blob: db5ec4e8bde912ff482ac9b2194394bfcec6b5e5 [file] [log] [blame]
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 */
9
10#include <linux/module.h>
11#include <linux/clk.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/of_platform.h>
14#include <linux/iopoll.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mfd/syscon.h>
18#include <linux/regmap.h>
19#include <asm/unaligned.h>
20
21#include <linux/dmaengine.h>
22#include <linux/dma-mapping.h>
23#include <linux/dma/pxa-dma.h>
24#include <linux/platform_data/mtd-nand-pxa3xx.h>
25
26/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27#define FIFO_DEPTH 8
28#define FIFO_REP(x) (x / sizeof(u32))
29#define BCH_SEQ_READS (32 / FIFO_DEPTH)
30/* NFC does not support transfers of larger chunks at a time */
31#define MAX_CHUNK_SIZE 2112
32/* NFCv1 cannot read more that 7 bytes of ID */
33#define NFCV1_READID_LEN 7
34/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35#define POLL_PERIOD 0
36#define POLL_TIMEOUT 100000
37/* Interrupt maximum wait period in ms */
38#define IRQ_TIMEOUT 1000
39/* Latency in clock cycles between SoC pins and NFC logic */
40#define MIN_RD_DEL_CNT 3
41/* Maximum number of contiguous address cycles */
42#define MAX_ADDRESS_CYC_NFCV1 5
43#define MAX_ADDRESS_CYC_NFCV2 7
44/* System control registers/bits to enable the NAND controller on some SoCs */
45#define GENCONF_SOC_DEVICE_MUX 0x208
46#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50#define GENCONF_CLK_GATING_CTRL 0x220
51#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52#define GENCONF_ND_CLK_CTRL 0x700
53#define GENCONF_ND_CLK_CTRL_EN BIT(0)
54
55/* NAND controller data flash control register */
56#define NDCR 0x00
57#define NDCR_ALL_INT GENMASK(11, 0)
58#define NDCR_CS1_CMDDM BIT(7)
59#define NDCR_CS0_CMDDM BIT(8)
60#define NDCR_RDYM BIT(11)
61#define NDCR_ND_ARB_EN BIT(12)
62#define NDCR_RA_START BIT(15)
63#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65#define NDCR_DWIDTH_M BIT(26)
66#define NDCR_DWIDTH_C BIT(27)
67#define NDCR_ND_RUN BIT(28)
68#define NDCR_DMA_EN BIT(29)
69#define NDCR_ECC_EN BIT(30)
70#define NDCR_SPARE_EN BIT(31)
71#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73
74/* NAND interface timing parameter 0 register */
75#define NDTR0 0x04
76#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79#define NDTR0_SEL_NRE_EDGE BIT(7)
80#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85#define NDTR0_SELCNTR BIT(26)
86#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
87
88/* NAND interface timing parameter 1 register */
89#define NDTR1 0x0C
90#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93#define NDTR1_PRESCALE BIT(14)
94#define NDTR1_WAIT_MODE BIT(15)
95#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
96
97/* NAND controller status register */
98#define NDSR 0x14
99#define NDSR_WRCMDREQ BIT(0)
100#define NDSR_RDDREQ BIT(1)
101#define NDSR_WRDREQ BIT(2)
102#define NDSR_CORERR BIT(3)
103#define NDSR_UNCERR BIT(4)
104#define NDSR_CMDD(cs) BIT(8 - cs)
105#define NDSR_RDY(rb) BIT(11 + rb)
106#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
107
108/* NAND ECC control register */
109#define NDECCCTRL 0x28
110#define NDECCCTRL_BCH_EN BIT(0)
111
112/* NAND controller data buffer register */
113#define NDDB 0x40
114
115/* NAND controller command buffer 0 register */
116#define NDCB0 0x48
117#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121#define NDCB0_DBC BIT(19)
122#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123#define NDCB0_CSEL BIT(24)
124#define NDCB0_RDY_BYP BIT(27)
125#define NDCB0_LEN_OVRD BIT(28)
126#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
127
128/* NAND controller command buffer 1 register */
129#define NDCB1 0x4C
130#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131#define NDCB1_ADDRS_PAGE(x) (x << 16)
132
133/* NAND controller command buffer 2 register */
134#define NDCB2 0x50
135#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
137
138/* NAND controller command buffer 3 register */
139#define NDCB3 0x54
140#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
142
143/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144#define TYPE_READ 0
145#define TYPE_WRITE 1
146#define TYPE_ERASE 2
147#define TYPE_READ_ID 3
148#define TYPE_STATUS 4
149#define TYPE_RESET 5
150#define TYPE_NAKED_CMD 6
151#define TYPE_NAKED_ADDR 7
152#define TYPE_MASK 7
153#define XTYPE_MONOLITHIC_RW 0
154#define XTYPE_LAST_NAKED_RW 1
155#define XTYPE_FINAL_COMMAND 3
156#define XTYPE_READ 4
157#define XTYPE_WRITE_DISPATCH 4
158#define XTYPE_NAKED_RW 5
159#define XTYPE_COMMAND_DISPATCH 6
160#define XTYPE_MASK 7
161
162/**
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
168 *
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
183 */
184struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
198};
199
200#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
201 { \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
213 }
214
215/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
222};
223
224/**
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
231 *
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
237 */
238struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
242};
243
244/**
245 * NAND chip structure: stores NAND chip device related information
246 *
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
256 */
257struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
268};
269
270static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271{
272 return container_of(chip, struct marvell_nand_chip, chip);
273}
274
275static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
277{
278 return &nand->sels[nand->selected_die];
279}
280
281/**
282 * NAND controller capabilities for distinction between compatible strings
283 *
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
294 */
295struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
302};
303
304/**
305 * NAND controller structure: stores Marvell NAND controller information
306 *
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
Boris Brezillon6b6de652018-03-26 11:53:01 +0200310 * @core_clk: Core clock
Gregory CLEMENT961ba152018-03-13 11:30:16 +0100311 * @reg_clk: Regiters clock
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100312 * @complete: Completion object to wait for NAND controller events
313 * @assigned_cs: Bitmask describing already assigned CS lines
314 * @chips: List containing all the NAND chips attached to
315 * this NAND controller
316 * @caps: NAND controller capabilities for each compatible string
317 * @dma_chan: DMA channel (NFCv1 only)
318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
319 */
320struct marvell_nfc {
321 struct nand_hw_control controller;
322 struct device *dev;
323 void __iomem *regs;
Boris Brezillon6b6de652018-03-26 11:53:01 +0200324 struct clk *core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +0100325 struct clk *reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100326 struct completion complete;
327 unsigned long assigned_cs;
328 struct list_head chips;
329 struct nand_chip *selected_chip;
330 const struct marvell_nfc_caps *caps;
331
332 /* DMA (NFCv1 only) */
333 bool use_dma;
334 struct dma_chan *dma_chan;
335 u8 *dma_buf;
336};
337
338static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
339{
340 return container_of(ctrl, struct marvell_nfc, controller);
341}
342
343/**
344 * NAND controller timings expressed in NAND Controller clock cycles
345 *
346 * @tRP: ND_nRE pulse width
347 * @tRH: ND_nRE high duration
348 * @tWP: ND_nWE pulse time
349 * @tWH: ND_nWE high duration
350 * @tCS: Enable signal setup time
351 * @tCH: Enable signal hold time
352 * @tADL: Address to write data delay
353 * @tAR: ND_ALE low to ND_nRE low delay
354 * @tWHR: ND_nWE high to ND_nRE low for status read
355 * @tRHW: ND_nRE high duration, read to write delay
356 * @tR: ND_nWE high to ND_nRE low for read
357 */
358struct marvell_nfc_timings {
359 /* NDTR0 fields */
360 unsigned int tRP;
361 unsigned int tRH;
362 unsigned int tWP;
363 unsigned int tWH;
364 unsigned int tCS;
365 unsigned int tCH;
366 unsigned int tADL;
367 /* NDTR1 fields */
368 unsigned int tAR;
369 unsigned int tWHR;
370 unsigned int tRHW;
371 unsigned int tR;
372};
373
374/**
375 * Derives a duration in numbers of clock cycles.
376 *
377 * @ps: Duration in pico-seconds
378 * @period_ns: Clock period in nano-seconds
379 *
380 * Convert the duration in nano-seconds, then divide by the period and
381 * return the number of clock periods.
382 */
383#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
Miquel Raynal07ad5a72018-01-17 00:19:34 +0100384#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 period_ns))
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100386
387/**
388 * NAND driver structure filled during the parsing of the ->exec_op() subop
389 * subset of instructions.
390 *
391 * @ndcb: Array of values written to NDCBx registers
392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
394 * @rdy_delay_ns: Optional delay after waiting for the RB pin
395 * @data_delay_ns: Optional delay after the data xfer
396 * @data_instr_idx: Index of the data instruction in the subop
397 * @data_instr: Pointer to the data instruction in the subop
398 */
399struct marvell_nfc_op {
400 u32 ndcb[4];
401 unsigned int cle_ale_delay_ns;
402 unsigned int rdy_timeout_ms;
403 unsigned int rdy_delay_ns;
404 unsigned int data_delay_ns;
405 unsigned int data_instr_idx;
406 const struct nand_op_instr *data_instr;
407};
408
409/*
410 * Internal helper to conditionnally apply a delay (from the above structure,
411 * most of the time).
412 */
413static void cond_delay(unsigned int ns)
414{
415 if (!ns)
416 return;
417
418 if (ns < 10000)
419 ndelay(ns);
420 else
421 udelay(DIV_ROUND_UP(ns, 1000));
422}
423
424/*
425 * The controller has many flags that could generate interrupts, most of them
426 * are disabled and polling is used. For the very slow signals, using interrupts
427 * may relax the CPU charge.
