blob: a07f6451694ae3ff25b65fa02ddd5f78e1caec05 [file] [log] [blame]
Simon Arlott75fabc32012-09-10 23:26:15 -06001/*
Eric Anholt41691b82015-10-08 18:37:24 -07002 * Copyright (C) 2010,2015 Broadcom
Simon Arlott75fabc32012-09-10 23:26:15 -06003 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
Simon Arlott75fabc32012-09-10 23:26:15 -060015 */
16
Eric Anholt41691b82015-10-08 18:37:24 -070017/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
Simon Arlott75fabc32012-09-10 23:26:15 -060037#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
Eric Anholt9e400c52016-06-01 12:05:35 -070039#include <linux/clk.h>
Martin Sperl96bf9c62016-02-29 14:20:15 +000040#include <linux/debugfs.h>
Eric Anholt3f919582017-01-18 07:31:57 +110041#include <linux/delay.h>
Eric Anholt41691b82015-10-08 18:37:24 -070042#include <linux/module.h>
Stephen Warren526d2392012-12-24 21:55:01 -070043#include <linux/of.h>
Eric Anholt41691b82015-10-08 18:37:24 -070044#include <linux/platform_device.h>
45#include <linux/slab.h>
46#include <dt-bindings/clock/bcm2835.h>
47
48#define CM_PASSWORD 0x5a000000
49
50#define CM_GNRICCTL 0x000
51#define CM_GNRICDIV 0x004
52# define CM_DIV_FRAC_BITS 12
Martin Sperl959ca922016-02-29 11:39:21 +000053# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
Eric Anholt41691b82015-10-08 18:37:24 -070054
55#define CM_VPUCTL 0x008
56#define CM_VPUDIV 0x00c
57#define CM_SYSCTL 0x010
58#define CM_SYSDIV 0x014
59#define CM_PERIACTL 0x018
60#define CM_PERIADIV 0x01c
61#define CM_PERIICTL 0x020
62#define CM_PERIIDIV 0x024
63#define CM_H264CTL 0x028
64#define CM_H264DIV 0x02c
65#define CM_ISPCTL 0x030
66#define CM_ISPDIV 0x034
67#define CM_V3DCTL 0x038
68#define CM_V3DDIV 0x03c
69#define CM_CAM0CTL 0x040
70#define CM_CAM0DIV 0x044
71#define CM_CAM1CTL 0x048
72#define CM_CAM1DIV 0x04c
73#define CM_CCP2CTL 0x050
74#define CM_CCP2DIV 0x054
75#define CM_DSI0ECTL 0x058
76#define CM_DSI0EDIV 0x05c
77#define CM_DSI0PCTL 0x060
78#define CM_DSI0PDIV 0x064
79#define CM_DPICTL 0x068
80#define CM_DPIDIV 0x06c
81#define CM_GP0CTL 0x070
82#define CM_GP0DIV 0x074
83#define CM_GP1CTL 0x078
84#define CM_GP1DIV 0x07c
85#define CM_GP2CTL 0x080
86#define CM_GP2DIV 0x084
87#define CM_HSMCTL 0x088
88#define CM_HSMDIV 0x08c
89#define CM_OTPCTL 0x090
90#define CM_OTPDIV 0x094
Martin Sperl2103a212015-12-22 20:13:08 +000091#define CM_PCMCTL 0x098
92#define CM_PCMDIV 0x09c
Eric Anholt41691b82015-10-08 18:37:24 -070093#define CM_PWMCTL 0x0a0
94#define CM_PWMDIV 0x0a4
Martin Sperl2103a212015-12-22 20:13:08 +000095#define CM_SLIMCTL 0x0a8
96#define CM_SLIMDIV 0x0ac
Eric Anholt41691b82015-10-08 18:37:24 -070097#define CM_SMICTL 0x0b0
98#define CM_SMIDIV 0x0b4
Martin Sperl2103a212015-12-22 20:13:08 +000099/* no definition for 0x0b8 and 0x0bc */
100#define CM_TCNTCTL 0x0c0
Eric Anholt3f919582017-01-18 07:31:57 +1100101# define CM_TCNT_SRC1_SHIFT 12
102#define CM_TCNTCNT 0x0c4
Martin Sperl2103a212015-12-22 20:13:08 +0000103#define CM_TECCTL 0x0c8
104#define CM_TECDIV 0x0cc
105#define CM_TD0CTL 0x0d0
106#define CM_TD0DIV 0x0d4
107#define CM_TD1CTL 0x0d8
108#define CM_TD1DIV 0x0dc
Eric Anholt41691b82015-10-08 18:37:24 -0700109#define CM_TSENSCTL 0x0e0
110#define CM_TSENSDIV 0x0e4
111#define CM_TIMERCTL 0x0e8
112#define CM_TIMERDIV 0x0ec
113#define CM_UARTCTL 0x0f0
114#define CM_UARTDIV 0x0f4
115#define CM_VECCTL 0x0f8
116#define CM_VECDIV 0x0fc
117#define CM_PULSECTL 0x190
118#define CM_PULSEDIV 0x194
119#define CM_SDCCTL 0x1a8
120#define CM_SDCDIV 0x1ac
121#define CM_ARMCTL 0x1b0
Martin Sperld3d6f152016-02-29 15:43:57 +0000122#define CM_AVEOCTL 0x1b8
123#define CM_AVEODIV 0x1bc
Eric Anholt41691b82015-10-08 18:37:24 -0700124#define CM_EMMCCTL 0x1c0
125#define CM_EMMCDIV 0x1c4
126
127/* General bits for the CM_*CTL regs */
128# define CM_ENABLE BIT(4)
129# define CM_KILL BIT(5)
130# define CM_GATE_BIT 6
131# define CM_GATE BIT(CM_GATE_BIT)
132# define CM_BUSY BIT(7)
133# define CM_BUSYD BIT(8)
Martin Sperl959ca922016-02-29 11:39:21 +0000134# define CM_FRAC BIT(9)
Eric Anholt41691b82015-10-08 18:37:24 -0700135# define CM_SRC_SHIFT 0
136# define CM_SRC_BITS 4
137# define CM_SRC_MASK 0xf
138# define CM_SRC_GND 0
139# define CM_SRC_OSC 1
140# define CM_SRC_TESTDEBUG0 2
141# define CM_SRC_TESTDEBUG1 3
142# define CM_SRC_PLLA_CORE 4
143# define CM_SRC_PLLA_PER 4
144# define CM_SRC_PLLC_CORE0 5
145# define CM_SRC_PLLC_PER 5
146# define CM_SRC_PLLC_CORE1 8
147# define CM_SRC_PLLD_CORE 6
148# define CM_SRC_PLLD_PER 6
149# define CM_SRC_PLLH_AUX 7
150# define CM_SRC_PLLC_CORE1 8
151# define CM_SRC_PLLC_CORE2 9
152
153#define CM_OSCCOUNT 0x100
154
155#define CM_PLLA 0x104
156# define CM_PLL_ANARST BIT(8)
157# define CM_PLLA_HOLDPER BIT(7)
158# define CM_PLLA_LOADPER BIT(6)
159# define CM_PLLA_HOLDCORE BIT(5)
160# define CM_PLLA_LOADCORE BIT(4)
161# define CM_PLLA_HOLDCCP2 BIT(3)
162# define CM_PLLA_LOADCCP2 BIT(2)
163# define CM_PLLA_HOLDDSI0 BIT(1)
164# define CM_PLLA_LOADDSI0 BIT(0)
165
166#define CM_PLLC 0x108
167# define CM_PLLC_HOLDPER BIT(7)
168# define CM_PLLC_LOADPER BIT(6)
169# define CM_PLLC_HOLDCORE2 BIT(5)
170# define CM_PLLC_LOADCORE2 BIT(4)
171# define CM_PLLC_HOLDCORE1 BIT(3)
172# define CM_PLLC_LOADCORE1 BIT(2)
173# define CM_PLLC_HOLDCORE0 BIT(1)
174# define CM_PLLC_LOADCORE0 BIT(0)
175
176#define CM_PLLD 0x10c
177# define CM_PLLD_HOLDPER BIT(7)
178# define CM_PLLD_LOADPER BIT(6)
179# define CM_PLLD_HOLDCORE BIT(5)
180# define CM_PLLD_LOADCORE BIT(4)
181# define CM_PLLD_HOLDDSI1 BIT(3)
182# define CM_PLLD_LOADDSI1 BIT(2)
183# define CM_PLLD_HOLDDSI0 BIT(1)
184# define CM_PLLD_LOADDSI0 BIT(0)
185
186#define CM_PLLH 0x110
187# define CM_PLLH_LOADRCAL BIT(2)
188# define CM_PLLH_LOADAUX BIT(1)
189# define CM_PLLH_LOADPIX BIT(0)
190
191#define CM_LOCK 0x114
192# define CM_LOCK_FLOCKH BIT(12)
193# define CM_LOCK_FLOCKD BIT(11)
194# define CM_LOCK_FLOCKC BIT(10)
195# define CM_LOCK_FLOCKB BIT(9)
196# define CM_LOCK_FLOCKA BIT(8)
197
198#define CM_EVENT 0x118
199#define CM_DSI1ECTL 0x158
200#define CM_DSI1EDIV 0x15c
201#define CM_DSI1PCTL 0x160
202#define CM_DSI1PDIV 0x164
203#define CM_DFTCTL 0x168
204#define CM_DFTDIV 0x16c
205
206#define CM_PLLB 0x170
207# define CM_PLLB_HOLDARM BIT(1)
208# define CM_PLLB_LOADARM BIT(0)
209
210#define A2W_PLLA_CTRL 0x1100
211#define A2W_PLLC_CTRL 0x1120
212#define A2W_PLLD_CTRL 0x1140
213#define A2W_PLLH_CTRL 0x1160
214#define A2W_PLLB_CTRL 0x11e0
215# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
216# define A2W_PLL_CTRL_PWRDN BIT(16)
217# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
218# define A2W_PLL_CTRL_PDIV_SHIFT 12
219# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
220# define A2W_PLL_CTRL_NDIV_SHIFT 0
221
222#define A2W_PLLA_ANA0 0x1010
223#define A2W_PLLC_ANA0 0x1030
224#define A2W_PLLD_ANA0 0x1050
225#define A2W_PLLH_ANA0 0x1070
226#define A2W_PLLB_ANA0 0x10f0
227
228#define A2W_PLL_KA_SHIFT 7
229#define A2W_PLL_KA_MASK GENMASK(9, 7)
230#define A2W_PLL_KI_SHIFT 19
231#define A2W_PLL_KI_MASK GENMASK(21, 19)
232#define A2W_PLL_KP_SHIFT 15
233#define A2W_PLL_KP_MASK GENMASK(18, 15)
234
235#define A2W_PLLH_KA_SHIFT 19
236#define A2W_PLLH_KA_MASK GENMASK(21, 19)
237#define A2W_PLLH_KI_LOW_SHIFT 22
238#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
239#define A2W_PLLH_KI_HIGH_SHIFT 0
240#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
241#define A2W_PLLH_KP_SHIFT 1
242#define A2W_PLLH_KP_MASK GENMASK(4, 1)
243
244#define A2W_XOSC_CTRL 0x1190
245# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
246# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
247# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
248# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
249# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
250# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
251# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
252# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
253
254#define A2W_PLLA_FRAC 0x1200
255#define A2W_PLLC_FRAC 0x1220
256#define A2W_PLLD_FRAC 0x1240
257#define A2W_PLLH_FRAC 0x1260
258#define A2W_PLLB_FRAC 0x12e0
259# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
260# define A2W_PLL_FRAC_BITS 20
261
262#define A2W_PLL_CHANNEL_DISABLE BIT(8)
263#define A2W_PLL_DIV_BITS 8
264#define A2W_PLL_DIV_SHIFT 0
265
266#define A2W_PLLA_DSI0 0x1300
267#define A2W_PLLA_CORE 0x1400
268#define A2W_PLLA_PER 0x1500
269#define A2W_PLLA_CCP2 0x1600
270
271#define A2W_PLLC_CORE2 0x1320
272#define A2W_PLLC_CORE1 0x1420
273#define A2W_PLLC_PER 0x1520
274#define A2W_PLLC_CORE0 0x1620
275
276#define A2W_PLLD_DSI0 0x1340
277#define A2W_PLLD_CORE 0x1440
278#define A2W_PLLD_PER 0x1540
279#define A2W_PLLD_DSI1 0x1640
280
281#define A2W_PLLH_AUX 0x1360
282#define A2W_PLLH_RCAL 0x1460
283#define A2W_PLLH_PIX 0x1560
284#define A2W_PLLH_STS 0x1660
285
286#define A2W_PLLH_CTRLR 0x1960
287#define A2W_PLLH_FRACR 0x1a60
288#define A2W_PLLH_AUXR 0x1b60
289#define A2W_PLLH_RCALR 0x1c60
290#define A2W_PLLH_PIXR 0x1d60
291#define A2W_PLLH_STSR 0x1e60
292
293#define A2W_PLLB_ARM 0x13e0
294#define A2W_PLLB_SP0 0x14e0
295#define A2W_PLLB_SP1 0x15e0
296#define A2W_PLLB_SP2 0x16e0
297
298#define LOCK_TIMEOUT_NS 100000000
299#define BCM2835_MAX_FB_RATE 1750000000u
300
Eric Anholt8a39e9f2017-01-18 07:31:56 +1100301/*
302 * Names of clocks used within the driver that need to be replaced
303 * with an external parent's name. This array is in the order that
304 * the clocks node in the DT references external clocks.
