blob: 10e953218948836e0151f022ef8745d8b523e574 [file] [log] [blame]
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 */
9
10#include <linux/module.h>
11#include <linux/clk.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/of_platform.h>
14#include <linux/iopoll.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mfd/syscon.h>
18#include <linux/regmap.h>
19#include <asm/unaligned.h>
20
21#include <linux/dmaengine.h>
22#include <linux/dma-mapping.h>
23#include <linux/dma/pxa-dma.h>
24#include <linux/platform_data/mtd-nand-pxa3xx.h>
25
26/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27#define FIFO_DEPTH 8
28#define FIFO_REP(x) (x / sizeof(u32))
29#define BCH_SEQ_READS (32 / FIFO_DEPTH)
30/* NFC does not support transfers of larger chunks at a time */
31#define MAX_CHUNK_SIZE 2112
32/* NFCv1 cannot read more that 7 bytes of ID */
33#define NFCV1_READID_LEN 7
34/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35#define POLL_PERIOD 0
36#define POLL_TIMEOUT 100000
37/* Interrupt maximum wait period in ms */
38#define IRQ_TIMEOUT 1000
39/* Latency in clock cycles between SoC pins and NFC logic */
40#define MIN_RD_DEL_CNT 3
41/* Maximum number of contiguous address cycles */
42#define MAX_ADDRESS_CYC_NFCV1 5
43#define MAX_ADDRESS_CYC_NFCV2 7
44/* System control registers/bits to enable the NAND controller on some SoCs */
45#define GENCONF_SOC_DEVICE_MUX 0x208
46#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50#define GENCONF_CLK_GATING_CTRL 0x220
51#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52#define GENCONF_ND_CLK_CTRL 0x700
53#define GENCONF_ND_CLK_CTRL_EN BIT(0)
54
55/* NAND controller data flash control register */
56#define NDCR 0x00
57#define NDCR_ALL_INT GENMASK(11, 0)
58#define NDCR_CS1_CMDDM BIT(7)
59#define NDCR_CS0_CMDDM BIT(8)
60#define NDCR_RDYM BIT(11)
61#define NDCR_ND_ARB_EN BIT(12)
62#define NDCR_RA_START BIT(15)
63#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65#define NDCR_DWIDTH_M BIT(26)
66#define NDCR_DWIDTH_C BIT(27)
67#define NDCR_ND_RUN BIT(28)
68#define NDCR_DMA_EN BIT(29)
69#define NDCR_ECC_EN BIT(30)
70#define NDCR_SPARE_EN BIT(31)
71#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73
74/* NAND interface timing parameter 0 register */
75#define NDTR0 0x04
76#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79#define NDTR0_SEL_NRE_EDGE BIT(7)
80#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85#define NDTR0_SELCNTR BIT(26)
86#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
87
88/* NAND interface timing parameter 1 register */
89#define NDTR1 0x0C
90#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93#define NDTR1_PRESCALE BIT(14)
94#define NDTR1_WAIT_MODE BIT(15)
95#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
96
97/* NAND controller status register */
98#define NDSR 0x14
99#define NDSR_WRCMDREQ BIT(0)
100#define NDSR_RDDREQ BIT(1)
101#define NDSR_WRDREQ BIT(2)
102#define NDSR_CORERR BIT(3)
103#define NDSR_UNCERR BIT(4)
104#define NDSR_CMDD(cs) BIT(8 - cs)
105#define NDSR_RDY(rb) BIT(11 + rb)
106#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
107
108/* NAND ECC control register */
109#define NDECCCTRL 0x28
110#define NDECCCTRL_BCH_EN BIT(0)
111
112/* NAND controller data buffer register */
113#define NDDB 0x40
114
115/* NAND controller command buffer 0 register */
116#define NDCB0 0x48
117#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121#define NDCB0_DBC BIT(19)
122#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123#define NDCB0_CSEL BIT(24)
124#define NDCB0_RDY_BYP BIT(27)
125#define NDCB0_LEN_OVRD BIT(28)
126#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
127
128/* NAND controller command buffer 1 register */
129#define NDCB1 0x4C
130#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131#define NDCB1_ADDRS_PAGE(x) (x << 16)
132
133/* NAND controller command buffer 2 register */
134#define NDCB2 0x50
135#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
137
138/* NAND controller command buffer 3 register */
139#define NDCB3 0x54
140#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
142
143/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144#define TYPE_READ 0
145#define TYPE_WRITE 1
146#define TYPE_ERASE 2
147#define TYPE_READ_ID 3
148#define TYPE_STATUS 4
149#define TYPE_RESET 5
150#define TYPE_NAKED_CMD 6
151#define TYPE_NAKED_ADDR 7
152#define TYPE_MASK 7
153#define XTYPE_MONOLITHIC_RW 0
154#define XTYPE_LAST_NAKED_RW 1
155#define XTYPE_FINAL_COMMAND 3
156#define XTYPE_READ 4
157#define XTYPE_WRITE_DISPATCH 4
158#define XTYPE_NAKED_RW 5
159#define XTYPE_COMMAND_DISPATCH 6
160#define XTYPE_MASK 7
161
162/**
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
168 *
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
183 */
184struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
198};
199
200#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
201 { \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
213 }
214
215/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
222};
223
224/**
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
231 *
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
237 */
238struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
242};
243
244/**
245 * NAND chip structure: stores NAND chip device related information
246 *
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
256 */
257struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
268};
269
270static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271{
272 return container_of(chip, struct marvell_nand_chip, chip);
273}
274
275static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
277{
278 return &nand->sels[nand->selected_die];
279}
280
281/**
282 * NAND controller capabilities for distinction between compatible strings
283 *
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
294 */
295struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
302};
303
304/**
305 * NAND controller structure: stores Marvell NAND controller information
306 *
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
Boris Brezillon6b6de652018-03-26 11:53:01 +0200310 * @core_clk: Core clock
Gregory CLEMENT961ba152018-03-13 11:30:16 +0100311 * @reg_clk: Regiters clock
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100312 * @complete: Completion object to wait for NAND controller events
313 * @assigned_cs: Bitmask describing already assigned CS lines
314 * @chips: List containing all the NAND chips attached to
315 * this NAND controller
316 * @caps: NAND controller capabilities for each compatible string
317 * @dma_chan: DMA channel (NFCv1 only)
318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
319 */
320struct marvell_nfc {
321 struct nand_hw_control controller;
322 struct device *dev;
323 void __iomem *regs;
Boris Brezillon6b6de652018-03-26 11:53:01 +0200324 struct clk *core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +0100325 struct clk *reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100326 struct completion complete;
327 unsigned long assigned_cs;
328 struct list_head chips;
329 struct nand_chip *selected_chip;
330 const struct marvell_nfc_caps *caps;
331
332 /* DMA (NFCv1 only) */
333 bool use_dma;
334 struct dma_chan *dma_chan;
335 u8 *dma_buf;
336};
337
338static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
339{
340 return container_of(ctrl, struct marvell_nfc, controller);
341}
342
343/**
344 * NAND controller timings expressed in NAND Controller clock cycles
345 *
346 * @tRP: ND_nRE pulse width
347 * @tRH: ND_nRE high duration
348 * @tWP: ND_nWE pulse time
349 * @tWH: ND_nWE high duration
350 * @tCS: Enable signal setup time
351 * @tCH: Enable signal hold time
352 * @tADL: Address to write data delay
353 * @tAR: ND_ALE low to ND_nRE low delay
354 * @tWHR: ND_nWE high to ND_nRE low for status read
355 * @tRHW: ND_nRE high duration, read to write delay
356 * @tR: ND_nWE high to ND_nRE low for read
357 */
358struct marvell_nfc_timings {
359 /* NDTR0 fields */
360 unsigned int tRP;
361 unsigned int tRH;
362 unsigned int tWP;
363 unsigned int tWH;
364 unsigned int tCS;
365 unsigned int tCH;
366 unsigned int tADL;
367 /* NDTR1 fields */
368 unsigned int tAR;
369 unsigned int tWHR;
370 unsigned int tRHW;
371 unsigned int tR;
372};
373
374/**
375 * Derives a duration in numbers of clock cycles.
376 *
377 * @ps: Duration in pico-seconds
378 * @period_ns: Clock period in nano-seconds
379 *
380 * Convert the duration in nano-seconds, then divide by the period and
381 * return the number of clock periods.
382 */
383#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
Miquel Raynal07ad5a72018-01-17 00:19:34 +0100384#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 period_ns))
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100386
387/**
388 * NAND driver structure filled during the parsing of the ->exec_op() subop
389 * subset of instructions.
390 *
391 * @ndcb: Array of values written to NDCBx registers
392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
394 * @rdy_delay_ns: Optional delay after waiting for the RB pin
395 * @data_delay_ns: Optional delay after the data xfer
396 * @data_instr_idx: Index of the data instruction in the subop
397 * @data_instr: Pointer to the data instruction in the subop
398 */
399struct marvell_nfc_op {
400 u32 ndcb[4];
401 unsigned int cle_ale_delay_ns;
402 unsigned int rdy_timeout_ms;
403 unsigned int rdy_delay_ns;
404 unsigned int data_delay_ns;
405 unsigned int data_instr_idx;
406 const struct nand_op_instr *data_instr;
407};
408
409/*
410 * Internal helper to conditionnally apply a delay (from the above structure,
411 * most of the time).
412 */
413static void cond_delay(unsigned int ns)
414{
415 if (!ns)
416 return;
417
418 if (ns < 10000)
419 ndelay(ns);
420 else
421 udelay(DIV_ROUND_UP(ns, 1000));
422}
423
424/*
425 * The controller has many flags that could generate interrupts, most of them
426 * are disabled and polling is used. For the very slow signals, using interrupts
427 * may relax the CPU charge.
