blob: 86f26ea993242d53220111c6ec028505401096dd [file] [log] [blame]
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/export.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34#include <linux/edd.h>
35#include <linux/frame.h>
36
37#include <xen/xen.h>
38#include <xen/events.h>
39#include <xen/interface/xen.h>
40#include <xen/interface/version.h>
41#include <xen/interface/physdev.h>
42#include <xen/interface/vcpu.h>
43#include <xen/interface/memory.h>
44#include <xen/interface/nmi.h>
45#include <xen/interface/xen-mca.h>
46#include <xen/features.h>
47#include <xen/page.h>
48#include <xen/hvc-console.h>
49#include <xen/acpi.h>
50
51#include <asm/paravirt.h>
52#include <asm/apic.h>
53#include <asm/page.h>
54#include <asm/xen/pci.h>
55#include <asm/xen/hypercall.h>
56#include <asm/xen/hypervisor.h>
57#include <asm/xen/cpuid.h>
58#include <asm/fixmap.h>
59#include <asm/processor.h>
60#include <asm/proto.h>
61#include <asm/msr-index.h>
62#include <asm/traps.h>
63#include <asm/setup.h>
64#include <asm/desc.h>
65#include <asm/pgalloc.h>
66#include <asm/pgtable.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/stackprotector.h>
70#include <asm/hypervisor.h>
71#include <asm/mach_traps.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75
76#ifdef CONFIG_ACPI
77#include <linux/acpi.h>
78#include <asm/acpi.h>
79#include <acpi/pdc_intel.h>
80#include <acpi/processor.h>
81#include <xen/interface/platform.h>
82#endif
83
84#include "xen-ops.h"
85#include "mmu.h"
86#include "smp.h"
87#include "multicalls.h"
88#include "pmu.h"
89
Jan Beulich2cc42ba2017-12-18 09:37:45 -070090#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
91
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +010092void *xen_initial_gdt;
93
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +010094static int xen_cpu_up_prepare_pv(unsigned int cpu);
95static int xen_cpu_dead_pv(unsigned int cpu);
96
97struct tls_descs {
98 struct desc_struct desc[3];
99};
100
101/*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100110static void __init xen_banner(void)
111{
112 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
113 struct xen_extraversion extra;
114 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
115
Juergen Gross989513a2017-05-16 09:41:06 +0200116 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100117 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
118 version >> 16, version & 0xffff, extra.extraversion,
119 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
120}
121/* Check if running on Xen version (major, minor) or later */
122bool
123xen_running_on_version_or_later(unsigned int major, unsigned int minor)
124{
125 unsigned int version;
126
127 if (!xen_domain())
128 return false;
129
130 version = HYPERVISOR_xen_version(XENVER_version, NULL);
131 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
132 ((version >> 16) > major))
133 return true;
134 return false;
135}
136
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100137static __read_mostly unsigned int cpuid_leaf5_ecx_val;
138static __read_mostly unsigned int cpuid_leaf5_edx_val;
139
140static void xen_cpuid(unsigned int *ax, unsigned int *bx,
141 unsigned int *cx, unsigned int *dx)
142{
143 unsigned maskebx = ~0;
Juergen Gross6807cf62017-04-12 15:12:09 +0200144
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100145 /*
146 * Mask out inconvenient features, to try and disable as many
147 * unsupported kernel subsystems as possible.
148 */
149 switch (*ax) {
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100150 case CPUID_MWAIT_LEAF:
151 /* Synthesize the values.. */
152 *ax = 0;
153 *bx = 0;
154 *cx = cpuid_leaf5_ecx_val;
155 *dx = cpuid_leaf5_edx_val;
156 return;
157
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100158 case 0xb:
159 /* Suppress extended topology stuff */
160 maskebx = 0;
161 break;
162 }
163
164 asm(XEN_EMULATE_PREFIX "cpuid"
165 : "=a" (*ax),
166 "=b" (*bx),
167 "=c" (*cx),
168 "=d" (*dx)
169 : "0" (*ax), "2" (*cx));
170
171 *bx &= maskebx;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100172}
173STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
174
175static bool __init xen_check_mwait(void)
176{
177#ifdef CONFIG_ACPI
178 struct xen_platform_op op = {
179 .cmd = XENPF_set_processor_pminfo,
180 .u.set_pminfo.id = -1,
181 .u.set_pminfo.type = XEN_PM_PDC,
182 };
183 uint32_t buf[3];
184 unsigned int ax, bx, cx, dx;
185 unsigned int mwait_mask;
186
187 /* We need to determine whether it is OK to expose the MWAIT
188 * capability to the kernel to harvest deeper than C3 states from ACPI
189 * _CST using the processor_harvest_xen.c module. For this to work, we
190 * need to gather the MWAIT_LEAF values (which the cstate.c code
191 * checks against). The hypervisor won't expose the MWAIT flag because
192 * it would break backwards compatibility; so we will find out directly
193 * from the hardware and hypercall.
194 */
195 if (!xen_initial_domain())
196 return false;
197
198 /*
199 * When running under platform earlier than Xen4.2, do not expose
200 * mwait, to avoid the risk of loading native acpi pad driver
201 */
202 if (!xen_running_on_version_or_later(4, 2))
203 return false;
204
205 ax = 1;
206 cx = 0;
207
208 native_cpuid(&ax, &bx, &cx, &dx);
209
210 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
211 (1 << (X86_FEATURE_MWAIT % 32));
212
213 if ((cx & mwait_mask) != mwait_mask)
214 return false;
215
216 /* We need to emulate the MWAIT_LEAF and for that we need both
217 * ecx and edx. The hypercall provides only partial information.