305 */
306static const char *const cprman_parent_names[] = {
307 "xosc",
308 "dsi0_byte",
309 "dsi0_ddr2",
310 "dsi0_ddr",
311 "dsi1_byte",
312 "dsi1_ddr2",
313 "dsi1_ddr",
314};
315
Eric Anholt41691b82015-10-08 18:37:24 -0700316struct bcm2835_cprman {
317 struct device *dev;
318 void __iomem *regs;
Martin Sperl6e1e60d2016-02-29 11:39:22 +0000319 spinlock_t regs_lock; /* spinlock for all clocks */
Eric Anholt8a39e9f2017-01-18 07:31:56 +1100320
321 /*
322 * Real names of cprman clock parents looked up through
323 * of_clk_get_parent_name(), which will be used in the
324 * parent_names[] arrays for clock registration.
325 */
326 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
Eric Anholt41691b82015-10-08 18:37:24 -0700327
Stephen Boydb19f0092016-06-01 16:15:03 -0700328 /* Must be last */
329 struct clk_hw_onecell_data onecell;
Eric Anholt41691b82015-10-08 18:37:24 -0700330};
331
332static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
333{
334 writel(CM_PASSWORD | val, cprman->regs + reg);
335}
336
337static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
338{
339 return readl(cprman->regs + reg);
340}
Stephen Warren526d2392012-12-24 21:55:01 -0700341
Eric Anholt3f919582017-01-18 07:31:57 +1100342/* Does a cycle of measuring a clock through the TCNT clock, which may
343 * source from many other clocks in the system.
344 */
345static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
346 u32 tcnt_mux)
347{
348 u32 osccount = 19200; /* 1ms */
349 u32 count;
350 ktime_t timeout;
351
352 spin_lock(&cprman->regs_lock);
353
354 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
355
356 cprman_write(cprman, CM_TCNTCTL,
357 (tcnt_mux & CM_SRC_MASK) |
358 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
359
360 cprman_write(cprman, CM_OSCCOUNT, osccount);
361
362 /* do a kind delay at the start */
363 mdelay(1);
364
365 /* Finish off whatever is left of OSCCOUNT */
366 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
367 while (cprman_read(cprman, CM_OSCCOUNT)) {
368 if (ktime_after(ktime_get(), timeout)) {
369 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
370 count = 0;
371 goto out;
372 }
373 cpu_relax();
374 }
375
376 /* Wait for BUSY to clear. */
377 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
378 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
379 if (ktime_after(ktime_get(), timeout)) {
380 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
381 count = 0;
382 goto out;
383 }
384 cpu_relax();
385 }
386
387 count = cprman_read(cprman, CM_TCNTCNT);
388
389 cprman_write(cprman, CM_TCNTCTL, 0);
390
391out:
392 spin_unlock(&cprman->regs_lock);
393
394 return count * 1000;
395}
396
Martin Sperl96bf9c62016-02-29 14:20:15 +0000397static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
398 struct debugfs_reg32 *regs, size_t nregs,
399 struct dentry *dentry)
400{
401 struct dentry *regdump;
402 struct debugfs_regset32 *regset;
403
404 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
405 if (!regset)
406 return -ENOMEM;
407
408 regset->regs = regs;
409 regset->nregs = nregs;
410 regset->base = cprman->regs + base;
411
412 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
413 regset);
414
415 return regdump ? 0 : -ENOMEM;
416}
417
Eric Anholt41691b82015-10-08 18:37:24 -0700418struct bcm2835_pll_data {
419 const char *name;
420 u32 cm_ctrl_reg;
421 u32 a2w_ctrl_reg;
422 u32 frac_reg;
423 u32 ana_reg_base;
424 u32 reference_enable_mask;
425 /* Bit in CM_LOCK to indicate when the PLL has locked. */
426 u32 lock_mask;
427
428 const struct bcm2835_pll_ana_bits *ana;
429
430 unsigned long min_rate;
431 unsigned long max_rate;
432 /*
433 * Highest rate for the VCO before we have to use the
434 * pre-divide-by-2.
435 */
436 unsigned long max_fb_rate;
437};
438
439struct bcm2835_pll_ana_bits {
440 u32 mask0;
441 u32 set0;
442 u32 mask1;
443 u32 set1;
444 u32 mask3;
445 u32 set3;
446 u32 fb_prediv_mask;
447};
448
449static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 .mask0 = 0,
451 .set0 = 0,
Boris Brezillon49012d12018-02-08 14:43:35 +0100452 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
Eric Anholt41691b82015-10-08 18:37:24 -0700453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
Boris Brezillon49012d12018-02-08 14:43:35 +0100454 .mask3 = A2W_PLL_KA_MASK,
Eric Anholt41691b82015-10-08 18:37:24 -0700455 .set3 = (2 << A2W_PLL_KA_SHIFT),
456 .fb_prediv_mask = BIT(14),
457};
458
459static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
Boris Brezillon49012d12018-02-08 14:43:35 +0100460 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
Eric Anholt41691b82015-10-08 18:37:24 -0700461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
Boris Brezillon49012d12018-02-08 14:43:35 +0100462 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
Eric Anholt41691b82015-10-08 18:37:24 -0700463 .set1 = (6 << A2W_PLLH_KP_SHIFT),
464 .mask3 = 0,
465 .set3 = 0,
466 .fb_prediv_mask = BIT(11),
467};
468
Eric Anholt41691b82015-10-08 18:37:24 -0700469struct bcm2835_pll_divider_data {
470 const char *name;
Martin Sperl3b15afe2016-02-29 12:51:42 +0000471 const char *source_pll;
472
Eric Anholt41691b82015-10-08 18:37:24 -0700473 u32 cm_reg;
474 u32 a2w_reg;
475
476 u32 load_mask;
477 u32 hold_mask;
478 u32 fixed_divider;
Eric Anholt55486092017-01-18 07:31:55 +1100479 u32 flags;
Eric Anholt41691b82015-10-08 18:37:24 -0700480};
481
Eric Anholt41691b82015-10-08 18:37:24 -0700482struct bcm2835_clock_data {
483 const char *name;
484
485 const char *const *parents;
486 int num_mux_parents;
487
Boris Brezillon155e8b32016-12-01 22:00:19 +0100488 /* Bitmap encoding which parents accept rate change propagation. */
489 unsigned int set_rate_parent;
490
Eric Anholt41691b82015-10-08 18:37:24 -0700491 u32 ctl_reg;
492 u32 div_reg;
493
494 /* Number of integer bits in the divider */
495 u32 int_bits;
496 /* Number of fractional bits in the divider */
497 u32 frac_bits;
498
Eric Anholte69fdcc2016-06-01 12:05:33 -0700499 u32 flags;
500
Eric Anholt41691b82015-10-08 18:37:24 -0700501 bool is_vpu_clock;
Martin Sperl959ca922016-02-29 11:39:21 +0000502 bool is_mash_clock;
Phil Elwell35429762017-06-01 15:14:22 +0100503 bool low_jitter;
Eric Anholt3f919582017-01-18 07:31:57 +1100504
505 u32 tcnt_mux;
Eric Anholt41691b82015-10-08 18:37:24 -0700506};
507
Martin Sperl56eb3a22016-02-29 12:51:41 +0000508struct bcm2835_gate_data {
509 const char *name;
510 const char *parent;
511
512 u32 ctl_reg;
513};
514
Eric Anholt41691b82015-10-08 18:37:24 -0700515struct bcm2835_pll {
516 struct clk_hw hw;
517 struct bcm2835_cprman *cprman;
518 const struct bcm2835_pll_data *data;
519};
520
521static int bcm2835_pll_is_on(struct clk_hw *hw)
522{
523 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
524 struct bcm2835_cprman *cprman = pll->cprman;
525 const struct bcm2835_pll_data *data = pll->data;
526
527 return cprman_read(cprman, data->a2w_ctrl_reg) &
528 A2W_PLL_CTRL_PRST_DISABLE;
529}
530
531static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
532 unsigned long parent_rate,
533 u32 *ndiv, u32 *fdiv)
534{
535 u64 div;
536
537 div = (u64)rate << A2W_PLL_FRAC_BITS;
538 do_div(div, parent_rate);
539
540 *ndiv = div >> A2W_PLL_FRAC_BITS;
541 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
542}
543
544static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
545 u32 ndiv, u32 fdiv, u32 pdiv)
546{
547 u64 rate;
548
549 if (pdiv == 0)
550 return 0;
551
552 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
553 do_div(rate, pdiv);
554 return rate >> A2W_PLL_FRAC_BITS;
555}
556
557static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
558 unsigned long *parent_rate)
559{
Eric Anholtc4e634c2016-09-30 10:07:27 -0700560 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
561 const struct bcm2835_pll_data *data = pll->data;
Eric Anholt41691b82015-10-08 18:37:24 -0700562 u32 ndiv, fdiv;
563
Eric Anholtc4e634c2016-09-30 10:07:27 -0700564 rate = clamp(rate, data->min_rate, data->max_rate);
565
Eric Anholt41691b82015-10-08 18:37:24 -0700566 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
567
568 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
569}
570
571static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
572 unsigned long parent_rate)
573{
574 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
575 struct bcm2835_cprman *cprman = pll->cprman;
576 const struct bcm2835_pll_data *data = pll->data;
577 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
578 u32 ndiv, pdiv, fdiv;
579 bool using_prediv;
580
581 if (parent_rate == 0)
582 return 0;
583
584 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
585 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
586 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
587 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
588 data->ana->fb_prediv_mask;
589
Phil Elwelle45098d2017-05-15 10:35:04 -0700590 if (using_prediv) {
Eric Anholt41691b82015-10-08 18:37:24 -0700591 ndiv *= 2;
Phil Elwelle45098d2017-05-15 10:35:04 -0700592 fdiv *= 2;
593 }
Eric Anholt41691b82015-10-08 18:37:24 -0700594
595 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
596}
597
598static void bcm2835_pll_off(struct clk_hw *hw)
599{
600 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
601 struct bcm2835_cprman *cprman = pll->cprman;
602 const struct bcm2835_pll_data *data = pll->data;
603
Martin Sperl6727f082016-02-29 11:39:17 +0000604 spin_lock(&cprman->regs_lock);
605 cprman_write(cprman, data->cm_ctrl_reg,
606 cprman_read(cprman, data->cm_ctrl_reg) |
607 CM_PLL_ANARST);
608 cprman_write(cprman, data->a2w_ctrl_reg,
609 cprman_read(cprman, data->a2w_ctrl_reg) |
610 A2W_PLL_CTRL_PWRDN);
611 spin_unlock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700612}
613
614static int bcm2835_pll_on(struct clk_hw *hw)
615{
616 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617 struct bcm2835_cprman *cprman = pll->cprman;
618 const struct bcm2835_pll_data *data = pll->data;
619 ktime_t timeout;
620
Eric Anholte708b382016-04-13 13:05:03 -0700621 cprman_write(cprman, data->a2w_ctrl_reg,
622 cprman_read(cprman, data->a2w_ctrl_reg) &
623 ~A2W_PLL_CTRL_PWRDN);
624
