Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Xen mmu operations |
| 3 | * |
| 4 | * This file contains the various mmu fetch and update operations. |
| 5 | * The most important job they must perform is the mapping between the |
| 6 | * domain's pfn and the overall machine mfns. |
| 7 | * |
| 8 | * Xen allows guests to directly update the pagetable, in a controlled |
| 9 | * fashion. In other words, the guest modifies the same pagetable |
| 10 | * that the CPU actually uses, which eliminates the overhead of having |
| 11 | * a separate shadow pagetable. |
| 12 | * |
| 13 | * In order to allow this, it falls on the guest domain to map its |
| 14 | * notion of a "physical" pfn - which is just a domain-local linear |
| 15 | * address - into a real "machine address" which the CPU's MMU can |
| 16 | * use. |
| 17 | * |
| 18 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be |
| 19 | * inserted directly into the pagetable. When creating a new |
| 20 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, |
| 21 | * when reading the content back with __(pgd|pmd|pte)_val, it converts |
| 22 | * the mfn back into a pfn. |
| 23 | * |
| 24 | * The other constraint is that all pages which make up a pagetable |
| 25 | * must be mapped read-only in the guest. This prevents uncontrolled |
| 26 | * guest updates to the pagetable. Xen strictly enforces this, and |
| 27 | * will disallow any pagetable update which will end up mapping a |
| 28 | * pagetable page RW, and will disallow using any writable page as a |
| 29 | * pagetable. |
| 30 | * |
| 31 | * Naively, when loading %cr3 with the base of a new pagetable, Xen |
| 32 | * would need to validate the whole pagetable before going on. |
| 33 | * Naturally, this is quite slow. The solution is to "pin" a |
| 34 | * pagetable, which enforces all the constraints on the pagetable even |
| 35 | * when it is not actively in use. This menas that Xen can be assured |
| 36 | * that it is still valid when you do load it into %cr3, and doesn't |
| 37 | * need to revalidate it. |
| 38 | * |
| 39 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 40 | */ |
| 41 | #include <linux/sched/mm.h> |
| 42 | #include <linux/highmem.h> |
| 43 | #include <linux/debugfs.h> |
| 44 | #include <linux/bug.h> |
| 45 | #include <linux/vmalloc.h> |
| 46 | #include <linux/export.h> |
| 47 | #include <linux/init.h> |
| 48 | #include <linux/gfp.h> |
| 49 | #include <linux/memblock.h> |
| 50 | #include <linux/seq_file.h> |
| 51 | #include <linux/crash_dump.h> |
Juergen Gross | 29985b0 | 2017-04-11 18:14:26 +0200 | [diff] [blame] | 52 | #ifdef CONFIG_KEXEC_CORE |
| 53 | #include <linux/kexec.h> |
| 54 | #endif |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 55 | |
| 56 | #include <trace/events/xen.h> |
| 57 | |
| 58 | #include <asm/pgtable.h> |
| 59 | #include <asm/tlbflush.h> |
| 60 | #include <asm/fixmap.h> |
| 61 | #include <asm/mmu_context.h> |
| 62 | #include <asm/setup.h> |
| 63 | #include <asm/paravirt.h> |
| 64 | #include <asm/e820/api.h> |
| 65 | #include <asm/linkage.h> |
| 66 | #include <asm/page.h> |
| 67 | #include <asm/init.h> |
| 68 | #include <asm/pat.h> |
| 69 | #include <asm/smp.h> |
| 70 | |
| 71 | #include <asm/xen/hypercall.h> |
| 72 | #include <asm/xen/hypervisor.h> |
| 73 | |
| 74 | #include <xen/xen.h> |
| 75 | #include <xen/page.h> |
| 76 | #include <xen/interface/xen.h> |
| 77 | #include <xen/interface/hvm/hvm_op.h> |
| 78 | #include <xen/interface/version.h> |
| 79 | #include <xen/interface/memory.h> |
| 80 | #include <xen/hvc-console.h> |
| 81 | |
| 82 | #include "multicalls.h" |
| 83 | #include "mmu.h" |
| 84 | #include "debugfs.h" |
| 85 | |
| 86 | #ifdef CONFIG_X86_32 |
| 87 | /* |
| 88 | * Identity map, in addition to plain kernel map. This needs to be |
| 89 | * large enough to allocate page table pages to allocate the rest. |
| 90 | * Each page can map 2MB. |
| 91 | */ |
| 92 | #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) |
| 93 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); |
| 94 | #endif |
| 95 | #ifdef CONFIG_X86_64 |
| 96 | /* l3 pud for userspace vsyscall mapping */ |
| 97 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; |
| 98 | #endif /* CONFIG_X86_64 */ |
| 99 | |
| 100 | /* |
| 101 | * Note about cr3 (pagetable base) values: |
| 102 | * |
| 103 | * xen_cr3 contains the current logical cr3 value; it contains the |
| 104 | * last set cr3. This may not be the current effective cr3, because |
| 105 | * its update may be being lazily deferred. However, a vcpu looking |
| 106 | * at its own cr3 can use this value knowing that it everything will |
| 107 | * be self-consistent. |
| 108 | * |
| 109 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the |
| 110 | * hypercall to set the vcpu cr3 is complete (so it may be a little |
| 111 | * out of date, but it will never be set early). If one vcpu is |
| 112 | * looking at another vcpu's cr3 value, it should use this variable. |
| 113 | */ |
| 114 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ |
| 115 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ |
| 116 | |
| 117 | static phys_addr_t xen_pt_base, xen_pt_size __initdata; |
| 118 | |
| 119 | /* |
| 120 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
| 121 | * redzone above it, so round it up to a PGD boundary. |
| 122 | */ |
| 123 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) |
| 124 | |
| 125 | void make_lowmem_page_readonly(void *vaddr) |
| 126 | { |
| 127 | pte_t *pte, ptev; |
| 128 | unsigned long address = (unsigned long)vaddr; |
| 129 | unsigned int level; |
| 130 | |
| 131 | pte = lookup_address(address, &level); |
| 132 | if (pte == NULL) |
| 133 | return; /* vaddr missing */ |
| 134 | |
| 135 | ptev = pte_wrprotect(*pte); |
| 136 | |
| 137 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 138 | BUG(); |
| 139 | } |
| 140 | |
| 141 | void make_lowmem_page_readwrite(void *vaddr) |
| 142 | { |
| 143 | pte_t *pte, ptev; |
| 144 | unsigned long address = (unsigned long)vaddr; |
| 145 | unsigned int level; |
| 146 | |
| 147 | pte = lookup_address(address, &level); |
| 148 | if (pte == NULL) |
| 149 | return; /* vaddr missing */ |
| 150 | |
| 151 | ptev = pte_mkwrite(*pte); |
| 152 | |
| 153 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 154 | BUG(); |
| 155 | } |
| 156 | |
| 157 | |
| 158 | static bool xen_page_pinned(void *ptr) |
| 159 | { |
| 160 | struct page *page = virt_to_page(ptr); |
| 161 | |
| 162 | return PagePinned(page); |
| 163 | } |
| 164 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 165 | static void xen_extend_mmu_update(const struct mmu_update *update) |
| 166 | { |
| 167 | struct multicall_space mcs; |
| 168 | struct mmu_update *u; |
| 169 | |
| 170 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
| 171 | |
| 172 | if (mcs.mc != NULL) { |
| 173 | mcs.mc->args[1]++; |
| 174 | } else { |
| 175 | mcs = __xen_mc_entry(sizeof(*u)); |
| 176 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 177 | } |
| 178 | |
| 179 | u = mcs.args; |
| 180 | *u = *update; |
| 181 | } |
| 182 | |
| 183 | static void xen_extend_mmuext_op(const struct mmuext_op *op) |
| 184 | { |
| 185 | struct multicall_space mcs; |
| 186 | struct mmuext_op *u; |
| 187 | |
| 188 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); |
| 189 | |
| 190 | if (mcs.mc != NULL) { |
| 191 | mcs.mc->args[1]++; |
| 192 | } else { |
| 193 | mcs = __xen_mc_entry(sizeof(*u)); |
| 194 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 195 | } |
| 196 | |
| 197 | u = mcs.args; |
| 198 | *u = *op; |
| 199 | } |
| 200 | |
| 201 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
| 202 | { |
| 203 | struct mmu_update u; |
| 204 | |
| 205 | preempt_disable(); |
| 206 | |
| 207 | xen_mc_batch(); |
| 208 | |
| 209 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 210 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 211 | u.val = pmd_val_ma(val); |
| 212 | xen_extend_mmu_update(&u); |
| 213 | |
| 214 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 215 | |
| 216 | preempt_enable(); |
| 217 | } |
| 218 | |
| 219 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) |
| 220 | { |
| 221 | trace_xen_mmu_set_pmd(ptr, val); |
| 222 | |
| 223 | /* If page is not pinned, we can just update the entry |
| 224 | directly */ |
| 225 | if (!xen_page_pinned(ptr)) { |
| 226 | *ptr = val; |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | xen_set_pmd_hyper(ptr, val); |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * Associate a virtual page frame with a given physical page frame |
| 235 | * and protection flags for that frame. |
| 236 | */ |
| 237 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) |
| 238 | { |
| 239 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
| 240 | } |
| 241 | |
| 242 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) |
| 243 | { |
| 244 | struct mmu_update u; |
| 245 | |
| 246 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) |
| 247 | return false; |
| 248 | |
| 249 | xen_mc_batch(); |
| 250 | |
| 251 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 252 | u.val = pte_val_ma(pteval); |
| 253 | xen_extend_mmu_update(&u); |
| 254 | |
| 255 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 256 | |
| 257 | return true; |
| 258 | } |
| 259 | |
| 260 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) |
| 261 | { |
| 262 | if (!xen_batched_set_pte(ptep, pteval)) { |
| 263 | /* |
| 264 | * Could call native_set_pte() here and trap and |
| 265 | * emulate the PTE write but with 32-bit guests this |
| 266 | * needs two traps (one for each of the two 32-bit |
| 267 | * words in the PTE) so do one hypercall directly |
| 268 | * instead. |
| 269 | */ |
| 270 | struct mmu_update u; |
| 271 | |
| 272 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 273 | u.val = pte_val_ma(pteval); |
| 274 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static void xen_set_pte(pte_t *ptep, pte_t pteval) |
| 279 | { |
| 280 | trace_xen_mmu_set_pte(ptep, pteval); |
| 281 | __xen_set_pte(ptep, pteval); |
| 282 | } |
| 283 | |
| 284 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, |
| 285 | pte_t *ptep, pte_t pteval) |
| 286 | { |
| 287 | trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); |
| 288 | __xen_set_pte(ptep, pteval); |
| 289 | } |
| 290 | |
| 291 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, |
| 292 | unsigned long addr, pte_t *ptep) |
| 293 | { |
| 294 | /* Just return the pte as-is. We preserve the bits on commit */ |
| 295 | trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); |
| 296 | return *ptep; |
| 297 | } |
| 298 | |
| 299 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
| 300 | pte_t *ptep, pte_t pte) |
| 301 | { |
| 302 | struct mmu_update u; |
| 303 | |
| 304 | trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); |
| 305 | xen_mc_batch(); |
| 306 | |
| 307 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
| 308 | u.val = pte_val_ma(pte); |
| 309 | xen_extend_mmu_update(&u); |
| 310 | |
| 311 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 312 | } |
| 313 | |
| 314 | /* Assume pteval_t is equivalent to all the other *val_t types. */ |
| 315 | static pteval_t pte_mfn_to_pfn(pteval_t val) |
| 316 | { |
| 317 | if (val & _PAGE_PRESENT) { |
Juergen Gross | 6f0e8bf | 2017-10-27 19:49:37 +0200 | [diff] [blame] | 318 | unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 319 | unsigned long pfn = mfn_to_pfn(mfn); |
| 320 | |
| 321 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 322 | if (unlikely(pfn == ~0)) |
| 323 | val = flags & ~_PAGE_PRESENT; |
| 324 | else |
| 325 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; |
| 326 | } |
| 327 | |
| 328 | return val; |
| 329 | } |
| 330 | |
| 331 | static pteval_t pte_pfn_to_mfn(pteval_t val) |
| 332 | { |
| 333 | if (val & _PAGE_PRESENT) { |
| 334 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 335 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 336 | unsigned long mfn; |
| 337 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 338 | mfn = __pfn_to_mfn(pfn); |
| 339 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 340 | /* |
| 341 | * If there's no mfn for the pfn, then just create an |
| 342 | * empty non-present pte. Unfortunately this loses |
| 343 | * information about the original pfn, so |
| 344 | * pte_mfn_to_pfn is asymmetric. |
| 345 | */ |
| 346 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { |
| 347 | mfn = 0; |
| 348 | flags = 0; |