218 */
219
220 ax = CPUID_MWAIT_LEAF;
221 bx = 0;
222 cx = 0;
223 dx = 0;
224
225 native_cpuid(&ax, &bx, &cx, &dx);
226
227 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
228 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
229 */
230 buf[0] = ACPI_PDC_REVISION_ID;
231 buf[1] = 1;
232 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
233
234 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
235
236 if ((HYPERVISOR_platform_op(&op) == 0) &&
237 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
238 cpuid_leaf5_ecx_val = cx;
239 cpuid_leaf5_edx_val = dx;
240 }
241 return true;
242#else
243 return false;
244#endif
245}
Juergen Gross6807cf62017-04-12 15:12:09 +0200246
247static bool __init xen_check_xsave(void)
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100248{
Juergen Gross40f4ac02017-04-25 08:47:40 +0200249 unsigned int cx, xsave_mask;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100250
Juergen Gross40f4ac02017-04-25 08:47:40 +0200251 cx = cpuid_ecx(1);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100252
Juergen Gross40f4ac02017-04-25 08:47:40 +0200253 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
254 (1 << (X86_FEATURE_OSXSAVE % 32));
255
256 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
257 return (cx & xsave_mask) == xsave_mask;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100258}
259
Juergen Gross0808e802017-04-13 08:55:41 +0200260static void __init xen_init_capabilities(void)
261{
Juergen Gross0808e802017-04-13 08:55:41 +0200262 setup_force_cpu_cap(X86_FEATURE_XENPV);
Juergen Gross3ee99df2017-04-12 08:20:29 +0200263 setup_clear_cpu_cap(X86_FEATURE_DCA);
Juergen Grossfd9145f2017-04-12 08:27:07 +0200264 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
Juergen Gross88f32562017-04-12 09:21:05 +0200265 setup_clear_cpu_cap(X86_FEATURE_MTRR);
Juergen Grossaa107152017-04-12 09:24:01 +0200266 setup_clear_cpu_cap(X86_FEATURE_ACC);
Juergen Grosse657fcc2017-04-12 12:45:57 +0200267 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
Tom Lendackyf2f931c2017-07-17 16:10:29 -0500268 setup_clear_cpu_cap(X86_FEATURE_SME);
Juergen Grossb778d6b2017-04-12 09:27:47 +0200269
Andy Lutomirski660da7c2017-06-29 08:53:21 -0700270 /*
271 * Xen PV would need some work to support PCID: CR3 handling as well
272 * as xen_flush_tlb_others() would need updating.
273 */
274 setup_clear_cpu_cap(X86_FEATURE_PCID);
Juergen Grossb778d6b2017-04-12 09:27:47 +0200275
276 if (!xen_initial_domain())
277 setup_clear_cpu_cap(X86_FEATURE_ACPI);
Juergen Grossea015982017-04-12 12:37:00 +0200278
279 if (xen_check_mwait())
280 setup_force_cpu_cap(X86_FEATURE_MWAIT);
281 else
282 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
Juergen Gross6807cf62017-04-12 15:12:09 +0200283
Juergen Gross40f4ac02017-04-25 08:47:40 +0200284 if (!xen_check_xsave()) {
Juergen Gross6807cf62017-04-12 15:12:09 +0200285 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
286 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
287 }
Juergen Gross0808e802017-04-13 08:55:41 +0200288}
289
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100290static void xen_set_debugreg(int reg, unsigned long val)
291{
292 HYPERVISOR_set_debugreg(reg, val);
293}
294
295static unsigned long xen_get_debugreg(int reg)
296{
297 return HYPERVISOR_get_debugreg(reg);
298}
299
300static void xen_end_context_switch(struct task_struct *next)
301{
302 xen_mc_flush();
303 paravirt_end_context_switch(next);
304}
305
306static unsigned long xen_store_tr(void)
307{
308 return 0;
309}
310
311/*
312 * Set the page permissions for a particular virtual address. If the
313 * address is a vmalloc mapping (or other non-linear mapping), then
314 * find the linear mapping of the page and also set its protections to
315 * match.
316 */
317static void set_aliased_prot(void *v, pgprot_t prot)
318{
319 int level;
320 pte_t *ptep;
321 pte_t pte;
322 unsigned long pfn;
323 struct page *page;
324 unsigned char dummy;
325
326 ptep = lookup_address((unsigned long)v, &level);
327 BUG_ON(ptep == NULL);
328
329 pfn = pte_pfn(*ptep);
330 page = pfn_to_page(pfn);
331
332 pte = pfn_pte(pfn, prot);
333
334 /*
335 * Careful: update_va_mapping() will fail if the virtual address
336 * we're poking isn't populated in the page tables. We don't
337 * need to worry about the direct map (that's always in the page
338 * tables), but we need to be careful about vmap space. In
339 * particular, the top level page table can lazily propagate
340 * entries between processes, so if we've switched mms since we
341 * vmapped the target in the first place, we might not have the
342 * top-level page table entry populated.
343 *
344 * We disable preemption because we want the same mm active when
345 * we probe the target and when we issue the hypercall. We'll
346 * have the same nominal mm, but if we're a kernel thread, lazy
347 * mm dropping could change our pgd.
348 *
349 * Out of an abundance of caution, this uses __get_user() to fault
350 * in the target address just in case there's some obscure case
351 * in which the target address isn't readable.