Eric Anholt41691b82015-10-08 18:37:24 -0700625 /* Take the PLL out of reset. */
Boris Brezillon7997f3b2018-02-08 14:43:36 +0100626 spin_lock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700627 cprman_write(cprman, data->cm_ctrl_reg,
628 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
Boris Brezillon7997f3b2018-02-08 14:43:36 +0100629 spin_unlock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700630
631 /* Wait for the PLL to lock. */
632 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
633 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
634 if (ktime_after(ktime_get(), timeout)) {
635 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
636 clk_hw_get_name(hw));
637 return -ETIMEDOUT;
638 }
639
640 cpu_relax();
641 }
642
643 return 0;
644}
645
646static void
647bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
648{
649 int i;
650
651 /*
652 * ANA register setup is done as a series of writes to
653 * ANA3-ANA0, in that order. This lets us write all 4
654 * registers as a single cycle of the serdes interface (taking
655 * 100 xosc clocks), whereas if we were to update ana0, 1, and
656 * 3 individually through their partial-write registers, each
657 * would be their own serdes cycle.
658 */
659 for (i = 3; i >= 0; i--)
660 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
661}
662
663static int bcm2835_pll_set_rate(struct clk_hw *hw,
664 unsigned long rate, unsigned long parent_rate)
665{
666 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
667 struct bcm2835_cprman *cprman = pll->cprman;
668 const struct bcm2835_pll_data *data = pll->data;
669 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
670 u32 ndiv, fdiv, a2w_ctl;
671 u32 ana[4];
672 int i;
673
Eric Anholt41691b82015-10-08 18:37:24 -0700674 if (rate > data->max_fb_rate) {
675 use_fb_prediv = true;
676 rate /= 2;
677 } else {
678 use_fb_prediv = false;
679 }
680
681 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
682
683 for (i = 3; i >= 0; i--)
684 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
685
686 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
687
688 ana[0] &= ~data->ana->mask0;
689 ana[0] |= data->ana->set0;
690 ana[1] &= ~data->ana->mask1;
691 ana[1] |= data->ana->set1;
692 ana[3] &= ~data->ana->mask3;
693 ana[3] |= data->ana->set3;
694
695 if (was_using_prediv && !use_fb_prediv) {
696 ana[1] &= ~data->ana->fb_prediv_mask;
697 do_ana_setup_first = true;
698 } else if (!was_using_prediv && use_fb_prediv) {
699 ana[1] |= data->ana->fb_prediv_mask;
700 do_ana_setup_first = false;
701 } else {
702 do_ana_setup_first = true;
703 }
704
705 /* Unmask the reference clock from the oscillator. */
Boris Brezillon7997f3b2018-02-08 14:43:36 +0100706 spin_lock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700707 cprman_write(cprman, A2W_XOSC_CTRL,
708 cprman_read(cprman, A2W_XOSC_CTRL) |
709 data->reference_enable_mask);
Boris Brezillon7997f3b2018-02-08 14:43:36 +0100710 spin_unlock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700711
712 if (do_ana_setup_first)
713 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
714
715 /* Set the PLL multiplier from the oscillator. */
716 cprman_write(cprman, data->frac_reg, fdiv);
717
718 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
719 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
720 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
721 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
722 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
723 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
724
725 if (!do_ana_setup_first)
726 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
727
728 return 0;
729}
730
Martin Sperl96bf9c62016-02-29 14:20:15 +0000731static int bcm2835_pll_debug_init(struct clk_hw *hw,
732 struct dentry *dentry)
733{
734 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
735 struct bcm2835_cprman *cprman = pll->cprman;
736 const struct bcm2835_pll_data *data = pll->data;
737 struct debugfs_reg32 *regs;
738
739 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
740 if (!regs)
741 return -ENOMEM;
742
743 regs[0].name = "cm_ctrl";
744 regs[0].offset = data->cm_ctrl_reg;
745 regs[1].name = "a2w_ctrl";
746 regs[1].offset = data->a2w_ctrl_reg;
747 regs[2].name = "frac";
748 regs[2].offset = data->frac_reg;
749 regs[3].name = "ana0";
750 regs[3].offset = data->ana_reg_base + 0 * 4;
751 regs[4].name = "ana1";
752 regs[4].offset = data->ana_reg_base + 1 * 4;
753 regs[5].name = "ana2";
754 regs[5].offset = data->ana_reg_base + 2 * 4;
755 regs[6].name = "ana3";
756 regs[6].offset = data->ana_reg_base + 3 * 4;
757
758 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
759}
760
Eric Anholt41691b82015-10-08 18:37:24 -0700761static const struct clk_ops bcm2835_pll_clk_ops = {
762 .is_prepared = bcm2835_pll_is_on,
763 .prepare = bcm2835_pll_on,
764 .unprepare = bcm2835_pll_off,
765 .recalc_rate = bcm2835_pll_get_rate,
766 .set_rate = bcm2835_pll_set_rate,
767 .round_rate = bcm2835_pll_round_rate,
Martin Sperl96bf9c62016-02-29 14:20:15 +0000768 .debug_init = bcm2835_pll_debug_init,
Eric Anholt41691b82015-10-08 18:37:24 -0700769};
770
771struct bcm2835_pll_divider {
772 struct clk_divider div;
773 struct bcm2835_cprman *cprman;
774 const struct bcm2835_pll_divider_data *data;
775};
776
777static struct bcm2835_pll_divider *
778bcm2835_pll_divider_from_hw(struct clk_hw *hw)
779{
780 return container_of(hw, struct bcm2835_pll_divider, div.hw);
781}
782
783static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
784{
785 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
786 struct bcm2835_cprman *cprman = divider->cprman;
787 const struct bcm2835_pll_divider_data *data = divider->data;
788
789 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
790}
791
792static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
793 unsigned long rate,
794 unsigned long *parent_rate)
795{
796 return clk_divider_ops.round_rate(hw, rate, parent_rate);
797}
798
799static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
800 unsigned long parent_rate)
801{
Eric Anholt79c1e2f2016-02-15 19:03:58 -0800802 return clk_divider_ops.recalc_rate(hw, parent_rate);
Eric Anholt41691b82015-10-08 18:37:24 -0700803}
804
805static void bcm2835_pll_divider_off(struct clk_hw *hw)
806{
807 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
808 struct bcm2835_cprman *cprman = divider->cprman;
809 const struct bcm2835_pll_divider_data *data = divider->data;
810
Martin Sperlec36a5c2016-02-29 11:39:18 +0000811 spin_lock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700812 cprman_write(cprman, data->cm_reg,
813 (cprman_read(cprman, data->cm_reg) &
814 ~data->load_mask) | data->hold_mask);
Boris Brezillon68af4fa2016-12-01 20:27:21 +0100815 cprman_write(cprman, data->a2w_reg,
816 cprman_read(cprman, data->a2w_reg) |
817 A2W_PLL_CHANNEL_DISABLE);
Martin Sperlec36a5c2016-02-29 11:39:18 +0000818 spin_unlock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700819}
820
821static int bcm2835_pll_divider_on(struct clk_hw *hw)
822{
823 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
824 struct bcm2835_cprman *cprman = divider->cprman;
825 const struct bcm2835_pll_divider_data *data = divider->data;
826
Martin Sperlec36a5c2016-02-29 11:39:18 +0000827 spin_lock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700828 cprman_write(cprman, data->a2w_reg,
829 cprman_read(cprman, data->a2w_reg) &
830 ~A2W_PLL_CHANNEL_DISABLE);
831
832 cprman_write(cprman, data->cm_reg,
833 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
Martin Sperlec36a5c2016-02-29 11:39:18 +0000834 spin_unlock(&cprman->regs_lock);
Eric Anholt41691b82015-10-08 18:37:24 -0700835
836 return 0;
837}
838
839static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
840 unsigned long rate,
841 unsigned long parent_rate)
842{
843 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
844 struct bcm2835_cprman *cprman = divider->cprman;
845 const struct bcm2835_pll_divider_data *data = divider->data;
Eric Anholt773b3962016-02-15 19:03:57 -0800846 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
Eric Anholt41691b82015-10-08 18:37:24 -0700847
Eric Anholt773b3962016-02-15 19:03:57 -0800848 div = DIV_ROUND_UP_ULL(parent_rate, rate);
Eric Anholt41691b82015-10-08 18:37:24 -0700849
Eric Anholt773b3962016-02-15 19:03:57 -0800850 div = min(div, max_div);
851 if (div == max_div)
852 div = 0;
853
854 cprman_write(cprman, data->a2w_reg, div);
Eric Anholt41691b82015-10-08 18:37:24 -0700855 cm = cprman_read(cprman, data->cm_reg);
856 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
857 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
858
859 return 0;
860}
861
Martin Sperl96bf9c62016-02-29 14:20:15 +0000862static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
863 struct dentry *dentry)
864{
865 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
866 struct bcm2835_cprman *cprman = divider->cprman;
867 const struct bcm2835_pll_divider_data *data = divider->data;
868 struct debugfs_reg32 *regs;
869
870 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
871 if (!regs)
872 return -ENOMEM;
873
874 regs[0].name = "cm";
875 regs[0].offset = data->cm_reg;
876 regs[1].name = "a2w";
877 regs[1].offset = data->a2w_reg;
878
879 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
880}
881
Eric Anholt41691b82015-10-08 18:37:24 -0700882static const struct clk_ops bcm2835_pll_divider_clk_ops = {
883 .is_prepared = bcm2835_pll_divider_is_on,
884 .prepare = bcm2835_pll_divider_on,
885 .unprepare = bcm2835_pll_divider_off,
886 .recalc_rate = bcm2835_pll_divider_get_rate,
887 .set_rate = bcm2835_pll_divider_set_rate,
888 .round_rate = bcm2835_pll_divider_round_rate,
Martin Sperl96bf9c62016-02-29 14:20:15 +0000889 .debug_init = bcm2835_pll_divider_debug_init,
Eric Anholt41691b82015-10-08 18:37:24 -0700890};
891
892/*
893 * The CM dividers do fixed-point division, so we can't use the
894 * generic integer divider code like the PLL dividers do (and we can't
895 * fake it by having some fixed shifts preceding it in the clock tree,
896 * because we'd run out of bits in a 32-bit unsigned long).