| 349 | } else |
| 350 | mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); |
| 351 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; |
| 352 | } |
| 353 | |
| 354 | return val; |
| 355 | } |
| 356 | |
| 357 | __visible pteval_t xen_pte_val(pte_t pte) |
| 358 | { |
| 359 | pteval_t pteval = pte.pte; |
| 360 | |
| 361 | return pte_mfn_to_pfn(pteval); |
| 362 | } |
| 363 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); |
| 364 | |
| 365 | __visible pgdval_t xen_pgd_val(pgd_t pgd) |
| 366 | { |
| 367 | return pte_mfn_to_pfn(pgd.pgd); |
| 368 | } |
| 369 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); |
| 370 | |
| 371 | __visible pte_t xen_make_pte(pteval_t pte) |
| 372 | { |
| 373 | pte = pte_pfn_to_mfn(pte); |
| 374 | |
| 375 | return native_make_pte(pte); |
| 376 | } |
| 377 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); |
| 378 | |
| 379 | __visible pgd_t xen_make_pgd(pgdval_t pgd) |
| 380 | { |
| 381 | pgd = pte_pfn_to_mfn(pgd); |
| 382 | return native_make_pgd(pgd); |
| 383 | } |
| 384 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); |
| 385 | |
| 386 | __visible pmdval_t xen_pmd_val(pmd_t pmd) |
| 387 | { |
| 388 | return pte_mfn_to_pfn(pmd.pmd); |
| 389 | } |
| 390 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); |
| 391 | |
| 392 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
| 393 | { |
| 394 | struct mmu_update u; |
| 395 | |
| 396 | preempt_disable(); |
| 397 | |
| 398 | xen_mc_batch(); |
| 399 | |
| 400 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 401 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 402 | u.val = pud_val_ma(val); |
| 403 | xen_extend_mmu_update(&u); |
| 404 | |
| 405 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 406 | |
| 407 | preempt_enable(); |
| 408 | } |
| 409 | |
| 410 | static void xen_set_pud(pud_t *ptr, pud_t val) |
| 411 | { |
| 412 | trace_xen_mmu_set_pud(ptr, val); |
| 413 | |
| 414 | /* If page is not pinned, we can just update the entry |
| 415 | directly */ |
| 416 | if (!xen_page_pinned(ptr)) { |
| 417 | *ptr = val; |
| 418 | return; |
| 419 | } |
| 420 | |
| 421 | xen_set_pud_hyper(ptr, val); |
| 422 | } |
| 423 | |
| 424 | #ifdef CONFIG_X86_PAE |
| 425 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) |
| 426 | { |
| 427 | trace_xen_mmu_set_pte_atomic(ptep, pte); |
| 428 | set_64bit((u64 *)ptep, native_pte_val(pte)); |
| 429 | } |
| 430 | |
| 431 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| 432 | { |
| 433 | trace_xen_mmu_pte_clear(mm, addr, ptep); |
| 434 | if (!xen_batched_set_pte(ptep, native_make_pte(0))) |
| 435 | native_pte_clear(mm, addr, ptep); |
| 436 | } |
| 437 | |
| 438 | static void xen_pmd_clear(pmd_t *pmdp) |
| 439 | { |
| 440 | trace_xen_mmu_pmd_clear(pmdp); |
| 441 | set_pmd(pmdp, __pmd(0)); |
| 442 | } |
| 443 | #endif /* CONFIG_X86_PAE */ |
| 444 | |
| 445 | __visible pmd_t xen_make_pmd(pmdval_t pmd) |
| 446 | { |
| 447 | pmd = pte_pfn_to_mfn(pmd); |
| 448 | return native_make_pmd(pmd); |
| 449 | } |
| 450 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); |
| 451 | |
| 452 | #if CONFIG_PGTABLE_LEVELS == 4 |
| 453 | __visible pudval_t xen_pud_val(pud_t pud) |
| 454 | { |
| 455 | return pte_mfn_to_pfn(pud.pud); |
| 456 | } |
| 457 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); |
| 458 | |
| 459 | __visible pud_t xen_make_pud(pudval_t pud) |
| 460 | { |
| 461 | pud = pte_pfn_to_mfn(pud); |
| 462 | |
| 463 | return native_make_pud(pud); |
| 464 | } |
| 465 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); |
| 466 | |
| 467 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) |
| 468 | { |
| 469 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
| 470 | unsigned offset = pgd - pgd_page; |
| 471 | pgd_t *user_ptr = NULL; |
| 472 | |
| 473 | if (offset < pgd_index(USER_LIMIT)) { |
| 474 | struct page *page = virt_to_page(pgd_page); |
| 475 | user_ptr = (pgd_t *)page->private; |
| 476 | if (user_ptr) |
| 477 | user_ptr += offset; |
| 478 | } |
| 479 | |
| 480 | return user_ptr; |
| 481 | } |
| 482 | |
| 483 | static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 484 | { |
| 485 | struct mmu_update u; |
| 486 | |
| 487 | u.ptr = virt_to_machine(ptr).maddr; |
| 488 | u.val = p4d_val_ma(val); |
| 489 | xen_extend_mmu_update(&u); |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Raw hypercall-based set_p4d, intended for in early boot before |
| 494 | * there's a page structure. This implies: |
| 495 | * 1. The only existing pagetable is the kernel's |
| 496 | * 2. It is always pinned |
| 497 | * 3. It has no user pagetable attached to it |
| 498 | */ |
| 499 | static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 500 | { |
| 501 | preempt_disable(); |
| 502 | |
| 503 | xen_mc_batch(); |
| 504 | |
| 505 | __xen_set_p4d_hyper(ptr, val); |
| 506 | |
| 507 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 508 | |
| 509 | preempt_enable(); |
| 510 | } |
| 511 | |
| 512 | static void xen_set_p4d(p4d_t *ptr, p4d_t val) |
| 513 | { |
| 514 | pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); |
| 515 | pgd_t pgd_val; |
| 516 | |
| 517 | trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); |
| 518 | |
| 519 | /* If page is not pinned, we can just update the entry |
| 520 | directly */ |
| 521 | if (!xen_page_pinned(ptr)) { |
| 522 | *ptr = val; |
| 523 | if (user_ptr) { |
| 524 | WARN_ON(xen_page_pinned(user_ptr)); |
| 525 | pgd_val.pgd = p4d_val_ma(val); |
| 526 | *user_ptr = pgd_val; |
| 527 | } |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | /* If it's pinned, then we can at least batch the kernel and |
| 532 | user updates together. */ |
| 533 | xen_mc_batch(); |
| 534 | |
| 535 | __xen_set_p4d_hyper(ptr, val); |
| 536 | if (user_ptr) |
| 537 | __xen_set_p4d_hyper((p4d_t *)user_ptr, val); |
| 538 | |
| 539 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 540 | } |
| 541 | #endif /* CONFIG_PGTABLE_LEVELS == 4 */ |
| 542 | |
| 543 | static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, |
| 544 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 545 | bool last, unsigned long limit) |
| 546 | { |
| 547 | int i, nr, flush = 0; |
| 548 | |
| 549 | nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; |
| 550 | for (i = 0; i < nr; i++) { |
| 551 | if (!pmd_none(pmd[i])) |
| 552 | flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); |
| 553 | } |
| 554 | return flush; |
| 555 | } |
| 556 | |
| 557 | static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, |
| 558 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 559 | bool last, unsigned long limit) |
| 560 | { |
| 561 | int i, nr, flush = 0; |
| 562 | |
| 563 | nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; |
| 564 | for (i = 0; i < nr; i++) { |
| 565 | pmd_t *pmd; |
| 566 | |
| 567 | if (pud_none(pud[i])) |
| 568 | continue; |
| 569 | |
| 570 | pmd = pmd_offset(&pud[i], 0); |
| 571 | if (PTRS_PER_PMD > 1) |
| 572 | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); |
| 573 | flush |= xen_pmd_walk(mm, pmd, func, |
| 574 | last && i == nr - 1, limit); |
| 575 | } |
| 576 | return flush; |
| 577 | } |
| 578 | |
| 579 | static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, |
| 580 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 581 | bool last, unsigned long limit) |
| 582 | { |
| 583 | int i, nr, flush = 0; |
| 584 | |
| 585 | nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D; |
| 586 | for (i = 0; i < nr; i++) { |
| 587 | pud_t *pud; |
| 588 | |
| 589 | if (p4d_none(p4d[i])) |
| 590 | continue; |
| 591 | |
| 592 | pud = pud_offset(&p4d[i], 0); |
| 593 | if (PTRS_PER_PUD > 1) |
| 594 | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); |
| 595 | flush |= xen_pud_walk(mm, pud, func, |
| 596 | last && i == nr - 1, limit); |
| 597 | } |
| 598 | return flush; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * (Yet another) pagetable walker. This one is intended for pinning a |
| 603 | * pagetable. This means that it walks a pagetable and calls the |
| 604 | * callback function on each page it finds making up the page table, |
| 605 | * at every level. It walks the entire pagetable, but it only bothers |
| 606 | * pinning pte pages which are below limit. In the normal case this |
| 607 | * will be STACK_TOP_MAX, but at boot we need to pin up to |
| 608 | * FIXADDR_TOP. |
| 609 | * |
| 610 | * For 32-bit the important bit is that we don't pin beyond there, |
| 611 | * because then we start getting into Xen's ptes. |
| 612 | * |
| 613 | * For 64-bit, we must skip the Xen hole in the middle of the address |
| 614 | * space, just after the big x86-64 virtual hole. |
| 615 | */ |
| 616 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
| 617 | int (*func)(struct mm_struct *mm, struct page *, |
| 618 | enum pt_level), |
| 619 | unsigned long limit) |
| 620 | { |
| 621 | int i, nr, flush = 0; |
| 622 | unsigned hole_low, hole_high; |
| 623 | |
| 624 | /* The limit is the last byte to be touched */ |
| 625 | limit--; |
| 626 | BUG_ON(limit >= FIXADDR_TOP); |
| 627 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 628 | /* |
| 629 | * 64-bit has a great big hole in the middle of the address |
| 630 | * space, which contains the Xen mappings. On 32-bit these |
| 631 | * will end up making a zero-sized hole and so is a no-op. |
| 632 | */ |
| 633 | hole_low = pgd_index(USER_LIMIT); |
| 634 | hole_high = pgd_index(PAGE_OFFSET); |
| 635 | |
| 636 | nr = pgd_index(limit) + 1; |
| 637 | for (i = 0; i < nr; i++) { |
| 638 | p4d_t *p4d; |
| 639 | |
| 640 | if (i >= hole_low && i < hole_high) |
| 641 | continue; |
| 642 | |
| 643 | if (pgd_none(pgd[i])) |
| 644 | continue; |
| 645 | |
| 646 | p4d = p4d_offset(&pgd[i], 0); |
| 647 | if (PTRS_PER_P4D > 1) |
| 648 | flush |= (*func)(mm, virt_to_page(p4d), PT_P4D); |
| 649 | flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); |
| 650 | } |
| 651 | |
| 652 | /* Do the top level last, so that the callbacks can use it as |
| 653 | a cue to do final things like tlb flushes. */ |
| 654 | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); |
| 655 | |
| 656 | return flush; |
| 657 | } |
| 658 | |
| 659 | static int xen_pgd_walk(struct mm_struct *mm, |
| 660 | int (*func)(struct mm_struct *mm, struct page *, |
| 661 | enum pt_level), |
| 662 | unsigned long limit) |
| 663 | { |
| 664 | return __xen_pgd_walk(mm, mm->pgd, func, limit); |
| 665 | } |
| 666 | |
| 667 | /* If we're using split pte locks, then take the page's lock and |
| 668 | return a pointer to it. Otherwise return NULL. */ |
| 669 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
| 670 | { |
| 671 | spinlock_t *ptl = NULL; |
| 672 | |
| 673 | #if USE_SPLIT_PTE_PTLOCKS |
| 674 | ptl = ptlock_ptr(page); |
| 675 | spin_lock_nest_lock(ptl, &mm->page_table_lock); |
| 676 | #endif |
| 677 | |
| 678 | return ptl; |
| 679 | } |
| 680 | |
| 681 | static void xen_pte_unlock(void *v) |
| 682 | { |
| 683 | spinlock_t *ptl = v; |
| 684 | spin_unlock(ptl); |
| 685 | } |
| 686 | |
| 687 | static void xen_do_pin(unsigned level, unsigned long pfn) |
| 688 | { |
| 689 | struct mmuext_op op; |
| 690 | |
| 691 | op.cmd = level; |
| 692 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 693 | |
| 694 | xen_extend_mmuext_op(&op); |
| 695 | } |
| 696 | |
| 697 | static int xen_pin_page(struct mm_struct *mm, struct page *page, |
| 698 | enum pt_level level) |
| 699 | { |
| 700 | unsigned pgfl = TestSetPagePinned(page); |
| 701 | int flush; |
| 702 | |
| 703 | if (pgfl) |
| 704 | flush = 0; /* already pinned */ |
| 705 | else if (PageHighMem(page)) |
| 706 | /* kmaps need flushing if we found an unpinned |
| 707 | highpage */ |
| 708 | flush = 1; |
| 709 | else { |
| 710 | void *pt = lowmem_page_address(page); |
| 711 | unsigned long pfn = page_to_pfn(page); |
| 712 | struct multicall_space mcs = __xen_mc_entry(0); |
| 713 | spinlock_t *ptl; |
| 714 | |
| 715 | flush = 0; |
| 716 | |
| 717 | /* |
| 718 | * We need to hold the pagetable lock between the time |
| 719 | * we make the pagetable RO and when we actually pin |
| 720 | * it. If we don't, then other users may come in and |
| 721 | * attempt to update the pagetable by writing it, |
| 722 | * which will fail because the memory is RO but not |
| 723 | * pinned, so Xen won't do the trap'n'emulate. |
| 724 | * |
| 725 | * If we're using split pte locks, we can't hold the |
| 726 | * entire pagetable's worth of locks during the |
| 727 | * traverse, because we may wrap the preempt count (8 |