352 */
353
354 preempt_disable();
355
356 probe_kernel_read(&dummy, v, 1);
357
358 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
359 BUG();
360
361 if (!PageHighMem(page)) {
362 void *av = __va(PFN_PHYS(pfn));
363
364 if (av != v)
365 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
366 BUG();
367 } else
368 kmap_flush_unused();
369
370 preempt_enable();
371}
372
373static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
374{
375 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
376 int i;
377
378 /*
379 * We need to mark the all aliases of the LDT pages RO. We
380 * don't need to call vm_flush_aliases(), though, since that's
381 * only responsible for flushing aliases out the TLBs, not the
382 * page tables, and Xen will flush the TLB for us if needed.
383 *
384 * To avoid confusing future readers: none of this is necessary
385 * to load the LDT. The hypervisor only checks this when the
386 * LDT is faulted in due to subsequent descriptor access.
387 */
388
389 for (i = 0; i < entries; i += entries_per_page)
390 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
391}
392
393static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
394{
395 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
396 int i;
397
398 for (i = 0; i < entries; i += entries_per_page)
399 set_aliased_prot(ldt + i, PAGE_KERNEL);
400}
401
402static void xen_set_ldt(const void *addr, unsigned entries)
403{
404 struct mmuext_op *op;
405 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
406
407 trace_xen_cpu_set_ldt(addr, entries);
408
409 op = mcs.args;
410 op->cmd = MMUEXT_SET_LDT;
411 op->arg1.linear_addr = (unsigned long)addr;
412 op->arg2.nr_ents = entries;
413
414 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
415
416 xen_mc_issue(PARAVIRT_LAZY_CPU);
417}
418
419static void xen_load_gdt(const struct desc_ptr *dtr)
420{
421 unsigned long va = dtr->address;
422 unsigned int size = dtr->size + 1;
423 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
424 unsigned long frames[pages];
425 int f;
426
427 /*
428 * A GDT can be up to 64k in size, which corresponds to 8192
429 * 8-byte entries, or 16 4k pages..
430 */
431
432 BUG_ON(size > 65536);
433 BUG_ON(va & ~PAGE_MASK);
434
435 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
436 int level;
437 pte_t *ptep;
438 unsigned long pfn, mfn;
439 void *virt;
440
441 /*
442 * The GDT is per-cpu and is in the percpu data area.
443 * That can be virtually mapped, so we need to do a
444 * page-walk to get the underlying MFN for the
445 * hypercall. The page can also be in the kernel's
446 * linear range, so we need to RO that mapping too.
447 */
448 ptep = lookup_address(va, &level);
449 BUG_ON(ptep == NULL);
450
451 pfn = pte_pfn(*ptep);
452 mfn = pfn_to_mfn(pfn);
453 virt = __va(PFN_PHYS(pfn));
454
455 frames[f] = mfn;
456
457 make_lowmem_page_readonly((void *)va);
458 make_lowmem_page_readonly(virt);
459 }
460
461 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
462 BUG();
463}
464
465/*
466 * load_gdt for early boot, when the gdt is only mapped once
467 */
468static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
469{
470 unsigned long va = dtr->address;
471 unsigned int size = dtr->size + 1;
472 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
473 unsigned long frames[pages];
474 int f;
475
476 /*
477 * A GDT can be up to 64k in size, which corresponds to 8192
478 * 8-byte entries, or 16 4k pages..
479 */
480
481 BUG_ON(size > 65536);
482 BUG_ON(va & ~PAGE_MASK);
483
484 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
485 pte_t pte;
486 unsigned long pfn, mfn;
487
488 pfn = virt_to_pfn(va);
489 mfn = pfn_to_mfn(pfn);
490
491 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
492
493 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
494 BUG();
495
496 frames[f] = mfn;
497 }
498
499 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
500 BUG();
501}
502
503static inline bool desc_equal(const struct desc_struct *d1,
504 const struct desc_struct *d2)
505{
Thomas Gleixner9a98e772017-08-28 08:47:40 +0200506 return !memcmp(d1, d2, sizeof(*d1));
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100507}
508
509static void load_TLS_descriptor(struct thread_struct *t,
510 unsigned int cpu, unsigned int i)
511{
512 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
513 struct desc_struct *gdt;
514 xmaddr_t maddr;
515 struct multicall_space mc;
516
517 if (desc_equal(shadow, &t->tls_array[i]))
518 return;
519
520 *shadow = t->tls_array[i];
521
522 gdt = get_cpu_gdt_rw(cpu);
523 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
524 mc = __xen_mc_entry(0);
525
526 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
527}
528
529static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
530{
531 /*
532 * XXX sleazy hack: If we're being called in a lazy-cpu zone
533 * and lazy gs handling is enabled, it means we're in a
534 * context switch, and %gs has just been saved. This means we
535 * can zero it out to prevent faults on exit from the
536 * hypervisor if the next process has no %gs. Either way, it
537 * has been saved, and the new value will get loaded properly.
538 * This will go away as soon as Xen has been modified to not
539 * save/restore %gs for normal hypercalls.
540 *
541 * On x86_64, this hack is not used for %gs, because gs points
542 * to KERNEL_GS_BASE (and uses it for PDA references), so we
543 * must not zero %gs on x86_64
544 *
545 * For x86_64, we need to zero %fs, otherwise we may get an
546 * exception between the new %fs descriptor being loaded and
547 * %fs being effectively cleared at __switch_to().
