &mii_nway_lp_ability_reg);
789 if (ret_val)
790 goto out;
791
792 /*
793 * Two bits in the Auto Negotiation Advertisement Register
794 * (Address 4) and two bits in the Auto Negotiation Base
795 * Page Ability Register (Address 5) determine flow control
796 * for both the PHY and the link partner. The following
797 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
798 * 1999, describes these PAUSE resolution bits and how flow
799 * control is determined based upon these settings.
800 * NOTE: DC = Don't Care
801 *
802 * LOCAL DEVICE | LINK PARTNER
803 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
804 *-------|---------|-------|---------|--------------------
805 * 0 | 0 | DC | DC | e1000_fc_none
806 * 0 | 1 | 0 | DC | e1000_fc_none
807 * 0 | 1 | 1 | 0 | e1000_fc_none
808 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
809 * 1 | 0 | 0 | DC | e1000_fc_none
810 * 1 | DC | 1 | DC | e1000_fc_full
811 * 1 | 1 | 0 | 0 | e1000_fc_none
812 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
813 *
814 * Are both PAUSE bits set to 1? If so, this implies
815 * Symmetric Flow Control is enabled at both ends. The
816 * ASM_DIR bits are irrelevant per the spec.
817 *
818 * For Symmetric Flow Control:
819 *
820 * LOCAL DEVICE | LINK PARTNER
821 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
822 *-------|---------|-------|---------|--------------------
823 * 1 | DC | 1 | DC | E1000_fc_full
824 *
825 */
826 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
827 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
828 /*
829 * Now we need to check if the user selected RX ONLY
830 * of pause frames. In this case, we had to advertise
831 * FULL flow control because we could not advertise RX
832 * ONLY. Hence, we must now check to see if we need to
833 * turn OFF the TRANSMISSION of PAUSE frames.
834 */
835 if (hw->fc.original_type == e1000_fc_full) {
836 hw->fc.type = e1000_fc_full;
Auke Kok652fff32008-06-27 11:00:18 -0700837 hw_dbg("Flow Control = FULL.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800838 } else {
839 hw->fc.type = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700840 hw_dbg("Flow Control = "
841 "RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800842 }
843 }
844 /*
845 * For receiving PAUSE frames ONLY.
846 *
847 * LOCAL DEVICE | LINK PARTNER
848 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
849 *-------|---------|-------|---------|--------------------
850 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
851 */
852 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
853 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
854 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
855 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
856 hw->fc.type = e1000_fc_tx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700857 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800858 }
859 /*
860 * For transmitting PAUSE frames ONLY.
861 *
862 * LOCAL DEVICE | LINK PARTNER
863 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
864 *-------|---------|-------|---------|--------------------
865 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
866 */
867 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
868 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
869 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
870 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
871 hw->fc.type = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700872 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800873 }
874 /*
875 * Per the IEEE spec, at this point flow control should be
876 * disabled. However, we want to consider that we could
877 * be connected to a legacy switch that doesn't advertise
878 * desired flow control, but can be forced on the link
879 * partner. So if we advertised no flow control, that is
880 * what we will resolve to. If we advertised some kind of
881 * receive capability (Rx Pause Only or Full Flow Control)
882 * and the link partner advertised none, we will configure
883 * ourselves to enable Rx Flow Control only. We can do
884 * this safely for two reasons: If the link partner really
885 * didn't want flow control enabled, and we enable Rx, no
886 * harm done since we won't be receiving any PAUSE frames
887 * anyway. If the intent on the link partner was to have
888 * flow control enabled, then by us enabling RX only, we
889 * can at least receive pause frames and process them.
890 * This is a good idea because in most cases, since we are
891 * predominantly a server NIC, more times than not we will
892 * be asked to delay transmission of packets than asking
893 * our link partner to pause transmission of frames.
894 */
895 else if ((hw->fc.original_type == e1000_fc_none ||
896 hw->fc.original_type == e1000_fc_tx_pause) ||
897 hw->fc.strict_ieee) {
898 hw->fc.type = e1000_fc_none;
Auke Kok652fff32008-06-27 11:00:18 -0700899 hw_dbg("Flow Control = NONE.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800900 } else {
901 hw->fc.type = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700902 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800903 }
904
905 /*
906 * Now we need to do one last check... If we auto-
907 * negotiated to HALF DUPLEX, flow control should not be
908 * enabled per IEEE 802.3 spec.