897 */
898struct bcm2835_clock {
899 struct clk_hw hw;
900 struct bcm2835_cprman *cprman;
901 const struct bcm2835_clock_data *data;
902};
903
904static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
905{
906 return container_of(hw, struct bcm2835_clock, hw);
907}
908
909static int bcm2835_clock_is_on(struct clk_hw *hw)
910{
911 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
912 struct bcm2835_cprman *cprman = clock->cprman;
913 const struct bcm2835_clock_data *data = clock->data;
914
915 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
916}
917
918static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
919 unsigned long rate,
Remi Pommarel9c95b322015-12-06 17:22:46 +0100920 unsigned long parent_rate,
921 bool round_up)
Eric Anholt41691b82015-10-08 18:37:24 -0700922{
923 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
924 const struct bcm2835_clock_data *data = clock->data;
Remi Pommarel9c95b322015-12-06 17:22:46 +0100925 u32 unused_frac_mask =
926 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
Eric Anholt41691b82015-10-08 18:37:24 -0700927 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
Remi Pommarel9c95b322015-12-06 17:22:46 +0100928 u64 rem;
Martin Sperl959ca922016-02-29 11:39:21 +0000929 u32 div, mindiv, maxdiv;
Eric Anholt41691b82015-10-08 18:37:24 -0700930
Remi Pommarel9c95b322015-12-06 17:22:46 +0100931 rem = do_div(temp, rate);
Eric Anholt41691b82015-10-08 18:37:24 -0700932 div = temp;
933
Remi Pommarel9c95b322015-12-06 17:22:46 +0100934 /* Round up and mask off the unused bits */
935 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
936 div += unused_frac_mask + 1;
937 div &= ~unused_frac_mask;
Eric Anholt41691b82015-10-08 18:37:24 -0700938
Martin Sperl959ca922016-02-29 11:39:21 +0000939 /* different clamping limits apply for a mash clock */
940 if (data->is_mash_clock) {
941 /* clamp to min divider of 2 */
942 mindiv = 2 << CM_DIV_FRAC_BITS;
943 /* clamp to the highest possible integer divider */
944 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
945 } else {
946 /* clamp to min divider of 1 */
947 mindiv = 1 << CM_DIV_FRAC_BITS;
948 /* clamp to the highest possible fractional divider */
949 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
950 CM_DIV_FRAC_BITS - data->frac_bits);
951 }
952
953 /* apply the clamping limits */
954 div = max_t(u32, div, mindiv);
955 div = min_t(u32, div, maxdiv);
Eric Anholt41691b82015-10-08 18:37:24 -0700956
957 return div;
958}
959
960static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
961 unsigned long parent_rate,
962 u32 div)
963{
964 const struct bcm2835_clock_data *data = clock->data;
965 u64 temp;
966
Eric Anholt8a39e9f2017-01-18 07:31:56 +1100967 if (data->int_bits == 0 && data->frac_bits == 0)
968 return parent_rate;
969
Eric Anholt41691b82015-10-08 18:37:24 -0700970 /*
971 * The divisor is a 12.12 fixed point field, but only some of
972 * the bits are populated in any given clock.
973 */
974 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
975 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
976
977 if (div == 0)
978 return 0;
979
980 temp = (u64)parent_rate << data->frac_bits;
981
982 do_div(temp, div);
983
984 return temp;
985}
986
Eric Anholt41691b82015-10-08 18:37:24 -0700987static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
988 unsigned long parent_rate)
989{
990 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
991 struct bcm2835_cprman *cprman = clock->cprman;
992 const struct bcm2835_clock_data *data = clock->data;
Eric Anholt8a39e9f2017-01-18 07:31:56 +1100993 u32 div;
994
995 if (data->int_bits == 0 && data->frac_bits == 0)
996 return parent_rate;
997
998 div = cprman_read(cprman, data->div_reg);
Eric Anholt41691b82015-10-08 18:37:24 -0700999
1000 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1001}
1002
1003static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1004{
1005 struct bcm2835_cprman *cprman = clock->cprman;
1006 const struct bcm2835_clock_data *data = clock->data;
1007 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1008
1009 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1010 if (ktime_after(ktime_get(), timeout)) {
1011 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1012 clk_hw_get_name(&clock->hw));
1013 return;
1014 }
1015 cpu_relax();
1016 }
1017}
1018
1019static void bcm2835_clock_off(struct clk_hw *hw)
1020{
1021 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1022 struct bcm2835_cprman *cprman = clock->cprman;
1023 const struct bcm2835_clock_data *data = clock->data;
1024
1025 spin_lock(&cprman->regs_lock);
1026 cprman_write(cprman, data->ctl_reg,
1027 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1028 spin_unlock(&cprman->regs_lock);
1029
1030 /* BUSY will remain high until the divider completes its cycle. */
1031 bcm2835_clock_wait_busy(clock);
1032}
1033
1034static int bcm2835_clock_on(struct clk_hw *hw)
1035{
1036 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1037 struct bcm2835_cprman *cprman = clock->cprman;
1038 const struct bcm2835_clock_data *data = clock->data;
1039
1040 spin_lock(&cprman->regs_lock);
1041 cprman_write(cprman, data->ctl_reg,
1042 cprman_read(cprman, data->ctl_reg) |
1043 CM_ENABLE |
1044 CM_GATE);
1045 spin_unlock(&cprman->regs_lock);
1046
Eric Anholt3f919582017-01-18 07:31:57 +11001047 /* Debug code to measure the clock once it's turned on to see
1048 * if it's ticking at the rate we expect.
1049 */
1050 if (data->tcnt_mux && false) {
1051 dev_info(cprman->dev,
1052 "clk %s: rate %ld, measure %ld\n",
1053 data->name,
1054 clk_hw_get_rate(hw),
1055 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1056 }
1057
Eric Anholt41691b82015-10-08 18:37:24 -07001058 return 0;
1059}
1060
1061static int bcm2835_clock_set_rate(struct clk_hw *hw,
1062 unsigned long rate, unsigned long parent_rate)
1063{
1064 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1065 struct bcm2835_cprman *cprman = clock->cprman;
1066 const struct bcm2835_clock_data *data = clock->data;
Remi Pommarel9c95b322015-12-06 17:22:46 +01001067 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
Martin Sperl959ca922016-02-29 11:39:21 +00001068 u32 ctl;
1069
1070 spin_lock(&cprman->regs_lock);
1071
1072 /*
1073 * Setting up frac support
1074 *
1075 * In principle it is recommended to stop/start the clock first,
1076 * but as we set CLK_SET_RATE_GATE during registration of the
1077 * clock this requirement should be take care of by the
1078 * clk-framework.
1079 */
1080 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1081 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1082 cprman_write(cprman, data->ctl_reg, ctl);
Eric Anholt41691b82015-10-08 18:37:24 -07001083
1084 cprman_write(cprman, data->div_reg, div);
1085
Martin Sperl959ca922016-02-29 11:39:21 +00001086 spin_unlock(&cprman->regs_lock);
1087
Eric Anholt41691b82015-10-08 18:37:24 -07001088 return 0;
1089}
1090
Eric Anholt67615c52016-06-01 12:05:36 -07001091static bool
1092bcm2835_clk_is_pllc(struct clk_hw *hw)
1093{
1094 if (!hw)
1095 return false;
1096
1097 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1098}
1099
Boris Brezillon155e8b32016-12-01 22:00:19 +01001100static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1101 int parent_idx,
1102 unsigned long rate,
1103 u32 *div,
Phil Elwell35429762017-06-01 15:14:22 +01001104 unsigned long *prate,
1105 unsigned long *avgrate)
Boris Brezillon155e8b32016-12-01 22:00:19 +01001106{
1107 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1108 struct bcm2835_cprman *cprman = clock->cprman;
1109 const struct bcm2835_clock_data *data = clock->data;
Boris Brezillon2aab7a22016-12-12 09:00:53 +01001110 unsigned long best_rate = 0;
Boris Brezillon155e8b32016-12-01 22:00:19 +01001111 u32 curdiv, mindiv, maxdiv;
1112 struct clk_hw *parent;
1113
1114 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1115
1116 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1117 *prate = clk_hw_get_rate(parent);
1118 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1119
Phil Elwell35429762017-06-01 15:14:22 +01001120 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1121
1122 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1123 unsigned long high, low;
1124 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1125
1126 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1127 int_div);
1128 int_div += CM_DIV_FRAC_MASK + 1;
1129 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1130 int_div);
1131
1132 /*
1133 * Return a value which is the maximum deviation
1134 * below the ideal rate, for use as a metric.
1135 */
1136 return *avgrate - max(*avgrate - low, high - *avgrate);
1137 }
1138 return *avgrate;
Boris Brezillon155e8b32016-12-01 22:00:19 +01001139 }
1140
1141 if (data->frac_bits)
1142 dev_warn(cprman->dev,
1143 "frac bits are not used when propagating rate change");
1144
1145 /* clamp to min divider of 2 if we're dealing with a mash clock */
1146 mindiv = data->is_mash_clock ? 2 : 1;
1147 maxdiv = BIT(data->int_bits) - 1;
1148
1149 /* TODO: Be smart, and only test a subset of the available divisors. */
1150 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1151 unsigned long tmp_rate;
1152
1153 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1154 tmp_rate /= curdiv;
1155 if (curdiv == mindiv ||
1156 (tmp_rate > best_rate && tmp_rate <= rate))
1157 best_rate = tmp_rate;
1158
1159 if (best_rate == rate)
1160 break;
1161 }
1162
1163 *div = curdiv << CM_DIV_FRAC_BITS;
1164 *prate = curdiv * best_rate;
Phil Elwell35429762017-06-01 15:14:22 +01001165 *avgrate = best_rate;
Boris Brezillon155e8b32016-12-01 22:00:19 +01001166
1167 return best_rate;
1168}
1169
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001170static int bcm2835_clock_determine_rate(struct clk_hw *hw,
Martin Sperl6e1e60d2016-02-29 11:39:22 +00001171 struct clk_rate_request *req)
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001172{
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001173 struct clk_hw *parent, *best_parent = NULL;
Eric Anholt67615c52016-06-01 12:05:36 -07001174 bool current_parent_is_pllc;
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001175 unsigned long rate, best_rate = 0;
1176 unsigned long prate, best_prate = 0;
Phil Elwell35429762017-06-01 15:14:22 +01001177 unsigned long avgrate, best_avgrate = 0;
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001178 size_t i;
1179 u32 div;
1180
Eric Anholt67615c52016-06-01 12:05:36 -07001181 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1182
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001183 /*
1184 * Select parent clock that results in the closest but lower rate
1185 */
1186 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1187 parent = clk_hw_get_parent_by_index(hw, i);
1188 if (!parent)
1189 continue;
Eric Anholt67615c52016-06-01 12:05:36 -07001190
1191 /*
1192 * Don't choose a PLLC-derived clock as our parent
1193 * unless it had been manually set that way. PLLC's
1194 * frequency gets adjusted by the firmware due to
1195 * over-temp or under-voltage conditions, without
1196 * prior notification to our clock consumer.