428 */
429static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430{
431 u32 reg;
432
433 /* Writing 1 disables the interrupt */
434 reg = readl_relaxed(nfc->regs + NDCR);
435 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436}
437
438static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439{
440 u32 reg;
441
442 /* Writing 0 enables the interrupt */
443 reg = readl_relaxed(nfc->regs + NDCR);
444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445}
446
447static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448{
449 writel_relaxed(int_mask, nfc->regs + NDSR);
450}
451
452static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 bool force_8bit)
454{
455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 u32 ndcr;
457
458 /*
459 * Callers of this function do not verify if the NAND is using a 16-bit
460 * an 8-bit bus for normal operations, so we need to take care of that
461 * here by leaving the configuration unchanged if the NAND does not have
462 * the NAND_BUSWIDTH_16 flag set.
463 */
464 if (!(chip->options & NAND_BUSWIDTH_16))
465 return;
466
467 ndcr = readl_relaxed(nfc->regs + NDCR);
468
469 if (force_8bit)
470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 else
472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473
474 writel_relaxed(ndcr, nfc->regs + NDCR);
475}
476
477static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478{
479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 u32 val;
481 int ret;
482
483 /*
484 * The command is being processed, wait for the ND_RUN bit to be
485 * cleared by the NFC. If not, we must clear it by hand.
486 */
487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 (val & NDCR_ND_RUN) == 0,
489 POLL_PERIOD, POLL_TIMEOUT);
490 if (ret) {
491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 nfc->regs + NDCR);
494 return ret;
495 }
496
497 return 0;
498}
499
500/*
501 * Any time a command has to be sent to the controller, the following sequence
502 * has to be followed:
503 * - call marvell_nfc_prepare_cmd()
504 * -> activate the ND_RUN bit that will kind of 'start a job'
505 * -> wait the signal indicating the NFC is waiting for a command
506 * - send the command (cmd and address cycles)
507 * - enventually send or receive the data
508 * - call marvell_nfc_end_cmd() with the corresponding flag
509 * -> wait the flag to be triggered or cancel the job with a timeout
510 *
511 * The following helpers are here to factorize the code a bit so that
512 * specialized functions responsible for executing the actual NAND
513 * operations do not have to replicate the same code blocks.
514 */
515static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516{
517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 u32 ndcr, val;
519 int ret;
520
521 /* Poll ND_RUN and clear NDSR before issuing any command */
522 ret = marvell_nfc_wait_ndrun(chip);
523 if (ret) {
Colin Ian Kinga76497d2018-01-19 07:55:31 +0000524 dev_err(nfc->dev, "Last operation did not succeed\n");
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100525 return ret;
526 }
527
528 ndcr = readl_relaxed(nfc->regs + NDCR);
529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530
531 /* Assert ND_RUN bit and wait the NFC to be ready */
532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 val & NDSR_WRCMDREQ,
535 POLL_PERIOD, POLL_TIMEOUT);
536 if (ret) {
537 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 return -ETIMEDOUT;
539 }
540
541 /* Command may be written, clear WRCMDREQ status bit */
542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543
544 return 0;
545}
546
547static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 struct marvell_nfc_op *nfc_op)
549{
550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552
553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557
558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 nfc->regs + NDCB0);
560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562
563 /*
564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 * fields are used (only available on NFCv2).
566 */
567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 }
572}
573
574static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 const char *label)
576{
577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 u32 val;
579 int ret;
580
581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 val & flag,
583 POLL_PERIOD, POLL_TIMEOUT);
584
585 if (ret) {
586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 label, val);
588 if (nfc->dma_chan)
589 dmaengine_terminate_all(nfc->dma_chan);
590 return ret;
591 }
592
593 /*
594 * DMA function uses this helper to poll on CMDD bits without wanting
595 * them to be cleared.
596 */
597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 return 0;
599
600 writel_relaxed(flag, nfc->regs + NDSR);
601
602 return 0;
603}
604
605static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606{
607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609
610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611}
612
613static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614{
615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 int ret;
617
618 /* Timeout is expressed in ms */
619 if (!timeout_ms)
620 timeout_ms = IRQ_TIMEOUT;
621
622 init_completion(&nfc->complete);
623
624 marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 ret = wait_for_completion_timeout(&nfc->complete,
626 msecs_to_jiffies(timeout_ms));
627 marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 if (!ret) {
630 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 return -ETIMEDOUT;
632 }
633
634 return 0;
635}
636
637static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638{
639 struct nand_chip *chip = mtd_to_nand(mtd);
640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 u32 ndcr_generic;
643
644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 return;
646
647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 nfc->selected_chip = NULL;
649 marvell_nand->selected_die = -1;
650 return;
651 }
652
653 /*
654 * Do not change the timing registers when using the DT property
655 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
656 * marvell_nand structure are supposedly empty.
657 */
658 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
659 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
660
661 /*
662 * Reset the NDCR register to a clean state for this particular chip,
663 * also clear ND_RUN bit.
664 */
665 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
666 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
667 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
668
669 /* Also reset the interrupt status register */
670 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
671
672 nfc->selected_chip = chip;
673 marvell_nand->selected_die = die_nr;
674}
675
676static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
677{
678 struct marvell_nfc *nfc = dev_id;
679 u32 st = readl_relaxed(nfc->regs + NDSR);
680 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
681
682 /*
683 * RDY interrupt mask is one bit in NDCR while there are two status
684 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
685 */
686 if (st & NDSR_RDY(1))
687 st |= NDSR_RDY(0);
688
689 if (!(st & ien))
690 return IRQ_NONE;
691
692 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
693
694 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
695 complete(&nfc->complete);
696
697 return IRQ_HANDLED;
698}
699
700/* HW ECC related functions */
701static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
702{
703 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
704 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
705
706 if (!(ndcr & NDCR_ECC_EN)) {
707 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
708
709 /*
710 * When enabling BCH, set threshold to 0 to always know the
711 * number of corrected bitflips.
712 */
713 if (chip->ecc.algo == NAND_ECC_BCH)
714 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
715 }
716}
717
718static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
719{
720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
722
723 if (ndcr & NDCR_ECC_EN) {
724 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
725 if (chip->ecc.algo == NAND_ECC_BCH)
726 writel_relaxed(0, nfc->regs + NDECCCTRL);
727 }
728}
729
730/* DMA related helpers */
731static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
732{
733 u32 reg;
734
735 reg = readl_relaxed(nfc->regs + NDCR);
736 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
737}
738
739static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
740{
741 u32 reg;
742
743 reg = readl_relaxed(nfc->regs + NDCR);
744 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
745}
746
747/* Read/write PIO/DMA accessors */
748static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
749 enum dma_data_direction direction,
750 unsigned int len)
751{
752 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
753 struct dma_async_tx_descriptor *tx;
754 struct scatterlist sg;
755 dma_cookie_t cookie;
756 int ret;
757
758 marvell_nfc_enable_dma(nfc);
759 /* Prepare the DMA transfer */
760 sg_init_one(&sg, nfc->dma_buf, dma_len);
761 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
762 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
763 direction == DMA_FROM_DEVICE ?
764 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
765 DMA_PREP_INTERRUPT);
766 if (!tx) {
767 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
768 return -ENXIO;
769 }
770
771 /* Do the task and wait for it to finish */
772 cookie = dmaengine_submit(tx);
773 ret = dma_submit_error(cookie);
774 if (ret)
775 return -EIO;
776
777 dma_async_issue_pending(nfc->dma_chan);
778 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
779 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
780 marvell_nfc_disable_dma(nfc);
781 if (ret) {
782 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
783 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
784 dmaengine_terminate_all(nfc->dma_chan);
785 return -ETIMEDOUT;
786 }
787
788 return 0;
789}
790
791static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
792 unsigned int len)
793{
794 unsigned int last_len = len % FIFO_DEPTH;
795 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
796 int i;
797
798 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
799 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
800
801 if (last_len) {
802 u8 tmp_buf[FIFO_DEPTH];
803
804 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
805 memcpy(in + last_full_offset, tmp_buf, last_len);
806 }
807
808 return 0;
809}
810
811static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
812 unsigned int len)
813{
814 unsigned int last_len = len % FIFO_DEPTH;
815 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
816 int i;
817
818 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
819 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
820
821 if (last_len) {
822 u8 tmp_buf[FIFO_DEPTH];
823
824 memcpy(tmp_buf, out + last_full_offset, last_len);
825 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
826 }
827
828 return 0;
829}
830
831static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
832 u8 *data, int data_len,
833 u8 *spare, int spare_len,
834 u8 *ecc, int ecc_len,
835 unsigned int *max_bitflips)
836{
837 struct mtd_info *mtd = nand_to_mtd(chip);
838 int bf;
839
840 /*
841 * Blank pages (all 0xFF) that have not been written may be recognized
842 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
843 * check if the entire page (with ECC bytes) is actually blank or not.
844 */
845 if (!data)
846 data_len = 0;
847 if (!spare)
848 spare_len = 0;
849 if (!ecc)
850 ecc_len = 0;
851
852 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
853 spare, spare_len, chip->ecc.strength);
854 if (bf < 0) {
855 mtd->ecc_stats.failed++;
856 return;
857 }
858
859 /* Update the stats and max_bitflips */
860 mtd->ecc_stats.corrected += bf;
861 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
862}
863
864/*
865 * Check a chunk is correct or not according to hardware ECC engine.
866 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
867 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
868 * value indicating that a check on the emptyness of the subpage must be
869 * performed before declaring the subpage corrupted.