909 */
910 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
911 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700912 hw_dbg("Error getting link speed and duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800913 goto out;
914 }
915
916 if (duplex == HALF_DUPLEX)
917 hw->fc.type = e1000_fc_none;
918
919 /*
920 * Now we call a subroutine to actually force the MAC
921 * controller to use the correct flow control settings.
922 */
923 ret_val = igb_force_mac_fc(hw);
924 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700925 hw_dbg("Error forcing flow control settings\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800926 goto out;
927 }
928 }
929
930out:
931 return ret_val;
932}
933
934/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700935 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
Auke Kok9d5c8242008-01-24 02:22:38 -0800936 * @hw: pointer to the HW structure
937 * @speed: stores the current speed
938 * @duplex: stores the current duplex
939 *
940 * Read the status register for the current speed/duplex and store the current
941 * speed and duplex for copper connections.
942 **/
943s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
944 u16 *duplex)
945{
946 u32 status;
947
948 status = rd32(E1000_STATUS);
949 if (status & E1000_STATUS_SPEED_1000) {
950 *speed = SPEED_1000;
Auke Kok652fff32008-06-27 11:00:18 -0700951 hw_dbg("1000 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800952 } else if (status & E1000_STATUS_SPEED_100) {
953 *speed = SPEED_100;
Auke Kok652fff32008-06-27 11:00:18 -0700954 hw_dbg("100 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800955 } else {
956 *speed = SPEED_10;
Auke Kok652fff32008-06-27 11:00:18 -0700957 hw_dbg("10 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800958 }
959
960 if (status & E1000_STATUS_FD) {
961 *duplex = FULL_DUPLEX;
Auke Kok652fff32008-06-27 11:00:18 -0700962 hw_dbg("Full Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800963 } else {
964 *duplex = HALF_DUPLEX;
Auke Kok652fff32008-06-27 11:00:18 -0700965 hw_dbg("Half Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800966 }
967
968 return 0;
969}
970
971/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700972 * igb_get_hw_semaphore - Acquire hardware semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -0800973 * @hw: pointer to the HW structure
974 *
975 * Acquire the HW semaphore to access the PHY or NVM
976 **/
977s32 igb_get_hw_semaphore(struct e1000_hw *hw)
978{
979 u32 swsm;
980 s32 ret_val = 0;
981 s32 timeout = hw->nvm.word_size + 1;
982 s32 i = 0;
983
984 /* Get the SW semaphore */
985 while (i < timeout) {
986 swsm = rd32(E1000_SWSM);
987 if (!(swsm & E1000_SWSM_SMBI))
988 break;
989
990 udelay(50);
991 i++;
992 }
993
994 if (i == timeout) {
Auke Kok652fff32008-06-27 11:00:18 -0700995 hw_dbg("Driver can't access device - SMBI bit is set.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800996 ret_val = -E1000_ERR_NVM;
997 goto out;
998 }
999
1000 /* Get the FW semaphore. */
1001 for (i = 0; i < timeout; i++) {
1002 swsm = rd32(E1000_SWSM);
1003 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1004
1005 /* Semaphore acquired if bit latched */
1006 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1007 break;
1008
1009 udelay(50);
1010 }
1011
1012 if (i == timeout) {
1013 /* Release semaphores */
1014 igb_put_hw_semaphore(hw);
Auke Kok652fff32008-06-27 11:00:18 -07001015 hw_dbg("Driver can't access the NVM\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001016 ret_val = -E1000_ERR_NVM;
1017 goto out;
1018 }
1019
1020out:
1021 return ret_val;
1022}
1023
1024/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001025 * igb_put_hw_semaphore - Release hardware semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -08001026 * @hw: pointer to the HW structure
1027 *
1028 * Release hardware semaphore used to access the PHY or NVM
1029 **/
1030void igb_put_hw_semaphore(struct e1000_hw *hw)
1031{
1032 u32 swsm;
1033
1034 swsm = rd32(E1000_SWSM);
1035
1036 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1037
1038 wr32(E1000_SWSM, swsm);
1039}
1040
1041/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001042 * igb_get_auto_rd_done - Check for auto read completion
Auke Kok9d5c8242008-01-24 02:22:38 -08001043 * @hw: pointer to the HW structure
1044 *
1045 * Check EEPROM for Auto Read done bit.