548 */
549 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
550#ifdef CONFIG_X86_32
551 lazy_load_gs(0);
552#else
553 loadsegment(fs, 0);
554#endif
555 }
556
557 xen_mc_batch();
558
559 load_TLS_descriptor(t, cpu, 0);
560 load_TLS_descriptor(t, cpu, 1);
561 load_TLS_descriptor(t, cpu, 2);
562
563 xen_mc_issue(PARAVIRT_LAZY_CPU);
564}
565
566#ifdef CONFIG_X86_64
567static void xen_load_gs_index(unsigned int idx)
568{
569 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
570 BUG();
571}
572#endif
573
574static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
575 const void *ptr)
576{
577 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
578 u64 entry = *(u64 *)ptr;
579
580 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
581
582 preempt_disable();
583
584 xen_mc_flush();
585 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
586 BUG();
587
588 preempt_enable();
589}
590
Juergen Gross5878d5d2017-08-31 19:42:49 +0200591#ifdef CONFIG_X86_64
592struct trap_array_entry {
593 void (*orig)(void);
594 void (*xen)(void);
595 bool ist_okay;
596};
597
598static struct trap_array_entry trap_array[] = {
599 { debug, xen_xendebug, true },
600 { int3, xen_xenint3, true },
601 { double_fault, xen_double_fault, true },
602#ifdef CONFIG_X86_MCE
603 { machine_check, xen_machine_check, true },
604#endif
605 { nmi, xen_nmi, true },
606 { overflow, xen_overflow, false },
607#ifdef CONFIG_IA32_EMULATION
608 { entry_INT80_compat, xen_entry_INT80_compat, false },
609#endif
610 { page_fault, xen_page_fault, false },
611 { divide_error, xen_divide_error, false },
612 { bounds, xen_bounds, false },
613 { invalid_op, xen_invalid_op, false },
614 { device_not_available, xen_device_not_available, false },
615 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
616 { invalid_TSS, xen_invalid_TSS, false },
617 { segment_not_present, xen_segment_not_present, false },
618 { stack_segment, xen_stack_segment, false },
619 { general_protection, xen_general_protection, false },
620 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false },
621 { coprocessor_error, xen_coprocessor_error, false },
622 { alignment_check, xen_alignment_check, false },
623 { simd_coprocessor_error, xen_simd_coprocessor_error, false },
624};
625
626static bool get_trap_addr(void **addr, unsigned int ist)
627{
628 unsigned int nr;
629 bool ist_okay = false;
630
631 /*
632 * Replace trap handler addresses by Xen specific ones.
633 * Check for known traps using IST and whitelist them.
634 * The debugger ones are the only ones we care about.
635 * Xen will handle faults like double_fault, * so we should never see
636 * them. Warn if there's an unexpected IST-using fault handler.
637 */
638 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
639 struct trap_array_entry *entry = trap_array + nr;
640
641 if (*addr == entry->orig) {
642 *addr = entry->xen;
643 ist_okay = entry->ist_okay;
644 break;
645 }
646 }
647
648 if (WARN_ON(ist != 0 && !ist_okay))
649 return false;
650
651 return true;
652}
653#endif
654
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100655static int cvt_gate_to_trap(int vector, const gate_desc *val,
656 struct trap_info *info)
657{
658 unsigned long addr;
659
Thomas Gleixner64b163f2017-08-28 08:47:37 +0200660 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100661 return 0;
662
663 info->vector = vector;
664
Thomas Gleixner64b163f2017-08-28 08:47:37 +0200665 addr = gate_offset(val);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100666#ifdef CONFIG_X86_64
Juergen Gross5878d5d2017-08-31 19:42:49 +0200667 if (!get_trap_addr((void **)&addr, val->bits.ist))
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100668 return 0;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100669#endif /* CONFIG_X86_64 */
670 info->address = addr;
671
Thomas Gleixner64b163f2017-08-28 08:47:37 +0200672 info->cs = gate_segment(val);
673 info->flags = val->bits.dpl;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100674 /* interrupt gates clear IF */
Thomas Gleixner64b163f2017-08-28 08:47:37 +0200675 if (val->bits.type == GATE_INTERRUPT)
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100676 info->flags |= 1 << 2;
677
678 return 1;
679}
680
681/* Locations of each CPU's IDT */
682static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
683
684/* Set an IDT entry. If the entry is part of the current IDT, then
685 also update Xen. */
686static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
687{
688 unsigned long p = (unsigned long)&dt[entrynum];
689 unsigned long start, end;
690
691 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
692
693 preempt_disable();
694
695 start = __this_cpu_read(idt_desc.address);
696 end = start + __this_cpu_read(idt_desc.size) + 1;
697
698 xen_mc_flush();
699
700 native_write_idt_entry(dt, entrynum, g);
701
702 if (p >= start && (p + 8) <= end) {
703 struct trap_info info[2];
704
705 info[1].address = 0;
706
707 if (cvt_gate_to_trap(entrynum, g, &info[0]))
708 if (HYPERVISOR_set_trap_table(info))
709 BUG();
710 }
711
712 preempt_enable();
713}
714
715static void xen_convert_trap_info(const struct desc_ptr *desc,
716 struct trap_info *traps)
717{
718 unsigned in, out, count;
719
720 count = (desc->size+1) / sizeof(gate_desc);
721 BUG_ON(count > 256);
722
723 for (in = out = 0; in < count; in++) {
724 gate_desc *entry = (gate_desc *)(desc->address) + in;
725
726 if (cvt_gate_to_trap(in, entry, &traps[out]))
727 out++;
728 }
729 traps[out].address = 0;
730}
731
732void xen_copy_trap_info(struct trap_info *traps)
733{
734 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
735
736 xen_convert_trap_info(desc, traps);
737}
738
739/* Load a new IDT into Xen. In principle this can be per-CPU, so we
740 hold a spinlock to protect the static traps[] array (static because
741 it avoids allocation, and saves stack space). */
742static void xen_load_idt(const struct desc_ptr *desc)
743{
744 static DEFINE_SPINLOCK(lock);
745 static struct trap_info traps[257];
746
747 trace_xen_cpu_load_idt(desc);
748
749 spin_lock(&lock);
750
751 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
752
753 xen_convert_trap_info(desc, traps);
754
755 xen_mc_flush();
756 if (HYPERVISOR_set_trap_table(traps))
757 BUG();
758
759 spin_unlock(&lock);
760}
761
762/* Write a GDT descriptor entry. Ignore LDT descriptors, since
763 they're handled differently. */
764static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
765 const void *desc, int type)
766{
767 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
768
769 preempt_disable();
770
771 switch (type) {
772 case DESC_LDT:
773 case DESC_TSS:
774 /* ignore */
775 break;
776
777 default: {
778 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
779
780 xen_mc_flush();
781 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
782 BUG();
783 }
784
785 }
786
787 preempt_enable();
788}
789
790/*
791 * Version of write_gdt_entry for use at early boot-time needed to
792 * update an entry as simply as possible.