| 728 | * bits). The solution is to mark RO and pin each PTE |
| 729 | * page while holding the lock. This means the number |
| 730 | * of locks we end up holding is never more than a |
| 731 | * batch size (~32 entries, at present). |
| 732 | * |
| 733 | * If we're not using split pte locks, we needn't pin |
| 734 | * the PTE pages independently, because we're |
| 735 | * protected by the overall pagetable lock. |
| 736 | */ |
| 737 | ptl = NULL; |
| 738 | if (level == PT_PTE) |
| 739 | ptl = xen_pte_lock(page, mm); |
| 740 | |
| 741 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 742 | pfn_pte(pfn, PAGE_KERNEL_RO), |
| 743 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 744 | |
| 745 | if (ptl) { |
| 746 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
| 747 | |
| 748 | /* Queue a deferred unlock for when this batch |
| 749 | is completed. */ |
| 750 | xen_mc_callback(xen_pte_unlock, ptl); |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | return flush; |
| 755 | } |
| 756 | |
| 757 | /* This is called just after a mm has been created, but it has not |
| 758 | been used yet. We need to make sure that its pagetable is all |
| 759 | read-only, and can be pinned. */ |
| 760 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
| 761 | { |
| 762 | trace_xen_mmu_pgd_pin(mm, pgd); |
| 763 | |
| 764 | xen_mc_batch(); |
| 765 | |
| 766 | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { |
| 767 | /* re-enable interrupts for flushing */ |
| 768 | xen_mc_issue(0); |
| 769 | |
| 770 | kmap_flush_unused(); |
| 771 | |
| 772 | xen_mc_batch(); |
| 773 | } |
| 774 | |
| 775 | #ifdef CONFIG_X86_64 |
| 776 | { |
| 777 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 778 | |
| 779 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); |
| 780 | |
| 781 | if (user_pgd) { |
| 782 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 783 | xen_do_pin(MMUEXT_PIN_L4_TABLE, |
| 784 | PFN_DOWN(__pa(user_pgd))); |
| 785 | } |
| 786 | } |
| 787 | #else /* CONFIG_X86_32 */ |
| 788 | #ifdef CONFIG_X86_PAE |
| 789 | /* Need to make sure unshared kernel PMD is pinnable */ |
| 790 | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| 791 | PT_PMD); |
| 792 | #endif |
| 793 | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); |
| 794 | #endif /* CONFIG_X86_64 */ |
| 795 | xen_mc_issue(0); |
| 796 | } |
| 797 | |
| 798 | static void xen_pgd_pin(struct mm_struct *mm) |
| 799 | { |
| 800 | __xen_pgd_pin(mm, mm->pgd); |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * On save, we need to pin all pagetables to make sure they get their |
| 805 | * mfns turned into pfns. Search the list for any unpinned pgds and pin |
| 806 | * them (unpinned pgds are not currently in use, probably because the |
| 807 | * process is under construction or destruction). |
| 808 | * |
| 809 | * Expected to be called in stop_machine() ("equivalent to taking |
| 810 | * every spinlock in the system"), so the locking doesn't really |
| 811 | * matter all that much. |
| 812 | */ |
| 813 | void xen_mm_pin_all(void) |
| 814 | { |
| 815 | struct page *page; |
| 816 | |
| 817 | spin_lock(&pgd_lock); |
| 818 | |
| 819 | list_for_each_entry(page, &pgd_list, lru) { |
| 820 | if (!PagePinned(page)) { |
| 821 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
| 822 | SetPageSavePinned(page); |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | spin_unlock(&pgd_lock); |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * The init_mm pagetable is really pinned as soon as its created, but |
| 831 | * that's before we have page structures to store the bits. So do all |
| 832 | * the book-keeping now. |
| 833 | */ |
| 834 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, |
| 835 | enum pt_level level) |
| 836 | { |
| 837 | SetPagePinned(page); |
| 838 | return 0; |
| 839 | } |
| 840 | |
| 841 | static void __init xen_mark_init_mm_pinned(void) |
| 842 | { |
| 843 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
| 844 | } |
| 845 | |
| 846 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, |
| 847 | enum pt_level level) |
| 848 | { |
| 849 | unsigned pgfl = TestClearPagePinned(page); |
| 850 | |
| 851 | if (pgfl && !PageHighMem(page)) { |
| 852 | void *pt = lowmem_page_address(page); |
| 853 | unsigned long pfn = page_to_pfn(page); |
| 854 | spinlock_t *ptl = NULL; |
| 855 | struct multicall_space mcs; |
| 856 | |
| 857 | /* |
| 858 | * Do the converse to pin_page. If we're using split |
| 859 | * pte locks, we must be holding the lock for while |
| 860 | * the pte page is unpinned but still RO to prevent |
| 861 | * concurrent updates from seeing it in this |
| 862 | * partially-pinned state. |
| 863 | */ |
| 864 | if (level == PT_PTE) { |
| 865 | ptl = xen_pte_lock(page, mm); |
| 866 | |
| 867 | if (ptl) |
| 868 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); |
| 869 | } |
| 870 | |
| 871 | mcs = __xen_mc_entry(0); |
| 872 | |
| 873 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 874 | pfn_pte(pfn, PAGE_KERNEL), |
| 875 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 876 | |
| 877 | if (ptl) { |
| 878 | /* unlock when batch completed */ |
| 879 | xen_mc_callback(xen_pte_unlock, ptl); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | return 0; /* never need to flush on unpin */ |
| 884 | } |
| 885 | |
| 886 | /* Release a pagetables pages back as normal RW */ |
| 887 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
| 888 | { |
| 889 | trace_xen_mmu_pgd_unpin(mm, pgd); |
| 890 | |
| 891 | xen_mc_batch(); |
| 892 | |
| 893 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 894 | |
| 895 | #ifdef CONFIG_X86_64 |
| 896 | { |
| 897 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 898 | |
| 899 | if (user_pgd) { |
| 900 | xen_do_pin(MMUEXT_UNPIN_TABLE, |
| 901 | PFN_DOWN(__pa(user_pgd))); |
| 902 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 903 | } |
| 904 | } |
| 905 | #endif |
| 906 | |
| 907 | #ifdef CONFIG_X86_PAE |
| 908 | /* Need to make sure unshared kernel PMD is unpinned */ |
| 909 | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| 910 | PT_PMD); |
| 911 | #endif |
| 912 | |
| 913 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
| 914 | |
| 915 | xen_mc_issue(0); |
| 916 | } |
| 917 | |
| 918 | static void xen_pgd_unpin(struct mm_struct *mm) |
| 919 | { |
| 920 | __xen_pgd_unpin(mm, mm->pgd); |
| 921 | } |
| 922 | |
| 923 | /* |
| 924 | * On resume, undo any pinning done at save, so that the rest of the |
| 925 | * kernel doesn't see any unexpected pinned pagetables. |
| 926 | */ |
| 927 | void xen_mm_unpin_all(void) |
| 928 | { |
| 929 | struct page *page; |
| 930 | |
| 931 | spin_lock(&pgd_lock); |
| 932 | |
| 933 | list_for_each_entry(page, &pgd_list, lru) { |
| 934 | if (PageSavePinned(page)) { |
| 935 | BUG_ON(!PagePinned(page)); |
| 936 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
| 937 | ClearPageSavePinned(page); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | spin_unlock(&pgd_lock); |
| 942 | } |
| 943 | |
| 944 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
| 945 | { |
| 946 | spin_lock(&next->page_table_lock); |
| 947 | xen_pgd_pin(next); |
| 948 | spin_unlock(&next->page_table_lock); |
| 949 | } |
| 950 | |
| 951 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
| 952 | { |
| 953 | spin_lock(&mm->page_table_lock); |
| 954 | xen_pgd_pin(mm); |
| 955 | spin_unlock(&mm->page_table_lock); |
| 956 | } |
| 957 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 958 | static void drop_mm_ref_this_cpu(void *info) |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 959 | { |
| 960 | struct mm_struct *mm = info; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 961 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 962 | if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 963 | leave_mm(smp_processor_id()); |
| 964 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 965 | /* |
| 966 | * If this cpu still has a stale cr3 reference, then make sure |
| 967 | * it has been flushed. |
| 968 | */ |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 969 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 970 | xen_mc_flush(); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 971 | } |
| 972 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 973 | #ifdef CONFIG_SMP |
| 974 | /* |
| 975 | * Another cpu may still have their %cr3 pointing at the pagetable, so |
| 976 | * we need to repoint it somewhere else before we can unpin it. |
| 977 | */ |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 978 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 979 | { |
| 980 | cpumask_var_t mask; |
| 981 | unsigned cpu; |
| 982 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 983 | drop_mm_ref_this_cpu(mm); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 984 | |
| 985 | /* Get the "official" set of cpus referring to our pagetable. */ |
| 986 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { |
| 987 | for_each_online_cpu(cpu) { |
Andy Lutomirski | 94b1b03 | 2017-06-29 08:53:17 -0700 | [diff] [blame] | 988 | if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 989 | continue; |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 990 | smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 991 | } |
| 992 | return; |
| 993 | } |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 994 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 995 | /* |
| 996 | * It's possible that a vcpu may have a stale reference to our |
| 997 | * cr3, because its in lazy mode, and it hasn't yet flushed |
| 998 | * its set of pending hypercalls yet. In this case, we can |
| 999 | * look at its actual current cr3 value, and force it to flush |
| 1000 | * if needed. |
| 1001 | */ |
Andy Lutomirski | 94b1b03 | 2017-06-29 08:53:17 -0700 | [diff] [blame] | 1002 | cpumask_clear(mask); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1003 | for_each_online_cpu(cpu) { |
| 1004 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) |
| 1005 | cpumask_set_cpu(cpu, mask); |
| 1006 | } |
| 1007 | |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 1008 | smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1009 | free_cpumask_var(mask); |
| 1010 | } |
| 1011 | #else |
| 1012 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 1013 | { |
Andy Lutomirski | 3d28ebc | 2017-05-28 10:00:15 -0700 | [diff] [blame] | 1014 | drop_mm_ref_this_cpu(mm); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1015 | } |
| 1016 | #endif |
| 1017 | |
| 1018 | /* |
| 1019 | * While a process runs, Xen pins its pagetables, which means that the |
| 1020 | * hypervisor forces it to be read-only, and it controls all updates |
| 1021 | * to it. This means that all pagetable updates have to go via the |
| 1022 | * hypervisor, which is moderately expensive. |
| 1023 | * |
| 1024 | * Since we're pulling the pagetable down, we switch to use init_mm, |
| 1025 | * unpin old process pagetable and mark it all read-write, which |
| 1026 | * allows further operations on it to be simple memory accesses. |
| 1027 | * |
| 1028 | * The only subtle point is that another CPU may be still using the |
| 1029 | * pagetable because of lazy tlb flushing. This means we need need to |
| 1030 | * switch all CPUs off this pagetable before we can unpin it. |
| 1031 | */ |
| 1032 | static void xen_exit_mmap(struct mm_struct *mm) |
| 1033 | { |
| 1034 | get_cpu(); /* make sure we don't move around */ |
| 1035 | xen_drop_mm_ref(mm); |
| 1036 | put_cpu(); |
| 1037 | |
| 1038 | spin_lock(&mm->page_table_lock); |
| 1039 | |
| 1040 | /* pgd may not be pinned in the error exit path of execve */ |
| 1041 | if (xen_page_pinned(mm->pgd)) |
| 1042 | xen_pgd_unpin(mm); |
| 1043 | |
| 1044 | spin_unlock(&mm->page_table_lock); |
| 1045 | } |
| 1046 | |
| 1047 | static void xen_post_allocator_init(void); |
| 1048 | |
| 1049 | static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1050 | { |
| 1051 | struct mmuext_op op; |
| 1052 | |
| 1053 | op.cmd = cmd; |
| 1054 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 1055 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) |
| 1056 | BUG(); |
| 1057 | } |
| 1058 | |
| 1059 | #ifdef CONFIG_X86_64 |
| 1060 | static void __init xen_cleanhighmap(unsigned long vaddr, |
| 1061 | unsigned long vaddr_end) |
| 1062 | { |
| 1063 | unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; |
| 1064 | pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); |
| 1065 | |