1046 **/
1047s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1048{
1049 s32 i = 0;
1050 s32 ret_val = 0;
1051
1052
1053 while (i < AUTO_READ_DONE_TIMEOUT) {
1054 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1055 break;
1056 msleep(1);
1057 i++;
1058 }
1059
1060 if (i == AUTO_READ_DONE_TIMEOUT) {
Auke Kok652fff32008-06-27 11:00:18 -07001061 hw_dbg("Auto read by HW from NVM has not completed.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001062 ret_val = -E1000_ERR_RESET;
1063 goto out;
1064 }
1065
1066out:
1067 return ret_val;
1068}
1069
1070/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001071 * igb_valid_led_default - Verify a valid default LED config
Auke Kok9d5c8242008-01-24 02:22:38 -08001072 * @hw: pointer to the HW structure
1073 * @data: pointer to the NVM (EEPROM)
1074 *
1075 * Read the EEPROM for the current default LED configuration. If the
1076 * LED configuration is not valid, set to a valid LED configuration.
1077 **/
1078static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1079{
1080 s32 ret_val;
1081
Alexander Duyck312c75a2009-02-06 23:17:47 +00001082 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
Auke Kok9d5c8242008-01-24 02:22:38 -08001083 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -07001084 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001085 goto out;
1086 }
1087
Alexander Duyck099e1cb2009-07-23 18:07:40 +00001088 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1089 switch(hw->phy.media_type) {
1090 case e1000_media_type_internal_serdes:
1091 *data = ID_LED_DEFAULT_82575_SERDES;
1092 break;
1093 case e1000_media_type_copper:
1094 default:
1095 *data = ID_LED_DEFAULT;
1096 break;
1097 }
1098 }
Auke Kok9d5c8242008-01-24 02:22:38 -08001099out:
1100 return ret_val;
1101}
1102
1103/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001104 * igb_id_led_init -
Auke Kok9d5c8242008-01-24 02:22:38 -08001105 * @hw: pointer to the HW structure
1106 *
1107 **/
1108s32 igb_id_led_init(struct e1000_hw *hw)
1109{
1110 struct e1000_mac_info *mac = &hw->mac;
1111 s32 ret_val;
1112 const u32 ledctl_mask = 0x000000FF;
1113 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1114 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1115 u16 data, i, temp;
1116 const u16 led_mask = 0x0F;
1117
1118 ret_val = igb_valid_led_default(hw, &data);
1119 if (ret_val)
1120 goto out;
1121
1122 mac->ledctl_default = rd32(E1000_LEDCTL);
1123 mac->ledctl_mode1 = mac->ledctl_default;
1124 mac->ledctl_mode2 = mac->ledctl_default;
1125
1126 for (i = 0; i < 4; i++) {
1127 temp = (data >> (i << 2)) & led_mask;
1128 switch (temp) {
1129 case ID_LED_ON1_DEF2:
1130 case ID_LED_ON1_ON2:
1131 case ID_LED_ON1_OFF2:
1132 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1133 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1134 break;
1135 case ID_LED_OFF1_DEF2:
1136 case ID_LED_OFF1_ON2:
1137 case ID_LED_OFF1_OFF2:
1138 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1139 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1140 break;
1141 default:
1142 /* Do nothing */
1143 break;
1144 }
1145 switch (temp) {
1146 case ID_LED_DEF1_ON2:
1147 case ID_LED_ON1_ON2:
1148 case ID_LED_OFF1_ON2:
1149 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1150 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1151 break;
1152 case ID_LED_DEF1_OFF2:
1153 case ID_LED_ON1_OFF2:
1154 case ID_LED_OFF1_OFF2:
1155 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1156 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1157 break;
1158 default:
1159 /* Do nothing */
1160 break;
1161 }
1162 }
1163
1164out:
1165 return ret_val;
1166}
1167
1168/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001169 * igb_cleanup_led - Set LED config to default operation
Auke Kok9d5c8242008-01-24 02:22:38 -08001170 * @hw: pointer to the HW structure
1171 *
1172 * Remove the current LED configuration and set the LED configuration
1173 * to the default value, saved from the EEPROM.
1174 **/
1175s32 igb_cleanup_led(struct e1000_hw *hw)
1176{
1177 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1178 return 0;
1179}
1180
1181/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001182 * igb_blink_led - Blink LED
Auke Kok9d5c8242008-01-24 02:22:38 -08001183 * @hw: pointer to the HW structure
1184 *
1185 * Blink the led's which are set to be on.