793 */
794static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
795 const void *desc, int type)
796{
797 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
798
799 switch (type) {
800 case DESC_LDT:
801 case DESC_TSS:
802 /* ignore */
803 break;
804
805 default: {
806 xmaddr_t maddr = virt_to_machine(&dt[entry]);
807
808 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
809 dt[entry] = *(struct desc_struct *)desc;
810 }
811
812 }
813}
814
815static void xen_load_sp0(struct tss_struct *tss,
816 struct thread_struct *thread)
817{
818 struct multicall_space mcs;
819
820 mcs = xen_mc_entry(0);
821 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
822 xen_mc_issue(PARAVIRT_LAZY_CPU);
823 tss->x86_tss.sp0 = thread->sp0;
824}
825
826void xen_set_iopl_mask(unsigned mask)
827{
828 struct physdev_set_iopl set_iopl;
829
830 /* Force the change at ring 0. */
831 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
832 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
833}
834
835static void xen_io_delay(void)
836{
837}
838
839static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
840
841static unsigned long xen_read_cr0(void)
842{
843 unsigned long cr0 = this_cpu_read(xen_cr0_value);
844
845 if (unlikely(cr0 == 0)) {
846 cr0 = native_read_cr0();
847 this_cpu_write(xen_cr0_value, cr0);
848 }
849
850 return cr0;
851}
852
853static void xen_write_cr0(unsigned long cr0)
854{
855 struct multicall_space mcs;
856
857 this_cpu_write(xen_cr0_value, cr0);
858
859 /* Only pay attention to cr0.TS; everything else is
860 ignored. */
861 mcs = xen_mc_entry(0);
862
863 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
864
865 xen_mc_issue(PARAVIRT_LAZY_CPU);
866}
867
868static void xen_write_cr4(unsigned long cr4)
869{
870 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
871
872 native_write_cr4(cr4);
873}
874#ifdef CONFIG_X86_64
875static inline unsigned long xen_read_cr8(void)
876{
877 return 0;
878}
879static inline void xen_write_cr8(unsigned long val)
880{
881 BUG_ON(val);
882}
883#endif
884
885static u64 xen_read_msr_safe(unsigned int msr, int *err)
886{
887 u64 val;
888
889 if (pmu_msr_read(msr, &val, err))
890 return val;
891
892 val = native_read_msr_safe(msr, err);
893 switch (msr) {
894 case MSR_IA32_APICBASE:
895#ifdef CONFIG_X86_X2APIC
896 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
897#endif
898 val &= ~X2APIC_ENABLE;
899 break;
900 }
901 return val;
902}
903
904static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
905{
906 int ret;
907
908 ret = 0;
909
910 switch (msr) {
911#ifdef CONFIG_X86_64
912 unsigned which;
913 u64 base;
914
915 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
916 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
917 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
918
919 set:
920 base = ((u64)high << 32) | low;
921 if (HYPERVISOR_set_segment_base(which, base) != 0)
922 ret = -EIO;
923 break;
924#endif
925
926 case MSR_STAR:
927 case MSR_CSTAR:
928 case MSR_LSTAR:
929 case MSR_SYSCALL_MASK:
930 case MSR_IA32_SYSENTER_CS:
931 case MSR_IA32_SYSENTER_ESP:
932 case MSR_IA32_SYSENTER_EIP:
933 /* Fast syscall setup is all done in hypercalls, so
934 these are all ignored. Stub them out here to stop
935 Xen console noise. */
936 break;
937
938 default:
939 if (!pmu_msr_write(msr, low, high, &ret))
940 ret = native_write_msr_safe(msr, low, high);
941 }
942
943 return ret;
944}
945
946static u64 xen_read_msr(unsigned int msr)
947{
948 /*
949 * This will silently swallow a #GP from RDMSR. It may be worth
950 * changing that.
951 */
952 int err;
953
954 return xen_read_msr_safe(msr, &err);
955}
956
957static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
958{
959 /*
960 * This will silently swallow a #GP from WRMSR. It may be worth
961 * changing that.