870 */
871static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
872 unsigned int *max_bitflips)
873{
874 struct mtd_info *mtd = nand_to_mtd(chip);
875 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
876 int bf = 0;
877 u32 ndsr;
878
879 ndsr = readl_relaxed(nfc->regs + NDSR);
880
881 /* Check uncorrectable error flag */
882 if (ndsr & NDSR_UNCERR) {
883 writel_relaxed(ndsr, nfc->regs + NDSR);
884
885 /*
886 * Do not increment ->ecc_stats.failed now, instead, return a
887 * non-zero value to indicate that this chunk was apparently
888 * bad, and it should be check to see if it empty or not. If
889 * the chunk (with ECC bytes) is not declared empty, the calling
890 * function must increment the failure count.
891 */
892 return -EBADMSG;
893 }
894
895 /* Check correctable error flag */
896 if (ndsr & NDSR_CORERR) {
897 writel_relaxed(ndsr, nfc->regs + NDSR);
898
899 if (chip->ecc.algo == NAND_ECC_BCH)
900 bf = NDSR_ERRCNT(ndsr);
901 else
902 bf = 1;
903 }
904
905 /* Update the stats and max_bitflips */
906 mtd->ecc_stats.corrected += bf;
907 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
908
909 return 0;
910}
911
912/* Hamming read helpers */
913static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
914 u8 *data_buf, u8 *oob_buf,
915 bool raw, int page)
916{
917 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
918 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
919 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
920 struct marvell_nfc_op nfc_op = {
921 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
922 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
923 NDCB0_DBC |
924 NDCB0_CMD1(NAND_CMD_READ0) |
925 NDCB0_CMD2(NAND_CMD_READSTART),
926 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
927 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
928 };
929 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
930 int ret;
931
932 /* NFCv2 needs more information about the operation being executed */
933 if (nfc->caps->is_nfcv2)
934 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
935
936 ret = marvell_nfc_prepare_cmd(chip);
937 if (ret)
938 return ret;
939
940 marvell_nfc_send_cmd(chip, &nfc_op);
941 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
942 "RDDREQ while draining FIFO (data/oob)");
943 if (ret)
944 return ret;
945
946 /*
947 * Read the page then the OOB area. Unlike what is shown in current
948 * documentation, spare bytes are protected by the ECC engine, and must
949 * be at the beginning of the OOB area or running this driver on legacy
950 * systems will prevent the discovery of the BBM/BBT.
951 */
952 if (nfc->use_dma) {
953 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
954 lt->data_bytes + oob_bytes);
955 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
956 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
957 } else {
958 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
959 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
960 }
961
962 ret = marvell_nfc_wait_cmdd(chip);
963
964 return ret;
965}
966
967static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
968 struct nand_chip *chip, u8 *buf,
969 int oob_required, int page)
970{
971 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
972 true, page);
973}
974
975static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
976 struct nand_chip *chip,
977 u8 *buf, int oob_required,
978 int page)
979{
980 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
981 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
982 int max_bitflips = 0, ret;
983 u8 *raw_buf;
984
985 marvell_nfc_enable_hw_ecc(chip);
986 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
987 page);
988 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
989 marvell_nfc_disable_hw_ecc(chip);
990
991 if (!ret)
992 return max_bitflips;
993
994 /*
995 * When ECC failures are detected, check if the full page has been
996 * written or not. Ignore the failure if it is actually empty.
997 */
998 raw_buf = kmalloc(full_sz, GFP_KERNEL);
999 if (!raw_buf)
1000 return -ENOMEM;
1001
1002 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1003 lt->data_bytes, true, page);
1004 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1005 &max_bitflips);
1006 kfree(raw_buf);
1007
1008 return max_bitflips;
1009}
1010
1011/*
1012 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1013 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1014 * also stands for ->read_oob().
1015 */
1016static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1017 struct nand_chip *chip, int page)
1018{
1019 /* Invalidate page cache */
1020 chip->pagebuf = -1;
1021
1022 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1023 chip->oob_poi, true, page);
1024}
1025
1026/* Hamming write helpers */
1027static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1028 const u8 *data_buf,
1029 const u8 *oob_buf, bool raw,
1030 int page)
1031{
1032 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1033 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1034 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1035 struct marvell_nfc_op nfc_op = {
1036 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1037 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1038 NDCB0_CMD1(NAND_CMD_SEQIN) |
1039 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1040 NDCB0_DBC,
1041 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1042 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1043 };
1044 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1045 int ret;
1046
1047 /* NFCv2 needs more information about the operation being executed */
1048 if (nfc->caps->is_nfcv2)
1049 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1050
1051 ret = marvell_nfc_prepare_cmd(chip);
1052 if (ret)
1053 return ret;
1054
1055 marvell_nfc_send_cmd(chip, &nfc_op);
1056 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1057 "WRDREQ while loading FIFO (data)");
1058 if (ret)
1059 return ret;
1060
1061 /* Write the page then the OOB area */
1062 if (nfc->use_dma) {
1063 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1064 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1065 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1066 lt->ecc_bytes + lt->spare_bytes);
1067 } else {
1068 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1069 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1070 }
1071
1072 ret = marvell_nfc_wait_cmdd(chip);
1073 if (ret)
1074 return ret;
1075
1076 ret = marvell_nfc_wait_op(chip,
Chris Packhamb76401f2018-05-03 14:21:28 +12001077 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001078 return ret;
1079}
1080
1081static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1082 struct nand_chip *chip,
1083 const u8 *buf,
1084 int oob_required, int page)
1085{
1086 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1087 true, page);
1088}
1089
1090static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1091 struct nand_chip *chip,
1092 const u8 *buf,
1093 int oob_required, int page)
1094{
1095 int ret;
1096
1097 marvell_nfc_enable_hw_ecc(chip);
1098 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1099 false, page);
1100 marvell_nfc_disable_hw_ecc(chip);
1101
1102 return ret;
1103}
1104
1105/*
1106 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1107 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1108 * also stands for ->write_oob().
1109 */
1110static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1111 struct nand_chip *chip,
1112 int page)
1113{
1114 /* Invalidate page cache */
1115 chip->pagebuf = -1;
1116
1117 memset(chip->data_buf, 0xFF, mtd->writesize);
1118
1119 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1120 chip->oob_poi, true, page);
1121}
1122
1123/* BCH read helpers */
1124static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1125 struct nand_chip *chip, u8 *buf,
1126 int oob_required, int page)
1127{
1128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1129 u8 *oob = chip->oob_poi;
1130 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1131 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1132 lt->last_spare_bytes;
1133 int data_len = lt->data_bytes;
1134 int spare_len = lt->spare_bytes;
1135 int ecc_len = lt->ecc_bytes;
1136 int chunk;
1137
1138 if (oob_required)
1139 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1140
1141 nand_read_page_op(chip, page, 0, NULL, 0);
1142
1143 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1144 /* Update last chunk length */
1145 if (chunk >= lt->full_chunk_cnt) {
1146 data_len = lt->last_data_bytes;
1147 spare_len = lt->last_spare_bytes;
1148 ecc_len = lt->last_ecc_bytes;
1149 }
1150
1151 /* Read data bytes*/
1152 nand_change_read_column_op(chip, chunk * chunk_size,
1153 buf + (lt->data_bytes * chunk),
1154 data_len, false);
1155
1156 /* Read spare bytes */
1157 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1158 spare_len, false);
1159
1160 /* Read ECC bytes */
1161 nand_read_data_op(chip, oob + ecc_offset +
1162 (ALIGN(lt->ecc_bytes, 32) * chunk),
1163 ecc_len, false);
1164 }
1165
1166 return 0;
1167}
1168
1169static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1170 u8 *data, unsigned int data_len,
1171 u8 *spare, unsigned int spare_len,
1172 int page)
1173{
1174 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1175 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1176 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1177 int i, ret;
1178 struct marvell_nfc_op nfc_op = {
1179 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1180 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1181 NDCB0_LEN_OVRD,
1182 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1183 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1184 .ndcb[3] = data_len + spare_len,
1185 };
1186
1187 ret = marvell_nfc_prepare_cmd(chip);
1188 if (ret)
1189 return;
1190
1191 if (chunk == 0)
1192 nfc_op.ndcb[0] |= NDCB0_DBC |
1193 NDCB0_CMD1(NAND_CMD_READ0) |
1194 NDCB0_CMD2(NAND_CMD_READSTART);
1195
1196 /*
1197 * Trigger the naked read operation only on the last chunk.
1198 * Otherwise, use monolithic read.
1199 */
1200 if (lt->nchunks == 1 || (chunk < lt->nchunks - 1))
1201 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1202 else
1203 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1204
1205 marvell_nfc_send_cmd(chip, &nfc_op);
1206
1207 /*
1208 * According to the datasheet, when reading from NDDB
1209 * with BCH enabled, after each 32 bytes reads, we
1210 * have to make sure that the NDSR.RDDREQ bit is set.
1211 *
1212 * Drain the FIFO, 8 32-bit reads at a time, and skip
1213 * the polling on the last read.
1214 *
1215 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1216 */
1217 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1218 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1219 "RDDREQ while draining FIFO (data)");
1220 marvell_nfc_xfer_data_in_pio(nfc, data,
1221 FIFO_DEPTH * BCH_SEQ_READS);
1222 data += FIFO_DEPTH * BCH_SEQ_READS;
1223 }
1224
1225 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1226 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1227 "RDDREQ while draining FIFO (OOB)");
1228 marvell_nfc_xfer_data_in_pio(nfc, spare,
1229 FIFO_DEPTH * BCH_SEQ_READS);
1230 spare += FIFO_DEPTH * BCH_SEQ_READS;
1231 }
1232}
1233
1234static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1235 struct nand_chip *chip,
1236 u8 *buf, int oob_required,
1237 int page)
1238{
1239 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1240 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1241 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1242 int max_bitflips = 0;
1243 u32 failure_mask = 0;
1244 int chunk, ecc_offset_in_page, ret;
1245
1246 /*
1247 * With BCH, OOB is not fully used (and thus not read entirely), not
1248 * expected bytes could show up at the end of the OOB buffer if not
1249 * explicitly erased.