| 1066 | /* NOTE: The loop is more greedy than the cleanup_highmap variant. |
| 1067 | * We include the PMD passed in on _both_ boundaries. */ |
| 1068 | for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); |
| 1069 | pmd++, vaddr += PMD_SIZE) { |
| 1070 | if (pmd_none(*pmd)) |
| 1071 | continue; |
| 1072 | if (vaddr < (unsigned long) _text || vaddr > kernel_end) |
| 1073 | set_pmd(pmd, __pmd(0)); |
| 1074 | } |
| 1075 | /* In case we did something silly, we should crash in this function |
| 1076 | * instead of somewhere later and be confusing. */ |
| 1077 | xen_mc_flush(); |
| 1078 | } |
| 1079 | |
| 1080 | /* |
| 1081 | * Make a page range writeable and free it. |
| 1082 | */ |
| 1083 | static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) |
| 1084 | { |
| 1085 | void *vaddr = __va(paddr); |
| 1086 | void *vaddr_end = vaddr + size; |
| 1087 | |
| 1088 | for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) |
| 1089 | make_lowmem_page_readwrite(vaddr); |
| 1090 | |
| 1091 | memblock_free(paddr, size); |
| 1092 | } |
| 1093 | |
| 1094 | static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) |
| 1095 | { |
| 1096 | unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; |
| 1097 | |
| 1098 | if (unpin) |
| 1099 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); |
| 1100 | ClearPagePinned(virt_to_page(__va(pa))); |
| 1101 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1102 | } |
| 1103 | |
| 1104 | static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) |
| 1105 | { |
| 1106 | unsigned long pa; |
| 1107 | pte_t *pte_tbl; |
| 1108 | int i; |
| 1109 | |
| 1110 | if (pmd_large(*pmd)) { |
| 1111 | pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; |
| 1112 | xen_free_ro_pages(pa, PMD_SIZE); |
| 1113 | return; |
| 1114 | } |
| 1115 | |
| 1116 | pte_tbl = pte_offset_kernel(pmd, 0); |
| 1117 | for (i = 0; i < PTRS_PER_PTE; i++) { |
| 1118 | if (pte_none(pte_tbl[i])) |
| 1119 | continue; |
| 1120 | pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; |
| 1121 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1122 | } |
| 1123 | set_pmd(pmd, __pmd(0)); |
| 1124 | xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); |
| 1125 | } |
| 1126 | |
| 1127 | static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) |
| 1128 | { |
| 1129 | unsigned long pa; |
| 1130 | pmd_t *pmd_tbl; |
| 1131 | int i; |
| 1132 | |
| 1133 | if (pud_large(*pud)) { |
| 1134 | pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; |
| 1135 | xen_free_ro_pages(pa, PUD_SIZE); |
| 1136 | return; |
| 1137 | } |
| 1138 | |
| 1139 | pmd_tbl = pmd_offset(pud, 0); |
| 1140 | for (i = 0; i < PTRS_PER_PMD; i++) { |
| 1141 | if (pmd_none(pmd_tbl[i])) |
| 1142 | continue; |
| 1143 | xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); |
| 1144 | } |
| 1145 | set_pud(pud, __pud(0)); |
| 1146 | xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); |
| 1147 | } |
| 1148 | |
| 1149 | static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) |
| 1150 | { |
| 1151 | unsigned long pa; |
| 1152 | pud_t *pud_tbl; |
| 1153 | int i; |
| 1154 | |
| 1155 | if (p4d_large(*p4d)) { |
| 1156 | pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; |
| 1157 | xen_free_ro_pages(pa, P4D_SIZE); |
| 1158 | return; |
| 1159 | } |
| 1160 | |
| 1161 | pud_tbl = pud_offset(p4d, 0); |
| 1162 | for (i = 0; i < PTRS_PER_PUD; i++) { |
| 1163 | if (pud_none(pud_tbl[i])) |
| 1164 | continue; |
| 1165 | xen_cleanmfnmap_pud(pud_tbl + i, unpin); |
| 1166 | } |
| 1167 | set_p4d(p4d, __p4d(0)); |
| 1168 | xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * Since it is well isolated we can (and since it is perhaps large we should) |
| 1173 | * also free the page tables mapping the initial P->M table. |
| 1174 | */ |
| 1175 | static void __init xen_cleanmfnmap(unsigned long vaddr) |
| 1176 | { |
| 1177 | pgd_t *pgd; |
| 1178 | p4d_t *p4d; |
| 1179 | unsigned int i; |
| 1180 | bool unpin; |
| 1181 | |
| 1182 | unpin = (vaddr == 2 * PGDIR_SIZE); |
| 1183 | vaddr &= PMD_MASK; |
| 1184 | pgd = pgd_offset_k(vaddr); |
| 1185 | p4d = p4d_offset(pgd, 0); |
| 1186 | for (i = 0; i < PTRS_PER_P4D; i++) { |
| 1187 | if (p4d_none(p4d[i])) |
| 1188 | continue; |
| 1189 | xen_cleanmfnmap_p4d(p4d + i, unpin); |
| 1190 | } |
| 1191 | if (IS_ENABLED(CONFIG_X86_5LEVEL)) { |
| 1192 | set_pgd(pgd, __pgd(0)); |
| 1193 | xen_cleanmfnmap_free_pgtbl(p4d, unpin); |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | static void __init xen_pagetable_p2m_free(void) |
| 1198 | { |
| 1199 | unsigned long size; |
| 1200 | unsigned long addr; |
| 1201 | |
| 1202 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 1203 | |
| 1204 | /* No memory or already called. */ |
| 1205 | if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) |
| 1206 | return; |
| 1207 | |
| 1208 | /* using __ka address and sticking INVALID_P2M_ENTRY! */ |
| 1209 | memset((void *)xen_start_info->mfn_list, 0xff, size); |
| 1210 | |
| 1211 | addr = xen_start_info->mfn_list; |
| 1212 | /* |
| 1213 | * We could be in __ka space. |
| 1214 | * We roundup to the PMD, which means that if anybody at this stage is |
| 1215 | * using the __ka address of xen_start_info or |
| 1216 | * xen_start_info->shared_info they are in going to crash. Fortunatly |
| 1217 | * we have already revectored in xen_setup_kernel_pagetable and in |
| 1218 | * xen_setup_shared_info. |
| 1219 | */ |
| 1220 | size = roundup(size, PMD_SIZE); |
| 1221 | |
| 1222 | if (addr >= __START_KERNEL_map) { |
| 1223 | xen_cleanhighmap(addr, addr + size); |
| 1224 | size = PAGE_ALIGN(xen_start_info->nr_pages * |
| 1225 | sizeof(unsigned long)); |
| 1226 | memblock_free(__pa(addr), size); |
| 1227 | } else { |
| 1228 | xen_cleanmfnmap(addr); |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | static void __init xen_pagetable_cleanhighmap(void) |
| 1233 | { |
| 1234 | unsigned long size; |
| 1235 | unsigned long addr; |
| 1236 | |
| 1237 | /* At this stage, cleanup_highmap has already cleaned __ka space |
| 1238 | * from _brk_limit way up to the max_pfn_mapped (which is the end of |
| 1239 | * the ramdisk). We continue on, erasing PMD entries that point to page |
| 1240 | * tables - do note that they are accessible at this stage via __va. |
Zhenzhong Duan | 0d805ee | 2017-09-27 02:41:25 -0700 | [diff] [blame] | 1241 | * As Xen is aligning the memory end to a 4MB boundary, for good |
| 1242 | * measure we also round up to PMD_SIZE * 2 - which means that if |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1243 | * anybody is using __ka address to the initial boot-stack - and try |
| 1244 | * to use it - they are going to crash. The xen_start_info has been |
| 1245 | * taken care of already in xen_setup_kernel_pagetable. */ |
| 1246 | addr = xen_start_info->pt_base; |
Zhenzhong Duan | 0d805ee | 2017-09-27 02:41:25 -0700 | [diff] [blame] | 1247 | size = xen_start_info->nr_pt_frames * PAGE_SIZE; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1248 | |
Zhenzhong Duan | 0d805ee | 2017-09-27 02:41:25 -0700 | [diff] [blame] | 1249 | xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1250 | xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1251 | } |
| 1252 | #endif |
| 1253 | |
| 1254 | static void __init xen_pagetable_p2m_setup(void) |
| 1255 | { |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1256 | xen_vmalloc_p2m_tree(); |
| 1257 | |
| 1258 | #ifdef CONFIG_X86_64 |
| 1259 | xen_pagetable_p2m_free(); |
| 1260 | |
| 1261 | xen_pagetable_cleanhighmap(); |
| 1262 | #endif |
| 1263 | /* And revector! Bye bye old array */ |
| 1264 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 1265 | } |
| 1266 | |
| 1267 | static void __init xen_pagetable_init(void) |
| 1268 | { |
| 1269 | paging_init(); |
| 1270 | xen_post_allocator_init(); |
| 1271 | |
| 1272 | xen_pagetable_p2m_setup(); |
| 1273 | |
| 1274 | /* Allocate and initialize top and mid mfn levels for p2m structure */ |
| 1275 | xen_build_mfn_list_list(); |
| 1276 | |
| 1277 | /* Remap memory freed due to conflicts with E820 map */ |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1278 | xen_remap_memory(); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1279 | |
| 1280 | xen_setup_shared_info(); |
| 1281 | } |
| 1282 | static void xen_write_cr2(unsigned long cr2) |
| 1283 | { |
| 1284 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; |
| 1285 | } |
| 1286 | |
| 1287 | static unsigned long xen_read_cr2(void) |
| 1288 | { |
| 1289 | return this_cpu_read(xen_vcpu)->arch.cr2; |
| 1290 | } |
| 1291 | |
| 1292 | unsigned long xen_read_cr2_direct(void) |
| 1293 | { |
| 1294 | return this_cpu_read(xen_vcpu_info.arch.cr2); |
| 1295 | } |
| 1296 | |
| 1297 | static void xen_flush_tlb(void) |
| 1298 | { |
| 1299 | struct mmuext_op *op; |
| 1300 | struct multicall_space mcs; |
| 1301 | |
| 1302 | trace_xen_mmu_flush_tlb(0); |
| 1303 | |
| 1304 | preempt_disable(); |
| 1305 | |
| 1306 | mcs = xen_mc_entry(sizeof(*op)); |
| 1307 | |
| 1308 | op = mcs.args; |
| 1309 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; |
| 1310 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1311 | |
| 1312 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1313 | |
| 1314 | preempt_enable(); |
| 1315 | } |
| 1316 | |
| 1317 | static void xen_flush_tlb_single(unsigned long addr) |
| 1318 | { |
| 1319 | struct mmuext_op *op; |
| 1320 | struct multicall_space mcs; |
| 1321 | |
| 1322 | trace_xen_mmu_flush_tlb_single(addr); |
| 1323 | |
| 1324 | preempt_disable(); |
| 1325 | |
| 1326 | mcs = xen_mc_entry(sizeof(*op)); |
| 1327 | op = mcs.args; |
| 1328 | op->cmd = MMUEXT_INVLPG_LOCAL; |
| 1329 | op->arg1.linear_addr = addr & PAGE_MASK; |
| 1330 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1331 | |
| 1332 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1333 | |
| 1334 | preempt_enable(); |
| 1335 | } |
| 1336 | |
| 1337 | static void xen_flush_tlb_others(const struct cpumask *cpus, |
Andy Lutomirski | a2055ab | 2017-05-28 10:00:10 -0700 | [diff] [blame] | 1338 | const struct flush_tlb_info *info) |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1339 | { |
| 1340 | struct { |
| 1341 | struct mmuext_op op; |
| 1342 | #ifdef CONFIG_SMP |
| 1343 | DECLARE_BITMAP(mask, num_processors); |
| 1344 | #else |
| 1345 | DECLARE_BITMAP(mask, NR_CPUS); |
| 1346 | #endif |
| 1347 | } *args; |
| 1348 | struct multicall_space mcs; |
| 1349 | |
Andy Lutomirski | a2055ab | 2017-05-28 10:00:10 -0700 | [diff] [blame] | 1350 | trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1351 | |
| 1352 | if (cpumask_empty(cpus)) |
| 1353 | return; /* nothing to do */ |
| 1354 | |
| 1355 | mcs = xen_mc_entry(sizeof(*args)); |
| 1356 | args = mcs.args; |
| 1357 | args->op.arg2.vcpumask = to_cpumask(args->mask); |
| 1358 | |
| 1359 | /* Remove us, and any offline CPUS. */ |
| 1360 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); |
| 1361 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); |
| 1362 | |
| 1363 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; |
Andy Lutomirski | a2055ab | 2017-05-28 10:00:10 -0700 | [diff] [blame] | 1364 | if (info->end != TLB_FLUSH_ALL && |
| 1365 | (info->end - info->start) <= PAGE_SIZE) { |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1366 | args->op.cmd = MMUEXT_INVLPG_MULTI; |
Andy Lutomirski | a2055ab | 2017-05-28 10:00:10 -0700 | [diff] [blame] | 1367 | args->op.arg1.linear_addr = info->start; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1368 | } |
| 1369 | |
| 1370 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); |
| 1371 | |
| 1372 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1373 | } |
| 1374 | |
| 1375 | static unsigned long xen_read_cr3(void) |
| 1376 | { |
| 1377 | return this_cpu_read(xen_cr3); |
| 1378 | } |
| 1379 | |
| 1380 | static void set_current_cr3(void *v) |
| 1381 | { |
| 1382 | this_cpu_write(xen_current_cr3, (unsigned long)v); |
| 1383 | } |
| 1384 | |
| 1385 | static void __xen_write_cr3(bool kernel, unsigned long cr3) |
| 1386 | { |
| 1387 | struct mmuext_op op; |
| 1388 | unsigned long mfn; |
| 1389 | |
| 1390 | trace_xen_mmu_write_cr3(kernel, cr3); |
| 1391 | |
| 1392 | if (cr3) |
| 1393 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); |
| 1394 | else |
| 1395 | mfn = 0; |
| 1396 | |
| 1397 | WARN_ON(mfn == 0 && kernel); |
| 1398 | |
| 1399 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; |
| 1400 | op.arg1.mfn = mfn; |
| 1401 | |
| 1402 | xen_extend_mmuext_op(&op); |
| 1403 | |
| 1404 | if (kernel) { |