962 */
963 xen_write_msr_safe(msr, low, high);
964}
965
966void xen_setup_shared_info(void)
967{
Juergen Gross989513a2017-05-16 09:41:06 +0200968 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100969
Juergen Gross989513a2017-05-16 09:41:06 +0200970 HYPERVISOR_shared_info =
971 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100972
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100973 xen_setup_mfn_list_list();
Boris Ostrovskyd1628092017-05-03 16:20:51 -0400974
Ankur Arora0e4d5832017-06-02 17:06:00 -0700975 if (system_state == SYSTEM_BOOTING) {
976#ifndef CONFIG_SMP
977 /*
978 * In UP this is as good a place as any to set up shared info.
979 * Limit this to boot only, at restore vcpu setup is done via
980 * xen_vcpu_restore().
981 */
982 xen_setup_vcpu_info_placement();
983#endif
984 /*
985 * Now that shared info is set up we can start using routines
986 * that point to pvclock area.
987 */
Boris Ostrovskyd1628092017-05-03 16:20:51 -0400988 xen_init_time_ops();
Ankur Arora0e4d5832017-06-02 17:06:00 -0700989 }
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100990}
991
992/* This is called once we have the cpu_possible_mask */
Ankur Arora0e4d5832017-06-02 17:06:00 -0700993void __ref xen_setup_vcpu_info_placement(void)
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100994{
995 int cpu;
996
997 for_each_possible_cpu(cpu) {
998 /* Set up direct vCPU id mapping for PV guests. */
999 per_cpu(xen_vcpu_id, cpu) = cpu;
Ankur Arorac9b5d982017-06-02 17:06:01 -07001000
1001 /*
1002 * xen_vcpu_setup(cpu) can fail -- in which case it
1003 * falls back to the shared_info version for cpus
1004 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1005 *
1006 * xen_cpu_up_prepare_pv() handles the rest by failing
1007 * them in hotplug.
1008 */
1009 (void) xen_vcpu_setup(cpu);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001010 }
1011
1012 /*
1013 * xen_vcpu_setup managed to place the vcpu_info within the
1014 * percpu area for all cpus, so make use of it.
1015 */
1016 if (xen_have_vcpu_info_placement) {
1017 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1018 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1019 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1020 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1021 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1022 }
1023}
1024
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001025static const struct pv_info xen_info __initconst = {
1026 .shared_kernel_pmd = 0,
1027
1028#ifdef CONFIG_X86_64
1029 .extra_user_64bit_cs = FLAT_USER_CS64,
1030#endif
1031 .name = "Xen",
1032};
1033
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001034static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1035 .cpuid = xen_cpuid,
1036
1037 .set_debugreg = xen_set_debugreg,
1038 .get_debugreg = xen_get_debugreg,
1039
1040 .read_cr0 = xen_read_cr0,
1041 .write_cr0 = xen_write_cr0,
1042
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001043 .write_cr4 = xen_write_cr4,
1044
1045#ifdef CONFIG_X86_64
1046 .read_cr8 = xen_read_cr8,
1047 .write_cr8 = xen_write_cr8,
1048#endif
1049
1050 .wbinvd = native_wbinvd,
1051
1052 .read_msr = xen_read_msr,
1053 .write_msr = xen_write_msr,
1054
1055 .read_msr_safe = xen_read_msr_safe,
1056 .write_msr_safe = xen_write_msr_safe,
1057
1058 .read_pmc = xen_read_pmc,
1059
1060 .iret = xen_iret,
1061#ifdef CONFIG_X86_64
1062 .usergs_sysret64 = xen_sysret64,
1063#endif
1064
1065 .load_tr_desc = paravirt_nop,
1066 .set_ldt = xen_set_ldt,
1067 .load_gdt = xen_load_gdt,
1068 .load_idt = xen_load_idt,
1069 .load_tls = xen_load_tls,
1070#ifdef CONFIG_X86_64
1071 .load_gs_index = xen_load_gs_index,
1072#endif
1073
1074 .alloc_ldt = xen_alloc_ldt,
1075 .free_ldt = xen_free_ldt,
1076
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001077 .store_tr = xen_store_tr,
1078
1079 .write_ldt_entry = xen_write_ldt_entry,
1080 .write_gdt_entry = xen_write_gdt_entry,
1081 .write_idt_entry = xen_write_idt_entry,
1082 .load_sp0 = xen_load_sp0,
1083
1084 .set_iopl_mask = xen_set_iopl_mask,
1085 .io_delay = xen_io_delay,
1086
1087 /* Xen takes care of %gs when switching to usermode for us */
1088 .swapgs = paravirt_nop,
1089
1090 .start_context_switch = paravirt_start_context_switch,
1091 .end_context_switch = xen_end_context_switch,
1092};
1093
1094static void xen_restart(char *msg)
1095{
1096 xen_reboot(SHUTDOWN_reboot);
1097}
1098
1099static void xen_machine_halt(void)
1100{
1101 xen_reboot(SHUTDOWN_poweroff);
1102}
1103
1104static void xen_machine_power_off(void)
1105{
1106 if (pm_power_off)
1107 pm_power_off();
1108 xen_reboot(SHUTDOWN_poweroff);
1109}
1110
1111static void xen_crash_shutdown(struct pt_regs *regs)
1112{
1113 xen_reboot(SHUTDOWN_crash);
1114}
1115
1116static const struct machine_ops xen_machine_ops __initconst = {
1117 .restart = xen_restart,
1118 .halt = xen_machine_halt,
1119 .power_off = xen_machine_power_off,
1120 .shutdown = xen_machine_halt,
1121 .crash_shutdown = xen_crash_shutdown,
1122 .emergency_restart = xen_emergency_restart,
1123};
1124
1125static unsigned char xen_get_nmi_reason(void)
1126{