1250 */
1251 if (oob_required)
1252 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1253
1254 marvell_nfc_enable_hw_ecc(chip);
1255
1256 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1257 /* Update length for the last chunk */
1258 if (chunk >= lt->full_chunk_cnt) {
1259 data_len = lt->last_data_bytes;
1260 spare_len = lt->last_spare_bytes;
1261 }
1262
1263 /* Read the chunk and detect number of bitflips */
1264 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1265 spare, spare_len, page);
1266 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1267 if (ret)
1268 failure_mask |= BIT(chunk);
1269
1270 data += data_len;
1271 spare += spare_len;
1272 }
1273
1274 marvell_nfc_disable_hw_ecc(chip);
1275
1276 if (!failure_mask)
1277 return max_bitflips;
1278
1279 /*
1280 * Please note that dumping the ECC bytes during a normal read with OOB
1281 * area would add a significant overhead as ECC bytes are "consumed" by
1282 * the controller in normal mode and must be re-read in raw mode. To
1283 * avoid dropping the performances, we prefer not to include them. The
1284 * user should re-read the page in raw mode if ECC bytes are required.
1285 *
1286 * However, for any subpage read error reported by ->correct(), the ECC
1287 * bytes must be read in raw mode and the full subpage must be checked
1288 * to see if it is entirely empty of if there was an actual error.
1289 */
1290 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1291 /* No failure reported for this chunk, move to the next one */
1292 if (!(failure_mask & BIT(chunk)))
1293 continue;
1294
1295 /* Derive ECC bytes positions (in page/buffer) and length */
1296 ecc = chip->oob_poi +
1297 (lt->full_chunk_cnt * lt->spare_bytes) +
1298 lt->last_spare_bytes +
1299 (chunk * ALIGN(lt->ecc_bytes, 32));
1300 ecc_offset_in_page =
1301 (chunk * (lt->data_bytes + lt->spare_bytes +
1302 lt->ecc_bytes)) +
1303 (chunk < lt->full_chunk_cnt ?
1304 lt->data_bytes + lt->spare_bytes :
1305 lt->last_data_bytes + lt->last_spare_bytes);
1306 ecc_len = chunk < lt->full_chunk_cnt ?
1307 lt->ecc_bytes : lt->last_ecc_bytes;
1308
1309 /* Do the actual raw read of the ECC bytes */
1310 nand_change_read_column_op(chip, ecc_offset_in_page,
1311 ecc, ecc_len, false);
1312
1313 /* Derive data/spare bytes positions (in buffer) and length */
1314 data = buf + (chunk * lt->data_bytes);
1315 data_len = chunk < lt->full_chunk_cnt ?
1316 lt->data_bytes : lt->last_data_bytes;
1317 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1318 lt->ecc_bytes));
1319 spare_len = chunk < lt->full_chunk_cnt ?
1320 lt->spare_bytes : lt->last_spare_bytes;
1321
1322 /* Check the entire chunk (data + spare + ecc) for emptyness */
1323 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1324 spare_len, ecc, ecc_len,
1325 &max_bitflips);
1326 }
1327
1328 return max_bitflips;
1329}
1330
1331static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1332 struct nand_chip *chip, int page)
1333{
1334 /* Invalidate page cache */
1335 chip->pagebuf = -1;
1336
1337 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1338}
1339
1340static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1341 struct nand_chip *chip, int page)
1342{
1343 /* Invalidate page cache */
1344 chip->pagebuf = -1;
1345
1346 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1347}
1348
1349/* BCH write helpers */
1350static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1351 struct nand_chip *chip,
1352 const u8 *buf,
1353 int oob_required, int page)
1354{
1355 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1356 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1357 int data_len = lt->data_bytes;
1358 int spare_len = lt->spare_bytes;
1359 int ecc_len = lt->ecc_bytes;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001360 int spare_offset = 0;
1361 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1362 lt->last_spare_bytes;
1363 int chunk;
1364
1365 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1366
1367 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1368 if (chunk >= lt->full_chunk_cnt) {
1369 data_len = lt->last_data_bytes;
1370 spare_len = lt->last_spare_bytes;
1371 ecc_len = lt->last_ecc_bytes;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001372 }
1373
1374 /* Point to the column of the next chunk */
1375 nand_change_write_column_op(chip, chunk * full_chunk_size,
1376 NULL, 0, false);
1377
1378 /* Write the data */
1379 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1380 data_len, false);
1381
1382 if (!oob_required)
1383 continue;
1384
1385 /* Write the spare bytes */
1386 if (spare_len)
1387 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1388 spare_len, false);
1389
1390 /* Write the ECC bytes */
1391 if (ecc_len)
1392 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1393 ecc_len, false);
1394
1395 spare_offset += spare_len;
1396 ecc_offset += ALIGN(ecc_len, 32);
1397 }
1398
1399 return nand_prog_page_end_op(chip);
1400}
1401
1402static int
1403marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1404 const u8 *data, unsigned int data_len,
1405 const u8 *spare, unsigned int spare_len,
1406 int page)
1407{
1408 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1409 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1410 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
Miquel Raynala2ee41f2018-05-03 12:00:27 +02001411 u32 xtype;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001412 int ret;
1413 struct marvell_nfc_op nfc_op = {
1414 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1415 .ndcb[3] = data_len + spare_len,
1416 };
1417
1418 /*
1419 * First operation dispatches the CMD_SEQIN command, issue the address
1420 * cycles and asks for the first chunk of data.
1421 * All operations in the middle (if any) will issue a naked write and
1422 * also ask for data.
1423 * Last operation (if any) asks for the last chunk of data through a
1424 * last naked write.
1425 */
1426 if (chunk == 0) {
Miquel Raynala2ee41f2018-05-03 12:00:27 +02001427 if (lt->nchunks == 1)
1428 xtype = XTYPE_MONOLITHIC_RW;
1429 else
1430 xtype = XTYPE_WRITE_DISPATCH;
1431
1432 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001433 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1434 NDCB0_CMD1(NAND_CMD_SEQIN);
1435 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1436 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1437 } else if (chunk < lt->nchunks - 1) {
1438 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1439 } else {
1440 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1441 }
1442
1443 /* Always dispatch the PAGEPROG command on the last chunk */
1444 if (chunk == lt->nchunks - 1)
1445 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1446
1447 ret = marvell_nfc_prepare_cmd(chip);
1448 if (ret)
1449 return ret;
1450
1451 marvell_nfc_send_cmd(chip, &nfc_op);
1452 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1453 "WRDREQ while loading FIFO (data)");
1454 if (ret)
1455 return ret;
1456
1457 /* Transfer the contents */
1458 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1459 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1460
1461 return 0;
1462}
1463
1464static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1465 struct nand_chip *chip,
1466 const u8 *buf,
1467 int oob_required, int page)
1468{
1469 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1470 const u8 *data = buf;
1471 const u8 *spare = chip->oob_poi;
1472 int data_len = lt->data_bytes;
1473 int spare_len = lt->spare_bytes;
1474 int chunk, ret;
1475
1476 /* Spare data will be written anyway, so clear it to avoid garbage */
1477 if (!oob_required)
1478 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1479
1480 marvell_nfc_enable_hw_ecc(chip);
1481
1482 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1483 if (chunk >= lt->full_chunk_cnt) {
1484 data_len = lt->last_data_bytes;
1485 spare_len = lt->last_spare_bytes;
1486 }
1487
1488 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1489 spare, spare_len, page);
1490 data += data_len;
1491 spare += spare_len;
1492
1493 /*
1494 * Waiting only for CMDD or PAGED is not enough, ECC are
1495 * partially written. No flag is set once the operation is
1496 * really finished but the ND_RUN bit is cleared, so wait for it
1497 * before stepping into the next command.