428 */
429static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430{
431 u32 reg;
432
433 /* Writing 1 disables the interrupt */
434 reg = readl_relaxed(nfc->regs + NDCR);
435 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436}
437
438static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439{
440 u32 reg;
441
442 /* Writing 0 enables the interrupt */
443 reg = readl_relaxed(nfc->regs + NDCR);
444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445}
446
447static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448{
449 writel_relaxed(int_mask, nfc->regs + NDSR);
450}
451
452static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 bool force_8bit)
454{
455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 u32 ndcr;
457
458 /*
459 * Callers of this function do not verify if the NAND is using a 16-bit
460 * an 8-bit bus for normal operations, so we need to take care of that
461 * here by leaving the configuration unchanged if the NAND does not have
462 * the NAND_BUSWIDTH_16 flag set.
463 */
464 if (!(chip->options & NAND_BUSWIDTH_16))
465 return;
466
467 ndcr = readl_relaxed(nfc->regs + NDCR);
468
469 if (force_8bit)
470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 else
472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473
474 writel_relaxed(ndcr, nfc->regs + NDCR);
475}
476
477static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478{
479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 u32 val;
481 int ret;
482
483 /*
484 * The command is being processed, wait for the ND_RUN bit to be
485 * cleared by the NFC. If not, we must clear it by hand.
486 */
487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 (val & NDCR_ND_RUN) == 0,
489 POLL_PERIOD, POLL_TIMEOUT);
490 if (ret) {
491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 nfc->regs + NDCR);
494 return ret;
495 }
496
497 return 0;
498}
499
500/*
501 * Any time a command has to be sent to the controller, the following sequence
502 * has to be followed:
503 * - call marvell_nfc_prepare_cmd()
504 * -> activate the ND_RUN bit that will kind of 'start a job'
505 * -> wait the signal indicating the NFC is waiting for a command
506 * - send the command (cmd and address cycles)
507 * - enventually send or receive the data
508 * - call marvell_nfc_end_cmd() with the corresponding flag
509 * -> wait the flag to be triggered or cancel the job with a timeout
510 *
511 * The following helpers are here to factorize the code a bit so that
512 * specialized functions responsible for executing the actual NAND
513 * operations do not have to replicate the same code blocks.
514 */
515static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516{
517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 u32 ndcr, val;
519 int ret;
520
521 /* Poll ND_RUN and clear NDSR before issuing any command */
522 ret = marvell_nfc_wait_ndrun(chip);
523 if (ret) {
Colin Ian Kinga76497d2018-01-19 07:55:31 +0000524 dev_err(nfc->dev, "Last operation did not succeed\n");
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100525 return ret;
526 }
527
528 ndcr = readl_relaxed(nfc->regs + NDCR);
529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530
531 /* Assert ND_RUN bit and wait the NFC to be ready */
532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 val & NDSR_WRCMDREQ,
535 POLL_PERIOD, POLL_TIMEOUT);
536 if (ret) {
537 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 return -ETIMEDOUT;
539 }
540
541 /* Command may be written, clear WRCMDREQ status bit */
542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543
544 return 0;
545}
546
547static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 struct marvell_nfc_op *nfc_op)
549{
550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552
553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557
558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 nfc->regs + NDCB0);
560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562
563 /*
564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 * fields are used (only available on NFCv2).
566 */
567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 }
572}
573
574static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 const char *label)
576{
577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 u32 val;
579 int ret;
580
581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 val & flag,
583 POLL_PERIOD, POLL_TIMEOUT);
584
585 if (ret) {
586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 label, val);
588 if (nfc->dma_chan)
589 dmaengine_terminate_all(nfc->dma_chan);
590 return ret;
591 }
592
593 /*
594 * DMA function uses this helper to poll on CMDD bits without wanting
595 * them to be cleared.
596 */
597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 return 0;
599
600 writel_relaxed(flag, nfc->regs + NDSR);
601
602 return 0;
603}
604
605static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606{
607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609
610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611}
612
613static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614{
615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 int ret;
617
618 /* Timeout is expressed in ms */
619 if (!timeout_ms)
620 timeout_ms = IRQ_TIMEOUT;
621
622 init_completion(&nfc->complete);
623
624 marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 ret = wait_for_completion_timeout(&nfc->complete,
626 msecs_to_jiffies(timeout_ms));
627 marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 if (!ret) {
630 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 return -ETIMEDOUT;
632 }
633
634 return 0;
635}
636
637static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638{
639 struct nand_chip *chip = mtd_to_nand(mtd);
640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 u32 ndcr_generic;
643
644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 return;
646
647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 nfc->selected_chip = NULL;
649 marvell_nand->selected_die = -1;
650 return;
651 }
652
653 /*
654 * Do not change the timing registers when using the DT property
655 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
656 * marvell_nand structure are supposedly empty.
657 */
658 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
659 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
660
661 /*
662 * Reset the NDCR register to a clean state for this particular chip,
663 * also clear ND_RUN bit.
664 */
665 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
666 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
667 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
668
669 /* Also reset the interrupt status register */
670 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
671
672 nfc->selected_chip = chip;
673 marvell_nand->selected_die = die_nr;
674}
675
676static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
677{
678 struct marvell_nfc *nfc = dev_id;
679 u32 st = readl_relaxed(nfc->regs + NDSR);
680 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
681
682 /*
683 * RDY interrupt mask is one bit in NDCR while there are two status
684 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
685 */
686 if (st & NDSR_RDY(1))
687 st |= NDSR_RDY(0);
688
689 if (!(st & ien))
690 return IRQ_NONE;
691
692 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
693
694 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
695 complete(&nfc->complete);
696
697 return IRQ_HANDLED;
698}
699
700/* HW ECC related functions */
701static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
702{
703 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
704 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
705
706 if (!(ndcr & NDCR_ECC_EN)) {
707 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
708
709 /*
710 * When enabling BCH, set threshold to 0 to always know the
711 * number of corrected bitflips.
712 */
713 if (chip->ecc.algo == NAND_ECC_BCH)
714 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
715 }
716}
717
718static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
719{
720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
722
723 if (ndcr & NDCR_ECC_EN) {
724 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
725 if (chip->ecc.algo == NAND_ECC_BCH)
726 writel_relaxed(0, nfc->regs + NDECCCTRL);
727 }
728}
729
730/* DMA related helpers */
731static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
732{
733 u32 reg;
734
735 reg = readl_relaxed(nfc->regs + NDCR);
736 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
737}
738
739static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
740{
741 u32 reg;
742
743 reg = readl_relaxed(nfc->regs + NDCR);
744 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
745}
746
747/* Read/write PIO/DMA accessors */
748static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
749 enum dma_data_direction direction,
750 unsigned int len)
751{
752 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
753 struct dma_async_tx_descriptor *tx;
754 struct scatterlist sg;
755 dma_cookie_t cookie;
756 int ret;
757
758 marvell_nfc_enable_dma(nfc);
759 /* Prepare the DMA transfer */
760 sg_init_one(&sg, nfc->dma_buf, dma_len);
761 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
762 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
763 direction == DMA_FROM_DEVICE ?
764 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
765 DMA_PREP_INTERRUPT);
766 if (!tx) {
767 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
768 return -ENXIO;
769 }
770
771 /* Do the task and wait for it to finish */
772 cookie = dmaengine_submit(tx);
773 ret = dma_submit_error(cookie);
774 if (ret)
775 return -EIO;
776
777 dma_async_issue_pending(nfc->dma_chan);
778 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
779 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
780 marvell_nfc_disable_dma(nfc);
781 if (ret) {
782 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
783 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
784 dmaengine_terminate_all(nfc->dma_chan);
785 return -ETIMEDOUT;
786 }
787
788 return 0;
789}
790
791static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
792 unsigned int len)
793{
794 unsigned int last_len = len % FIFO_DEPTH;
795 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
796 int i;
797
798 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
799 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
800
801 if (last_len) {
802 u8 tmp_buf[FIFO_DEPTH];
803
804 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
805 memcpy(in + last_full_offset, tmp_buf, last_len);
806 }
807
808 return 0;
809}
810
811static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
812 unsigned int len)
813{
814 unsigned int last_len = len % FIFO_DEPTH;
815 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
816 int i;
817
818 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
819 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
820
821 if (last_len) {
822 u8 tmp_buf[FIFO_DEPTH];
823
824 memcpy(tmp_buf, out + last_full_offset, last_len);
825 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
826 }
827
828 return 0;
829}
830
831static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
832 u8 *data, int data_len,
833 u8 *spare, int spare_len,
834 u8 *ecc, int ecc_len,
835 unsigned int *max_bitflips)
836{
837 struct mtd_info *mtd = nand_to_mtd(chip);
838 int bf;
839
840 /*
841 * Blank pages (all 0xFF) that have not been written may be recognized
842 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
843 * check if the entire page (with ECC bytes) is actually blank or not.
844 */
845 if (!data)
846 data_len = 0;
847 if (!spare)
848 spare_len = 0;
849 if (!ecc)
850 ecc_len = 0;
851
852 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
853 spare, spare_len, chip->ecc.strength);
854 if (bf < 0) {
855 mtd->ecc_stats.failed++;
856 return;
857 }
858
859 /* Update the stats and max_bitflips */
860 mtd->ecc_stats.corrected += bf;
861 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
862}
863
864/*
865 * Check a chunk is correct or not according to hardware ECC engine.
866 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
867 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
868 * value indicating that a check on the emptyness of the subpage must be
869 * performed before declaring the subpage corrupted.