1127 unsigned char reason = 0;
1128
1129 /* Construct a value which looks like it came from port 0x61. */
1130 if (test_bit(_XEN_NMIREASON_io_error,
1131 &HYPERVISOR_shared_info->arch.nmi_reason))
1132 reason |= NMI_REASON_IOCHK;
1133 if (test_bit(_XEN_NMIREASON_pci_serr,
1134 &HYPERVISOR_shared_info->arch.nmi_reason))
1135 reason |= NMI_REASON_SERR;
1136
1137 return reason;
1138}
1139
1140static void __init xen_boot_params_init_edd(void)
1141{
1142#if IS_ENABLED(CONFIG_EDD)
1143 struct xen_platform_op op;
1144 struct edd_info *edd_info;
1145 u32 *mbr_signature;
1146 unsigned nr;
1147 int ret;
1148
1149 edd_info = boot_params.eddbuf;
1150 mbr_signature = boot_params.edd_mbr_sig_buffer;
1151
1152 op.cmd = XENPF_firmware_info;
1153
1154 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1155 for (nr = 0; nr < EDDMAXNR; nr++) {
1156 struct edd_info *info = edd_info + nr;
1157
1158 op.u.firmware_info.index = nr;
1159 info->params.length = sizeof(info->params);
1160 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1161 &info->params);
1162 ret = HYPERVISOR_platform_op(&op);
1163 if (ret)
1164 break;
1165
1166#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1167 C(device);
1168 C(version);
1169 C(interface_support);
1170 C(legacy_max_cylinder);
1171 C(legacy_max_head);
1172 C(legacy_sectors_per_track);
1173#undef C
1174 }
1175 boot_params.eddbuf_entries = nr;
1176
1177 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1178 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1179 op.u.firmware_info.index = nr;
1180 ret = HYPERVISOR_platform_op(&op);
1181 if (ret)
1182 break;
1183 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1184 }
1185 boot_params.edd_mbr_sig_buf_entries = nr;
1186#endif
1187}
1188
1189/*
1190 * Set up the GDT and segment registers for -fstack-protector. Until
1191 * we do this, we have to be careful not to call any stack-protected
1192 * function, which is most of the kernel.
1193 */
1194static void xen_setup_gdt(int cpu)
1195{
1196 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1197 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1198
1199 setup_stack_canary_segment(0);
1200 switch_to_new_gdt(0);
1201
1202 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1203 pv_cpu_ops.load_gdt = xen_load_gdt;
1204}
1205
1206static void __init xen_dom0_set_legacy_features(void)
1207{
1208 x86_platform.legacy.rtc = 1;
1209}
1210
1211/* First C function to be called on Xen boot */
1212asmlinkage __visible void __init xen_start_kernel(void)
1213{
1214 struct physdev_set_iopl set_iopl;
1215 unsigned long initrd_start = 0;
1216 int rc;
1217
1218 if (!xen_start_info)
1219 return;
1220
1221 xen_domain_type = XEN_PV_DOMAIN;
1222
1223 xen_setup_features();
1224
1225 xen_setup_machphys_mapping();
1226
1227 /* Install Xen paravirt ops */
1228 pv_info = xen_info;
Juergen Grossedcb5cf2017-08-16 19:31:56 +02001229 pv_init_ops.patch = paravirt_patch_default;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001230 pv_cpu_ops = xen_cpu_ops;
1231
1232 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1233
1234 x86_init.resources.memory_setup = xen_memory_setup;
1235 x86_init.oem.arch_setup = xen_arch_setup;
1236 x86_init.oem.banner = xen_banner;
1237
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001238 /*
1239 * Set up some pagetable state before starting to set any ptes.
1240 */
1241
1242 xen_init_mmu_ops();
1243
1244 /* Prevent unwanted bits from being set in PTEs. */
1245 __supported_pte_mask &= ~_PAGE_GLOBAL;
1246
1247 /*
1248 * Prevent page tables from being allocated in highmem, even
1249 * if CONFIG_HIGHPTE is enabled.
1250 */
1251 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1252
1253 /* Work out if we support NX */
Jan Beulich2cc42ba2017-12-18 09:37:45 -07001254 get_cpu_cap(&boot_cpu_data);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001255 x86_configure_nx();
1256
1257 /* Get mfn list */
1258 xen_build_dynamic_phys_to_machine();
1259
1260 /*
1261 * Set up kernel GDT and segment registers, mainly so that
1262 * -fstack-protector code can be executed.
1263 */
1264 xen_setup_gdt(0);
1265
1266 xen_init_irq_ops();
Juergen Gross0808e802017-04-13 08:55:41 +02001267 xen_init_capabilities();
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001268
1269#ifdef CONFIG_X86_LOCAL_APIC
1270 /*
1271 * set up the basic apic ops.
1272 */
1273 xen_init_apic();
1274#endif
1275
1276 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1277 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1278 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1279 }
1280
1281 machine_ops = xen_machine_ops;
1282
1283 /*
1284 * The only reliable way to retain the initial address of the
1285 * percpu gdt_page is to remember it here, so we can go and
1286 * mark it RW later, when the initial percpu area is freed.
1287 */
1288 xen_initial_gdt = &per_cpu(gdt_page, 0);
1289
1290 xen_smp_init();
1291
1292#ifdef CONFIG_ACPI_NUMA
1293 /*
1294 * The pages we from Xen are not related to machine pages, so
1295 * any NUMA information the kernel tries to get from ACPI will
1296 * be meaningless. Prevent it from trying.