| 1405 | this_cpu_write(xen_cr3, cr3); |
| 1406 | |
| 1407 | /* Update xen_current_cr3 once the batch has actually |
| 1408 | been submitted. */ |
| 1409 | xen_mc_callback(set_current_cr3, (void *)cr3); |
| 1410 | } |
| 1411 | } |
| 1412 | static void xen_write_cr3(unsigned long cr3) |
| 1413 | { |
| 1414 | BUG_ON(preemptible()); |
| 1415 | |
| 1416 | xen_mc_batch(); /* disables interrupts */ |
| 1417 | |
| 1418 | /* Update while interrupts are disabled, so its atomic with |
| 1419 | respect to ipis */ |
| 1420 | this_cpu_write(xen_cr3, cr3); |
| 1421 | |
| 1422 | __xen_write_cr3(true, cr3); |
| 1423 | |
| 1424 | #ifdef CONFIG_X86_64 |
| 1425 | { |
| 1426 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); |
| 1427 | if (user_pgd) |
| 1428 | __xen_write_cr3(false, __pa(user_pgd)); |
| 1429 | else |
| 1430 | __xen_write_cr3(false, 0); |
| 1431 | } |
| 1432 | #endif |
| 1433 | |
| 1434 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1435 | } |
| 1436 | |
| 1437 | #ifdef CONFIG_X86_64 |
| 1438 | /* |
| 1439 | * At the start of the day - when Xen launches a guest, it has already |
| 1440 | * built pagetables for the guest. We diligently look over them |
| 1441 | * in xen_setup_kernel_pagetable and graft as appropriate them in the |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1442 | * init_top_pgt and its friends. Then when we are happy we load |
| 1443 | * the new init_top_pgt - and continue on. |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1444 | * |
| 1445 | * The generic code starts (start_kernel) and 'init_mem_mapping' sets |
| 1446 | * up the rest of the pagetables. When it has completed it loads the cr3. |
| 1447 | * N.B. that baremetal would start at 'start_kernel' (and the early |
| 1448 | * #PF handler would create bootstrap pagetables) - so we are running |
| 1449 | * with the same assumptions as what to do when write_cr3 is executed |
| 1450 | * at this point. |
| 1451 | * |
| 1452 | * Since there are no user-page tables at all, we have two variants |
| 1453 | * of xen_write_cr3 - the early bootup (this one), and the late one |
| 1454 | * (xen_write_cr3). The reason we have to do that is that in 64-bit |
| 1455 | * the Linux kernel and user-space are both in ring 3 while the |
| 1456 | * hypervisor is in ring 0. |
| 1457 | */ |
| 1458 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 1459 | { |
| 1460 | BUG_ON(preemptible()); |
| 1461 | |
| 1462 | xen_mc_batch(); /* disables interrupts */ |
| 1463 | |
| 1464 | /* Update while interrupts are disabled, so its atomic with |
| 1465 | respect to ipis */ |
| 1466 | this_cpu_write(xen_cr3, cr3); |
| 1467 | |
| 1468 | __xen_write_cr3(true, cr3); |
| 1469 | |
| 1470 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1471 | } |
| 1472 | #endif |
| 1473 | |
| 1474 | static int xen_pgd_alloc(struct mm_struct *mm) |
| 1475 | { |
| 1476 | pgd_t *pgd = mm->pgd; |
| 1477 | int ret = 0; |
| 1478 | |
| 1479 | BUG_ON(PagePinned(virt_to_page(pgd))); |
| 1480 | |
| 1481 | #ifdef CONFIG_X86_64 |
| 1482 | { |
| 1483 | struct page *page = virt_to_page(pgd); |
| 1484 | pgd_t *user_pgd; |
| 1485 | |
| 1486 | BUG_ON(page->private != 0); |
| 1487 | |
| 1488 | ret = -ENOMEM; |
| 1489 | |
| 1490 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
| 1491 | page->private = (unsigned long)user_pgd; |
| 1492 | |
| 1493 | if (user_pgd != NULL) { |
| 1494 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 1495 | user_pgd[pgd_index(VSYSCALL_ADDR)] = |
| 1496 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); |
| 1497 | #endif |
| 1498 | ret = 0; |
| 1499 | } |
| 1500 | |
| 1501 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); |
| 1502 | } |
| 1503 | #endif |
| 1504 | return ret; |
| 1505 | } |
| 1506 | |
| 1507 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| 1508 | { |
| 1509 | #ifdef CONFIG_X86_64 |
| 1510 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 1511 | |
| 1512 | if (user_pgd) |
| 1513 | free_page((unsigned long)user_pgd); |
| 1514 | #endif |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * Init-time set_pte while constructing initial pagetables, which |
| 1519 | * doesn't allow RO page table pages to be remapped RW. |
| 1520 | * |
| 1521 | * If there is no MFN for this PFN then this page is initially |
| 1522 | * ballooned out so clear the PTE (as in decrease_reservation() in |
| 1523 | * drivers/xen/balloon.c). |
| 1524 | * |
| 1525 | * Many of these PTE updates are done on unpinned and writable pages |
| 1526 | * and doing a hypercall for these is unnecessary and expensive. At |
| 1527 | * this point it is not possible to tell if a page is pinned or not, |
| 1528 | * so always write the PTE directly and rely on Xen trapping and |
| 1529 | * emulating any updates as necessary. |
| 1530 | */ |
| 1531 | __visible pte_t xen_make_pte_init(pteval_t pte) |
| 1532 | { |
| 1533 | #ifdef CONFIG_X86_64 |
| 1534 | unsigned long pfn; |
| 1535 | |
| 1536 | /* |
| 1537 | * Pages belonging to the initial p2m list mapped outside the default |
| 1538 | * address range must be mapped read-only. This region contains the |
| 1539 | * page tables for mapping the p2m list, too, and page tables MUST be |
| 1540 | * mapped read-only. |
| 1541 | */ |
| 1542 | pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 1543 | if (xen_start_info->mfn_list < __START_KERNEL_map && |
| 1544 | pfn >= xen_start_info->first_p2m_pfn && |
| 1545 | pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) |
| 1546 | pte &= ~_PAGE_RW; |
| 1547 | #endif |
| 1548 | pte = pte_pfn_to_mfn(pte); |
| 1549 | return native_make_pte(pte); |
| 1550 | } |
| 1551 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); |
| 1552 | |
| 1553 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) |
| 1554 | { |
| 1555 | #ifdef CONFIG_X86_32 |
| 1556 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ |
| 1557 | if (pte_mfn(pte) != INVALID_P2M_ENTRY |
| 1558 | && pte_val_ma(*ptep) & _PAGE_PRESENT) |
| 1559 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & |
| 1560 | pte_val_ma(pte)); |
| 1561 | #endif |
| 1562 | native_set_pte(ptep, pte); |
| 1563 | } |
| 1564 | |
| 1565 | /* Early in boot, while setting up the initial pagetable, assume |
| 1566 | everything is pinned. */ |
| 1567 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) |
| 1568 | { |
| 1569 | #ifdef CONFIG_FLATMEM |
| 1570 | BUG_ON(mem_map); /* should only be used early */ |
| 1571 | #endif |
| 1572 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1573 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1574 | } |
| 1575 | |
| 1576 | /* Used for pmd and pud */ |
| 1577 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) |
| 1578 | { |
| 1579 | #ifdef CONFIG_FLATMEM |
| 1580 | BUG_ON(mem_map); /* should only be used early */ |
| 1581 | #endif |
| 1582 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1583 | } |
| 1584 | |
| 1585 | /* Early release_pte assumes that all pts are pinned, since there's |
| 1586 | only init_mm and anything attached to that is pinned. */ |
| 1587 | static void __init xen_release_pte_init(unsigned long pfn) |
| 1588 | { |
| 1589 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1590 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1591 | } |
| 1592 | |
| 1593 | static void __init xen_release_pmd_init(unsigned long pfn) |
| 1594 | { |
| 1595 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1596 | } |
| 1597 | |
| 1598 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1599 | { |
| 1600 | struct multicall_space mcs; |
| 1601 | struct mmuext_op *op; |
| 1602 | |
| 1603 | mcs = __xen_mc_entry(sizeof(*op)); |
| 1604 | op = mcs.args; |
| 1605 | op->cmd = cmd; |
| 1606 | op->arg1.mfn = pfn_to_mfn(pfn); |
| 1607 | |
| 1608 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 1609 | } |
| 1610 | |
| 1611 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) |
| 1612 | { |
| 1613 | struct multicall_space mcs; |
| 1614 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); |
| 1615 | |
| 1616 | mcs = __xen_mc_entry(0); |
| 1617 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, |
| 1618 | pfn_pte(pfn, prot), 0); |
| 1619 | } |
| 1620 | |
| 1621 | /* This needs to make sure the new pte page is pinned iff its being |
| 1622 | attached to a pinned pagetable. */ |
| 1623 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, |
| 1624 | unsigned level) |
| 1625 | { |
| 1626 | bool pinned = PagePinned(virt_to_page(mm->pgd)); |
| 1627 | |
| 1628 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); |
| 1629 | |
| 1630 | if (pinned) { |
| 1631 | struct page *page = pfn_to_page(pfn); |
| 1632 | |
| 1633 | SetPagePinned(page); |
| 1634 | |
| 1635 | if (!PageHighMem(page)) { |
| 1636 | xen_mc_batch(); |
| 1637 | |
| 1638 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); |
| 1639 | |
| 1640 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1641 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1642 | |
| 1643 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1644 | } else { |
| 1645 | /* make sure there are no stray mappings of |
| 1646 | this page */ |
| 1647 | kmap_flush_unused(); |
| 1648 | } |
| 1649 | } |
| 1650 | } |
| 1651 | |
| 1652 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) |
| 1653 | { |
| 1654 | xen_alloc_ptpage(mm, pfn, PT_PTE); |
| 1655 | } |
| 1656 | |
| 1657 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) |
| 1658 | { |
| 1659 | xen_alloc_ptpage(mm, pfn, PT_PMD); |
| 1660 | } |
| 1661 | |
| 1662 | /* This should never happen until we're OK to use struct page */ |
| 1663 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) |
| 1664 | { |
| 1665 | struct page *page = pfn_to_page(pfn); |
| 1666 | bool pinned = PagePinned(page); |
| 1667 | |
| 1668 | trace_xen_mmu_release_ptpage(pfn, level, pinned); |
| 1669 | |
| 1670 | if (pinned) { |
| 1671 | if (!PageHighMem(page)) { |
| 1672 | xen_mc_batch(); |
| 1673 | |
| 1674 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1675 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1676 | |
| 1677 | __set_pfn_prot(pfn, PAGE_KERNEL); |
| 1678 | |
| 1679 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1680 | } |
| 1681 | ClearPagePinned(page); |
| 1682 | } |
| 1683 | } |
| 1684 | |
| 1685 | static void xen_release_pte(unsigned long pfn) |
| 1686 | { |
| 1687 | xen_release_ptpage(pfn, PT_PTE); |
| 1688 | } |
| 1689 | |
| 1690 | static void xen_release_pmd(unsigned long pfn) |
| 1691 | { |
| 1692 | xen_release_ptpage(pfn, PT_PMD); |
| 1693 | } |
| 1694 | |
| 1695 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 1696 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) |
| 1697 | { |
| 1698 | xen_alloc_ptpage(mm, pfn, PT_PUD); |
| 1699 | } |
| 1700 | |
| 1701 | static void xen_release_pud(unsigned long pfn) |
| 1702 | { |
| 1703 | xen_release_ptpage(pfn, PT_PUD); |
| 1704 | } |
| 1705 | #endif |
| 1706 | |
| 1707 | void __init xen_reserve_top(void) |
| 1708 | { |
| 1709 | #ifdef CONFIG_X86_32 |
| 1710 | unsigned long top = HYPERVISOR_VIRT_START; |
| 1711 | struct xen_platform_parameters pp; |
| 1712 | |
| 1713 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) |
| 1714 | top = pp.virt_start; |
| 1715 | |
| 1716 | reserve_top_address(-top); |
| 1717 | #endif /* CONFIG_X86_32 */ |
| 1718 | } |
| 1719 | |
| 1720 | /* |
| 1721 | * Like __va(), but returns address in the kernel mapping (which is |
| 1722 | * all we have until the physical memory mapping has been set up. |
| 1723 | */ |
| 1724 | static void * __init __ka(phys_addr_t paddr) |
| 1725 | { |
| 1726 | #ifdef CONFIG_X86_64 |
| 1727 | return (void *)(paddr + __START_KERNEL_map); |
| 1728 | #else |
| 1729 | return __va(paddr); |
| 1730 | #endif |
| 1731 | } |
| 1732 | |
| 1733 | /* Convert a machine address to physical address */ |
| 1734 | static unsigned long __init m2p(phys_addr_t maddr) |
| 1735 | { |
| 1736 | phys_addr_t paddr; |
| 1737 | |
Juergen Gross | 6f0e8bf | 2017-10-27 19:49:37 +0200 | [diff] [blame] | 1738 | maddr &= XEN_PTE_MFN_MASK; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1739 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; |
| 1740 | |
| 1741 | return paddr; |
| 1742 | } |
| 1743 | |
| 1744 | /* Convert a machine address to kernel virtual */ |
| 1745 | static void * __init m2v(phys_addr_t maddr) |
| 1746 | { |
| 1747 | return __ka(m2p(maddr)); |
| 1748 | } |
| 1749 | |
| 1750 | /* Set the page permissions on an identity-mapped pages */ |
| 1751 | static void __init set_page_prot_flags(void *addr, pgprot_t prot, |