870 */
871static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
872 unsigned int *max_bitflips)
873{
874 struct mtd_info *mtd = nand_to_mtd(chip);
875 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
876 int bf = 0;
877 u32 ndsr;
878
879 ndsr = readl_relaxed(nfc->regs + NDSR);
880
881 /* Check uncorrectable error flag */
882 if (ndsr & NDSR_UNCERR) {
883 writel_relaxed(ndsr, nfc->regs + NDSR);
884
885 /*
886 * Do not increment ->ecc_stats.failed now, instead, return a
887 * non-zero value to indicate that this chunk was apparently
888 * bad, and it should be check to see if it empty or not. If
889 * the chunk (with ECC bytes) is not declared empty, the calling
890 * function must increment the failure count.
891 */
892 return -EBADMSG;
893 }
894
895 /* Check correctable error flag */
896 if (ndsr & NDSR_CORERR) {
897 writel_relaxed(ndsr, nfc->regs + NDSR);
898
899 if (chip->ecc.algo == NAND_ECC_BCH)
900 bf = NDSR_ERRCNT(ndsr);
901 else
902 bf = 1;
903 }
904
905 /* Update the stats and max_bitflips */
906 mtd->ecc_stats.corrected += bf;
907 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
908
909 return 0;
910}
911
912/* Hamming read helpers */
913static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
914 u8 *data_buf, u8 *oob_buf,
915 bool raw, int page)
916{
917 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
918 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
919 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
920 struct marvell_nfc_op nfc_op = {
921 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
922 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
923 NDCB0_DBC |
924 NDCB0_CMD1(NAND_CMD_READ0) |
925 NDCB0_CMD2(NAND_CMD_READSTART),
926 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
927 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
928 };
929 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
930 int ret;
931
932 /* NFCv2 needs more information about the operation being executed */
933 if (nfc->caps->is_nfcv2)
934 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
935
936 ret = marvell_nfc_prepare_cmd(chip);
937 if (ret)
938 return ret;
939
940 marvell_nfc_send_cmd(chip, &nfc_op);
941 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
942 "RDDREQ while draining FIFO (data/oob)");
943 if (ret)
944 return ret;
945
946 /*
947 * Read the page then the OOB area. Unlike what is shown in current
948 * documentation, spare bytes are protected by the ECC engine, and must
949 * be at the beginning of the OOB area or running this driver on legacy
950 * systems will prevent the discovery of the BBM/BBT.
951 */
952 if (nfc->use_dma) {
953 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
954 lt->data_bytes + oob_bytes);
955 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
956 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
957 } else {
958 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
959 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
960 }
961
962 ret = marvell_nfc_wait_cmdd(chip);
963
964 return ret;
965}
966
967static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
968 struct nand_chip *chip, u8 *buf,
969 int oob_required, int page)
970{
971 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
972 true, page);
973}
974
975static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
976 struct nand_chip *chip,
977 u8 *buf, int oob_required,
978 int page)
979{
980 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
981 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
982 int max_bitflips = 0, ret;
983 u8 *raw_buf;
984
985 marvell_nfc_enable_hw_ecc(chip);
986 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
987 page);
988 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
989 marvell_nfc_disable_hw_ecc(chip);
990
991 if (!ret)
992 return max_bitflips;
993
994 /*
995 * When ECC failures are detected, check if the full page has been
996 * written or not. Ignore the failure if it is actually empty.
997 */
998 raw_buf = kmalloc(full_sz, GFP_KERNEL);
999 if (!raw_buf)
1000 return -ENOMEM;
1001
1002 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1003 lt->data_bytes, true, page);
1004 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1005 &max_bitflips);
1006 kfree(raw_buf);
1007
1008 return max_bitflips;
1009}
1010
1011/*
1012 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1013 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1014 * also stands for ->read_oob().
1015 */
1016static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1017 struct nand_chip *chip, int page)
1018{
1019 /* Invalidate page cache */
1020 chip->pagebuf = -1;
1021
1022 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1023 chip->oob_poi, true, page);
1024}
1025
1026/* Hamming write helpers */
1027static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1028 const u8 *data_buf,
1029 const u8 *oob_buf, bool raw,
1030 int page)
1031{
1032 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1033 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1034 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1035 struct marvell_nfc_op nfc_op = {
1036 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1037 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1038 NDCB0_CMD1(NAND_CMD_SEQIN) |
1039 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1040 NDCB0_DBC,
1041 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1042 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1043 };
1044 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1045 int ret;
1046
1047 /* NFCv2 needs more information about the operation being executed */
1048 if (nfc->caps->is_nfcv2)
1049 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1050
1051 ret = marvell_nfc_prepare_cmd(chip);
1052 if (ret)
1053 return ret;
1054
1055 marvell_nfc_send_cmd(chip, &nfc_op);
1056 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1057 "WRDREQ while loading FIFO (data)");
1058 if (ret)
1059 return ret;
1060
1061 /* Write the page then the OOB area */
1062 if (nfc->use_dma) {
1063 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1064 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1065 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1066 lt->ecc_bytes + lt->spare_bytes);
1067 } else {
1068 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1069 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1070 }
1071
1072 ret = marvell_nfc_wait_cmdd(chip);
1073 if (ret)
1074 return ret;
1075
1076 ret = marvell_nfc_wait_op(chip,
1077 chip->data_interface.timings.sdr.tPROG_max);
1078 return ret;
1079}
1080
1081static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1082 struct nand_chip *chip,
1083 const u8 *buf,
1084 int oob_required, int page)
1085{
1086 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1087 true, page);
1088}
1089
1090static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1091 struct nand_chip *chip,
1092 const u8 *buf,
1093 int oob_required, int page)
1094{
1095 int ret;
1096
1097 marvell_nfc_enable_hw_ecc(chip);
1098 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1099 false, page);
1100 marvell_nfc_disable_hw_ecc(chip);
1101
1102 return ret;
1103}
1104
1105/*
1106 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1107 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1108 * also stands for ->write_oob().
1109 */
1110static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1111 struct nand_chip *chip,
1112 int page)
1113{
1114 /* Invalidate page cache */
1115 chip->pagebuf = -1;
1116
1117 memset(chip->data_buf, 0xFF, mtd->writesize);
1118
1119 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1120 chip->oob_poi, true, page);
1121}
1122
1123/* BCH read helpers */
1124static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1125 struct nand_chip *chip, u8 *buf,
1126 int oob_required, int page)
1127{
1128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1129 u8 *oob = chip->oob_poi;
1130 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1131 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1132 lt->last_spare_bytes;
1133 int data_len = lt->data_bytes;
1134 int spare_len = lt->spare_bytes;
1135 int ecc_len = lt->ecc_bytes;
1136 int chunk;
1137
1138 if (oob_required)
1139 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1140
1141 nand_read_page_op(chip, page, 0, NULL, 0);
1142
1143 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1144 /* Update last chunk length */
1145 if (chunk >= lt->full_chunk_cnt) {
1146 data_len = lt->last_data_bytes;
1147 spare_len = lt->last_spare_bytes;
1148 ecc_len = lt->last_ecc_bytes;
1149 }
1150
1151 /* Read data bytes*/
1152 nand_change_read_column_op(chip, chunk * chunk_size,
1153 buf + (lt->data_bytes * chunk),
1154 data_len, false);
1155
1156 /* Read spare bytes */
1157 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1158 spare_len, false);
1159
1160 /* Read ECC bytes */
1161 nand_read_data_op(chip, oob + ecc_offset +
1162 (ALIGN(lt->ecc_bytes, 32) * chunk),
1163 ecc_len, false);
1164 }
1165
1166 return 0;
1167}
1168
1169static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1170 u8 *data, unsigned int data_len,
1171 u8 *spare, unsigned int spare_len,
1172 int page)
1173{
1174 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1175 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1176 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1177 int i, ret;
1178 struct marvell_nfc_op nfc_op = {
1179 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1180 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1181 NDCB0_LEN_OVRD,
1182 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1183 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1184 .ndcb[3] = data_len + spare_len,
1185 };
1186
1187 ret = marvell_nfc_prepare_cmd(chip);
1188 if (ret)
1189 return;
1190
1191 if (chunk == 0)
1192 nfc_op.ndcb[0] |= NDCB0_DBC |
1193 NDCB0_CMD1(NAND_CMD_READ0) |
1194 NDCB0_CMD2(NAND_CMD_READSTART);
1195
1196 /*
1197 * Trigger the naked read operation only on the last chunk.
1198 * Otherwise, use monolithic read.
1199 */
1200 if (lt->nchunks == 1 || (chunk < lt->nchunks - 1))
1201 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1202 else
1203 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1204
1205 marvell_nfc_send_cmd(chip, &nfc_op);
1206
1207 /*
1208 * According to the datasheet, when reading from NDDB
1209 * with BCH enabled, after each 32 bytes reads, we
1210 * have to make sure that the NDSR.RDDREQ bit is set.
1211 *
1212 * Drain the FIFO, 8 32-bit reads at a time, and skip
1213 * the polling on the last read.
1214 *
1215 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1216 */
1217 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1218 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1219 "RDDREQ while draining FIFO (data)");
1220 marvell_nfc_xfer_data_in_pio(nfc, data,
1221 FIFO_DEPTH * BCH_SEQ_READS);
1222 data += FIFO_DEPTH * BCH_SEQ_READS;
1223 }
1224
1225 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1226 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1227 "RDDREQ while draining FIFO (OOB)");
1228 marvell_nfc_xfer_data_in_pio(nfc, spare,
1229 FIFO_DEPTH * BCH_SEQ_READS);
1230 spare += FIFO_DEPTH * BCH_SEQ_READS;
1231 }
1232}
1233
1234static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1235 struct nand_chip *chip,
1236 u8 *buf, int oob_required,
1237 int page)
1238{
1239 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1240 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1241 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1242 int max_bitflips = 0;
1243 u32 failure_mask = 0;
1244 int chunk, ecc_offset_in_page, ret;
1245
1246 /*
1247 * With BCH, OOB is not fully used (and thus not read entirely), not
1248 * expected bytes could show up at the end of the OOB buffer if not
1249 * explicitly erased.