1197 */
1198 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1199 continue;
1200
Boris Brezillon155e8b32016-12-01 22:00:19 +01001201 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
Phil Elwell35429762017-06-01 15:14:22 +01001202 &div, &prate,
1203 &avgrate);
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001204 if (rate > best_rate && rate <= req->rate) {
1205 best_parent = parent;
1206 best_prate = prate;
1207 best_rate = rate;
Phil Elwell35429762017-06-01 15:14:22 +01001208 best_avgrate = avgrate;
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001209 }
1210 }
1211
1212 if (!best_parent)
1213 return -EINVAL;
1214
1215 req->best_parent_hw = best_parent;
1216 req->best_parent_rate = best_prate;
1217
Phil Elwell35429762017-06-01 15:14:22 +01001218 req->rate = best_avgrate;
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001219
1220 return 0;
1221}
1222
1223static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1224{
1225 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1226 struct bcm2835_cprman *cprman = clock->cprman;
1227 const struct bcm2835_clock_data *data = clock->data;
1228 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1229
1230 cprman_write(cprman, data->ctl_reg, src);
1231 return 0;
1232}
1233
1234static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1235{
1236 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1237 struct bcm2835_cprman *cprman = clock->cprman;
1238 const struct bcm2835_clock_data *data = clock->data;
1239 u32 src = cprman_read(cprman, data->ctl_reg);
1240
1241 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1242}
1243
Martin Sperl96bf9c62016-02-29 14:20:15 +00001244static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1245 {
1246 .name = "ctl",
1247 .offset = 0,
1248 },
1249 {
1250 .name = "div",
1251 .offset = 4,
1252 },
1253};
1254
1255static int bcm2835_clock_debug_init(struct clk_hw *hw,
1256 struct dentry *dentry)
1257{
1258 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1259 struct bcm2835_cprman *cprman = clock->cprman;
1260 const struct bcm2835_clock_data *data = clock->data;
1261
1262 return bcm2835_debugfs_regset(
1263 cprman, data->ctl_reg,
1264 bcm2835_debugfs_clock_reg32,
1265 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1266 dentry);
1267}
1268
Eric Anholt41691b82015-10-08 18:37:24 -07001269static const struct clk_ops bcm2835_clock_clk_ops = {
1270 .is_prepared = bcm2835_clock_is_on,
1271 .prepare = bcm2835_clock_on,
1272 .unprepare = bcm2835_clock_off,
1273 .recalc_rate = bcm2835_clock_get_rate,
1274 .set_rate = bcm2835_clock_set_rate,
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001275 .determine_rate = bcm2835_clock_determine_rate,
1276 .set_parent = bcm2835_clock_set_parent,
1277 .get_parent = bcm2835_clock_get_parent,
Martin Sperl96bf9c62016-02-29 14:20:15 +00001278 .debug_init = bcm2835_clock_debug_init,
Eric Anholt41691b82015-10-08 18:37:24 -07001279};
1280
1281static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1282{
1283 return true;
1284}
1285
1286/*
1287 * The VPU clock can never be disabled (it doesn't have an ENABLE
1288 * bit), so it gets its own set of clock ops.
1289 */
1290static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1291 .is_prepared = bcm2835_vpu_clock_is_on,
1292 .recalc_rate = bcm2835_clock_get_rate,
1293 .set_rate = bcm2835_clock_set_rate,
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001294 .determine_rate = bcm2835_clock_determine_rate,
1295 .set_parent = bcm2835_clock_set_parent,
1296 .get_parent = bcm2835_clock_get_parent,
Martin Sperl96bf9c62016-02-29 14:20:15 +00001297 .debug_init = bcm2835_clock_debug_init,
Eric Anholt41691b82015-10-08 18:37:24 -07001298};
1299
Stephen Boydb19f0092016-06-01 16:15:03 -07001300static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1301 const struct bcm2835_pll_data *data)
Eric Anholt41691b82015-10-08 18:37:24 -07001302{
1303 struct bcm2835_pll *pll;
1304 struct clk_init_data init;
Stephen Boydb19f0092016-06-01 16:15:03 -07001305 int ret;
Eric Anholt41691b82015-10-08 18:37:24 -07001306
1307 memset(&init, 0, sizeof(init));
1308
1309 /* All of the PLLs derive from the external oscillator. */
Eric Anholt8a39e9f2017-01-18 07:31:56 +11001310 init.parent_names = &cprman->real_parent_names[0];
Eric Anholt41691b82015-10-08 18:37:24 -07001311 init.num_parents = 1;
1312 init.name = data->name;
1313 init.ops = &bcm2835_pll_clk_ops;
1314 init.flags = CLK_IGNORE_UNUSED;
1315
1316 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1317 if (!pll)
1318 return NULL;
1319
1320 pll->cprman = cprman;
1321 pll->data = data;
1322 pll->hw.init = &init;
1323
Stephen Boydb19f0092016-06-01 16:15:03 -07001324 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1325 if (ret)
1326 return NULL;
1327 return &pll->hw;
Eric Anholt41691b82015-10-08 18:37:24 -07001328}
1329
Stephen Boydb19f0092016-06-01 16:15:03 -07001330static struct clk_hw *
Eric Anholt41691b82015-10-08 18:37:24 -07001331bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1332 const struct bcm2835_pll_divider_data *data)
1333{
1334 struct bcm2835_pll_divider *divider;
1335 struct clk_init_data init;
Eric Anholt41691b82015-10-08 18:37:24 -07001336 const char *divider_name;
Stephen Boydb19f0092016-06-01 16:15:03 -07001337 int ret;
Eric Anholt41691b82015-10-08 18:37:24 -07001338
1339 if (data->fixed_divider != 1) {
1340 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1341 "%s_prediv", data->name);
1342 if (!divider_name)
1343 return NULL;
1344 } else {
1345 divider_name = data->name;
1346 }
1347
1348 memset(&init, 0, sizeof(init));
1349
Martin Sperl3b15afe2016-02-29 12:51:42 +00001350 init.parent_names = &data->source_pll;
Eric Anholt41691b82015-10-08 18:37:24 -07001351 init.num_parents = 1;
1352 init.name = divider_name;
1353 init.ops = &bcm2835_pll_divider_clk_ops;
Eric Anholt55486092017-01-18 07:31:55 +11001354 init.flags = data->flags | CLK_IGNORE_UNUSED;
Eric Anholt41691b82015-10-08 18:37:24 -07001355
1356 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1357 if (!divider)
1358 return NULL;
1359
1360 divider->div.reg = cprman->regs + data->a2w_reg;
1361 divider->div.shift = A2W_PLL_DIV_SHIFT;
1362 divider->div.width = A2W_PLL_DIV_BITS;
Eric Anholt79c1e2f2016-02-15 19:03:58 -08001363 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
Eric Anholt41691b82015-10-08 18:37:24 -07001364 divider->div.lock = &cprman->regs_lock;
1365 divider->div.hw.init = &init;
1366 divider->div.table = NULL;
1367
1368 divider->cprman = cprman;
1369 divider->data = data;
1370
Stephen Boydb19f0092016-06-01 16:15:03 -07001371 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1372 if (ret)
1373 return ERR_PTR(ret);
Eric Anholt41691b82015-10-08 18:37:24 -07001374
1375 /*
1376 * PLLH's channels have a fixed divide by 10 afterwards, which
1377 * is what our consumers are actually using.
1378 */
1379 if (data->fixed_divider != 1) {
Stephen Boydb19f0092016-06-01 16:15:03 -07001380 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1381 divider_name,
1382 CLK_SET_RATE_PARENT,
1383 1,
1384 data->fixed_divider);
Eric Anholt41691b82015-10-08 18:37:24 -07001385 }
1386
Stephen Boydb19f0092016-06-01 16:15:03 -07001387 return &divider->div.hw;
Eric Anholt41691b82015-10-08 18:37:24 -07001388}
1389
Stephen Boydb19f0092016-06-01 16:15:03 -07001390static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
Eric Anholt41691b82015-10-08 18:37:24 -07001391 const struct bcm2835_clock_data *data)
1392{
1393 struct bcm2835_clock *clock;
1394 struct clk_init_data init;
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001395 const char *parents[1 << CM_SRC_BITS];
Eric Anholt8a39e9f2017-01-18 07:31:56 +11001396 size_t i, j;
Stephen Boydb19f0092016-06-01 16:15:03 -07001397 int ret;
Eric Anholt41691b82015-10-08 18:37:24 -07001398
1399 /*
Eric Anholt8a39e9f2017-01-18 07:31:56 +11001400 * Replace our strings referencing parent clocks with the
1401 * actual clock-output-name of the parent.
Eric Anholt41691b82015-10-08 18:37:24 -07001402 */
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001403 for (i = 0; i < data->num_mux_parents; i++) {
Eric Anholt8a39e9f2017-01-18 07:31:56 +11001404 parents[i] = data->parents[i];
1405
1406 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1407 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1408 parents[i] = cprman->real_parent_names[j];
1409 break;
1410 }
1411 }
Eric Anholt41691b82015-10-08 18:37:24 -07001412 }
1413
1414 memset(&init, 0, sizeof(init));
Remi Pommarel6d18b8a2015-12-06 17:22:47 +01001415 init.parent_names = parents;
1416 init.num_parents = data->num_mux_parents;
Eric Anholt41691b82015-10-08 18:37:24 -07001417 init.name = data->name;
Eric Anholte69fdcc2016-06-01 12:05:33 -07001418 init.flags = data->flags | CLK_IGNORE_UNUSED;
Eric Anholt41691b82015-10-08 18:37:24 -07001419
Boris Brezillon155e8b32016-12-01 22:00:19 +01001420 /*
1421 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1422 * rate changes on at least of the parents.
1423 */
1424 if (data->set_rate_parent)
1425 init.flags |= CLK_SET_RATE_PARENT;
1426
Eric Anholt41691b82015-10-08 18:37:24 -07001427 if (data->is_vpu_clock) {
1428 init.ops = &bcm2835_vpu_clock_clk_ops;
1429 } else {
1430 init.ops = &bcm2835_clock_clk_ops;
1431 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
Eric Anholteddcbe832016-06-01 12:05:34 -07001432
1433 /* If the clock wasn't actually enabled at boot, it's not
1434 * critical.