| 1752 | unsigned long flags) |
| 1753 | { |
| 1754 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; |
| 1755 | pte_t pte = pfn_pte(pfn, prot); |
| 1756 | |
| 1757 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) |
| 1758 | BUG(); |
| 1759 | } |
| 1760 | static void __init set_page_prot(void *addr, pgprot_t prot) |
| 1761 | { |
| 1762 | return set_page_prot_flags(addr, prot, UVMF_NONE); |
| 1763 | } |
| 1764 | #ifdef CONFIG_X86_32 |
| 1765 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) |
| 1766 | { |
| 1767 | unsigned pmdidx, pteidx; |
| 1768 | unsigned ident_pte; |
| 1769 | unsigned long pfn; |
| 1770 | |
| 1771 | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, |
| 1772 | PAGE_SIZE); |
| 1773 | |
| 1774 | ident_pte = 0; |
| 1775 | pfn = 0; |
| 1776 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { |
| 1777 | pte_t *pte_page; |
| 1778 | |
| 1779 | /* Reuse or allocate a page of ptes */ |
| 1780 | if (pmd_present(pmd[pmdidx])) |
| 1781 | pte_page = m2v(pmd[pmdidx].pmd); |
| 1782 | else { |
| 1783 | /* Check for free pte pages */ |
| 1784 | if (ident_pte == LEVEL1_IDENT_ENTRIES) |
| 1785 | break; |
| 1786 | |
| 1787 | pte_page = &level1_ident_pgt[ident_pte]; |
| 1788 | ident_pte += PTRS_PER_PTE; |
| 1789 | |
| 1790 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); |
| 1791 | } |
| 1792 | |
| 1793 | /* Install mappings */ |
| 1794 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { |
| 1795 | pte_t pte; |
| 1796 | |
| 1797 | if (pfn > max_pfn_mapped) |
| 1798 | max_pfn_mapped = pfn; |
| 1799 | |
| 1800 | if (!pte_none(pte_page[pteidx])) |
| 1801 | continue; |
| 1802 | |
| 1803 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); |
| 1804 | pte_page[pteidx] = pte; |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) |
| 1809 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); |
| 1810 | |
| 1811 | set_page_prot(pmd, PAGE_KERNEL_RO); |
| 1812 | } |
| 1813 | #endif |
| 1814 | void __init xen_setup_machphys_mapping(void) |
| 1815 | { |
| 1816 | struct xen_machphys_mapping mapping; |
| 1817 | |
| 1818 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { |
| 1819 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; |
| 1820 | machine_to_phys_nr = mapping.max_mfn + 1; |
| 1821 | } else { |
| 1822 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; |
| 1823 | } |
| 1824 | #ifdef CONFIG_X86_32 |
| 1825 | WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) |
| 1826 | < machine_to_phys_mapping); |
| 1827 | #endif |
| 1828 | } |
| 1829 | |
| 1830 | #ifdef CONFIG_X86_64 |
| 1831 | static void __init convert_pfn_mfn(void *v) |
| 1832 | { |
| 1833 | pte_t *pte = v; |
| 1834 | int i; |
| 1835 | |
| 1836 | /* All levels are converted the same way, so just treat them |
| 1837 | as ptes. */ |
| 1838 | for (i = 0; i < PTRS_PER_PTE; i++) |
| 1839 | pte[i] = xen_make_pte(pte[i].pte); |
| 1840 | } |
| 1841 | static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, |
| 1842 | unsigned long addr) |
| 1843 | { |
| 1844 | if (*pt_base == PFN_DOWN(__pa(addr))) { |
| 1845 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1846 | clear_page((void *)addr); |
| 1847 | (*pt_base)++; |
| 1848 | } |
| 1849 | if (*pt_end == PFN_DOWN(__pa(addr))) { |
| 1850 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1851 | clear_page((void *)addr); |
| 1852 | (*pt_end)--; |
| 1853 | } |
| 1854 | } |
| 1855 | /* |
| 1856 | * Set up the initial kernel pagetable. |
| 1857 | * |
| 1858 | * We can construct this by grafting the Xen provided pagetable into |
| 1859 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into |
| 1860 | * level2_ident_pgt, and level2_kernel_pgt. This means that only the |
| 1861 | * kernel has a physical mapping to start with - but that's enough to |
| 1862 | * get __va working. We need to fill in the rest of the physical |
| 1863 | * mapping once some sort of allocator has been set up. |
| 1864 | */ |
| 1865 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 1866 | { |
| 1867 | pud_t *l3; |
| 1868 | pmd_t *l2; |
| 1869 | unsigned long addr[3]; |
| 1870 | unsigned long pt_base, pt_end; |
| 1871 | unsigned i; |
| 1872 | |
| 1873 | /* max_pfn_mapped is the last pfn mapped in the initial memory |
| 1874 | * mappings. Considering that on Xen after the kernel mappings we |
| 1875 | * have the mappings of some pages that don't exist in pfn space, we |
| 1876 | * set max_pfn_mapped to the last real pfn mapped. */ |
| 1877 | if (xen_start_info->mfn_list < __START_KERNEL_map) |
| 1878 | max_pfn_mapped = xen_start_info->first_p2m_pfn; |
| 1879 | else |
| 1880 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); |
| 1881 | |
| 1882 | pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); |
| 1883 | pt_end = pt_base + xen_start_info->nr_pt_frames; |
| 1884 | |
| 1885 | /* Zap identity mapping */ |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1886 | init_top_pgt[0] = __pgd(0); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1887 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1888 | /* Pre-constructed entries are in pfn, so convert to mfn */ |
| 1889 | /* L4[272] -> level3_ident_pgt */ |
| 1890 | /* L4[511] -> level3_kernel_pgt */ |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1891 | convert_pfn_mfn(init_top_pgt); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1892 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1893 | /* L3_i[0] -> level2_ident_pgt */ |
| 1894 | convert_pfn_mfn(level3_ident_pgt); |
| 1895 | /* L3_k[510] -> level2_kernel_pgt */ |
| 1896 | /* L3_k[511] -> level2_fixmap_pgt */ |
| 1897 | convert_pfn_mfn(level3_kernel_pgt); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1898 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1899 | /* L3_k[511][506] -> level1_fixmap_pgt */ |
| 1900 | convert_pfn_mfn(level2_fixmap_pgt); |
| 1901 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1902 | /* We get [511][511] and have Xen's version of level2_kernel_pgt */ |
| 1903 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); |
| 1904 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); |
| 1905 | |
| 1906 | addr[0] = (unsigned long)pgd; |
| 1907 | addr[1] = (unsigned long)l3; |
| 1908 | addr[2] = (unsigned long)l2; |
| 1909 | /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: |
| 1910 | * Both L4[272][0] and L4[511][510] have entries that point to the same |
| 1911 | * L2 (PMD) tables. Meaning that if you modify it in __va space |
| 1912 | * it will be also modified in the __ka space! (But if you just |
| 1913 | * modify the PMD table to point to other PTE's or none, then you |
| 1914 | * are OK - which is what cleanup_highmap does) */ |
| 1915 | copy_page(level2_ident_pgt, l2); |
| 1916 | /* Graft it onto L4[511][510] */ |
| 1917 | copy_page(level2_kernel_pgt, l2); |
| 1918 | |
Jan Beulich | 2cc42ba | 2017-12-18 09:37:45 -0700 | [diff] [blame^] | 1919 | /* |
| 1920 | * Zap execute permission from the ident map. Due to the sharing of |
| 1921 | * L1 entries we need to do this in the L2. |
| 1922 | */ |
| 1923 | if (__supported_pte_mask & _PAGE_NX) { |
| 1924 | for (i = 0; i < PTRS_PER_PMD; ++i) { |
| 1925 | if (pmd_none(level2_ident_pgt[i])) |
| 1926 | continue; |
| 1927 | level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); |
| 1928 | } |
| 1929 | } |
| 1930 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1931 | /* Copy the initial P->M table mappings if necessary. */ |
| 1932 | i = pgd_index(xen_start_info->mfn_list); |
| 1933 | if (i && i < pgd_index(__START_KERNEL_map)) |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1934 | init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1935 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1936 | /* Make pagetable pieces RO */ |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1937 | set_page_prot(init_top_pgt, PAGE_KERNEL_RO); |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1938 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); |
| 1939 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); |
| 1940 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); |
| 1941 | set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); |
| 1942 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); |
| 1943 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); |
| 1944 | set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1945 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1946 | /* Pin down new L4 */ |
| 1947 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1948 | PFN_DOWN(__pa_symbol(init_top_pgt))); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1949 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1950 | /* Unpin Xen-provided one */ |
| 1951 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1952 | |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1953 | /* |
| 1954 | * At this stage there can be no user pgd, and no page structure to |
| 1955 | * attach it to, so make sure we just set kernel pgd. |
| 1956 | */ |
| 1957 | xen_mc_batch(); |
Kirill A. Shutemov | 65ade2f | 2017-06-06 14:31:27 +0300 | [diff] [blame] | 1958 | __xen_write_cr3(true, __pa(init_top_pgt)); |
Juergen Gross | 989513a | 2017-05-16 09:41:06 +0200 | [diff] [blame] | 1959 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1960 | |
| 1961 | /* We can't that easily rip out L3 and L2, as the Xen pagetables are |
| 1962 | * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for |
| 1963 | * the initial domain. For guests using the toolstack, they are in: |
| 1964 | * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only |
| 1965 | * rip out the [L4] (pgd), but for guests we shave off three pages. |
| 1966 | */ |
| 1967 | for (i = 0; i < ARRAY_SIZE(addr); i++) |
| 1968 | check_pt_base(&pt_base, &pt_end, addr[i]); |
| 1969 | |
| 1970 | /* Our (by three pages) smaller Xen pagetable that we are using */ |
| 1971 | xen_pt_base = PFN_PHYS(pt_base); |
| 1972 | xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; |
| 1973 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 1974 | |
| 1975 | /* Revector the xen_start_info */ |
| 1976 | xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); |
| 1977 | } |
| 1978 | |
| 1979 | /* |
| 1980 | * Read a value from a physical address. |
| 1981 | */ |
| 1982 | static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) |
| 1983 | { |
| 1984 | unsigned long *vaddr; |
| 1985 | unsigned long val; |
| 1986 | |
| 1987 | vaddr = early_memremap_ro(addr, sizeof(val)); |
| 1988 | val = *vaddr; |
| 1989 | early_memunmap(vaddr, sizeof(val)); |
| 1990 | return val; |
| 1991 | } |
| 1992 | |
| 1993 | /* |
| 1994 | * Translate a virtual address to a physical one without relying on mapped |
Juergen Gross | 69861e0 | 2017-05-10 06:08:44 +0200 | [diff] [blame] | 1995 | * page tables. Don't rely on big pages being aligned in (guest) physical |
| 1996 | * space! |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 1997 | */ |
| 1998 | static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) |
| 1999 | { |
| 2000 | phys_addr_t pa; |
| 2001 | pgd_t pgd; |
| 2002 | pud_t pud; |
| 2003 | pmd_t pmd; |
| 2004 | pte_t pte; |
| 2005 | |
Andy Lutomirski | 6c690ee | 2017-06-12 10:26:14 -0700 | [diff] [blame] | 2006 | pa = read_cr3_pa(); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2007 | pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * |
| 2008 | sizeof(pgd))); |
| 2009 | if (!pgd_present(pgd)) |
| 2010 | return 0; |
| 2011 | |
| 2012 | pa = pgd_val(pgd) & PTE_PFN_MASK; |
| 2013 | pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * |
| 2014 | sizeof(pud))); |
| 2015 | if (!pud_present(pud)) |
| 2016 | return 0; |
Juergen Gross | 69861e0 | 2017-05-10 06:08:44 +0200 | [diff] [blame] | 2017 | pa = pud_val(pud) & PTE_PFN_MASK; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2018 | if (pud_large(pud)) |
| 2019 | return pa + (vaddr & ~PUD_MASK); |
| 2020 | |
| 2021 | pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * |
| 2022 | sizeof(pmd))); |
| 2023 | if (!pmd_present(pmd)) |
| 2024 | return 0; |
Juergen Gross | 69861e0 | 2017-05-10 06:08:44 +0200 | [diff] [blame] | 2025 | pa = pmd_val(pmd) & PTE_PFN_MASK; |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2026 | if (pmd_large(pmd)) |
| 2027 | return pa + (vaddr & ~PMD_MASK); |
| 2028 | |
| 2029 | pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * |
| 2030 | sizeof(pte))); |
| 2031 | if (!pte_present(pte)) |
| 2032 | return 0; |
| 2033 | pa = pte_pfn(pte) << PAGE_SHIFT; |
| 2034 | |