1250 */
1251 if (oob_required)
1252 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1253
1254 marvell_nfc_enable_hw_ecc(chip);
1255
1256 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1257 /* Update length for the last chunk */
1258 if (chunk >= lt->full_chunk_cnt) {
1259 data_len = lt->last_data_bytes;
1260 spare_len = lt->last_spare_bytes;
1261 }
1262
1263 /* Read the chunk and detect number of bitflips */
1264 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1265 spare, spare_len, page);
1266 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1267 if (ret)
1268 failure_mask |= BIT(chunk);
1269
1270 data += data_len;
1271 spare += spare_len;
1272 }
1273
1274 marvell_nfc_disable_hw_ecc(chip);
1275
1276 if (!failure_mask)
1277 return max_bitflips;
1278
1279 /*
1280 * Please note that dumping the ECC bytes during a normal read with OOB
1281 * area would add a significant overhead as ECC bytes are "consumed" by
1282 * the controller in normal mode and must be re-read in raw mode. To
1283 * avoid dropping the performances, we prefer not to include them. The
1284 * user should re-read the page in raw mode if ECC bytes are required.
1285 *
1286 * However, for any subpage read error reported by ->correct(), the ECC
1287 * bytes must be read in raw mode and the full subpage must be checked
1288 * to see if it is entirely empty of if there was an actual error.
1289 */
1290 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1291 /* No failure reported for this chunk, move to the next one */
1292 if (!(failure_mask & BIT(chunk)))
1293 continue;
1294
1295 /* Derive ECC bytes positions (in page/buffer) and length */
1296 ecc = chip->oob_poi +
1297 (lt->full_chunk_cnt * lt->spare_bytes) +
1298 lt->last_spare_bytes +
1299 (chunk * ALIGN(lt->ecc_bytes, 32));
1300 ecc_offset_in_page =
1301 (chunk * (lt->data_bytes + lt->spare_bytes +
1302 lt->ecc_bytes)) +
1303 (chunk < lt->full_chunk_cnt ?
1304 lt->data_bytes + lt->spare_bytes :
1305 lt->last_data_bytes + lt->last_spare_bytes);
1306 ecc_len = chunk < lt->full_chunk_cnt ?
1307 lt->ecc_bytes : lt->last_ecc_bytes;
1308
1309 /* Do the actual raw read of the ECC bytes */
1310 nand_change_read_column_op(chip, ecc_offset_in_page,
1311 ecc, ecc_len, false);
1312
1313 /* Derive data/spare bytes positions (in buffer) and length */
1314 data = buf + (chunk * lt->data_bytes);
1315 data_len = chunk < lt->full_chunk_cnt ?
1316 lt->data_bytes : lt->last_data_bytes;
1317 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1318 lt->ecc_bytes));
1319 spare_len = chunk < lt->full_chunk_cnt ?
1320 lt->spare_bytes : lt->last_spare_bytes;
1321
1322 /* Check the entire chunk (data + spare + ecc) for emptyness */
1323 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1324 spare_len, ecc, ecc_len,
1325 &max_bitflips);
1326 }
1327
1328 return max_bitflips;
1329}
1330
1331static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1332 struct nand_chip *chip, int page)
1333{
1334 /* Invalidate page cache */
1335 chip->pagebuf = -1;
1336
1337 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1338}
1339
1340static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1341 struct nand_chip *chip, int page)
1342{
1343 /* Invalidate page cache */
1344 chip->pagebuf = -1;
1345
1346 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1347}
1348
1349/* BCH write helpers */
1350static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1351 struct nand_chip *chip,
1352 const u8 *buf,
1353 int oob_required, int page)
1354{
1355 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1356 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1357 int data_len = lt->data_bytes;
1358 int spare_len = lt->spare_bytes;
1359 int ecc_len = lt->ecc_bytes;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001360 int spare_offset = 0;
1361 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1362 lt->last_spare_bytes;
1363 int chunk;
1364
1365 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1366
1367 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1368 if (chunk >= lt->full_chunk_cnt) {
1369 data_len = lt->last_data_bytes;
1370 spare_len = lt->last_spare_bytes;
1371 ecc_len = lt->last_ecc_bytes;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001372 }
1373
1374 /* Point to the column of the next chunk */
1375 nand_change_write_column_op(chip, chunk * full_chunk_size,
1376 NULL, 0, false);
1377
1378 /* Write the data */
1379 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1380 data_len, false);
1381
1382 if (!oob_required)
1383 continue;
1384
1385 /* Write the spare bytes */
1386 if (spare_len)
1387 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1388 spare_len, false);
1389
1390 /* Write the ECC bytes */
1391 if (ecc_len)
1392 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1393 ecc_len, false);
1394
1395 spare_offset += spare_len;
1396 ecc_offset += ALIGN(ecc_len, 32);
1397 }
1398
1399 return nand_prog_page_end_op(chip);
1400}
1401
1402static int
1403marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1404 const u8 *data, unsigned int data_len,
1405 const u8 *spare, unsigned int spare_len,
1406 int page)
1407{
1408 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1409 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1410 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1411 int ret;
1412 struct marvell_nfc_op nfc_op = {
1413 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1414 .ndcb[3] = data_len + spare_len,
1415 };
1416
1417 /*
1418 * First operation dispatches the CMD_SEQIN command, issue the address
1419 * cycles and asks for the first chunk of data.
1420 * All operations in the middle (if any) will issue a naked write and
1421 * also ask for data.
1422 * Last operation (if any) asks for the last chunk of data through a
1423 * last naked write.
1424 */
1425 if (chunk == 0) {
1426 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) |
1427 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1428 NDCB0_CMD1(NAND_CMD_SEQIN);
1429 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1430 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1431 } else if (chunk < lt->nchunks - 1) {
1432 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1433 } else {
1434 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1435 }
1436
1437 /* Always dispatch the PAGEPROG command on the last chunk */
1438 if (chunk == lt->nchunks - 1)
1439 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1440
1441 ret = marvell_nfc_prepare_cmd(chip);
1442 if (ret)
1443 return ret;
1444
1445 marvell_nfc_send_cmd(chip, &nfc_op);
1446 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1447 "WRDREQ while loading FIFO (data)");
1448 if (ret)
1449 return ret;
1450
1451 /* Transfer the contents */
1452 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1453 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1454
1455 return 0;
1456}
1457
1458static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1459 struct nand_chip *chip,
1460 const u8 *buf,
1461 int oob_required, int page)
1462{
1463 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1464 const u8 *data = buf;
1465 const u8 *spare = chip->oob_poi;
1466 int data_len = lt->data_bytes;
1467 int spare_len = lt->spare_bytes;
1468 int chunk, ret;
1469
1470 /* Spare data will be written anyway, so clear it to avoid garbage */
1471 if (!oob_required)
1472 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1473
1474 marvell_nfc_enable_hw_ecc(chip);
1475
1476 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1477 if (chunk >= lt->full_chunk_cnt) {
1478 data_len = lt->last_data_bytes;
1479 spare_len = lt->last_spare_bytes;
1480 }
1481
1482 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1483 spare, spare_len, page);
1484 data += data_len;
1485 spare += spare_len;
1486
1487 /*
1488 * Waiting only for CMDD or PAGED is not enough, ECC are
1489 * partially written. No flag is set once the operation is
1490 * really finished but the ND_RUN bit is cleared, so wait for it
1491 * before stepping into the next command.