1435 */
1436 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1437 init.flags &= ~CLK_IS_CRITICAL;
Eric Anholt41691b82015-10-08 18:37:24 -07001438 }
1439
1440 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1441 if (!clock)
1442 return NULL;
1443
1444 clock->cprman = cprman;
1445 clock->data = data;
1446 clock->hw.init = &init;
1447
Stephen Boydb19f0092016-06-01 16:15:03 -07001448 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1449 if (ret)
1450 return ERR_PTR(ret);
1451 return &clock->hw;
Eric Anholt41691b82015-10-08 18:37:24 -07001452}
1453
Martin Sperl56eb3a22016-02-29 12:51:41 +00001454static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1455 const struct bcm2835_gate_data *data)
1456{
1457 return clk_register_gate(cprman->dev, data->name, data->parent,
1458 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1459 cprman->regs + data->ctl_reg,
1460 CM_GATE_BIT, 0, &cprman->regs_lock);
1461}
1462
Stephen Boydb19f0092016-06-01 16:15:03 -07001463typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1464 const void *data);
Martin Sperl56eb3a22016-02-29 12:51:41 +00001465struct bcm2835_clk_desc {
1466 bcm2835_clk_register clk_register;
1467 const void *data;
1468};
1469
Martin Sperl3b15afe2016-02-29 12:51:42 +00001470/* assignment helper macros for different clock types */
1471#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1472 .data = __VA_ARGS__ }
1473#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1474 &(struct bcm2835_pll_data) \
1475 {__VA_ARGS__})
1476#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1477 &(struct bcm2835_pll_divider_data) \
1478 {__VA_ARGS__})
1479#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1480 &(struct bcm2835_clock_data) \
1481 {__VA_ARGS__})
1482#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1483 &(struct bcm2835_gate_data) \
1484 {__VA_ARGS__})
Martin Sperl56eb3a22016-02-29 12:51:41 +00001485
Martin Sperl3b15afe2016-02-29 12:51:42 +00001486/* parent mux arrays plus helper macros */
1487
1488/* main oscillator parent mux */
1489static const char *const bcm2835_clock_osc_parents[] = {
1490 "gnd",
1491 "xosc",
1492 "testdebug0",
1493 "testdebug1"
1494};
1495
1496#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1497 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1498 .parents = bcm2835_clock_osc_parents, \
1499 __VA_ARGS__)
1500
1501/* main peripherial parent mux */
1502static const char *const bcm2835_clock_per_parents[] = {
1503 "gnd",
1504 "xosc",
1505 "testdebug0",
1506 "testdebug1",
1507 "plla_per",
1508 "pllc_per",
1509 "plld_per",
1510 "pllh_aux",
1511};
1512
1513#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1514 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1515 .parents = bcm2835_clock_per_parents, \
1516 __VA_ARGS__)
1517
Phil Elwell8c0de582017-06-01 15:14:16 +01001518/*
1519 * Restrict clock sources for the PCM peripheral to the oscillator and
1520 * PLLD_PER because other source may have varying rates or be switched
1521 * off.
1522 *
1523 * Prevent other sources from being selected by replacing their names in
1524 * the list of potential parents with dummy entries (entry index is
1525 * significant).
1526 */
1527static const char *const bcm2835_pcm_per_parents[] = {
1528 "-",
1529 "xosc",
1530 "-",
1531 "-",
1532 "-",
1533 "-",
1534 "plld_per",
1535 "-",
1536};
1537
1538#define REGISTER_PCM_CLK(...) REGISTER_CLK( \
1539 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1540 .parents = bcm2835_pcm_per_parents, \
1541 __VA_ARGS__)
1542
Martin Sperl3b15afe2016-02-29 12:51:42 +00001543/* main vpu parent mux */
1544static const char *const bcm2835_clock_vpu_parents[] = {
1545 "gnd",
1546 "xosc",
1547 "testdebug0",
1548 "testdebug1",
1549 "plla_core",
1550 "pllc_core0",
1551 "plld_core",
1552 "pllh_aux",
1553 "pllc_core1",
1554 "pllc_core2",
1555};
1556
1557#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1558 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1559 .parents = bcm2835_clock_vpu_parents, \
1560 __VA_ARGS__)
1561
1562/*
Eric Anholt8a39e9f2017-01-18 07:31:56 +11001563 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1564 * analog PHY. The _inv variants are generated internally to cprman,
1565 * but we don't use them so they aren't hooked up.
1566 */
1567static const char *const bcm2835_clock_dsi0_parents[] = {
1568 "gnd",
1569 "xosc",
1570 "testdebug0",
1571 "testdebug1",
1572 "dsi0_ddr",
1573 "dsi0_ddr_inv",
1574 "dsi0_ddr2",
1575 "dsi0_ddr2_inv",
1576 "dsi0_byte",
1577 "dsi0_byte_inv",
1578};
1579
1580static const char *const bcm2835_clock_dsi1_parents[] = {
1581 "gnd",
1582 "xosc",
1583 "testdebug0",
1584 "testdebug1",
1585 "dsi1_ddr",
1586 "dsi1_ddr_inv",
1587 "dsi1_ddr2",
1588 "dsi1_ddr2_inv",
1589 "dsi1_byte",
1590 "dsi1_byte_inv",
1591};
1592
1593#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1594 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1595 .parents = bcm2835_clock_dsi0_parents, \
1596 __VA_ARGS__)
1597
1598#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1599 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1600 .parents = bcm2835_clock_dsi1_parents, \
1601 __VA_ARGS__)
1602
1603/*
Martin Sperl3b15afe2016-02-29 12:51:42 +00001604 * the real definition of all the pll, pll_dividers and clocks
1605 * these make use of the above REGISTER_* macros
1606 */
Martin Sperl56eb3a22016-02-29 12:51:41 +00001607static const struct bcm2835_clk_desc clk_desc_array[] = {
Martin Sperl3b15afe2016-02-29 12:51:42 +00001608 /* the PLL + PLL dividers */
1609
1610 /*
1611 * PLLA is the auxiliary PLL, used to drive the CCP2
1612 * (Compact Camera Port 2) transmitter clock.
1613 *
1614 * It is in the PX LDO power domain, which is on when the
1615 * AUDIO domain is on.
1616 */
1617 [BCM2835_PLLA] = REGISTER_PLL(
1618 .name = "plla",
1619 .cm_ctrl_reg = CM_PLLA,
1620 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1621 .frac_reg = A2W_PLLA_FRAC,
1622 .ana_reg_base = A2W_PLLA_ANA0,
1623 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1624 .lock_mask = CM_LOCK_FLOCKA,
1625
1626 .ana = &bcm2835_ana_default,
1627
1628 .min_rate = 600000000u,
1629 .max_rate = 2400000000u,
1630 .max_fb_rate = BCM2835_MAX_FB_RATE),
1631 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1632 .name = "plla_core",
1633 .source_pll = "plla",
1634 .cm_reg = CM_PLLA,
1635 .a2w_reg = A2W_PLLA_CORE,
1636 .load_mask = CM_PLLA_LOADCORE,
1637 .hold_mask = CM_PLLA_HOLDCORE,
Eric Anholt55486092017-01-18 07:31:55 +11001638 .fixed_divider = 1,
1639 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001640 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1641 .name = "plla_per",
1642 .source_pll = "plla",
1643 .cm_reg = CM_PLLA,
1644 .a2w_reg = A2W_PLLA_PER,
1645 .load_mask = CM_PLLA_LOADPER,
1646 .hold_mask = CM_PLLA_HOLDPER,
Eric Anholt55486092017-01-18 07:31:55 +11001647 .fixed_divider = 1,
1648 .flags = CLK_SET_RATE_PARENT),
Martin Sperl72843692016-02-29 15:43:56 +00001649 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1650 .name = "plla_dsi0",
1651 .source_pll = "plla",
1652 .cm_reg = CM_PLLA,
1653 .a2w_reg = A2W_PLLA_DSI0,
1654 .load_mask = CM_PLLA_LOADDSI0,
1655 .hold_mask = CM_PLLA_HOLDDSI0,
1656 .fixed_divider = 1),
1657 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1658 .name = "plla_ccp2",
1659 .source_pll = "plla",
1660 .cm_reg = CM_PLLA,
1661 .a2w_reg = A2W_PLLA_CCP2,
1662 .load_mask = CM_PLLA_LOADCCP2,
1663 .hold_mask = CM_PLLA_HOLDCCP2,
Eric Anholt55486092017-01-18 07:31:55 +11001664 .fixed_divider = 1,
1665 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001666
1667 /* PLLB is used for the ARM's clock. */
1668 [BCM2835_PLLB] = REGISTER_PLL(
1669 .name = "pllb",
1670 .cm_ctrl_reg = CM_PLLB,
1671 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1672 .frac_reg = A2W_PLLB_FRAC,
1673 .ana_reg_base = A2W_PLLB_ANA0,
1674 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1675 .lock_mask = CM_LOCK_FLOCKB,
1676
1677 .ana = &bcm2835_ana_default,
1678
1679 .min_rate = 600000000u,
1680 .max_rate = 3000000000u,
1681 .max_fb_rate = BCM2835_MAX_FB_RATE),
1682 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1683 .name = "pllb_arm",
1684 .source_pll = "pllb",
1685 .cm_reg = CM_PLLB,
1686 .a2w_reg = A2W_PLLB_ARM,
1687 .load_mask = CM_PLLB_LOADARM,
1688 .hold_mask = CM_PLLB_HOLDARM,
Eric Anholt55486092017-01-18 07:31:55 +11001689 .fixed_divider = 1,
1690 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001691
1692 /*
1693 * PLLC is the core PLL, used to drive the core VPU clock.
1694 *
1695 * It is in the PX LDO power domain, which is on when the
1696 * AUDIO domain is on.