| 2035 | return pa | (vaddr & ~PAGE_MASK); |
| 2036 | } |
| 2037 | |
| 2038 | /* |
| 2039 | * Find a new area for the hypervisor supplied p2m list and relocate the p2m to |
| 2040 | * this area. |
| 2041 | */ |
| 2042 | void __init xen_relocate_p2m(void) |
| 2043 | { |
| 2044 | phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys; |
| 2045 | unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; |
| 2046 | int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d; |
| 2047 | pte_t *pt; |
| 2048 | pmd_t *pmd; |
| 2049 | pud_t *pud; |
| 2050 | p4d_t *p4d = NULL; |
| 2051 | pgd_t *pgd; |
| 2052 | unsigned long *new_p2m; |
| 2053 | int save_pud; |
| 2054 | |
| 2055 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 2056 | n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; |
| 2057 | n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; |
| 2058 | n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; |
| 2059 | n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; |
| 2060 | if (PTRS_PER_P4D > 1) |
| 2061 | n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT; |
| 2062 | else |
| 2063 | n_p4d = 0; |
| 2064 | n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d; |
| 2065 | |
| 2066 | new_area = xen_find_free_area(PFN_PHYS(n_frames)); |
| 2067 | if (!new_area) { |
| 2068 | xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); |
| 2069 | BUG(); |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * Setup the page tables for addressing the new p2m list. |
| 2074 | * We have asked the hypervisor to map the p2m list at the user address |
| 2075 | * PUD_SIZE. It may have done so, or it may have used a kernel space |
| 2076 | * address depending on the Xen version. |
| 2077 | * To avoid any possible virtual address collision, just use |
| 2078 | * 2 * PUD_SIZE for the new area. |
| 2079 | */ |
| 2080 | p4d_phys = new_area; |
| 2081 | pud_phys = p4d_phys + PFN_PHYS(n_p4d); |
| 2082 | pmd_phys = pud_phys + PFN_PHYS(n_pud); |
| 2083 | pt_phys = pmd_phys + PFN_PHYS(n_pmd); |
| 2084 | p2m_pfn = PFN_DOWN(pt_phys) + n_pt; |
| 2085 | |
Andy Lutomirski | 6c690ee | 2017-06-12 10:26:14 -0700 | [diff] [blame] | 2086 | pgd = __va(read_cr3_pa()); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2087 | new_p2m = (unsigned long *)(2 * PGDIR_SIZE); |
| 2088 | idx_p4d = 0; |
| 2089 | save_pud = n_pud; |
| 2090 | do { |
| 2091 | if (n_p4d > 0) { |
| 2092 | p4d = early_memremap(p4d_phys, PAGE_SIZE); |
| 2093 | clear_page(p4d); |
| 2094 | n_pud = min(save_pud, PTRS_PER_P4D); |
| 2095 | } |
| 2096 | for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { |
| 2097 | pud = early_memremap(pud_phys, PAGE_SIZE); |
| 2098 | clear_page(pud); |
| 2099 | for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); |
| 2100 | idx_pmd++) { |
| 2101 | pmd = early_memremap(pmd_phys, PAGE_SIZE); |
| 2102 | clear_page(pmd); |
| 2103 | for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); |
| 2104 | idx_pt++) { |
| 2105 | pt = early_memremap(pt_phys, PAGE_SIZE); |
| 2106 | clear_page(pt); |
| 2107 | for (idx_pte = 0; |
| 2108 | idx_pte < min(n_pte, PTRS_PER_PTE); |
| 2109 | idx_pte++) { |
| 2110 | set_pte(pt + idx_pte, |
| 2111 | pfn_pte(p2m_pfn, PAGE_KERNEL)); |
| 2112 | p2m_pfn++; |
| 2113 | } |
| 2114 | n_pte -= PTRS_PER_PTE; |
| 2115 | early_memunmap(pt, PAGE_SIZE); |
| 2116 | make_lowmem_page_readonly(__va(pt_phys)); |
| 2117 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, |
| 2118 | PFN_DOWN(pt_phys)); |
| 2119 | set_pmd(pmd + idx_pt, |
| 2120 | __pmd(_PAGE_TABLE | pt_phys)); |
| 2121 | pt_phys += PAGE_SIZE; |
| 2122 | } |
| 2123 | n_pt -= PTRS_PER_PMD; |
| 2124 | early_memunmap(pmd, PAGE_SIZE); |
| 2125 | make_lowmem_page_readonly(__va(pmd_phys)); |
| 2126 | pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, |
| 2127 | PFN_DOWN(pmd_phys)); |
| 2128 | set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); |
| 2129 | pmd_phys += PAGE_SIZE; |
| 2130 | } |
| 2131 | n_pmd -= PTRS_PER_PUD; |
| 2132 | early_memunmap(pud, PAGE_SIZE); |
| 2133 | make_lowmem_page_readonly(__va(pud_phys)); |
| 2134 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); |
| 2135 | if (n_p4d > 0) |
| 2136 | set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys)); |
| 2137 | else |
| 2138 | set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); |
| 2139 | pud_phys += PAGE_SIZE; |
| 2140 | } |
| 2141 | if (n_p4d > 0) { |
| 2142 | save_pud -= PTRS_PER_P4D; |
| 2143 | early_memunmap(p4d, PAGE_SIZE); |
| 2144 | make_lowmem_page_readonly(__va(p4d_phys)); |
| 2145 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys)); |
| 2146 | set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys)); |
| 2147 | p4d_phys += PAGE_SIZE; |
| 2148 | } |
| 2149 | } while (++idx_p4d < n_p4d); |
| 2150 | |
| 2151 | /* Now copy the old p2m info to the new area. */ |
| 2152 | memcpy(new_p2m, xen_p2m_addr, size); |
| 2153 | xen_p2m_addr = new_p2m; |
| 2154 | |
| 2155 | /* Release the old p2m list and set new list info. */ |
| 2156 | p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); |
| 2157 | BUG_ON(!p2m_pfn); |
| 2158 | p2m_pfn_end = p2m_pfn + PFN_DOWN(size); |
| 2159 | |
| 2160 | if (xen_start_info->mfn_list < __START_KERNEL_map) { |
| 2161 | pfn = xen_start_info->first_p2m_pfn; |
| 2162 | pfn_end = xen_start_info->first_p2m_pfn + |
| 2163 | xen_start_info->nr_p2m_frames; |
| 2164 | set_pgd(pgd + 1, __pgd(0)); |
| 2165 | } else { |
| 2166 | pfn = p2m_pfn; |
| 2167 | pfn_end = p2m_pfn_end; |
| 2168 | } |
| 2169 | |
| 2170 | memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); |
| 2171 | while (pfn < pfn_end) { |
| 2172 | if (pfn == p2m_pfn) { |
| 2173 | pfn = p2m_pfn_end; |
| 2174 | continue; |
| 2175 | } |
| 2176 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 2177 | pfn++; |
| 2178 | } |
| 2179 | |
| 2180 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 2181 | xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); |
| 2182 | xen_start_info->nr_p2m_frames = n_frames; |
| 2183 | } |
| 2184 | |
| 2185 | #else /* !CONFIG_X86_64 */ |
| 2186 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); |
| 2187 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); |
| 2188 | |
| 2189 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 2190 | { |
| 2191 | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); |
| 2192 | |
Andy Lutomirski | 6c690ee | 2017-06-12 10:26:14 -0700 | [diff] [blame] | 2193 | BUG_ON(read_cr3_pa() != __pa(initial_page_table)); |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2194 | BUG_ON(cr3 != __pa(swapper_pg_dir)); |
| 2195 | |
| 2196 | /* |
| 2197 | * We are switching to swapper_pg_dir for the first time (from |
| 2198 | * initial_page_table) and therefore need to mark that page |
| 2199 | * read-only and then pin it. |
| 2200 | * |
| 2201 | * Xen disallows sharing of kernel PMDs for PAE |
| 2202 | * guests. Therefore we must copy the kernel PMD from |
| 2203 | * initial_page_table into a new kernel PMD to be used in |
| 2204 | * swapper_pg_dir. |
| 2205 | */ |
| 2206 | swapper_kernel_pmd = |
| 2207 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
| 2208 | copy_page(swapper_kernel_pmd, initial_kernel_pmd); |
| 2209 | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = |
| 2210 | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); |
| 2211 | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); |
| 2212 | |
| 2213 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); |
| 2214 | xen_write_cr3(cr3); |
| 2215 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); |
| 2216 | |
| 2217 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, |
| 2218 | PFN_DOWN(__pa(initial_page_table))); |
| 2219 | set_page_prot(initial_page_table, PAGE_KERNEL); |
| 2220 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); |
| 2221 | |
| 2222 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
| 2223 | } |
| 2224 | |
| 2225 | /* |
| 2226 | * For 32 bit domains xen_start_info->pt_base is the pgd address which might be |
| 2227 | * not the first page table in the page table pool. |
| 2228 | * Iterate through the initial page tables to find the real page table base. |
| 2229 | */ |
Arnd Bergmann | 51ae253 | 2017-09-15 21:29:13 +0200 | [diff] [blame] | 2230 | static phys_addr_t __init xen_find_pt_base(pmd_t *pmd) |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2231 | { |
| 2232 | phys_addr_t pt_base, paddr; |
| 2233 | unsigned pmdidx; |
| 2234 | |
| 2235 | pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); |
| 2236 | |
| 2237 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) |
| 2238 | if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { |
| 2239 | paddr = m2p(pmd[pmdidx].pmd); |
| 2240 | pt_base = min(pt_base, paddr); |
| 2241 | } |
| 2242 | |
| 2243 | return pt_base; |
| 2244 | } |
| 2245 | |
| 2246 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 2247 | { |
| 2248 | pmd_t *kernel_pmd; |
| 2249 | |
| 2250 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); |
| 2251 | |
| 2252 | xen_pt_base = xen_find_pt_base(kernel_pmd); |
| 2253 | xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; |
| 2254 | |
| 2255 | initial_kernel_pmd = |
| 2256 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
| 2257 | |
| 2258 | max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); |
| 2259 | |
| 2260 | copy_page(initial_kernel_pmd, kernel_pmd); |
| 2261 | |
| 2262 | xen_map_identity_early(initial_kernel_pmd, max_pfn); |
| 2263 | |
| 2264 | copy_page(initial_page_table, pgd); |
| 2265 | initial_page_table[KERNEL_PGD_BOUNDARY] = |
| 2266 | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); |
| 2267 | |
| 2268 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); |
| 2269 | set_page_prot(initial_page_table, PAGE_KERNEL_RO); |
| 2270 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); |
| 2271 | |
| 2272 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 2273 | |
| 2274 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, |
| 2275 | PFN_DOWN(__pa(initial_page_table))); |
| 2276 | xen_write_cr3(__pa(initial_page_table)); |
| 2277 | |
| 2278 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 2279 | } |
| 2280 | #endif /* CONFIG_X86_64 */ |
| 2281 | |
| 2282 | void __init xen_reserve_special_pages(void) |
| 2283 | { |
| 2284 | phys_addr_t paddr; |
| 2285 | |
| 2286 | memblock_reserve(__pa(xen_start_info), PAGE_SIZE); |
| 2287 | if (xen_start_info->store_mfn) { |
| 2288 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); |
| 2289 | memblock_reserve(paddr, PAGE_SIZE); |
| 2290 | } |
| 2291 | if (!xen_initial_domain()) { |
| 2292 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); |
| 2293 | memblock_reserve(paddr, PAGE_SIZE); |
| 2294 | } |
| 2295 | } |
| 2296 | |
| 2297 | void __init xen_pt_check_e820(void) |
| 2298 | { |
| 2299 | if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { |
| 2300 | xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); |
| 2301 | BUG(); |
| 2302 | } |
| 2303 | } |
| 2304 | |
| 2305 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; |
| 2306 | |
| 2307 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) |
| 2308 | { |
| 2309 | pte_t pte; |
| 2310 | |
| 2311 | phys >>= PAGE_SHIFT; |
| 2312 | |
| 2313 | switch (idx) { |
| 2314 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: |
| 2315 | case FIX_RO_IDT: |
| 2316 | #ifdef CONFIG_X86_32 |
| 2317 | case FIX_WP_TEST: |
| 2318 | # ifdef CONFIG_HIGHMEM |
| 2319 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: |
| 2320 | # endif |
| 2321 | #elif defined(CONFIG_X86_VSYSCALL_EMULATION) |
| 2322 | case VSYSCALL_PAGE: |
| 2323 | #endif |
| 2324 | case FIX_TEXT_POKE0: |
| 2325 | case FIX_TEXT_POKE1: |
| 2326 | case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END: |
| 2327 | /* All local page mappings */ |
| 2328 | pte = pfn_pte(phys, prot); |
| 2329 | break; |
| 2330 | |
| 2331 | #ifdef CONFIG_X86_LOCAL_APIC |
| 2332 | case FIX_APIC_BASE: /* maps dummy local APIC */ |
| 2333 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2334 | break; |
| 2335 | #endif |
| 2336 | |
| 2337 | #ifdef CONFIG_X86_IO_APIC |
| 2338 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: |
| 2339 | /* |
| 2340 | * We just don't map the IO APIC - all access is via |
| 2341 | * hypercalls. Keep the address in the pte for reference. |
| 2342 | */ |
| 2343 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2344 | break; |
| 2345 | #endif |
| 2346 | |
| 2347 | case FIX_PARAVIRT_BOOTMAP: |