1492 */
1493 marvell_nfc_wait_ndrun(chip);
1494 }
1495
1496 ret = marvell_nfc_wait_op(chip,
1497 chip->data_interface.timings.sdr.tPROG_max);
1498
1499 marvell_nfc_disable_hw_ecc(chip);
1500
1501 if (ret)
1502 return ret;
1503
1504 return 0;
1505}
1506
1507static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1508 struct nand_chip *chip,
1509 int page)
1510{
1511 /* Invalidate page cache */
1512 chip->pagebuf = -1;
1513
1514 memset(chip->data_buf, 0xFF, mtd->writesize);
1515
1516 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1517}
1518
1519static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1520 struct nand_chip *chip, int page)
1521{
1522 /* Invalidate page cache */
1523 chip->pagebuf = -1;
1524
1525 memset(chip->data_buf, 0xFF, mtd->writesize);
1526
1527 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1528}
1529
1530/* NAND framework ->exec_op() hooks and related helpers */
1531static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1532 const struct nand_subop *subop,
1533 struct marvell_nfc_op *nfc_op)
1534{
1535 const struct nand_op_instr *instr = NULL;
1536 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1537 bool first_cmd = true;
1538 unsigned int op_id;
1539 int i;
1540
1541 /* Reset the input structure as most of its fields will be OR'ed */
1542 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1543
1544 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1545 unsigned int offset, naddrs;
1546 const u8 *addrs;
1547 int len = nand_subop_get_data_len(subop, op_id);
1548
1549 instr = &subop->instrs[op_id];
1550
1551 switch (instr->type) {
1552 case NAND_OP_CMD_INSTR:
1553 if (first_cmd)
1554 nfc_op->ndcb[0] |=
1555 NDCB0_CMD1(instr->ctx.cmd.opcode);
1556 else
1557 nfc_op->ndcb[0] |=
1558 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1559 NDCB0_DBC;
1560
1561 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1562 first_cmd = false;
1563 break;
1564
1565 case NAND_OP_ADDR_INSTR:
1566 offset = nand_subop_get_addr_start_off(subop, op_id);
1567 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1568 addrs = &instr->ctx.addr.addrs[offset];
1569
1570 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1571
1572 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1573 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1574
1575 if (naddrs >= 5)
1576 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1577 if (naddrs >= 6)
1578 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1579 if (naddrs == 7)
1580 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1581
1582 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1583 break;
1584
1585 case NAND_OP_DATA_IN_INSTR:
1586 nfc_op->data_instr = instr;
1587 nfc_op->data_instr_idx = op_id;
1588 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1589 if (nfc->caps->is_nfcv2) {
1590 nfc_op->ndcb[0] |=
1591 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1592 NDCB0_LEN_OVRD;
1593 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1594 }
1595 nfc_op->data_delay_ns = instr->delay_ns;
1596 break;
1597
1598 case NAND_OP_DATA_OUT_INSTR:
1599 nfc_op->data_instr = instr;
1600 nfc_op->data_instr_idx = op_id;
1601 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1602 if (nfc->caps->is_nfcv2) {
1603 nfc_op->ndcb[0] |=
1604 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1605 NDCB0_LEN_OVRD;
1606 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1607 }
1608 nfc_op->data_delay_ns = instr->delay_ns;
1609 break;
1610
1611 case NAND_OP_WAITRDY_INSTR:
1612 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1613 nfc_op->rdy_delay_ns = instr->delay_ns;
1614 break;
1615 }
1616 }
1617}
1618
1619static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1620 const struct nand_subop *subop,
1621 struct marvell_nfc_op *nfc_op)
1622{
1623 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1624 const struct nand_op_instr *instr = nfc_op->data_instr;
1625 unsigned int op_id = nfc_op->data_instr_idx;
1626 unsigned int len = nand_subop_get_data_len(subop, op_id);
1627 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1628 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1629 int ret;
1630
1631 if (instr->ctx.data.force_8bit)
1632 marvell_nfc_force_byte_access(chip, true);
1633
1634 if (reading) {
1635 u8 *in = instr->ctx.data.buf.in + offset;
1636
1637 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1638 } else {
1639 const u8 *out = instr->ctx.data.buf.out + offset;
1640
1641 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1642 }
1643
1644 if (instr->ctx.data.force_8bit)
1645 marvell_nfc_force_byte_access(chip, false);
1646
1647 return ret;
1648}
1649
1650static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1651 const struct nand_subop *subop)
1652{
1653 struct marvell_nfc_op nfc_op;
1654 bool reading;
1655 int ret;
1656
1657 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1658 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1659
1660 ret = marvell_nfc_prepare_cmd(chip);
1661 if (ret)
1662 return ret;
1663
1664 marvell_nfc_send_cmd(chip, &nfc_op);
1665 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1666 "RDDREQ/WRDREQ while draining raw data");
1667 if (ret)
1668 return ret;
1669
1670 cond_delay(nfc_op.cle_ale_delay_ns);
1671
1672 if (reading) {
1673 if (nfc_op.rdy_timeout_ms) {
1674 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1675 if (ret)
1676 return ret;
1677 }
1678
1679 cond_delay(nfc_op.rdy_delay_ns);
1680 }
1681
1682 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1683 ret = marvell_nfc_wait_cmdd(chip);
1684 if (ret)
1685 return ret;
1686
1687 cond_delay(nfc_op.data_delay_ns);
1688
1689 if (!reading) {
1690 if (nfc_op.rdy_timeout_ms) {
1691 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1692 if (ret)
1693 return ret;
1694 }
1695
1696 cond_delay(nfc_op.rdy_delay_ns);
1697 }
1698
1699 /*
1700 * NDCR ND_RUN bit should be cleared automatically at the end of each
1701 * operation but experience shows that the behavior is buggy when it
1702 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1703 */
1704 if (!reading) {
1705 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1706
1707 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1708 nfc->regs + NDCR);
1709 }
1710
1711 return 0;
1712}
1713
1714static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1715 const struct nand_subop *subop)
1716{
1717 struct marvell_nfc_op nfc_op;
1718 int ret;
1719
1720 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1721
1722 /*
1723 * Naked access are different in that they need to be flagged as naked
1724 * by the controller. Reset the controller registers fields that inform
1725 * on the type and refill them according to the ongoing operation.
1726 */
1727 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1728 NDCB0_CMD_XTYPE(XTYPE_MASK));
1729 switch (subop->instrs[0].type) {
1730 case NAND_OP_CMD_INSTR:
1731 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1732 break;
1733 case NAND_OP_ADDR_INSTR:
1734 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1735 break;
1736 case NAND_OP_DATA_IN_INSTR:
1737 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1738 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1739 break;
1740 case NAND_OP_DATA_OUT_INSTR:
1741 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1742 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1743 break;
1744 default:
1745 /* This should never happen */
1746 break;
1747 }
1748
1749 ret = marvell_nfc_prepare_cmd(chip);
1750 if (ret)
1751 return ret;
1752
1753 marvell_nfc_send_cmd(chip, &nfc_op);
1754
1755 if (!nfc_op.data_instr) {
1756 ret = marvell_nfc_wait_cmdd(chip);
1757 cond_delay(nfc_op.cle_ale_delay_ns);
1758 return ret;
1759 }
1760
1761 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1762 "RDDREQ/WRDREQ while draining raw data");
1763 if (ret)
1764 return ret;
1765
1766 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1767 ret = marvell_nfc_wait_cmdd(chip);
1768 if (ret)
1769 return ret;
1770
1771 /*
1772 * NDCR ND_RUN bit should be cleared automatically at the end of each
1773 * operation but experience shows that the behavior is buggy when it
1774 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1775 */
1776 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1777 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1778
1779 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1780 nfc->regs + NDCR);
1781 }
1782
1783 return 0;
1784}
1785
1786static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1787 const struct nand_subop *subop)
1788{
1789 struct marvell_nfc_op nfc_op;
1790 int ret;
1791
1792 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1793
1794 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1795 cond_delay(nfc_op.rdy_delay_ns);
1796
1797 return ret;
1798}
1799
1800static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1801 const struct nand_subop *subop)
1802{
1803 struct marvell_nfc_op nfc_op;
1804 int ret;
1805
1806 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1807 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1808 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1809
1810 ret = marvell_nfc_prepare_cmd(chip);
1811 if (ret)
1812 return ret;
1813
1814 marvell_nfc_send_cmd(chip, &nfc_op);
1815 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1816 "RDDREQ while reading ID");
1817 if (ret)
1818 return ret;
1819
1820 cond_delay(nfc_op.cle_ale_delay_ns);
1821
1822 if (nfc_op.rdy_timeout_ms) {
1823 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1824 if (ret)
1825 return ret;
1826 }
1827
1828 cond_delay(nfc_op.rdy_delay_ns);
1829
1830 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1831 ret = marvell_nfc_wait_cmdd(chip);
1832 if (ret)
1833 return ret;
1834
1835 cond_delay(nfc_op.data_delay_ns);
1836
1837 return 0;
1838}
1839
1840static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1841 const struct nand_subop *subop)
1842{
1843 struct marvell_nfc_op nfc_op;
1844 int ret;
1845
1846 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1847 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1848 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1849
1850 ret = marvell_nfc_prepare_cmd(chip);
1851 if (ret)
1852 return ret;
1853
1854 marvell_nfc_send_cmd(chip, &nfc_op);
1855 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1856 "RDDREQ while reading status");
1857 if (ret)
1858 return ret;
1859
1860 cond_delay(nfc_op.cle_ale_delay_ns);
1861
1862 if (nfc_op.rdy_timeout_ms) {
1863 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1864 if (ret)
1865 return ret;
1866 }
1867
1868 cond_delay(nfc_op.rdy_delay_ns);
1869
1870 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1871 ret = marvell_nfc_wait_cmdd(chip);
1872 if (ret)
1873 return ret;
1874
1875 cond_delay(nfc_op.data_delay_ns);
1876
1877 return 0;
1878}
1879
1880static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1881 const struct nand_subop *subop)
1882{
1883 struct marvell_nfc_op nfc_op;
1884 int ret;
1885
1886 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1887 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1888
1889 ret = marvell_nfc_prepare_cmd(chip);
1890 if (ret)
1891 return ret;
1892
1893 marvell_nfc_send_cmd(chip, &nfc_op);
1894 ret = marvell_nfc_wait_cmdd(chip);
1895 if (ret)
1896 return ret;
1897
1898 cond_delay(nfc_op.cle_ale_delay_ns);
1899
1900 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1901 if (ret)
1902 return ret;
1903
1904 cond_delay(nfc_op.rdy_delay_ns);
1905
1906 return 0;
1907}
1908
1909static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1910 const struct nand_subop *subop)
1911{
1912 struct marvell_nfc_op nfc_op;
1913 int ret;
1914
1915 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1916 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1917
1918 ret = marvell_nfc_prepare_cmd(chip);
1919 if (ret)
1920 return ret;
1921
1922 marvell_nfc_send_cmd(chip, &nfc_op);
1923 ret = marvell_nfc_wait_cmdd(chip);
1924 if (ret)
1925 return ret;
1926
1927 cond_delay(nfc_op.cle_ale_delay_ns);
1928
1929 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1930 if (ret)
1931 return ret;
1932
1933 cond_delay(nfc_op.rdy_delay_ns);
1934
1935 return 0;
1936}
1937
1938static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1939 /* Monolithic reads/writes */
1940 NAND_OP_PARSER_PATTERN(
1941 marvell_nfc_monolithic_access_exec,
1942 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1943 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1944 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1945 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1946 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1947 NAND_OP_PARSER_PATTERN(
1948 marvell_nfc_monolithic_access_exec,
1949 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1950 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1951 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1952 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1953 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1954 /* Naked commands */
1955 NAND_OP_PARSER_PATTERN(
1956 marvell_nfc_naked_access_exec,
1957 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1958 NAND_OP_PARSER_PATTERN(
1959 marvell_nfc_naked_access_exec,
1960 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1961 NAND_OP_PARSER_PATTERN(
1962 marvell_nfc_naked_access_exec,
1963 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1964 NAND_OP_PARSER_PATTERN(
1965 marvell_nfc_naked_access_exec,
1966 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1967 NAND_OP_PARSER_PATTERN(
1968 marvell_nfc_naked_waitrdy_exec,
1969 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1970 );
1971
1972static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1973 /* Naked commands not supported, use a function for each pattern */
1974 NAND_OP_PARSER_PATTERN(
1975 marvell_nfc_read_id_type_exec,
1976 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1977 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1978 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1979 NAND_OP_PARSER_PATTERN(
1980 marvell_nfc_erase_cmd_type_exec,
1981 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1982 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1983 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1984 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1985 NAND_OP_PARSER_PATTERN(
1986 marvell_nfc_read_status_exec,
1987 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1988 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1989 NAND_OP_PARSER_PATTERN(
1990 marvell_nfc_reset_cmd_type_exec,
1991 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1992 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1993 NAND_OP_PARSER_PATTERN(
1994 marvell_nfc_naked_waitrdy_exec,
1995 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1996 );
1997
1998static int marvell_nfc_exec_op(struct nand_chip *chip,
1999 const struct nand_operation *op,
2000 bool check_only)
2001{
2002 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2003
2004 if (nfc->caps->is_nfcv2)
2005 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2006 op, check_only);
2007 else
2008 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2009 op, check_only);
2010}
2011
2012/*
2013 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2014 * usable.