1186 **/
1187s32 igb_blink_led(struct e1000_hw *hw)
1188{
1189 u32 ledctl_blink = 0;
1190 u32 i;
1191
Alexander Duyckdcc3ae92009-07-23 18:07:20 +00001192 /*
1193 * set the blink bit for each LED that's "on" (0x0E)
1194 * in ledctl_mode2
1195 */
1196 ledctl_blink = hw->mac.ledctl_mode2;
1197 for (i = 0; i < 4; i++)
1198 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1199 E1000_LEDCTL_MODE_LED_ON)
1200 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1201 (i * 8));
Auke Kok9d5c8242008-01-24 02:22:38 -08001202
1203 wr32(E1000_LEDCTL, ledctl_blink);
1204
1205 return 0;
1206}
1207
1208/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001209 * igb_led_off - Turn LED off
Auke Kok9d5c8242008-01-24 02:22:38 -08001210 * @hw: pointer to the HW structure
1211 *
1212 * Turn LED off.
1213 **/
1214s32 igb_led_off(struct e1000_hw *hw)
1215{
Auke Kok9d5c8242008-01-24 02:22:38 -08001216 switch (hw->phy.media_type) {
Auke Kok9d5c8242008-01-24 02:22:38 -08001217 case e1000_media_type_copper:
1218 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1219 break;
1220 default:
1221 break;
1222 }
1223
1224 return 0;
1225}
1226
1227/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001228 * igb_disable_pcie_master - Disables PCI-express master access
Auke Kok9d5c8242008-01-24 02:22:38 -08001229 * @hw: pointer to the HW structure
1230 *
1231 * Returns 0 (0) if successful, else returns -10
1232 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1233 * the master requests to be disabled.
1234 *
1235 * Disables PCI-Express master access and verifies there are no pending
1236 * requests.
1237 **/
1238s32 igb_disable_pcie_master(struct e1000_hw *hw)
1239{
1240 u32 ctrl;
1241 s32 timeout = MASTER_DISABLE_TIMEOUT;
1242 s32 ret_val = 0;
1243
1244 if (hw->bus.type != e1000_bus_type_pci_express)
1245 goto out;
1246
1247 ctrl = rd32(E1000_CTRL);
1248 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1249 wr32(E1000_CTRL, ctrl);
1250
1251 while (timeout) {
1252 if (!(rd32(E1000_STATUS) &
1253 E1000_STATUS_GIO_MASTER_ENABLE))
1254 break;
1255 udelay(100);
1256 timeout--;
1257 }
1258
1259 if (!timeout) {
Auke Kok652fff32008-06-27 11:00:18 -07001260 hw_dbg("Master requests are pending.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001261 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1262 goto out;
1263 }
1264
1265out:
1266 return ret_val;
1267}
1268
1269/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001270 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
Auke Kok9d5c8242008-01-24 02:22:38 -08001271 * @hw: pointer to the HW structure
1272 *
1273 * Reset the Adaptive Interframe Spacing throttle to default values.
1274 **/
1275void igb_reset_adaptive(struct e1000_hw *hw)
1276{
1277 struct e1000_mac_info *mac = &hw->mac;
1278
1279 if (!mac->adaptive_ifs) {
Auke Kok652fff32008-06-27 11:00:18 -07001280 hw_dbg("Not in Adaptive IFS mode!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001281 goto out;
1282 }
1283
1284 if (!mac->ifs_params_forced) {
1285 mac->current_ifs_val = 0;
1286 mac->ifs_min_val = IFS_MIN;
1287 mac->ifs_max_val = IFS_MAX;
1288 mac->ifs_step_size = IFS_STEP;
1289 mac->ifs_ratio = IFS_RATIO;
1290 }
1291
1292 mac->in_ifs_mode = false;
1293 wr32(E1000_AIT, 0);
1294out:
1295 return;
1296}
1297
1298/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001299 * igb_update_adaptive - Update Adaptive Interframe Spacing
Auke Kok9d5c8242008-01-24 02:22:38 -08001300 * @hw: pointer to the HW structure
1301 *
1302 * Update the Adaptive Interframe Spacing Throttle value based on the
1303 * time between transmitted packets and time between collisions.