| 2348 | /* This is an MFN, but it isn't an IO mapping from the |
| 2349 | IO domain */ |
| 2350 | pte = mfn_pte(phys, prot); |
| 2351 | break; |
| 2352 | |
| 2353 | default: |
| 2354 | /* By default, set_fixmap is used for hardware mappings */ |
| 2355 | pte = mfn_pte(phys, prot); |
| 2356 | break; |
| 2357 | } |
| 2358 | |
| 2359 | __native_set_fixmap(idx, pte); |
| 2360 | |
| 2361 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 2362 | /* Replicate changes to map the vsyscall page into the user |
| 2363 | pagetable vsyscall mapping. */ |
| 2364 | if (idx == VSYSCALL_PAGE) { |
| 2365 | unsigned long vaddr = __fix_to_virt(idx); |
| 2366 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); |
| 2367 | } |
| 2368 | #endif |
| 2369 | } |
| 2370 | |
| 2371 | static void __init xen_post_allocator_init(void) |
| 2372 | { |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2373 | pv_mmu_ops.set_pte = xen_set_pte; |
| 2374 | pv_mmu_ops.set_pmd = xen_set_pmd; |
| 2375 | pv_mmu_ops.set_pud = xen_set_pud; |
| 2376 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 2377 | pv_mmu_ops.set_p4d = xen_set_p4d; |
| 2378 | #endif |
| 2379 | |
| 2380 | /* This will work as long as patching hasn't happened yet |
| 2381 | (which it hasn't) */ |
| 2382 | pv_mmu_ops.alloc_pte = xen_alloc_pte; |
| 2383 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; |
| 2384 | pv_mmu_ops.release_pte = xen_release_pte; |
| 2385 | pv_mmu_ops.release_pmd = xen_release_pmd; |
| 2386 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 2387 | pv_mmu_ops.alloc_pud = xen_alloc_pud; |
| 2388 | pv_mmu_ops.release_pud = xen_release_pud; |
| 2389 | #endif |
| 2390 | pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); |
| 2391 | |
| 2392 | #ifdef CONFIG_X86_64 |
| 2393 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
| 2394 | SetPagePinned(virt_to_page(level3_user_vsyscall)); |
| 2395 | #endif |
| 2396 | xen_mark_init_mm_pinned(); |
| 2397 | } |
| 2398 | |
| 2399 | static void xen_leave_lazy_mmu(void) |
| 2400 | { |
| 2401 | preempt_disable(); |
| 2402 | xen_mc_flush(); |
| 2403 | paravirt_leave_lazy_mmu(); |
| 2404 | preempt_enable(); |
| 2405 | } |
| 2406 | |
| 2407 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { |
| 2408 | .read_cr2 = xen_read_cr2, |
| 2409 | .write_cr2 = xen_write_cr2, |
| 2410 | |
| 2411 | .read_cr3 = xen_read_cr3, |
| 2412 | .write_cr3 = xen_write_cr3_init, |
| 2413 | |
| 2414 | .flush_tlb_user = xen_flush_tlb, |
| 2415 | .flush_tlb_kernel = xen_flush_tlb, |
| 2416 | .flush_tlb_single = xen_flush_tlb_single, |
| 2417 | .flush_tlb_others = xen_flush_tlb_others, |
| 2418 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2419 | .pgd_alloc = xen_pgd_alloc, |
| 2420 | .pgd_free = xen_pgd_free, |
| 2421 | |
| 2422 | .alloc_pte = xen_alloc_pte_init, |
| 2423 | .release_pte = xen_release_pte_init, |
| 2424 | .alloc_pmd = xen_alloc_pmd_init, |
| 2425 | .release_pmd = xen_release_pmd_init, |
| 2426 | |
| 2427 | .set_pte = xen_set_pte_init, |
| 2428 | .set_pte_at = xen_set_pte_at, |
| 2429 | .set_pmd = xen_set_pmd_hyper, |
| 2430 | |
| 2431 | .ptep_modify_prot_start = __ptep_modify_prot_start, |
| 2432 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, |
| 2433 | |
| 2434 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), |
| 2435 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), |
| 2436 | |
| 2437 | .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), |
| 2438 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), |
| 2439 | |
| 2440 | #ifdef CONFIG_X86_PAE |
| 2441 | .set_pte_atomic = xen_set_pte_atomic, |
| 2442 | .pte_clear = xen_pte_clear, |
| 2443 | .pmd_clear = xen_pmd_clear, |
| 2444 | #endif /* CONFIG_X86_PAE */ |
| 2445 | .set_pud = xen_set_pud_hyper, |
| 2446 | |
| 2447 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), |
| 2448 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), |
| 2449 | |
| 2450 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 2451 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), |
| 2452 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), |
| 2453 | .set_p4d = xen_set_p4d_hyper, |
| 2454 | |
| 2455 | .alloc_pud = xen_alloc_pmd_init, |
| 2456 | .release_pud = xen_release_pmd_init, |
| 2457 | #endif /* CONFIG_PGTABLE_LEVELS == 4 */ |
| 2458 | |
| 2459 | .activate_mm = xen_activate_mm, |
| 2460 | .dup_mmap = xen_dup_mmap, |
| 2461 | .exit_mmap = xen_exit_mmap, |
| 2462 | |
| 2463 | .lazy_mode = { |
| 2464 | .enter = paravirt_enter_lazy_mmu, |
| 2465 | .leave = xen_leave_lazy_mmu, |
| 2466 | .flush = paravirt_flush_lazy_mmu, |
| 2467 | }, |
| 2468 | |
| 2469 | .set_fixmap = xen_set_fixmap, |
| 2470 | }; |
| 2471 | |
| 2472 | void __init xen_init_mmu_ops(void) |
| 2473 | { |
| 2474 | x86_init.paging.pagetable_init = xen_pagetable_init; |
| 2475 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2476 | pv_mmu_ops = xen_mmu_ops; |
| 2477 | |
| 2478 | memset(dummy_mapping, 0xff, PAGE_SIZE); |
| 2479 | } |
| 2480 | |
| 2481 | /* Protected by xen_reservation_lock. */ |
| 2482 | #define MAX_CONTIG_ORDER 9 /* 2MB */ |
| 2483 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; |
| 2484 | |
| 2485 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) |
| 2486 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, |
| 2487 | unsigned long *in_frames, |
| 2488 | unsigned long *out_frames) |
| 2489 | { |
| 2490 | int i; |
| 2491 | struct multicall_space mcs; |
| 2492 | |
| 2493 | xen_mc_batch(); |
| 2494 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { |
| 2495 | mcs = __xen_mc_entry(0); |
| 2496 | |
| 2497 | if (in_frames) |
| 2498 | in_frames[i] = virt_to_mfn(vaddr); |
| 2499 | |
| 2500 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); |
| 2501 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); |
| 2502 | |
| 2503 | if (out_frames) |
| 2504 | out_frames[i] = virt_to_pfn(vaddr); |
| 2505 | } |
| 2506 | xen_mc_issue(0); |
| 2507 | } |
| 2508 | |
| 2509 | /* |
| 2510 | * Update the pfn-to-mfn mappings for a virtual address range, either to |
| 2511 | * point to an array of mfns, or contiguously from a single starting |
| 2512 | * mfn. |
| 2513 | */ |
| 2514 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, |
| 2515 | unsigned long *mfns, |
| 2516 | unsigned long first_mfn) |
| 2517 | { |
| 2518 | unsigned i, limit; |
| 2519 | unsigned long mfn; |
| 2520 | |
| 2521 | xen_mc_batch(); |
| 2522 | |
| 2523 | limit = 1u << order; |
| 2524 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { |
| 2525 | struct multicall_space mcs; |
| 2526 | unsigned flags; |
| 2527 | |
| 2528 | mcs = __xen_mc_entry(0); |
| 2529 | if (mfns) |
| 2530 | mfn = mfns[i]; |
| 2531 | else |
| 2532 | mfn = first_mfn + i; |
| 2533 | |
| 2534 | if (i < (limit - 1)) |
| 2535 | flags = 0; |
| 2536 | else { |
| 2537 | if (order == 0) |
| 2538 | flags = UVMF_INVLPG | UVMF_ALL; |
| 2539 | else |
| 2540 | flags = UVMF_TLB_FLUSH | UVMF_ALL; |
| 2541 | } |
| 2542 | |
| 2543 | MULTI_update_va_mapping(mcs.mc, vaddr, |
| 2544 | mfn_pte(mfn, PAGE_KERNEL), flags); |
| 2545 | |
| 2546 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); |
| 2547 | } |
| 2548 | |
| 2549 | xen_mc_issue(0); |
| 2550 | } |
| 2551 | |
| 2552 | /* |
| 2553 | * Perform the hypercall to exchange a region of our pfns to point to |
| 2554 | * memory with the required contiguous alignment. Takes the pfns as |
| 2555 | * input, and populates mfns as output. |
| 2556 | * |
| 2557 | * Returns a success code indicating whether the hypervisor was able to |
| 2558 | * satisfy the request or not. |
| 2559 | */ |
| 2560 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, |
| 2561 | unsigned long *pfns_in, |
| 2562 | unsigned long extents_out, |
| 2563 | unsigned int order_out, |
| 2564 | unsigned long *mfns_out, |
| 2565 | unsigned int address_bits) |
| 2566 | { |
| 2567 | long rc; |
| 2568 | int success; |
| 2569 | |
| 2570 | struct xen_memory_exchange exchange = { |
| 2571 | .in = { |
| 2572 | .nr_extents = extents_in, |
| 2573 | .extent_order = order_in, |
| 2574 | .extent_start = pfns_in, |
| 2575 | .domid = DOMID_SELF |
| 2576 | }, |
| 2577 | .out = { |
| 2578 | .nr_extents = extents_out, |
| 2579 | .extent_order = order_out, |
| 2580 | .extent_start = mfns_out, |
| 2581 | .address_bits = address_bits, |
| 2582 | .domid = DOMID_SELF |
| 2583 | } |
| 2584 | }; |
| 2585 | |
| 2586 | BUG_ON(extents_in << order_in != extents_out << order_out); |
| 2587 | |
| 2588 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); |
| 2589 | success = (exchange.nr_exchanged == extents_in); |
| 2590 | |
| 2591 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); |
| 2592 | BUG_ON(success && (rc != 0)); |
| 2593 | |
| 2594 | return success; |
| 2595 | } |
| 2596 | |
| 2597 | int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, |
| 2598 | unsigned int address_bits, |
| 2599 | dma_addr_t *dma_handle) |
| 2600 | { |
| 2601 | unsigned long *in_frames = discontig_frames, out_frame; |
| 2602 | unsigned long flags; |
| 2603 | int success; |
| 2604 | unsigned long vstart = (unsigned long)phys_to_virt(pstart); |
| 2605 | |
| 2606 | /* |
| 2607 | * Currently an auto-translated guest will not perform I/O, nor will |
| 2608 | * it require PAE page directories below 4GB. Therefore any calls to |
| 2609 | * this function are redundant and can be ignored. |
| 2610 | */ |
| 2611 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2612 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2613 | return -ENOMEM; |
| 2614 | |
| 2615 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2616 | |
| 2617 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2618 | |
| 2619 | /* 1. Zap current PTEs, remembering MFNs. */ |
| 2620 | xen_zap_pfn_range(vstart, order, in_frames, NULL); |
| 2621 | |
| 2622 | /* 2. Get a new contiguous memory extent. */ |
| 2623 | out_frame = virt_to_pfn(vstart); |
| 2624 | success = xen_exchange_memory(1UL << order, 0, in_frames, |
| 2625 | 1, order, &out_frame, |
| 2626 | address_bits); |
| 2627 | |
| 2628 | /* 3. Map the new extent in place of old pages. */ |
| 2629 | if (success) |
| 2630 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); |
| 2631 | else |
| 2632 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); |
| 2633 | |
| 2634 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2635 | |
| 2636 | *dma_handle = virt_to_machine(vstart).maddr; |
| 2637 | return success ? 0 : -ENOMEM; |
| 2638 | } |
| 2639 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); |
| 2640 | |
| 2641 | void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) |
| 2642 | { |
| 2643 | unsigned long *out_frames = discontig_frames, in_frame; |
| 2644 | unsigned long flags; |
| 2645 | int success; |
| 2646 | unsigned long vstart; |
| 2647 | |
Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame] | 2648 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2649 | return; |
| 2650 | |
| 2651 | vstart = (unsigned long)phys_to_virt(pstart); |
| 2652 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2653 | |
| 2654 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2655 | |
| 2656 | /* 1. Find start MFN of contiguous extent. */ |
| 2657 | in_frame = virt_to_mfn(vstart); |
| 2658 | |
| 2659 | /* 2. Zap current PTEs. */ |
| 2660 | xen_zap_pfn_range(vstart, order, NULL, out_frames); |
| 2661 | |
| 2662 | /* 3. Do the exchange for non-contiguous MFNs. */ |
| 2663 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, |
| 2664 | 0, out_frames, 0); |
| 2665 | |
| 2666 | /* 4. Map new pages in place of old pages. */ |
| 2667 | if (success) |
| 2668 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); |
| 2669 | else |
| 2670 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); |
| 2671 | |
| 2672 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2673 | } |
| 2674 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); |
Juergen Gross | 29985b0 | 2017-04-11 18:14:26 +0200 | [diff] [blame] | 2675 | |
| 2676 | #ifdef CONFIG_KEXEC_CORE |
| 2677 | phys_addr_t paddr_vmcoreinfo_note(void) |
| 2678 | { |
| 2679 | if (xen_pv_domain()) |
Xunlei Pang | 203e9e4 | 2017-07-12 14:33:14 -0700 | [diff] [blame] | 2680 | return virt_to_machine(vmcoreinfo_note).maddr; |
Juergen Gross | 29985b0 | 2017-04-11 18:14:26 +0200 | [diff] [blame] | 2681 | else |
Xunlei Pang | 203e9e4 | 2017-07-12 14:33:14 -0700 | [diff] [blame] | 2682 | return __pa(vmcoreinfo_note); |
Juergen Gross | 29985b0 | 2017-04-11 18:14:26 +0200 | [diff] [blame] | 2683 | } |
| 2684 | #endif /* CONFIG_KEXEC_CORE */ |