1697 */
1698 [BCM2835_PLLC] = REGISTER_PLL(
1699 .name = "pllc",
1700 .cm_ctrl_reg = CM_PLLC,
1701 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1702 .frac_reg = A2W_PLLC_FRAC,
1703 .ana_reg_base = A2W_PLLC_ANA0,
1704 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1705 .lock_mask = CM_LOCK_FLOCKC,
1706
1707 .ana = &bcm2835_ana_default,
1708
1709 .min_rate = 600000000u,
1710 .max_rate = 3000000000u,
1711 .max_fb_rate = BCM2835_MAX_FB_RATE),
1712 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1713 .name = "pllc_core0",
1714 .source_pll = "pllc",
1715 .cm_reg = CM_PLLC,
1716 .a2w_reg = A2W_PLLC_CORE0,
1717 .load_mask = CM_PLLC_LOADCORE0,
1718 .hold_mask = CM_PLLC_HOLDCORE0,
Eric Anholt55486092017-01-18 07:31:55 +11001719 .fixed_divider = 1,
1720 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001721 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1722 .name = "pllc_core1",
1723 .source_pll = "pllc",
1724 .cm_reg = CM_PLLC,
1725 .a2w_reg = A2W_PLLC_CORE1,
1726 .load_mask = CM_PLLC_LOADCORE1,
1727 .hold_mask = CM_PLLC_HOLDCORE1,
Eric Anholt55486092017-01-18 07:31:55 +11001728 .fixed_divider = 1,
1729 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001730 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1731 .name = "pllc_core2",
1732 .source_pll = "pllc",
1733 .cm_reg = CM_PLLC,
1734 .a2w_reg = A2W_PLLC_CORE2,
1735 .load_mask = CM_PLLC_LOADCORE2,
1736 .hold_mask = CM_PLLC_HOLDCORE2,
Eric Anholt55486092017-01-18 07:31:55 +11001737 .fixed_divider = 1,
1738 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001739 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1740 .name = "pllc_per",
1741 .source_pll = "pllc",
1742 .cm_reg = CM_PLLC,
1743 .a2w_reg = A2W_PLLC_PER,
1744 .load_mask = CM_PLLC_LOADPER,
1745 .hold_mask = CM_PLLC_HOLDPER,
Eric Anholt55486092017-01-18 07:31:55 +11001746 .fixed_divider = 1,
1747 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001748
1749 /*
1750 * PLLD is the display PLL, used to drive DSI display panels.
1751 *
1752 * It is in the PX LDO power domain, which is on when the
1753 * AUDIO domain is on.
1754 */
1755 [BCM2835_PLLD] = REGISTER_PLL(
1756 .name = "plld",
1757 .cm_ctrl_reg = CM_PLLD,
1758 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1759 .frac_reg = A2W_PLLD_FRAC,
1760 .ana_reg_base = A2W_PLLD_ANA0,
1761 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1762 .lock_mask = CM_LOCK_FLOCKD,
1763
1764 .ana = &bcm2835_ana_default,
1765
1766 .min_rate = 600000000u,
1767 .max_rate = 2400000000u,
1768 .max_fb_rate = BCM2835_MAX_FB_RATE),
1769 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1770 .name = "plld_core",
1771 .source_pll = "plld",
1772 .cm_reg = CM_PLLD,
1773 .a2w_reg = A2W_PLLD_CORE,
1774 .load_mask = CM_PLLD_LOADCORE,
1775 .hold_mask = CM_PLLD_HOLDCORE,
Eric Anholt55486092017-01-18 07:31:55 +11001776 .fixed_divider = 1,
1777 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001778 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1779 .name = "plld_per",
1780 .source_pll = "plld",
1781 .cm_reg = CM_PLLD,
1782 .a2w_reg = A2W_PLLD_PER,
1783 .load_mask = CM_PLLD_LOADPER,
1784 .hold_mask = CM_PLLD_HOLDPER,
Eric Anholt55486092017-01-18 07:31:55 +11001785 .fixed_divider = 1,
1786 .flags = CLK_SET_RATE_PARENT),
Martin Sperl72843692016-02-29 15:43:56 +00001787 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1788 .name = "plld_dsi0",
1789 .source_pll = "plld",
1790 .cm_reg = CM_PLLD,
1791 .a2w_reg = A2W_PLLD_DSI0,
1792 .load_mask = CM_PLLD_LOADDSI0,
1793 .hold_mask = CM_PLLD_HOLDDSI0,
1794 .fixed_divider = 1),
1795 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1796 .name = "plld_dsi1",
1797 .source_pll = "plld",
1798 .cm_reg = CM_PLLD,
1799 .a2w_reg = A2W_PLLD_DSI1,
1800 .load_mask = CM_PLLD_LOADDSI1,
1801 .hold_mask = CM_PLLD_HOLDDSI1,
1802 .fixed_divider = 1),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001803
1804 /*
1805 * PLLH is used to supply the pixel clock or the AUX clock for the
1806 * TV encoder.
1807 *
1808 * It is in the HDMI power domain.
1809 */
1810 [BCM2835_PLLH] = REGISTER_PLL(
1811 "pllh",
1812 .cm_ctrl_reg = CM_PLLH,
1813 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1814 .frac_reg = A2W_PLLH_FRAC,
1815 .ana_reg_base = A2W_PLLH_ANA0,
1816 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1817 .lock_mask = CM_LOCK_FLOCKH,
1818
1819 .ana = &bcm2835_ana_pllh,
1820
1821 .min_rate = 600000000u,
1822 .max_rate = 3000000000u,
1823 .max_fb_rate = BCM2835_MAX_FB_RATE),
1824 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1825 .name = "pllh_rcal",
1826 .source_pll = "pllh",
1827 .cm_reg = CM_PLLH,
1828 .a2w_reg = A2W_PLLH_RCAL,
1829 .load_mask = CM_PLLH_LOADRCAL,
1830 .hold_mask = 0,
Eric Anholt55486092017-01-18 07:31:55 +11001831 .fixed_divider = 10,
1832 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001833 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1834 .name = "pllh_aux",
1835 .source_pll = "pllh",
1836 .cm_reg = CM_PLLH,
1837 .a2w_reg = A2W_PLLH_AUX,
1838 .load_mask = CM_PLLH_LOADAUX,
1839 .hold_mask = 0,
Eric Anholt55486092017-01-18 07:31:55 +11001840 .fixed_divider = 1,
1841 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001842 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1843 .name = "pllh_pix",
1844 .source_pll = "pllh",
1845 .cm_reg = CM_PLLH,
1846 .a2w_reg = A2W_PLLH_PIX,
1847 .load_mask = CM_PLLH_LOADPIX,
1848 .hold_mask = 0,
Eric Anholt55486092017-01-18 07:31:55 +11001849 .fixed_divider = 10,
1850 .flags = CLK_SET_RATE_PARENT),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001851
Martin Sperl56eb3a22016-02-29 12:51:41 +00001852 /* the clocks */
Martin Sperl3b15afe2016-02-29 12:51:42 +00001853
1854 /* clocks with oscillator parent mux */
1855
1856 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1857 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1858 .name = "otp",
1859 .ctl_reg = CM_OTPCTL,
1860 .div_reg = CM_OTPDIV,
1861 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001862 .frac_bits = 0,
1863 .tcnt_mux = 6),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001864 /*
1865 * Used for a 1Mhz clock for the system clocksource, and also used
1866 * bythe watchdog timer and the camera pulse generator.
1867 */
1868 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1869 .name = "timer",
1870 .ctl_reg = CM_TIMERCTL,
1871 .div_reg = CM_TIMERDIV,
1872 .int_bits = 6,
1873 .frac_bits = 12),
1874 /*
1875 * Clock for the temperature sensor.
1876 * Generally run at 2Mhz, max 5Mhz.
1877 */
1878 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1879 .name = "tsens",
1880 .ctl_reg = CM_TSENSCTL,
1881 .div_reg = CM_TSENSDIV,
1882 .int_bits = 5,
1883 .frac_bits = 0),
Martin Sperld3d6f152016-02-29 15:43:57 +00001884 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1885 .name = "tec",
1886 .ctl_reg = CM_TECCTL,
1887 .div_reg = CM_TECDIV,
1888 .int_bits = 6,
1889 .frac_bits = 0),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001890
1891 /* clocks with vpu parent mux */
1892 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1893 .name = "h264",
1894 .ctl_reg = CM_H264CTL,
1895 .div_reg = CM_H264DIV,
1896 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001897 .frac_bits = 8,
1898 .tcnt_mux = 1),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001899 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1900 .name = "isp",
1901 .ctl_reg = CM_ISPCTL,
1902 .div_reg = CM_ISPDIV,
1903 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001904 .frac_bits = 8,
1905 .tcnt_mux = 2),
Martin Sperld3d6f152016-02-29 15:43:57 +00001906
Martin Sperl3b15afe2016-02-29 12:51:42 +00001907 /*
1908 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1909 * in the SDRAM controller can't be used.
1910 */
1911 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1912 .name = "sdram",
1913 .ctl_reg = CM_SDCCTL,
1914 .div_reg = CM_SDCDIV,
1915 .int_bits = 6,
Eric Anholt3f919582017-01-18 07:31:57 +11001916 .frac_bits = 0,
1917 .tcnt_mux = 3),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001918 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1919 .name = "v3d",
1920 .ctl_reg = CM_V3DCTL,
1921 .div_reg = CM_V3DDIV,
1922 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001923 .frac_bits = 8,
1924 .tcnt_mux = 4),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001925 /*
1926 * VPU clock. This doesn't have an enable bit, since it drives
1927 * the bus for everything else, and is special so it doesn't need
1928 * to be gated for rate changes. It is also known as "clk_audio"
1929 * in various hardware documentation.