1498 */
1499 marvell_nfc_wait_ndrun(chip);
1500 }
1501
1502 ret = marvell_nfc_wait_op(chip,
Chris Packhamb76401f2018-05-03 14:21:28 +12001503 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001504
1505 marvell_nfc_disable_hw_ecc(chip);
1506
1507 if (ret)
1508 return ret;
1509
1510 return 0;
1511}
1512
1513static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1514 struct nand_chip *chip,
1515 int page)
1516{
1517 /* Invalidate page cache */
1518 chip->pagebuf = -1;
1519
1520 memset(chip->data_buf, 0xFF, mtd->writesize);
1521
1522 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1523}
1524
1525static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1526 struct nand_chip *chip, int page)
1527{
1528 /* Invalidate page cache */
1529 chip->pagebuf = -1;
1530
1531 memset(chip->data_buf, 0xFF, mtd->writesize);
1532
1533 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1534}
1535
1536/* NAND framework ->exec_op() hooks and related helpers */
1537static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1538 const struct nand_subop *subop,
1539 struct marvell_nfc_op *nfc_op)
1540{
1541 const struct nand_op_instr *instr = NULL;
1542 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1543 bool first_cmd = true;
1544 unsigned int op_id;
1545 int i;
1546
1547 /* Reset the input structure as most of its fields will be OR'ed */
1548 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1549
1550 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1551 unsigned int offset, naddrs;
1552 const u8 *addrs;
1553 int len = nand_subop_get_data_len(subop, op_id);
1554
1555 instr = &subop->instrs[op_id];
1556
1557 switch (instr->type) {
1558 case NAND_OP_CMD_INSTR:
1559 if (first_cmd)
1560 nfc_op->ndcb[0] |=
1561 NDCB0_CMD1(instr->ctx.cmd.opcode);
1562 else
1563 nfc_op->ndcb[0] |=
1564 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1565 NDCB0_DBC;
1566
1567 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1568 first_cmd = false;
1569 break;
1570
1571 case NAND_OP_ADDR_INSTR:
1572 offset = nand_subop_get_addr_start_off(subop, op_id);
1573 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1574 addrs = &instr->ctx.addr.addrs[offset];
1575
1576 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1577
1578 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1579 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1580
1581 if (naddrs >= 5)
1582 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1583 if (naddrs >= 6)
1584 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1585 if (naddrs == 7)
1586 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1587
1588 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1589 break;
1590
1591 case NAND_OP_DATA_IN_INSTR:
1592 nfc_op->data_instr = instr;
1593 nfc_op->data_instr_idx = op_id;
1594 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1595 if (nfc->caps->is_nfcv2) {
1596 nfc_op->ndcb[0] |=
1597 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1598 NDCB0_LEN_OVRD;
1599 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1600 }
1601 nfc_op->data_delay_ns = instr->delay_ns;
1602 break;
1603
1604 case NAND_OP_DATA_OUT_INSTR:
1605 nfc_op->data_instr = instr;
1606 nfc_op->data_instr_idx = op_id;
1607 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1608 if (nfc->caps->is_nfcv2) {
1609 nfc_op->ndcb[0] |=
1610 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1611 NDCB0_LEN_OVRD;
1612 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1613 }
1614 nfc_op->data_delay_ns = instr->delay_ns;
1615 break;
1616
1617 case NAND_OP_WAITRDY_INSTR:
1618 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1619 nfc_op->rdy_delay_ns = instr->delay_ns;
1620 break;
1621 }
1622 }
1623}
1624
1625static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1626 const struct nand_subop *subop,
1627 struct marvell_nfc_op *nfc_op)
1628{
1629 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1630 const struct nand_op_instr *instr = nfc_op->data_instr;
1631 unsigned int op_id = nfc_op->data_instr_idx;
1632 unsigned int len = nand_subop_get_data_len(subop, op_id);
1633 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1634 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1635 int ret;
1636
1637 if (instr->ctx.data.force_8bit)
1638 marvell_nfc_force_byte_access(chip, true);
1639
1640 if (reading) {
1641 u8 *in = instr->ctx.data.buf.in + offset;
1642
1643 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1644 } else {
1645 const u8 *out = instr->ctx.data.buf.out + offset;
1646
1647 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1648 }
1649
1650 if (instr->ctx.data.force_8bit)
1651 marvell_nfc_force_byte_access(chip, false);
1652
1653 return ret;
1654}
1655
1656static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1657 const struct nand_subop *subop)
1658{
1659 struct marvell_nfc_op nfc_op;
1660 bool reading;
1661 int ret;
1662
1663 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1664 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1665
1666 ret = marvell_nfc_prepare_cmd(chip);
1667 if (ret)
1668 return ret;
1669
1670 marvell_nfc_send_cmd(chip, &nfc_op);
1671 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1672 "RDDREQ/WRDREQ while draining raw data");
1673 if (ret)
1674 return ret;
1675
1676 cond_delay(nfc_op.cle_ale_delay_ns);
1677
1678 if (reading) {
1679 if (nfc_op.rdy_timeout_ms) {
1680 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1681 if (ret)
1682 return ret;
1683 }
1684
1685 cond_delay(nfc_op.rdy_delay_ns);
1686 }
1687
1688 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1689 ret = marvell_nfc_wait_cmdd(chip);
1690 if (ret)
1691 return ret;
1692
1693 cond_delay(nfc_op.data_delay_ns);
1694
1695 if (!reading) {
1696 if (nfc_op.rdy_timeout_ms) {
1697 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1698 if (ret)
1699 return ret;
1700 }
1701
1702 cond_delay(nfc_op.rdy_delay_ns);
1703 }
1704
1705 /*
1706 * NDCR ND_RUN bit should be cleared automatically at the end of each
1707 * operation but experience shows that the behavior is buggy when it
1708 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1709 */
1710 if (!reading) {
1711 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1712
1713 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1714 nfc->regs + NDCR);
1715 }
1716
1717 return 0;
1718}
1719
1720static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1721 const struct nand_subop *subop)
1722{
1723 struct marvell_nfc_op nfc_op;
1724 int ret;
1725
1726 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1727
1728 /*
1729 * Naked access are different in that they need to be flagged as naked
1730 * by the controller. Reset the controller registers fields that inform
1731 * on the type and refill them according to the ongoing operation.
1732 */
1733 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1734 NDCB0_CMD_XTYPE(XTYPE_MASK));
1735 switch (subop->instrs[0].type) {
1736 case NAND_OP_CMD_INSTR:
1737 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1738 break;
1739 case NAND_OP_ADDR_INSTR:
1740 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1741 break;
1742 case NAND_OP_DATA_IN_INSTR:
1743 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1744 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1745 break;
1746 case NAND_OP_DATA_OUT_INSTR:
1747 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1748 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1749 break;
1750 default:
1751 /* This should never happen */
1752 break;
1753 }
1754
1755 ret = marvell_nfc_prepare_cmd(chip);
1756 if (ret)
1757 return ret;
1758
1759 marvell_nfc_send_cmd(chip, &nfc_op);
1760
1761 if (!nfc_op.data_instr) {
1762 ret = marvell_nfc_wait_cmdd(chip);
1763 cond_delay(nfc_op.cle_ale_delay_ns);
1764 return ret;
1765 }
1766
1767 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1768 "RDDREQ/WRDREQ while draining raw data");
1769 if (ret)
1770 return ret;
1771
1772 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1773 ret = marvell_nfc_wait_cmdd(chip);
1774 if (ret)
1775 return ret;
1776
1777 /*
1778 * NDCR ND_RUN bit should be cleared automatically at the end of each
1779 * operation but experience shows that the behavior is buggy when it
1780 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1781 */
1782 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1783 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1784
1785 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1786 nfc->regs + NDCR);
1787 }
1788
1789 return 0;
1790}
1791
1792static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1793 const struct nand_subop *subop)
1794{
1795 struct marvell_nfc_op nfc_op;
1796 int ret;
1797
1798 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1799
1800 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1801 cond_delay(nfc_op.rdy_delay_ns);
1802
1803 return ret;
1804}
1805
1806static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1807 const struct nand_subop *subop)
1808{
1809 struct marvell_nfc_op nfc_op;
1810 int ret;
1811
1812 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1813 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1814 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1815
1816 ret = marvell_nfc_prepare_cmd(chip);
1817 if (ret)
1818 return ret;
1819
1820 marvell_nfc_send_cmd(chip, &nfc_op);
1821 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1822 "RDDREQ while reading ID");
1823 if (ret)
1824 return ret;
1825
1826 cond_delay(nfc_op.cle_ale_delay_ns);
1827
1828 if (nfc_op.rdy_timeout_ms) {
1829 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1830 if (ret)
1831 return ret;
1832 }
1833
1834 cond_delay(nfc_op.rdy_delay_ns);
1835
1836 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1837 ret = marvell_nfc_wait_cmdd(chip);
1838 if (ret)
1839 return ret;
1840
1841 cond_delay(nfc_op.data_delay_ns);
1842
1843 return 0;
1844}
1845
1846static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1847 const struct nand_subop *subop)
1848{
1849 struct marvell_nfc_op nfc_op;
1850 int ret;
1851
1852 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1853 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1854 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1855
1856 ret = marvell_nfc_prepare_cmd(chip);
1857 if (ret)
1858 return ret;
1859
1860 marvell_nfc_send_cmd(chip, &nfc_op);
1861 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1862 "RDDREQ while reading status");
1863 if (ret)
1864 return ret;
1865
1866 cond_delay(nfc_op.cle_ale_delay_ns);
1867
1868 if (nfc_op.rdy_timeout_ms) {
1869 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1870 if (ret)
1871 return ret;
1872 }
1873
1874 cond_delay(nfc_op.rdy_delay_ns);
1875
1876 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1877 ret = marvell_nfc_wait_cmdd(chip);
1878 if (ret)
1879 return ret;
1880
1881 cond_delay(nfc_op.data_delay_ns);
1882
1883 return 0;
1884}
1885
1886static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1887 const struct nand_subop *subop)
1888{
1889 struct marvell_nfc_op nfc_op;
1890 int ret;
1891
1892 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1893 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1894
1895 ret = marvell_nfc_prepare_cmd(chip);
1896 if (ret)
1897 return ret;
1898
1899 marvell_nfc_send_cmd(chip, &nfc_op);
1900 ret = marvell_nfc_wait_cmdd(chip);
1901 if (ret)
1902 return ret;
1903
1904 cond_delay(nfc_op.cle_ale_delay_ns);
1905
1906 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1907 if (ret)
1908 return ret;
1909
1910 cond_delay(nfc_op.rdy_delay_ns);
1911
1912 return 0;
1913}
1914
1915static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1916 const struct nand_subop *subop)
1917{
1918 struct marvell_nfc_op nfc_op;
1919 int ret;
1920
1921 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1922 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1923
1924 ret = marvell_nfc_prepare_cmd(chip);
1925 if (ret)
1926 return ret;
1927
1928 marvell_nfc_send_cmd(chip, &nfc_op);
1929 ret = marvell_nfc_wait_cmdd(chip);
1930 if (ret)
1931 return ret;
1932
1933 cond_delay(nfc_op.cle_ale_delay_ns);
1934
1935 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1936 if (ret)
1937 return ret;
1938
1939 cond_delay(nfc_op.rdy_delay_ns);
1940
1941 return 0;
1942}
1943
1944static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1945 /* Monolithic reads/writes */
1946 NAND_OP_PARSER_PATTERN(
1947 marvell_nfc_monolithic_access_exec,
1948 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1949 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1950 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1951 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1952 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1953 NAND_OP_PARSER_PATTERN(
1954 marvell_nfc_monolithic_access_exec,
1955 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1956 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1957 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1958 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1959 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1960 /* Naked commands */
1961 NAND_OP_PARSER_PATTERN(
1962 marvell_nfc_naked_access_exec,
1963 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1964 NAND_OP_PARSER_PATTERN(
1965 marvell_nfc_naked_access_exec,
1966 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1967 NAND_OP_PARSER_PATTERN(
1968 marvell_nfc_naked_access_exec,
1969 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1970 NAND_OP_PARSER_PATTERN(
1971 marvell_nfc_naked_access_exec,
1972 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1973 NAND_OP_PARSER_PATTERN(
1974 marvell_nfc_naked_waitrdy_exec,
1975 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1976 );
1977
1978static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1979 /* Naked commands not supported, use a function for each pattern */
1980 NAND_OP_PARSER_PATTERN(
1981 marvell_nfc_read_id_type_exec,
1982 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1983 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1984 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1985 NAND_OP_PARSER_PATTERN(
1986 marvell_nfc_erase_cmd_type_exec,
1987 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1988 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1989 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1990 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1991 NAND_OP_PARSER_PATTERN(
1992 marvell_nfc_read_status_exec,
1993 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1994 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1995 NAND_OP_PARSER_PATTERN(
1996 marvell_nfc_reset_cmd_type_exec,
1997 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1998 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1999 NAND_OP_PARSER_PATTERN(
2000 marvell_nfc_naked_waitrdy_exec,
2001 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2002 );
2003
2004static int marvell_nfc_exec_op(struct nand_chip *chip,
2005 const struct nand_operation *op,
2006 bool check_only)
2007{
2008 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2009
2010 if (nfc->caps->is_nfcv2)
2011 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2012 op, check_only);
2013 else
2014 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2015 op, check_only);
2016}
2017
2018/*
2019 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2020 * usable.