1304 **/
1305void igb_update_adaptive(struct e1000_hw *hw)
1306{
1307 struct e1000_mac_info *mac = &hw->mac;
1308
1309 if (!mac->adaptive_ifs) {
Auke Kok652fff32008-06-27 11:00:18 -07001310 hw_dbg("Not in Adaptive IFS mode!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001311 goto out;
1312 }
1313
1314 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1315 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1316 mac->in_ifs_mode = true;
1317 if (mac->current_ifs_val < mac->ifs_max_val) {
1318 if (!mac->current_ifs_val)
1319 mac->current_ifs_val = mac->ifs_min_val;
1320 else
1321 mac->current_ifs_val +=
1322 mac->ifs_step_size;
1323 wr32(E1000_AIT,
1324 mac->current_ifs_val);
1325 }
1326 }
1327 } else {
1328 if (mac->in_ifs_mode &&
1329 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1330 mac->current_ifs_val = 0;
1331 mac->in_ifs_mode = false;
1332 wr32(E1000_AIT, 0);
1333 }
1334 }
1335out:
1336 return;
1337}
1338
1339/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001340 * igb_validate_mdi_setting - Verify MDI/MDIx settings
Auke Kok9d5c8242008-01-24 02:22:38 -08001341 * @hw: pointer to the HW structure
1342 *
1343 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1344 * set, which is forced to MDI mode only.
1345 **/
1346s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1347{
1348 s32 ret_val = 0;
1349
1350 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
Auke Kok652fff32008-06-27 11:00:18 -07001351 hw_dbg("Invalid MDI setting detected\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001352 hw->phy.mdix = 1;
1353 ret_val = -E1000_ERR_CONFIG;
1354 goto out;
1355 }
1356
1357out:
1358 return ret_val;
1359}
1360
1361/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001362 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
Auke Kok9d5c8242008-01-24 02:22:38 -08001363 * @hw: pointer to the HW structure
1364 * @reg: 32bit register offset such as E1000_SCTL
1365 * @offset: register offset to write to
1366 * @data: data to write at register offset
1367 *
1368 * Writes an address/data control type register. There are several of these
1369 * and they all have the format address << 8 | data and bit 31 is polled for
1370 * completion.
1371 **/
1372s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1373 u32 offset, u8 data)
1374{
1375 u32 i, regvalue = 0;
1376 s32 ret_val = 0;
1377
1378 /* Set up the address and data */
1379 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1380 wr32(reg, regvalue);
1381
1382 /* Poll the ready bit to see if the MDI read completed */
1383 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1384 udelay(5);
1385 regvalue = rd32(reg);
1386 if (regvalue & E1000_GEN_CTL_READY)
1387 break;
1388 }
1389 if (!(regvalue & E1000_GEN_CTL_READY)) {
Auke Kok652fff32008-06-27 11:00:18 -07001390 hw_dbg("Reg %08x did not indicate ready\n", reg);
Auke Kok9d5c8242008-01-24 02:22:38 -08001391 ret_val = -E1000_ERR_PHY;
1392 goto out;
1393 }
1394
1395out:
1396 return ret_val;
1397}
1398
1399/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001400 * igb_enable_mng_pass_thru - Enable processing of ARP's
Auke Kok9d5c8242008-01-24 02:22:38 -08001401 * @hw: pointer to the HW structure
1402 *
1403 * Verifies the hardware needs to allow ARPs to be processed by the host.
1404 **/
1405bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1406{
1407 u32 manc;
1408 u32 fwsm, factps;
1409 bool ret_val = false;
1410
1411 if (!hw->mac.asf_firmware_present)
1412 goto out;
1413
1414 manc = rd32(E1000_MANC);
1415
1416 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1417 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1418 goto out;
1419
1420 if (hw->mac.arc_subsystem_valid) {
1421 fwsm = rd32(E1000_FWSM);
1422 factps = rd32(E1000_FACTPS);
1423
1424 if (!(factps & E1000_FACTPS_MNGCG) &&
1425 ((fwsm & E1000_FWSM_MODE_MASK) ==
1426 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1427 ret_val = true;
1428 goto out;
1429 }
1430 } else {
1431 if ((manc & E1000_MANC_SMBUS_EN) &&
1432 !(manc & E1000_MANC_ASF_EN)) {
1433 ret_val = true;
1434 goto out;
1435 }
1436 }
1437
1438out:
1439 return ret_val;
1440}