1297 */
1298 acpi_numa = -1;
1299#endif
Ankur Aroraad73fd52017-06-02 17:05:58 -07001300 /* Let's presume PV guests always boot on vCPU with id 0. */
1301 per_cpu(xen_vcpu_id, 0) = 0;
1302
1303 /*
1304 * Setup xen_vcpu early because start_kernel needs it for
1305 * local_irq_disable(), irqs_disabled().
1306 *
1307 * Don't do the full vcpu_info placement stuff until we have
1308 * the cpu_possible_mask and a non-dummy shared_info.
1309 */
1310 xen_vcpu_info_reset(0);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001311
1312 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1313
1314 local_irq_disable();
1315 early_boot_irqs_disabled = true;
1316
1317 xen_raw_console_write("mapping kernel into physical memory\n");
1318 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1319 xen_start_info->nr_pages);
1320 xen_reserve_special_pages();
1321
1322 /* keep using Xen gdt for now; no urgent need to change it */
1323
1324#ifdef CONFIG_X86_32
1325 pv_info.kernel_rpl = 1;
1326 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1327 pv_info.kernel_rpl = 0;
1328#else
1329 pv_info.kernel_rpl = 0;
1330#endif
1331 /* set the limit of our address space */
1332 xen_reserve_top();
1333
1334 /*
1335 * We used to do this in xen_arch_setup, but that is too late
1336 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1337 * early_amd_init which pokes 0xcf8 port.
1338 */
1339 set_iopl.iopl = 1;
1340 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1341 if (rc != 0)
1342 xen_raw_printk("physdev_op failed %d\n", rc);
1343
1344#ifdef CONFIG_X86_32
1345 /* set up basic CPUID stuff */
1346 cpu_detect(&new_cpu_data);
1347 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1348 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1349#endif
1350
1351 if (xen_start_info->mod_start) {
1352 if (xen_start_info->flags & SIF_MOD_START_PFN)
1353 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1354 else
1355 initrd_start = __pa(xen_start_info->mod_start);
1356 }
1357
1358 /* Poke various useful things into boot_params */
1359 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1360 boot_params.hdr.ramdisk_image = initrd_start;
1361 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1362 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1363 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1364
1365 if (!xen_initial_domain()) {
1366 add_preferred_console("xenboot", 0, NULL);
1367 add_preferred_console("tty", 0, NULL);
1368 add_preferred_console("hvc", 0, NULL);
1369 if (pci_xen)
1370 x86_init.pci.arch_init = pci_xen_init;
1371 } else {
1372 const struct dom0_vga_console_info *info =
1373 (void *)((char *)xen_start_info +
1374 xen_start_info->console.dom0.info_off);
1375 struct xen_platform_op op = {
1376 .cmd = XENPF_firmware_info,
1377 .interface_version = XENPF_INTERFACE_VERSION,
1378 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1379 };
1380
1381 x86_platform.set_legacy_features =
1382 xen_dom0_set_legacy_features;
1383 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1384 xen_start_info->console.domU.mfn = 0;
1385 xen_start_info->console.domU.evtchn = 0;
1386
1387 if (HYPERVISOR_platform_op(&op) == 0)
1388 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1389
1390 /* Make sure ACS will be enabled */
1391 pci_request_acs();
1392
1393 xen_acpi_sleep_register();
1394
1395 /* Avoid searching for BIOS MP tables */
1396 x86_init.mpparse.find_smp_config = x86_init_noop;
1397 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1398
1399 xen_boot_params_init_edd();
1400 }
1401#ifdef CONFIG_PCI
1402 /* PCI BIOS service won't work from a PV guest. */
1403 pci_probe &= ~PCI_PROBE_BIOS;
1404#endif
1405 xen_raw_console_write("about to get started...\n");
1406
Ankur Aroraad73fd52017-06-02 17:05:58 -07001407 /* We need this for printk timestamps */
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001408 xen_setup_runstate_info(0);
1409
1410 xen_efi_init();
1411
1412 /* Start the world */
1413#ifdef CONFIG_X86_32
1414 i386_start_kernel();
1415#else
1416 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1417 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1418#endif
1419}
1420
1421static int xen_cpu_up_prepare_pv(unsigned int cpu)
1422{
1423 int rc;
1424
Ankur Arorac9b5d982017-06-02 17:06:01 -07001425 if (per_cpu(xen_vcpu, cpu) == NULL)
1426 return -ENODEV;
1427
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001428 xen_setup_timer(cpu);
1429
1430 rc = xen_smp_intr_init(cpu);
1431 if (rc) {
1432 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1433 cpu, rc);
1434 return rc;
1435 }
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001436
1437 rc = xen_smp_intr_init_pv(cpu);
1438 if (rc) {
1439 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1440 cpu, rc);
1441 return rc;
1442 }
1443
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001444 return 0;
1445}
1446
1447static int xen_cpu_dead_pv(unsigned int cpu)
1448{
1449 xen_smp_intr_free(cpu);
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001450 xen_smp_intr_free_pv(cpu);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001451
1452 xen_teardown_timer(cpu);
1453
1454 return 0;
1455}
1456
1457static uint32_t __init xen_platform_pv(void)
1458{
1459 if (xen_pv_domain())
1460 return xen_cpuid_base();
1461
1462 return 0;
1463}
1464
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001465const struct hypervisor_x86 x86_hyper_xen_pv = {
1466 .name = "Xen PV",
1467 .detect = xen_platform_pv,
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001468 .pin_vcpu = xen_pin_vcpu,
1469};
1470EXPORT_SYMBOL(x86_hyper_xen_pv);