2015 */
2016static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2017 struct mtd_oob_region *oobregion)
2018{
2019 struct nand_chip *chip = mtd_to_nand(mtd);
2020 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2021
2022 if (section)
2023 return -ERANGE;
2024
2025 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2026 lt->last_ecc_bytes;
2027 oobregion->offset = mtd->oobsize - oobregion->length;
2028
2029 return 0;
2030}
2031
2032static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2033 struct mtd_oob_region *oobregion)
2034{
2035 struct nand_chip *chip = mtd_to_nand(mtd);
2036 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2037
2038 if (section)
2039 return -ERANGE;
2040
2041 /*
2042 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2043 * 4KB page / 4bit BCH combination.
2044 */
2045 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2046 oobregion->offset = 6;
2047 else
2048 oobregion->offset = 2;
2049
2050 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2051 lt->last_spare_bytes - oobregion->offset;
2052
2053 return 0;
2054}
2055
2056static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2057 .ecc = marvell_nand_ooblayout_ecc,
2058 .free = marvell_nand_ooblayout_free,
2059};
2060
2061static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2062 struct nand_ecc_ctrl *ecc)
2063{
2064 struct nand_chip *chip = mtd_to_nand(mtd);
2065 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2066 const struct marvell_hw_ecc_layout *l;
2067 int i;
2068
2069 if (!nfc->caps->is_nfcv2 &&
2070 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2071 dev_err(nfc->dev,
2072 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2073 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2074 return -ENOTSUPP;
2075 }
2076
2077 to_marvell_nand(chip)->layout = NULL;
2078 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2079 l = &marvell_nfc_layouts[i];
2080 if (mtd->writesize == l->writesize &&
2081 ecc->size == l->chunk && ecc->strength == l->strength) {
2082 to_marvell_nand(chip)->layout = l;
2083 break;
2084 }
2085 }
2086
2087 if (!to_marvell_nand(chip)->layout ||
2088 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2089 dev_err(nfc->dev,
2090 "ECC strength %d at page size %d is not supported\n",
2091 ecc->strength, mtd->writesize);
2092 return -ENOTSUPP;
2093 }
2094
2095 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2096 ecc->steps = l->nchunks;
2097 ecc->size = l->data_bytes;
2098
2099 if (ecc->strength == 1) {
2100 chip->ecc.algo = NAND_ECC_HAMMING;
2101 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2102 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2103 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2104 ecc->read_oob = ecc->read_oob_raw;
2105 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2106 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2107 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2108 ecc->write_oob = ecc->write_oob_raw;
2109 } else {
2110 chip->ecc.algo = NAND_ECC_BCH;
2111 ecc->strength = 16;
2112 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2113 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2114 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2115 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2116 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2117 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2118 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2119 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2120 }
2121
2122 return 0;
2123}
2124
2125static int marvell_nand_ecc_init(struct mtd_info *mtd,
2126 struct nand_ecc_ctrl *ecc)
2127{
2128 struct nand_chip *chip = mtd_to_nand(mtd);
2129 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2130 int ret;
2131
2132 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2133 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2134 ecc->size = chip->ecc_step_ds;
2135 ecc->strength = chip->ecc_strength_ds;
2136 } else {
2137 dev_info(nfc->dev,
2138 "No minimum ECC strength, using 1b/512B\n");
2139 ecc->size = 512;
2140 ecc->strength = 1;
2141 }
2142 }
2143
2144 switch (ecc->mode) {
2145 case NAND_ECC_HW:
2146 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2147 if (ret)
2148 return ret;
2149 break;
2150 case NAND_ECC_NONE:
2151 case NAND_ECC_SOFT:
2152 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2153 mtd->writesize != SZ_2K) {
2154 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2155 mtd->writesize);
2156 return -EINVAL;
2157 }
2158 break;
2159 default:
2160 return -EINVAL;
2161 }
2162
2163 return 0;
2164}
2165
2166static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2167static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2168
2169static struct nand_bbt_descr bbt_main_descr = {
2170 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2171 NAND_BBT_2BIT | NAND_BBT_VERSION,
2172 .offs = 8,
2173 .len = 6,
2174 .veroffs = 14,
2175 .maxblocks = 8, /* Last 8 blocks in each chip */
2176 .pattern = bbt_pattern
2177};
2178
2179static struct nand_bbt_descr bbt_mirror_descr = {
2180 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2181 NAND_BBT_2BIT | NAND_BBT_VERSION,
2182 .offs = 8,
2183 .len = 6,
2184 .veroffs = 14,
2185 .maxblocks = 8, /* Last 8 blocks in each chip */
2186 .pattern = bbt_mirror_pattern
2187};
2188
2189static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2190 const struct nand_data_interface
2191 *conf)
2192{
2193 struct nand_chip *chip = mtd_to_nand(mtd);
2194 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2195 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002196 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002197 const struct nand_sdr_timings *sdr;
2198 struct marvell_nfc_timings nfc_tmg;
2199 int read_delay;
2200
2201 sdr = nand_get_sdr_timings(conf);
2202 if (IS_ERR(sdr))
2203 return PTR_ERR(sdr);
2204
2205 /*
2206 * SDR timings are given in pico-seconds while NFC timings must be
2207 * expressed in NAND controller clock cycles, which is half of the
2208 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2209 * This is not written anywhere in the datasheet but was observed
2210 * with an oscilloscope.
2211 *
2212 * NFC datasheet gives equations from which thoses calculations
2213 * are derived, they tend to be slightly more restrictives than the
2214 * given core timings and may improve the overall speed.
2215 */
2216 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2217 nfc_tmg.tRH = nfc_tmg.tRP;
2218 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2219 nfc_tmg.tWH = nfc_tmg.tWP;
2220 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2221 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2222 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2223 /*
2224 * Read delay is the time of propagation from SoC pins to NFC internal
2225 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2226 * EDO mode, an additional delay of tRH must be taken into account so
2227 * the data is sampled on the falling edge instead of the rising edge.
2228 */
2229 read_delay = sdr->tRC_min >= 30000 ?
2230 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2231
2232 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2233 /*
2234 * tWHR and tRHW are supposed to be read to write delays (and vice
2235 * versa) but in some cases, ie. when doing a change column, they must
2236 * be greater than that to be sure tCCS delay is respected.
2237 */
2238 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2239 period_ns) - 2,
2240 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2241 period_ns);
2242
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002243 /*
2244 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2245 * NFCv1: No WAIT_MODE, tR must be maximal.
2246 */
2247 if (nfc->caps->is_nfcv2) {
2248 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2249 } else {
2250 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2251 period_ns);
2252 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2253 nfc_tmg.tR = nfc_tmg.tCH - 3;
2254 else
2255 nfc_tmg.tR = 0;
2256 }
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002257
2258 if (chipnr < 0)
2259 return 0;
2260
2261 marvell_nand->ndtr0 =
2262 NDTR0_TRP(nfc_tmg.tRP) |
2263 NDTR0_TRH(nfc_tmg.tRH) |
2264 NDTR0_ETRP(nfc_tmg.tRP) |
2265 NDTR0_TWP(nfc_tmg.tWP) |
2266 NDTR0_TWH(nfc_tmg.tWH) |
2267 NDTR0_TCS(nfc_tmg.tCS) |
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002268 NDTR0_TCH(nfc_tmg.tCH);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002269
2270 marvell_nand->ndtr1 =
2271 NDTR1_TAR(nfc_tmg.tAR) |
2272 NDTR1_TWHR(nfc_tmg.tWHR) |
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002273 NDTR1_TR(nfc_tmg.tR);
2274
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002275 if (nfc->caps->is_nfcv2) {
2276 marvell_nand->ndtr0 |=
2277 NDTR0_RD_CNT_DEL(read_delay) |
2278 NDTR0_SELCNTR |
2279 NDTR0_TADL(nfc_tmg.tADL);
2280
2281 marvell_nand->ndtr1 |=
2282 NDTR1_TRHW(nfc_tmg.tRHW) |
2283 NDTR1_WAIT_MODE;
2284 }
2285
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002286 return 0;
2287}
2288
2289static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2290 struct device_node *np)
2291{
2292 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2293 struct marvell_nand_chip *marvell_nand;
2294 struct mtd_info *mtd;
2295 struct nand_chip *chip;
2296 int nsels, ret, i;
2297 u32 cs, rb;
2298
2299 /*
2300 * The legacy "num-cs" property indicates the number of CS on the only
2301 * chip connected to the controller (legacy bindings does not support
2302 * more than one chip). CS are only incremented one by one while the RB
2303 * pin is always the #0.