2021 */
2022static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2023 struct mtd_oob_region *oobregion)
2024{
2025 struct nand_chip *chip = mtd_to_nand(mtd);
2026 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2027
2028 if (section)
2029 return -ERANGE;
2030
2031 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2032 lt->last_ecc_bytes;
2033 oobregion->offset = mtd->oobsize - oobregion->length;
2034
2035 return 0;
2036}
2037
2038static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2039 struct mtd_oob_region *oobregion)
2040{
2041 struct nand_chip *chip = mtd_to_nand(mtd);
2042 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2043
2044 if (section)
2045 return -ERANGE;
2046
2047 /*
2048 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2049 * 4KB page / 4bit BCH combination.
2050 */
2051 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2052 oobregion->offset = 6;
2053 else
2054 oobregion->offset = 2;
2055
2056 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2057 lt->last_spare_bytes - oobregion->offset;
2058
2059 return 0;
2060}
2061
2062static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2063 .ecc = marvell_nand_ooblayout_ecc,
2064 .free = marvell_nand_ooblayout_free,
2065};
2066
2067static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2068 struct nand_ecc_ctrl *ecc)
2069{
2070 struct nand_chip *chip = mtd_to_nand(mtd);
2071 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2072 const struct marvell_hw_ecc_layout *l;
2073 int i;
2074
2075 if (!nfc->caps->is_nfcv2 &&
2076 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2077 dev_err(nfc->dev,
2078 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2079 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2080 return -ENOTSUPP;
2081 }
2082
2083 to_marvell_nand(chip)->layout = NULL;
2084 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2085 l = &marvell_nfc_layouts[i];
2086 if (mtd->writesize == l->writesize &&
2087 ecc->size == l->chunk && ecc->strength == l->strength) {
2088 to_marvell_nand(chip)->layout = l;
2089 break;
2090 }
2091 }
2092
2093 if (!to_marvell_nand(chip)->layout ||
2094 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2095 dev_err(nfc->dev,
2096 "ECC strength %d at page size %d is not supported\n",
2097 ecc->strength, mtd->writesize);
2098 return -ENOTSUPP;
2099 }
2100
2101 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2102 ecc->steps = l->nchunks;
2103 ecc->size = l->data_bytes;
2104
2105 if (ecc->strength == 1) {
2106 chip->ecc.algo = NAND_ECC_HAMMING;
2107 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2108 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2109 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2110 ecc->read_oob = ecc->read_oob_raw;
2111 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2112 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2113 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2114 ecc->write_oob = ecc->write_oob_raw;
2115 } else {
2116 chip->ecc.algo = NAND_ECC_BCH;
2117 ecc->strength = 16;
2118 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2119 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2120 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2121 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2122 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2123 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2124 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2125 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2126 }
2127
2128 return 0;
2129}
2130
2131static int marvell_nand_ecc_init(struct mtd_info *mtd,
2132 struct nand_ecc_ctrl *ecc)
2133{
2134 struct nand_chip *chip = mtd_to_nand(mtd);
2135 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2136 int ret;
2137
2138 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2139 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2140 ecc->size = chip->ecc_step_ds;
2141 ecc->strength = chip->ecc_strength_ds;
2142 } else {
2143 dev_info(nfc->dev,
2144 "No minimum ECC strength, using 1b/512B\n");
2145 ecc->size = 512;
2146 ecc->strength = 1;
2147 }
2148 }
2149
2150 switch (ecc->mode) {
2151 case NAND_ECC_HW:
2152 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2153 if (ret)
2154 return ret;
2155 break;
2156 case NAND_ECC_NONE:
2157 case NAND_ECC_SOFT:
2158 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2159 mtd->writesize != SZ_2K) {
2160 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2161 mtd->writesize);
2162 return -EINVAL;
2163 }
2164 break;
2165 default:
2166 return -EINVAL;
2167 }
2168
2169 return 0;
2170}
2171
2172static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2173static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2174
2175static struct nand_bbt_descr bbt_main_descr = {
2176 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2177 NAND_BBT_2BIT | NAND_BBT_VERSION,
2178 .offs = 8,
2179 .len = 6,
2180 .veroffs = 14,
2181 .maxblocks = 8, /* Last 8 blocks in each chip */
2182 .pattern = bbt_pattern
2183};
2184
2185static struct nand_bbt_descr bbt_mirror_descr = {
2186 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2187 NAND_BBT_2BIT | NAND_BBT_VERSION,
2188 .offs = 8,
2189 .len = 6,
2190 .veroffs = 14,
2191 .maxblocks = 8, /* Last 8 blocks in each chip */
2192 .pattern = bbt_mirror_pattern
2193};
2194
2195static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2196 const struct nand_data_interface
2197 *conf)
2198{
2199 struct nand_chip *chip = mtd_to_nand(mtd);
2200 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2201 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002202 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002203 const struct nand_sdr_timings *sdr;
2204 struct marvell_nfc_timings nfc_tmg;
2205 int read_delay;
2206
2207 sdr = nand_get_sdr_timings(conf);
2208 if (IS_ERR(sdr))
2209 return PTR_ERR(sdr);
2210
2211 /*
2212 * SDR timings are given in pico-seconds while NFC timings must be
2213 * expressed in NAND controller clock cycles, which is half of the
2214 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2215 * This is not written anywhere in the datasheet but was observed
2216 * with an oscilloscope.
2217 *
2218 * NFC datasheet gives equations from which thoses calculations
2219 * are derived, they tend to be slightly more restrictives than the
2220 * given core timings and may improve the overall speed.
2221 */
2222 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2223 nfc_tmg.tRH = nfc_tmg.tRP;
2224 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2225 nfc_tmg.tWH = nfc_tmg.tWP;
2226 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2227 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2228 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2229 /*
2230 * Read delay is the time of propagation from SoC pins to NFC internal
2231 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2232 * EDO mode, an additional delay of tRH must be taken into account so
2233 * the data is sampled on the falling edge instead of the rising edge.
2234 */
2235 read_delay = sdr->tRC_min >= 30000 ?
2236 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2237
2238 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2239 /*
2240 * tWHR and tRHW are supposed to be read to write delays (and vice
2241 * versa) but in some cases, ie. when doing a change column, they must
2242 * be greater than that to be sure tCCS delay is respected.
2243 */
2244 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2245 period_ns) - 2,
2246 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2247 period_ns);
2248
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002249 /*
2250 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2251 * NFCv1: No WAIT_MODE, tR must be maximal.
2252 */
2253 if (nfc->caps->is_nfcv2) {
2254 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2255 } else {
2256 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2257 period_ns);
2258 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2259 nfc_tmg.tR = nfc_tmg.tCH - 3;
2260 else
2261 nfc_tmg.tR = 0;
2262 }
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002263
2264 if (chipnr < 0)
2265 return 0;
2266
2267 marvell_nand->ndtr0 =
2268 NDTR0_TRP(nfc_tmg.tRP) |
2269 NDTR0_TRH(nfc_tmg.tRH) |
2270 NDTR0_ETRP(nfc_tmg.tRP) |
2271 NDTR0_TWP(nfc_tmg.tWP) |
2272 NDTR0_TWH(nfc_tmg.tWH) |
2273 NDTR0_TCS(nfc_tmg.tCS) |
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002274 NDTR0_TCH(nfc_tmg.tCH);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002275
2276 marvell_nand->ndtr1 =
2277 NDTR1_TAR(nfc_tmg.tAR) |
2278 NDTR1_TWHR(nfc_tmg.tWHR) |
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002279 NDTR1_TR(nfc_tmg.tR);
2280
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002281 if (nfc->caps->is_nfcv2) {
2282 marvell_nand->ndtr0 |=
2283 NDTR0_RD_CNT_DEL(read_delay) |
2284 NDTR0_SELCNTR |
2285 NDTR0_TADL(nfc_tmg.tADL);
2286
2287 marvell_nand->ndtr1 |=
2288 NDTR1_TRHW(nfc_tmg.tRHW) |
2289 NDTR1_WAIT_MODE;
2290 }
2291
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002292 return 0;
2293}
2294
2295static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2296 struct device_node *np)
2297{
2298 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2299 struct marvell_nand_chip *marvell_nand;
2300 struct mtd_info *mtd;
2301 struct nand_chip *chip;
2302 int nsels, ret, i;
2303 u32 cs, rb;
2304
2305 /*
2306 * The legacy "num-cs" property indicates the number of CS on the only
2307 * chip connected to the controller (legacy bindings does not support
Miquel Raynalf6997be2018-04-25 16:16:32 +02002308 * more than one chip). The CS and RB pins are always the #0.