1930 */
1931 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1932 .name = "vpu",
1933 .ctl_reg = CM_VPUCTL,
1934 .div_reg = CM_VPUDIV,
1935 .int_bits = 12,
1936 .frac_bits = 8,
Eric Anholte69fdcc2016-06-01 12:05:33 -07001937 .flags = CLK_IS_CRITICAL,
Eric Anholt3f919582017-01-18 07:31:57 +11001938 .is_vpu_clock = true,
1939 .tcnt_mux = 5),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001940
1941 /* clocks with per parent mux */
Martin Sperld3d6f152016-02-29 15:43:57 +00001942 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1943 .name = "aveo",
1944 .ctl_reg = CM_AVEOCTL,
1945 .div_reg = CM_AVEODIV,
1946 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001947 .frac_bits = 0,
1948 .tcnt_mux = 38),
Martin Sperld3d6f152016-02-29 15:43:57 +00001949 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1950 .name = "cam0",
1951 .ctl_reg = CM_CAM0CTL,
1952 .div_reg = CM_CAM0DIV,
1953 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001954 .frac_bits = 8,
1955 .tcnt_mux = 14),
Martin Sperld3d6f152016-02-29 15:43:57 +00001956 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1957 .name = "cam1",
1958 .ctl_reg = CM_CAM1CTL,
1959 .div_reg = CM_CAM1DIV,
1960 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001961 .frac_bits = 8,
1962 .tcnt_mux = 15),
Martin Sperld3d6f152016-02-29 15:43:57 +00001963 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1964 .name = "dft",
1965 .ctl_reg = CM_DFTCTL,
1966 .div_reg = CM_DFTDIV,
1967 .int_bits = 5,
1968 .frac_bits = 0),
1969 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1970 .name = "dpi",
1971 .ctl_reg = CM_DPICTL,
1972 .div_reg = CM_DPIDIV,
1973 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001974 .frac_bits = 8,
1975 .tcnt_mux = 17),
Martin Sperl3b15afe2016-02-29 12:51:42 +00001976
1977 /* Arasan EMMC clock */
1978 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1979 .name = "emmc",
1980 .ctl_reg = CM_EMMCCTL,
1981 .div_reg = CM_EMMCDIV,
1982 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11001983 .frac_bits = 8,
1984 .tcnt_mux = 39),
Martin Sperld3d6f152016-02-29 15:43:57 +00001985
1986 /* General purpose (GPIO) clocks */
1987 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1988 .name = "gp0",
1989 .ctl_reg = CM_GP0CTL,
1990 .div_reg = CM_GP0DIV,
1991 .int_bits = 12,
1992 .frac_bits = 12,
Eric Anholt3f919582017-01-18 07:31:57 +11001993 .is_mash_clock = true,
1994 .tcnt_mux = 20),
Martin Sperld3d6f152016-02-29 15:43:57 +00001995 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1996 .name = "gp1",
1997 .ctl_reg = CM_GP1CTL,
1998 .div_reg = CM_GP1DIV,
1999 .int_bits = 12,
2000 .frac_bits = 12,
Eric Anholteddcbe832016-06-01 12:05:34 -07002001 .flags = CLK_IS_CRITICAL,
Eric Anholt3f919582017-01-18 07:31:57 +11002002 .is_mash_clock = true,
2003 .tcnt_mux = 21),
Martin Sperld3d6f152016-02-29 15:43:57 +00002004 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2005 .name = "gp2",
2006 .ctl_reg = CM_GP2CTL,
2007 .div_reg = CM_GP2DIV,
2008 .int_bits = 12,
Eric Anholteddcbe832016-06-01 12:05:34 -07002009 .frac_bits = 12,
2010 .flags = CLK_IS_CRITICAL),
Martin Sperld3d6f152016-02-29 15:43:57 +00002011
Martin Sperl3b15afe2016-02-29 12:51:42 +00002012 /* HDMI state machine */
2013 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2014 .name = "hsm",
2015 .ctl_reg = CM_HSMCTL,
2016 .div_reg = CM_HSMDIV,
2017 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11002018 .frac_bits = 8,
2019 .tcnt_mux = 22),
Phil Elwell8c0de582017-06-01 15:14:16 +01002020 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
Martin Sperl33b68962016-02-29 12:51:43 +00002021 .name = "pcm",
2022 .ctl_reg = CM_PCMCTL,
2023 .div_reg = CM_PCMDIV,
2024 .int_bits = 12,
2025 .frac_bits = 12,
Eric Anholt3f919582017-01-18 07:31:57 +11002026 .is_mash_clock = true,
Phil Elwell35429762017-06-01 15:14:22 +01002027 .low_jitter = true,
Eric Anholt3f919582017-01-18 07:31:57 +11002028 .tcnt_mux = 23),
Martin Sperl3b15afe2016-02-29 12:51:42 +00002029 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2030 .name = "pwm",
2031 .ctl_reg = CM_PWMCTL,
2032 .div_reg = CM_PWMDIV,
2033 .int_bits = 12,
2034 .frac_bits = 12,
Eric Anholt3f919582017-01-18 07:31:57 +11002035 .is_mash_clock = true,
2036 .tcnt_mux = 24),
Martin Sperld3d6f152016-02-29 15:43:57 +00002037 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2038 .name = "slim",
2039 .ctl_reg = CM_SLIMCTL,
2040 .div_reg = CM_SLIMDIV,
2041 .int_bits = 12,
2042 .frac_bits = 12,
Eric Anholt3f919582017-01-18 07:31:57 +11002043 .is_mash_clock = true,
2044 .tcnt_mux = 25),
Martin Sperld3d6f152016-02-29 15:43:57 +00002045 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2046 .name = "smi",
2047 .ctl_reg = CM_SMICTL,
2048 .div_reg = CM_SMIDIV,
2049 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11002050 .frac_bits = 8,
2051 .tcnt_mux = 27),
Martin Sperl3b15afe2016-02-29 12:51:42 +00002052 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2053 .name = "uart",
2054 .ctl_reg = CM_UARTCTL,
2055 .div_reg = CM_UARTDIV,
2056 .int_bits = 10,
Eric Anholt3f919582017-01-18 07:31:57 +11002057 .frac_bits = 12,
2058 .tcnt_mux = 28),
Martin Sperld3d6f152016-02-29 15:43:57 +00002059
Martin Sperl3b15afe2016-02-29 12:51:42 +00002060 /* TV encoder clock. Only operating frequency is 108Mhz. */
2061 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2062 .name = "vec",
2063 .ctl_reg = CM_VECCTL,
2064 .div_reg = CM_VECDIV,
2065 .int_bits = 4,
Boris Brezillond86d46a2016-12-01 22:00:20 +01002066 .frac_bits = 0,
2067 /*
2068 * Allow rate change propagation only on PLLH_AUX which is
2069 * assigned index 7 in the parent array.
2070 */
Eric Anholt3f919582017-01-18 07:31:57 +11002071 .set_rate_parent = BIT(7),
2072 .tcnt_mux = 29),
Martin Sperl3b15afe2016-02-29 12:51:42 +00002073
Martin Sperld3d6f152016-02-29 15:43:57 +00002074 /* dsi clocks */
2075 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2076 .name = "dsi0e",
2077 .ctl_reg = CM_DSI0ECTL,
2078 .div_reg = CM_DSI0EDIV,
2079 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11002080 .frac_bits = 8,
2081 .tcnt_mux = 18),
Martin Sperld3d6f152016-02-29 15:43:57 +00002082 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2083 .name = "dsi1e",
2084 .ctl_reg = CM_DSI1ECTL,
2085 .div_reg = CM_DSI1EDIV,
2086 .int_bits = 4,
Eric Anholt3f919582017-01-18 07:31:57 +11002087 .frac_bits = 8,
2088 .tcnt_mux = 19),
Eric Anholt8a39e9f2017-01-18 07:31:56 +11002089 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2090 .name = "dsi0p",
2091 .ctl_reg = CM_DSI0PCTL,
2092 .div_reg = CM_DSI0PDIV,
2093 .int_bits = 0,
Eric Anholt3f919582017-01-18 07:31:57 +11002094 .frac_bits = 0,
2095 .tcnt_mux = 12),
Eric Anholt8a39e9f2017-01-18 07:31:56 +11002096 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2097 .name = "dsi1p",
2098 .ctl_reg = CM_DSI1PCTL,
2099 .div_reg = CM_DSI1PDIV,
2100 .int_bits = 0,
Eric Anholt3f919582017-01-18 07:31:57 +11002101 .frac_bits = 0,
2102 .tcnt_mux = 13),
Martin Sperld3d6f152016-02-29 15:43:57 +00002103
Martin Sperl56eb3a22016-02-29 12:51:41 +00002104 /* the gates */
Martin Sperl3b15afe2016-02-29 12:51:42 +00002105
2106 /*
2107 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2108 * you have the debug bit set in the power manager, which we
2109 * don't bother exposing) are individual gates off of the
2110 * non-stop vpu clock.
2111 */
Martin Sperl56eb3a22016-02-29 12:51:41 +00002112 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
Martin Sperl3b15afe2016-02-29 12:51:42 +00002113 .name = "peri_image",
2114 .parent = "vpu",
2115 .ctl_reg = CM_PERIICTL),
Martin Sperl56eb3a22016-02-29 12:51:41 +00002116};
2117
Eric Anholt9e400c52016-06-01 12:05:35 -07002118/*
2119 * Permanently take a reference on the parent of the SDRAM clock.
2120 *
2121 * While the SDRAM is being driven by its dedicated PLL most of the
2122 * time, there is a little loop running in the firmware that
2123 * periodically switches the SDRAM to using our CM clock to do PVT
2124 * recalibration, with the assumption that the previously configured
2125 * SDRAM parent is still enabled and running.
2126 */
2127static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2128{
2129 struct clk *parent = clk_get_parent(sdc);
2130
2131 if (IS_ERR(parent))
2132 return PTR_ERR(parent);
2133
2134 return clk_prepare_enable(parent);
2135}
2136
Eric Anholt41691b82015-10-08 18:37:24 -07002137static int bcm2835_clk_probe(struct platform_device *pdev)
2138{
2139 struct device *dev = &pdev->dev;
Stephen Boydb19f0092016-06-01 16:15:03 -07002140 struct clk_hw **hws;
Eric Anholt41691b82015-10-08 18:37:24 -07002141 struct bcm2835_cprman *cprman;
2142 struct resource *res;
Martin Sperl56eb3a22016-02-29 12:51:41 +00002143 const struct bcm2835_clk_desc *desc;
2144 const size_t asize = ARRAY_SIZE(clk_desc_array);
2145 size_t i;
Eric Anholt9e400c52016-06-01 12:05:35 -07002146 int ret;
Eric Anholt41691b82015-10-08 18:37:24 -07002147
Stephen Boydb19f0092016-06-01 16:15:03 -07002148 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2149 sizeof(*cprman->onecell.hws) * asize,
Martin Sperl56eb3a22016-02-29 12:51:41 +00002150 GFP_KERNEL);
Eric Anholt41691b82015-10-08 18:37:24 -07002151 if (!cprman)
2152 return -ENOMEM;
2153
2154 spin_lock_init(&cprman->regs_lock);
2155 cprman->dev = dev;
2156 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2157 cprman->regs = devm_ioremap_resource(dev, res);
2158 if (IS_ERR(cprman->regs))
2159 return PTR_ERR(cprman->regs);
2160
Eric Anholt8a39e9f2017-01-18 07:31:56 +11002161 memcpy(cprman->real_parent_names, cprman_parent_names,
2162 sizeof(cprman_parent_names));
2163 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2164 ARRAY_SIZE(cprman_parent_names));
2165
2166 /*
2167 * Make sure the external oscillator has been registered.
2168 *
2169 * The other (DSI) clocks are not present on older device
2170 * trees, which we still need to support for backwards
2171 * compatibility.
2172 */
2173 if (!cprman->real_parent_names[0])
Eric Anholt41691b82015-10-08 18:37:24 -07002174 return -ENODEV;
2175
2176 platform_set_drvdata(pdev, cprman);
2177
Stephen Boydb19f0092016-06-01 16:15:03 -07002178 cprman->onecell.num = asize;
2179 hws = cprman->onecell.hws;
Eric Anholt41691b82015-10-08 18:37:24 -07002180
Martin Sperl56eb3a22016-02-29 12:51:41 +00002181 for (i = 0; i < asize; i++) {
2182 desc = &clk_desc_array[i];
2183 if (desc->clk_register && desc->data)
Stephen Boydb19f0092016-06-01 16:15:03 -07002184 hws[i] = desc->clk_register(cprman, desc->data);
Martin Sperl56eb3a22016-02-29 12:51:41 +00002185 }
Remi Pommarelcfbab8f2015-12-06 17:22:48 +01002186
Stephen Boydb19f0092016-06-01 16:15:03 -07002187 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
Eric Anholt9e400c52016-06-01 12:05:35 -07002188 if (ret)
2189 return ret;
2190
Stephen Boydb19f0092016-06-01 16:15:03 -07002191 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2192 &cprman->onecell);
Eric Anholt41691b82015-10-08 18:37:24 -07002193}
2194
2195static const struct of_device_id bcm2835_clk_of_match[] = {
2196 { .compatible = "brcm,bcm2835-cprman", },
2197 {}
2198};
2199MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2200
2201static struct platform_driver bcm2835_clk_driver = {
2202 .driver = {
2203 .name = "bcm2835-clk",
2204 .of_match_table = bcm2835_clk_of_match,
2205 },
2206 .probe = bcm2835_clk_probe,
2207};
2208
2209builtin_platform_driver(bcm2835_clk_driver);
2210
2211MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2212MODULE_DESCRIPTION("BCM2835 clock driver");
2213MODULE_LICENSE("GPL v2");