2304 *
2305 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2306 * properties must be filled. For each chip, expressed as a subnode,
2307 * "reg" points to the CS lines and "nand-rb" to the RB line.
2308 */
2309 if (pdata) {
2310 nsels = 1;
2311 } else if (nfc->caps->legacy_of_bindings &&
2312 !of_get_property(np, "num-cs", &nsels)) {
2313 dev_err(dev, "missing num-cs property\n");
2314 return -EINVAL;
2315 } else if (!of_get_property(np, "reg", &nsels)) {
2316 dev_err(dev, "missing reg property\n");
2317 return -EINVAL;
2318 }
2319
2320 if (!pdata)
2321 nsels /= sizeof(u32);
2322 if (!nsels) {
2323 dev_err(dev, "invalid reg property size\n");
2324 return -EINVAL;
2325 }
2326
2327 /* Alloc the nand chip structure */
2328 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2329 (nsels *
2330 sizeof(struct marvell_nand_chip_sel)),
2331 GFP_KERNEL);
2332 if (!marvell_nand) {
2333 dev_err(dev, "could not allocate chip structure\n");
2334 return -ENOMEM;
2335 }
2336
2337 marvell_nand->nsels = nsels;
2338 marvell_nand->selected_die = -1;
2339
2340 for (i = 0; i < nsels; i++) {
2341 if (pdata || nfc->caps->legacy_of_bindings) {
2342 /*
2343 * Legacy bindings use the CS lines in natural
2344 * order (0, 1, ...)
2345 */
2346 cs = i;
2347 } else {
2348 /* Retrieve CS id */
2349 ret = of_property_read_u32_index(np, "reg", i, &cs);
2350 if (ret) {
2351 dev_err(dev, "could not retrieve reg property: %d\n",
2352 ret);
2353 return ret;
2354 }
2355 }
2356
2357 if (cs >= nfc->caps->max_cs_nb) {
2358 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2359 cs, nfc->caps->max_cs_nb);
2360 return -EINVAL;
2361 }
2362
2363 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2364 dev_err(dev, "CS %d already assigned\n", cs);
2365 return -EINVAL;
2366 }
2367
2368 /*
2369 * The cs variable represents the chip select id, which must be
2370 * converted in bit fields for NDCB0 and NDCB2 to select the
2371 * right chip. Unfortunately, due to a lack of information on
2372 * the subject and incoherent documentation, the user should not
2373 * use CS1 and CS3 at all as asserting them is not supported in
2374 * a reliable way (due to multiplexing inside ADDR5 field).
2375 */
2376 marvell_nand->sels[i].cs = cs;
2377 switch (cs) {
2378 case 0:
2379 case 2:
2380 marvell_nand->sels[i].ndcb0_csel = 0;
2381 break;
2382 case 1:
2383 case 3:
2384 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2385 break;
2386 default:
2387 return -EINVAL;
2388 }
2389
2390 /* Retrieve RB id */
2391 if (pdata || nfc->caps->legacy_of_bindings) {
2392 /* Legacy bindings always use RB #0 */
2393 rb = 0;
2394 } else {
2395 ret = of_property_read_u32_index(np, "nand-rb", i,
2396 &rb);
2397 if (ret) {
2398 dev_err(dev,
2399 "could not retrieve RB property: %d\n",
2400 ret);
2401 return ret;
2402 }
2403 }
2404
2405 if (rb >= nfc->caps->max_rb_nb) {
2406 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2407 rb, nfc->caps->max_rb_nb);
2408 return -EINVAL;
2409 }
2410
2411 marvell_nand->sels[i].rb = rb;
2412 }
2413
2414 chip = &marvell_nand->chip;
2415 chip->controller = &nfc->controller;
2416 nand_set_flash_node(chip, np);
2417
2418 chip->exec_op = marvell_nfc_exec_op;
2419 chip->select_chip = marvell_nfc_select_chip;
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002420 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002421 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2422
2423 mtd = nand_to_mtd(chip);
2424 mtd->dev.parent = dev;
2425
2426 /*
2427 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2428 * in the DT node, this entry will be overwritten in nand_scan_ident().
2429 */
2430 chip->ecc.mode = NAND_ECC_HW;
2431
2432 /*
2433 * Save a reference value for timing registers before
2434 * ->setup_data_interface() is called.
2435 */
2436 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2437 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2438
2439 chip->options |= NAND_BUSWIDTH_AUTO;
2440 ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2441 if (ret) {
2442 dev_err(dev, "could not identify the nand chip\n");
2443 return ret;
2444 }
2445
2446 if (pdata && pdata->flash_bbt)
2447 chip->bbt_options |= NAND_BBT_USE_FLASH;
2448
2449 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2450 /*
2451 * We'll use a bad block table stored in-flash and don't
2452 * allow writing the bad block marker to the flash.
2453 */
2454 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2455 chip->bbt_td = &bbt_main_descr;
2456 chip->bbt_md = &bbt_mirror_descr;
2457 }
2458
2459 /* Save the chip-specific fields of NDCR */
2460 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2461 if (chip->options & NAND_BUSWIDTH_16)
2462 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2463
2464 /*
2465 * On small page NANDs, only one cycle is needed to pass the
2466 * column address.
2467 */
2468 if (mtd->writesize <= 512) {
2469 marvell_nand->addr_cyc = 1;
2470 } else {
2471 marvell_nand->addr_cyc = 2;
2472 marvell_nand->ndcr |= NDCR_RA_START;
2473 }
2474
2475 /*
2476 * Now add the number of cycles needed to pass the row
2477 * address.
2478 *
2479 * Addressing a chip using CS 2 or 3 should also need the third row
2480 * cycle but due to inconsistance in the documentation and lack of
2481 * hardware to test this situation, this case is not supported.
2482 */
2483 if (chip->options & NAND_ROW_ADDR_3)
2484 marvell_nand->addr_cyc += 3;
2485 else
2486 marvell_nand->addr_cyc += 2;
2487
2488 if (pdata) {
2489 chip->ecc.size = pdata->ecc_step_size;
2490 chip->ecc.strength = pdata->ecc_strength;
2491 }
2492
2493 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2494 if (ret) {
2495 dev_err(dev, "ECC init failed: %d\n", ret);
2496 return ret;
2497 }
2498
2499 if (chip->ecc.mode == NAND_ECC_HW) {
2500 /*
2501 * Subpage write not available with hardware ECC, prohibit also
2502 * subpage read as in userspace subpage access would still be
2503 * allowed and subpage write, if used, would lead to numerous
2504 * uncorrectable ECC errors.
2505 */
2506 chip->options |= NAND_NO_SUBPAGE_WRITE;
2507 }
2508
2509 if (pdata || nfc->caps->legacy_of_bindings) {
2510 /*
2511 * We keep the MTD name unchanged to avoid breaking platforms
2512 * where the MTD cmdline parser is used and the bootloader
2513 * has not been updated to use the new naming scheme.
2514 */
2515 mtd->name = "pxa3xx_nand-0";
2516 } else if (!mtd->name) {
2517 /*
2518 * If the new bindings are used and the bootloader has not been
2519 * updated to pass a new mtdparts parameter on the cmdline, you
2520 * should define the following property in your NAND node, ie:
2521 *
2522 * label = "main-storage";
2523 *
2524 * This way, mtd->name will be set by the core when
2525 * nand_set_flash_node() is called.
2526 */
2527 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2528 "%s:nand.%d", dev_name(nfc->dev),
2529 marvell_nand->sels[0].cs);
2530 if (!mtd->name) {
2531 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2532 return -ENOMEM;
2533 }
2534 }
2535
2536 ret = nand_scan_tail(mtd);
2537 if (ret) {
2538 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2539 return ret;
2540 }
2541
2542 if (pdata)
2543 /* Legacy bindings support only one chip */
Miquel Raynal75765942018-02-19 23:35:54 +01002544 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002545 else
2546 ret = mtd_device_register(mtd, NULL, 0);
2547 if (ret) {
2548 dev_err(dev, "failed to register mtd device: %d\n", ret);
2549 nand_release(mtd);
2550 return ret;
2551 }
2552
2553 list_add_tail(&marvell_nand->node, &nfc->chips);
2554
2555 return 0;
2556}
2557
2558static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2559{
2560 struct device_node *np = dev->of_node;
2561 struct device_node *nand_np;
2562 int max_cs = nfc->caps->max_cs_nb;
2563 int nchips;
2564 int ret;
2565
2566 if (!np)
2567 nchips = 1;
2568 else
2569 nchips = of_get_child_count(np);
2570
2571 if (nchips > max_cs) {
2572 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2573 max_cs);
2574 return -EINVAL;
2575 }
2576
2577 /*
2578 * Legacy bindings do not use child nodes to exhibit NAND chip
2579 * properties and layout. Instead, NAND properties are mixed with the
2580 * controller ones, and partitions are defined as direct subnodes of the
2581 * NAND controller node.