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002309 *
2310 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2311 * properties must be filled. For each chip, expressed as a subnode,
2312 * "reg" points to the CS lines and "nand-rb" to the RB line.
2313 */
Miquel Raynalf6997be2018-04-25 16:16:32 +02002314 if (pdata || nfc->caps->legacy_of_bindings) {
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002315 nsels = 1;
Miquel Raynalf6997be2018-04-25 16:16:32 +02002316 } else {
2317 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2318 if (nsels <= 0) {
2319 dev_err(dev, "missing/invalid reg property\n");
2320 return -EINVAL;
2321 }
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002322 }
2323
2324 /* Alloc the nand chip structure */
2325 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2326 (nsels *
2327 sizeof(struct marvell_nand_chip_sel)),
2328 GFP_KERNEL);
2329 if (!marvell_nand) {
2330 dev_err(dev, "could not allocate chip structure\n");
2331 return -ENOMEM;
2332 }
2333
2334 marvell_nand->nsels = nsels;
2335 marvell_nand->selected_die = -1;
2336
2337 for (i = 0; i < nsels; i++) {
2338 if (pdata || nfc->caps->legacy_of_bindings) {
2339 /*
2340 * Legacy bindings use the CS lines in natural
2341 * order (0, 1, ...)
2342 */
2343 cs = i;
2344 } else {
2345 /* Retrieve CS id */
2346 ret = of_property_read_u32_index(np, "reg", i, &cs);
2347 if (ret) {
2348 dev_err(dev, "could not retrieve reg property: %d\n",
2349 ret);
2350 return ret;
2351 }
2352 }
2353
2354 if (cs >= nfc->caps->max_cs_nb) {
2355 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2356 cs, nfc->caps->max_cs_nb);
2357 return -EINVAL;
2358 }
2359
2360 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2361 dev_err(dev, "CS %d already assigned\n", cs);
2362 return -EINVAL;
2363 }
2364
2365 /*
2366 * The cs variable represents the chip select id, which must be
2367 * converted in bit fields for NDCB0 and NDCB2 to select the
2368 * right chip. Unfortunately, due to a lack of information on
2369 * the subject and incoherent documentation, the user should not
2370 * use CS1 and CS3 at all as asserting them is not supported in
2371 * a reliable way (due to multiplexing inside ADDR5 field).
2372 */
2373 marvell_nand->sels[i].cs = cs;
2374 switch (cs) {
2375 case 0:
2376 case 2:
2377 marvell_nand->sels[i].ndcb0_csel = 0;
2378 break;
2379 case 1:
2380 case 3:
2381 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2382 break;
2383 default:
2384 return -EINVAL;
2385 }
2386
2387 /* Retrieve RB id */
2388 if (pdata || nfc->caps->legacy_of_bindings) {
2389 /* Legacy bindings always use RB #0 */
2390 rb = 0;
2391 } else {
2392 ret = of_property_read_u32_index(np, "nand-rb", i,
2393 &rb);
2394 if (ret) {
2395 dev_err(dev,
2396 "could not retrieve RB property: %d\n",
2397 ret);
2398 return ret;
2399 }
2400 }
2401
2402 if (rb >= nfc->caps->max_rb_nb) {
2403 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2404 rb, nfc->caps->max_rb_nb);
2405 return -EINVAL;
2406 }
2407
2408 marvell_nand->sels[i].rb = rb;
2409 }
2410
2411 chip = &marvell_nand->chip;
2412 chip->controller = &nfc->controller;
2413 nand_set_flash_node(chip, np);
2414
2415 chip->exec_op = marvell_nfc_exec_op;
2416 chip->select_chip = marvell_nfc_select_chip;
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002417 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002418 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2419
2420 mtd = nand_to_mtd(chip);
2421 mtd->dev.parent = dev;
2422
2423 /*
2424 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2425 * in the DT node, this entry will be overwritten in nand_scan_ident().
2426 */
2427 chip->ecc.mode = NAND_ECC_HW;
2428
2429 /*
2430 * Save a reference value for timing registers before
2431 * ->setup_data_interface() is called.
2432 */
2433 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2434 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2435
2436 chip->options |= NAND_BUSWIDTH_AUTO;
2437 ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2438 if (ret) {
2439 dev_err(dev, "could not identify the nand chip\n");
2440 return ret;
2441 }
2442
2443 if (pdata && pdata->flash_bbt)
2444 chip->bbt_options |= NAND_BBT_USE_FLASH;
2445
2446 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2447 /*
2448 * We'll use a bad block table stored in-flash and don't
2449 * allow writing the bad block marker to the flash.
2450 */
2451 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2452 chip->bbt_td = &bbt_main_descr;
2453 chip->bbt_md = &bbt_mirror_descr;
2454 }
2455
2456 /* Save the chip-specific fields of NDCR */
2457 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2458 if (chip->options & NAND_BUSWIDTH_16)
2459 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2460
2461 /*
2462 * On small page NANDs, only one cycle is needed to pass the
2463 * column address.
2464 */
2465 if (mtd->writesize <= 512) {
2466 marvell_nand->addr_cyc = 1;
2467 } else {
2468 marvell_nand->addr_cyc = 2;
2469 marvell_nand->ndcr |= NDCR_RA_START;
2470 }
2471
2472 /*
2473 * Now add the number of cycles needed to pass the row
2474 * address.
2475 *
2476 * Addressing a chip using CS 2 or 3 should also need the third row
2477 * cycle but due to inconsistance in the documentation and lack of
2478 * hardware to test this situation, this case is not supported.
2479 */
2480 if (chip->options & NAND_ROW_ADDR_3)
2481 marvell_nand->addr_cyc += 3;
2482 else
2483 marvell_nand->addr_cyc += 2;
2484
2485 if (pdata) {
2486 chip->ecc.size = pdata->ecc_step_size;
2487 chip->ecc.strength = pdata->ecc_strength;
2488 }
2489
2490 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2491 if (ret) {
2492 dev_err(dev, "ECC init failed: %d\n", ret);
2493 return ret;
2494 }
2495
2496 if (chip->ecc.mode == NAND_ECC_HW) {
2497 /*
2498 * Subpage write not available with hardware ECC, prohibit also
2499 * subpage read as in userspace subpage access would still be
2500 * allowed and subpage write, if used, would lead to numerous
2501 * uncorrectable ECC errors.
2502 */
2503 chip->options |= NAND_NO_SUBPAGE_WRITE;
2504 }
2505
2506 if (pdata || nfc->caps->legacy_of_bindings) {
2507 /*
2508 * We keep the MTD name unchanged to avoid breaking platforms
2509 * where the MTD cmdline parser is used and the bootloader
2510 * has not been updated to use the new naming scheme.
2511 */
2512 mtd->name = "pxa3xx_nand-0";
2513 } else if (!mtd->name) {
2514 /*
2515 * If the new bindings are used and the bootloader has not been
2516 * updated to pass a new mtdparts parameter on the cmdline, you
2517 * should define the following property in your NAND node, ie:
2518 *
2519 * label = "main-storage";
2520 *
2521 * This way, mtd->name will be set by the core when
2522 * nand_set_flash_node() is called.
2523 */
2524 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2525 "%s:nand.%d", dev_name(nfc->dev),
2526 marvell_nand->sels[0].cs);
2527 if (!mtd->name) {
2528 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2529 return -ENOMEM;
2530 }
2531 }
2532
2533 ret = nand_scan_tail(mtd);
2534 if (ret) {
2535 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2536 return ret;
2537 }
2538
2539 if (pdata)
2540 /* Legacy bindings support only one chip */
Miquel Raynal75765942018-02-19 23:35:54 +01002541 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002542 else
2543 ret = mtd_device_register(mtd, NULL, 0);
2544 if (ret) {
2545 dev_err(dev, "failed to register mtd device: %d\n", ret);
2546 nand_release(mtd);
2547 return ret;
2548 }
2549
2550 list_add_tail(&marvell_nand->node, &nfc->chips);
2551
2552 return 0;
2553}
2554
2555static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2556{
2557 struct device_node *np = dev->of_node;
2558 struct device_node *nand_np;
2559 int max_cs = nfc->caps->max_cs_nb;
2560 int nchips;
2561 int ret;
2562
2563 if (!np)
2564 nchips = 1;
2565 else
2566 nchips = of_get_child_count(np);
2567
2568 if (nchips > max_cs) {
2569 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2570 max_cs);
2571 return -EINVAL;
2572 }
2573
2574 /*
2575 * Legacy bindings do not use child nodes to exhibit NAND chip
2576 * properties and layout. Instead, NAND properties are mixed with the
2577 * controller ones, and partitions are defined as direct subnodes of the
2578 * NAND controller node.