2582 */
2583 if (nfc->caps->legacy_of_bindings) {
2584 ret = marvell_nand_chip_init(dev, nfc, np);
2585 return ret;
2586 }
2587
2588 for_each_child_of_node(np, nand_np) {
2589 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2590 if (ret) {
2591 of_node_put(nand_np);
2592 return ret;
2593 }
2594 }
2595
2596 return 0;
2597}
2598
2599static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2600{
2601 struct marvell_nand_chip *entry, *temp;
2602
2603 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2604 nand_release(nand_to_mtd(&entry->chip));
2605 list_del(&entry->node);
2606 }
2607}
2608
2609static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2610{
2611 struct platform_device *pdev = container_of(nfc->dev,
2612 struct platform_device,
2613 dev);
2614 struct dma_slave_config config = {};
2615 struct resource *r;
2616 dma_cap_mask_t mask;
2617 struct pxad_param param;
2618 int ret;
2619
2620 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2621 dev_warn(nfc->dev,
2622 "DMA not enabled in configuration\n");
2623 return -ENOTSUPP;
2624 }
2625
2626 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2627 if (ret)
2628 return ret;
2629
2630 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2631 if (!r) {
2632 dev_err(nfc->dev, "No resource defined for data DMA\n");
2633 return -ENXIO;
2634 }
2635
2636 param.drcmr = r->start;
2637 param.prio = PXAD_PRIO_LOWEST;
2638 dma_cap_zero(mask);
2639 dma_cap_set(DMA_SLAVE, mask);
2640 nfc->dma_chan =
2641 dma_request_slave_channel_compat(mask, pxad_filter_fn,
2642 &param, nfc->dev,
2643 "data");
2644 if (!nfc->dma_chan) {
2645 dev_err(nfc->dev,
2646 "Unable to request data DMA channel\n");
2647 return -ENODEV;
2648 }
2649
2650 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2651 if (!r)
2652 return -ENXIO;
2653
2654 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2655 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2656 config.src_addr = r->start + NDDB;
2657 config.dst_addr = r->start + NDDB;
2658 config.src_maxburst = 32;
2659 config.dst_maxburst = 32;
2660 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2661 if (ret < 0) {
2662 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2663 return ret;
2664 }
2665
2666 /*
2667 * DMA must act on length multiple of 32 and this length may be
2668 * bigger than the destination buffer. Use this buffer instead
2669 * for DMA transfers and then copy the desired amount of data to
2670 * the provided buffer.
2671 */
Miquel Raynalc495a922018-01-19 18:39:01 +01002672 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002673 if (!nfc->dma_buf)
2674 return -ENOMEM;
2675
2676 nfc->use_dma = true;
2677
2678 return 0;
2679}
2680
2681static int marvell_nfc_init(struct marvell_nfc *nfc)
2682{
2683 struct device_node *np = nfc->dev->of_node;
2684
2685 /*
2686 * Some SoCs like A7k/A8k need to enable manually the NAND
2687 * controller, gated clocks and reset bits to avoid being bootloader
2688 * dependent. This is done through the use of the System Functions
2689 * registers.
2690 */
2691 if (nfc->caps->need_system_controller) {
2692 struct regmap *sysctrl_base =
2693 syscon_regmap_lookup_by_phandle(np,
2694 "marvell,system-controller");
2695 u32 reg;
2696
2697 if (IS_ERR(sysctrl_base))
2698 return PTR_ERR(sysctrl_base);
2699
2700 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2701 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2702 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2703 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2704 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2705
2706 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2707 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2708 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2709
2710 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2711 reg |= GENCONF_ND_CLK_CTRL_EN;
2712 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2713 }
2714
2715 /* Configure the DMA if appropriate */
2716 if (!nfc->caps->is_nfcv2)
2717 marvell_nfc_init_dma(nfc);
2718
2719 /*
2720 * ECC operations and interruptions are only enabled when specifically
2721 * needed. ECC shall not be activated in the early stages (fails probe).
2722 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2723 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2724 * offset in the read page and this will fail the protection.
2725 */
2726 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2727 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2728 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2729 writel_relaxed(0, nfc->regs + NDECCCTRL);
2730
2731 return 0;
2732}
2733
2734static int marvell_nfc_probe(struct platform_device *pdev)
2735{
2736 struct device *dev = &pdev->dev;
2737 struct resource *r;
2738 struct marvell_nfc *nfc;
2739 int ret;
2740 int irq;
2741
2742 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2743 GFP_KERNEL);
2744 if (!nfc)
2745 return -ENOMEM;
2746
2747 nfc->dev = dev;
2748 nand_hw_control_init(&nfc->controller);
2749 INIT_LIST_HEAD(&nfc->chips);
2750
2751 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2752 nfc->regs = devm_ioremap_resource(dev, r);
2753 if (IS_ERR(nfc->regs))
2754 return PTR_ERR(nfc->regs);
2755
2756 irq = platform_get_irq(pdev, 0);
2757 if (irq < 0) {
2758 dev_err(dev, "failed to retrieve irq\n");
2759 return irq;
2760 }
2761
Boris Brezillon6b6de652018-03-26 11:53:01 +02002762 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002763
2764 /* Managed the legacy case (when the first clock was not named) */
Boris Brezillon6b6de652018-03-26 11:53:01 +02002765 if (nfc->core_clk == ERR_PTR(-ENOENT))
2766 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002767
Boris Brezillon6b6de652018-03-26 11:53:01 +02002768 if (IS_ERR(nfc->core_clk))
2769 return PTR_ERR(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002770
Boris Brezillon6b6de652018-03-26 11:53:01 +02002771 ret = clk_prepare_enable(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002772 if (ret)
2773 return ret;
2774
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002775 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2776 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2777 if (!IS_ERR(nfc->reg_clk)) {
2778 ret = clk_prepare_enable(nfc->reg_clk);
2779 if (ret)
Boris Brezillon6b6de652018-03-26 11:53:01 +02002780 goto unprepare_core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002781 } else {
2782 ret = PTR_ERR(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002783 goto unprepare_core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002784 }
2785 }
2786
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002787 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2788 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2789 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2790 0, "marvell-nfc", nfc);
2791 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002792 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002793
2794 /* Get NAND controller capabilities */
2795 if (pdev->id_entry)
2796 nfc->caps = (void *)pdev->id_entry->driver_data;
2797 else
2798 nfc->caps = of_device_get_match_data(&pdev->dev);
2799
2800 if (!nfc->caps) {
2801 dev_err(dev, "Could not retrieve NFC caps\n");
2802 ret = -EINVAL;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002803 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002804 }
2805
2806 /* Init the controller and then probe the chips */
2807 ret = marvell_nfc_init(nfc);
2808 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002809 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002810
2811 platform_set_drvdata(pdev, nfc);
2812
2813 ret = marvell_nand_chips_init(dev, nfc);
2814 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002815 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002816
2817 return 0;
2818
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002819unprepare_reg_clk:
2820 clk_disable_unprepare(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002821unprepare_core_clk:
2822 clk_disable_unprepare(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002823
2824 return ret;
2825}
2826
2827static int marvell_nfc_remove(struct platform_device *pdev)
2828{
2829 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2830
2831 marvell_nand_chips_cleanup(nfc);
2832
2833 if (nfc->use_dma) {
2834 dmaengine_terminate_all(nfc->dma_chan);
2835 dma_release_channel(nfc->dma_chan);
2836 }
2837
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002838 clk_disable_unprepare(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002839 clk_disable_unprepare(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002840
2841 return 0;
2842}
2843
2844static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2845 .max_cs_nb = 4,
2846 .max_rb_nb = 2,
2847 .need_system_controller = true,
2848 .is_nfcv2 = true,
2849};
2850
2851static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2852 .max_cs_nb = 4,
2853 .max_rb_nb = 2,
2854 .is_nfcv2 = true,
2855};
2856
2857static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2858 .max_cs_nb = 2,
2859 .max_rb_nb = 1,
2860 .use_dma = true,
2861};
2862
2863static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2864 .max_cs_nb = 4,
2865 .max_rb_nb = 2,
2866 .need_system_controller = true,
2867 .legacy_of_bindings = true,
2868 .is_nfcv2 = true,
2869};
2870
2871static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2872 .max_cs_nb = 4,
2873 .max_rb_nb = 2,
2874 .legacy_of_bindings = true,
2875 .is_nfcv2 = true,
2876};
2877
2878static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2879 .max_cs_nb = 2,
2880 .max_rb_nb = 1,
2881 .legacy_of_bindings = true,
2882 .use_dma = true,
2883};
2884
2885static const struct platform_device_id marvell_nfc_platform_ids[] = {
2886 {
2887 .name = "pxa3xx-nand",
2888 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2889 },
2890 { /* sentinel */ },
2891};
2892MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2893
2894static const struct of_device_id marvell_nfc_of_ids[] = {
2895 {
2896 .compatible = "marvell,armada-8k-nand-controller",
2897 .data = &marvell_armada_8k_nfc_caps,
2898 },
2899 {
2900 .compatible = "marvell,armada370-nand-controller",
2901 .data = &marvell_armada370_nfc_caps,
2902 },
2903 {
2904 .compatible = "marvell,pxa3xx-nand-controller",
2905 .data = &marvell_pxa3xx_nfc_caps,
2906 },
2907 /* Support for old/deprecated bindings: */
2908 {
2909 .compatible = "marvell,armada-8k-nand",
2910 .data = &marvell_armada_8k_nfc_legacy_caps,
2911 },
2912 {
2913 .compatible = "marvell,armada370-nand",
2914 .data = &marvell_armada370_nfc_legacy_caps,
2915 },
2916 {
2917 .compatible = "marvell,pxa3xx-nand",
2918 .data = &marvell_pxa3xx_nfc_legacy_caps,
2919 },
2920 { /* sentinel */ },
2921};
2922MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2923
2924static struct platform_driver marvell_nfc_driver = {
2925 .driver = {
2926 .name = "marvell-nfc",
2927 .of_match_table = marvell_nfc_of_ids,
2928 },
2929 .id_table = marvell_nfc_platform_ids,
2930 .probe = marvell_nfc_probe,
2931 .remove = marvell_nfc_remove,
2932};
2933module_platform_driver(marvell_nfc_driver);
2934
2935MODULE_LICENSE("GPL");
2936MODULE_DESCRIPTION("Marvell NAND controller driver");