2579 */
2580 if (nfc->caps->legacy_of_bindings) {
2581 ret = marvell_nand_chip_init(dev, nfc, np);
2582 return ret;
2583 }
2584
2585 for_each_child_of_node(np, nand_np) {
2586 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2587 if (ret) {
2588 of_node_put(nand_np);
2589 return ret;
2590 }
2591 }
2592
2593 return 0;
2594}
2595
2596static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2597{
2598 struct marvell_nand_chip *entry, *temp;
2599
2600 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2601 nand_release(nand_to_mtd(&entry->chip));
2602 list_del(&entry->node);
2603 }
2604}
2605
2606static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2607{
2608 struct platform_device *pdev = container_of(nfc->dev,
2609 struct platform_device,
2610 dev);
2611 struct dma_slave_config config = {};
2612 struct resource *r;
2613 dma_cap_mask_t mask;
2614 struct pxad_param param;
2615 int ret;
2616
2617 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2618 dev_warn(nfc->dev,
2619 "DMA not enabled in configuration\n");
2620 return -ENOTSUPP;
2621 }
2622
2623 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2624 if (ret)
2625 return ret;
2626
2627 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2628 if (!r) {
2629 dev_err(nfc->dev, "No resource defined for data DMA\n");
2630 return -ENXIO;
2631 }
2632
2633 param.drcmr = r->start;
2634 param.prio = PXAD_PRIO_LOWEST;
2635 dma_cap_zero(mask);
2636 dma_cap_set(DMA_SLAVE, mask);
2637 nfc->dma_chan =
2638 dma_request_slave_channel_compat(mask, pxad_filter_fn,
2639 &param, nfc->dev,
2640 "data");
2641 if (!nfc->dma_chan) {
2642 dev_err(nfc->dev,
2643 "Unable to request data DMA channel\n");
2644 return -ENODEV;
2645 }
2646
2647 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2648 if (!r)
2649 return -ENXIO;
2650
2651 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2652 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2653 config.src_addr = r->start + NDDB;
2654 config.dst_addr = r->start + NDDB;
2655 config.src_maxburst = 32;
2656 config.dst_maxburst = 32;
2657 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2658 if (ret < 0) {
2659 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2660 return ret;
2661 }
2662
2663 /*
2664 * DMA must act on length multiple of 32 and this length may be
2665 * bigger than the destination buffer. Use this buffer instead
2666 * for DMA transfers and then copy the desired amount of data to
2667 * the provided buffer.
2668 */
Miquel Raynalc495a922018-01-19 18:39:01 +01002669 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002670 if (!nfc->dma_buf)
2671 return -ENOMEM;
2672
2673 nfc->use_dma = true;
2674
2675 return 0;
2676}
2677
2678static int marvell_nfc_init(struct marvell_nfc *nfc)
2679{
2680 struct device_node *np = nfc->dev->of_node;
2681
2682 /*
2683 * Some SoCs like A7k/A8k need to enable manually the NAND
2684 * controller, gated clocks and reset bits to avoid being bootloader
2685 * dependent. This is done through the use of the System Functions
2686 * registers.
2687 */
2688 if (nfc->caps->need_system_controller) {
2689 struct regmap *sysctrl_base =
2690 syscon_regmap_lookup_by_phandle(np,
2691 "marvell,system-controller");
2692 u32 reg;
2693
2694 if (IS_ERR(sysctrl_base))
2695 return PTR_ERR(sysctrl_base);
2696
2697 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2698 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2699 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2700 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2701 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2702
2703 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2704 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2705 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2706
2707 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2708 reg |= GENCONF_ND_CLK_CTRL_EN;
2709 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2710 }
2711
2712 /* Configure the DMA if appropriate */
2713 if (!nfc->caps->is_nfcv2)
2714 marvell_nfc_init_dma(nfc);
2715
2716 /*
2717 * ECC operations and interruptions are only enabled when specifically
2718 * needed. ECC shall not be activated in the early stages (fails probe).
2719 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2720 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2721 * offset in the read page and this will fail the protection.
2722 */
2723 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2724 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2725 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2726 writel_relaxed(0, nfc->regs + NDECCCTRL);
2727
2728 return 0;
2729}
2730
2731static int marvell_nfc_probe(struct platform_device *pdev)
2732{
2733 struct device *dev = &pdev->dev;
2734 struct resource *r;
2735 struct marvell_nfc *nfc;
2736 int ret;
2737 int irq;
2738
2739 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2740 GFP_KERNEL);
2741 if (!nfc)
2742 return -ENOMEM;
2743
2744 nfc->dev = dev;
2745 nand_hw_control_init(&nfc->controller);
2746 INIT_LIST_HEAD(&nfc->chips);
2747
2748 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2749 nfc->regs = devm_ioremap_resource(dev, r);
2750 if (IS_ERR(nfc->regs))
2751 return PTR_ERR(nfc->regs);
2752
2753 irq = platform_get_irq(pdev, 0);
2754 if (irq < 0) {
2755 dev_err(dev, "failed to retrieve irq\n");
2756 return irq;
2757 }
2758
Boris Brezillon6b6de652018-03-26 11:53:01 +02002759 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002760
2761 /* Managed the legacy case (when the first clock was not named) */
Boris Brezillon6b6de652018-03-26 11:53:01 +02002762 if (nfc->core_clk == ERR_PTR(-ENOENT))
2763 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002764
Boris Brezillon6b6de652018-03-26 11:53:01 +02002765 if (IS_ERR(nfc->core_clk))
2766 return PTR_ERR(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002767
Boris Brezillon6b6de652018-03-26 11:53:01 +02002768 ret = clk_prepare_enable(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002769 if (ret)
2770 return ret;
2771
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002772 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2773 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2774 if (!IS_ERR(nfc->reg_clk)) {
2775 ret = clk_prepare_enable(nfc->reg_clk);
2776 if (ret)
Boris Brezillon6b6de652018-03-26 11:53:01 +02002777 goto unprepare_core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002778 } else {
2779 ret = PTR_ERR(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002780 goto unprepare_core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002781 }
2782 }
2783
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002784 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2785 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2786 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2787 0, "marvell-nfc", nfc);
2788 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002789 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002790
2791 /* Get NAND controller capabilities */
2792 if (pdev->id_entry)
2793 nfc->caps = (void *)pdev->id_entry->driver_data;
2794 else
2795 nfc->caps = of_device_get_match_data(&pdev->dev);
2796
2797 if (!nfc->caps) {
2798 dev_err(dev, "Could not retrieve NFC caps\n");
2799 ret = -EINVAL;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002800 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002801 }
2802
2803 /* Init the controller and then probe the chips */
2804 ret = marvell_nfc_init(nfc);
2805 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002806 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002807
2808 platform_set_drvdata(pdev, nfc);
2809
2810 ret = marvell_nand_chips_init(dev, nfc);
2811 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002812 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002813
2814 return 0;
2815
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002816unprepare_reg_clk:
2817 clk_disable_unprepare(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002818unprepare_core_clk:
2819 clk_disable_unprepare(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002820
2821 return ret;
2822}
2823
2824static int marvell_nfc_remove(struct platform_device *pdev)
2825{
2826 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2827
2828 marvell_nand_chips_cleanup(nfc);
2829
2830 if (nfc->use_dma) {
2831 dmaengine_terminate_all(nfc->dma_chan);
2832 dma_release_channel(nfc->dma_chan);
2833 }
2834
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002835 clk_disable_unprepare(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002836 clk_disable_unprepare(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002837
2838 return 0;
2839}
2840
2841static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2842 .max_cs_nb = 4,
2843 .max_rb_nb = 2,
2844 .need_system_controller = true,
2845 .is_nfcv2 = true,
2846};
2847
2848static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2849 .max_cs_nb = 4,
2850 .max_rb_nb = 2,
2851 .is_nfcv2 = true,
2852};
2853
2854static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2855 .max_cs_nb = 2,
2856 .max_rb_nb = 1,
2857 .use_dma = true,
2858};
2859
2860static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2861 .max_cs_nb = 4,
2862 .max_rb_nb = 2,
2863 .need_system_controller = true,
2864 .legacy_of_bindings = true,
2865 .is_nfcv2 = true,
2866};
2867
2868static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2869 .max_cs_nb = 4,
2870 .max_rb_nb = 2,
2871 .legacy_of_bindings = true,
2872 .is_nfcv2 = true,
2873};
2874
2875static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2876 .max_cs_nb = 2,
2877 .max_rb_nb = 1,
2878 .legacy_of_bindings = true,
2879 .use_dma = true,
2880};
2881
2882static const struct platform_device_id marvell_nfc_platform_ids[] = {
2883 {
2884 .name = "pxa3xx-nand",
2885 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2886 },
2887 { /* sentinel */ },
2888};
2889MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2890
2891static const struct of_device_id marvell_nfc_of_ids[] = {
2892 {
2893 .compatible = "marvell,armada-8k-nand-controller",
2894 .data = &marvell_armada_8k_nfc_caps,
2895 },
2896 {
2897 .compatible = "marvell,armada370-nand-controller",
2898 .data = &marvell_armada370_nfc_caps,
2899 },
2900 {
2901 .compatible = "marvell,pxa3xx-nand-controller",
2902 .data = &marvell_pxa3xx_nfc_caps,
2903 },
2904 /* Support for old/deprecated bindings: */
2905 {
2906 .compatible = "marvell,armada-8k-nand",
2907 .data = &marvell_armada_8k_nfc_legacy_caps,
2908 },
2909 {
2910 .compatible = "marvell,armada370-nand",
2911 .data = &marvell_armada370_nfc_legacy_caps,
2912 },
2913 {
2914 .compatible = "marvell,pxa3xx-nand",
2915 .data = &marvell_pxa3xx_nfc_legacy_caps,
2916 },
2917 { /* sentinel */ },
2918};
2919MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2920
2921static struct platform_driver marvell_nfc_driver = {
2922 .driver = {
2923 .name = "marvell-nfc",
2924 .of_match_table = marvell_nfc_of_ids,
2925 },
2926 .id_table = marvell_nfc_platform_ids,
2927 .probe = marvell_nfc_probe,
2928 .remove = marvell_nfc_remove,
2929};
2930module_platform_driver(marvell_nfc_driver);
2931
2932MODULE_LICENSE("GPL");
2933MODULE_DESCRIPTION("Marvell NAND controller driver");