| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright (c) 2018, Intel Corporation. */ |
| 3 | |
| 4 | /* The driver transmit and receive code */ |
| 5 | |
| 6 | #include <linux/prefetch.h> |
| 7 | #include <linux/mm.h> |
| 8 | #include "ice.h" |
| 9 | |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 10 | #define ICE_RX_HDR_SIZE 256 |
| 11 | |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 12 | /** |
| 13 | * ice_unmap_and_free_tx_buf - Release a Tx buffer |
| 14 | * @ring: the ring that owns the buffer |
| 15 | * @tx_buf: the buffer to free |
| 16 | */ |
| 17 | static void |
| 18 | ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) |
| 19 | { |
| 20 | if (tx_buf->skb) { |
| 21 | dev_kfree_skb_any(tx_buf->skb); |
| 22 | if (dma_unmap_len(tx_buf, len)) |
| 23 | dma_unmap_single(ring->dev, |
| 24 | dma_unmap_addr(tx_buf, dma), |
| 25 | dma_unmap_len(tx_buf, len), |
| 26 | DMA_TO_DEVICE); |
| 27 | } else if (dma_unmap_len(tx_buf, len)) { |
| 28 | dma_unmap_page(ring->dev, |
| 29 | dma_unmap_addr(tx_buf, dma), |
| 30 | dma_unmap_len(tx_buf, len), |
| 31 | DMA_TO_DEVICE); |
| 32 | } |
| 33 | |
| 34 | tx_buf->next_to_watch = NULL; |
| 35 | tx_buf->skb = NULL; |
| 36 | dma_unmap_len_set(tx_buf, len, 0); |
| 37 | /* tx_buf must be completely set up in the transmit path */ |
| 38 | } |
| 39 | |
| 40 | static struct netdev_queue *txring_txq(const struct ice_ring *ring) |
| 41 | { |
| 42 | return netdev_get_tx_queue(ring->netdev, ring->q_index); |
| 43 | } |
| 44 | |
| 45 | /** |
| 46 | * ice_clean_tx_ring - Free any empty Tx buffers |
| 47 | * @tx_ring: ring to be cleaned |
| 48 | */ |
| 49 | void ice_clean_tx_ring(struct ice_ring *tx_ring) |
| 50 | { |
| 51 | unsigned long size; |
| 52 | u16 i; |
| 53 | |
| 54 | /* ring already cleared, nothing to do */ |
| 55 | if (!tx_ring->tx_buf) |
| 56 | return; |
| 57 | |
| 58 | /* Free all the Tx ring sk_bufss */ |
| 59 | for (i = 0; i < tx_ring->count; i++) |
| 60 | ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); |
| 61 | |
| 62 | size = sizeof(struct ice_tx_buf) * tx_ring->count; |
| 63 | memset(tx_ring->tx_buf, 0, size); |
| 64 | |
| 65 | /* Zero out the descriptor ring */ |
| 66 | memset(tx_ring->desc, 0, tx_ring->size); |
| 67 | |
| 68 | tx_ring->next_to_use = 0; |
| 69 | tx_ring->next_to_clean = 0; |
| 70 | |
| 71 | if (!tx_ring->netdev) |
| 72 | return; |
| 73 | |
| 74 | /* cleanup Tx queue statistics */ |
| 75 | netdev_tx_reset_queue(txring_txq(tx_ring)); |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | * ice_free_tx_ring - Free Tx resources per queue |
| 80 | * @tx_ring: Tx descriptor ring for a specific queue |
| 81 | * |
| 82 | * Free all transmit software resources |
| 83 | */ |
| 84 | void ice_free_tx_ring(struct ice_ring *tx_ring) |
| 85 | { |
| 86 | ice_clean_tx_ring(tx_ring); |
| 87 | devm_kfree(tx_ring->dev, tx_ring->tx_buf); |
| 88 | tx_ring->tx_buf = NULL; |
| 89 | |
| 90 | if (tx_ring->desc) { |
| 91 | dmam_free_coherent(tx_ring->dev, tx_ring->size, |
| 92 | tx_ring->desc, tx_ring->dma); |
| 93 | tx_ring->desc = NULL; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | /** |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 98 | * ice_clean_tx_irq - Reclaim resources after transmit completes |
| 99 | * @vsi: the VSI we care about |
| 100 | * @tx_ring: Tx ring to clean |
| 101 | * @napi_budget: Used to determine if we are in netpoll |
| 102 | * |
| 103 | * Returns true if there's any budget left (e.g. the clean is finished) |
| 104 | */ |
| 105 | static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, |
| 106 | int napi_budget) |
| 107 | { |
| 108 | unsigned int total_bytes = 0, total_pkts = 0; |
| 109 | unsigned int budget = vsi->work_lmt; |
| 110 | s16 i = tx_ring->next_to_clean; |
| 111 | struct ice_tx_desc *tx_desc; |
| 112 | struct ice_tx_buf *tx_buf; |
| 113 | |
| 114 | tx_buf = &tx_ring->tx_buf[i]; |
| 115 | tx_desc = ICE_TX_DESC(tx_ring, i); |
| 116 | i -= tx_ring->count; |
| 117 | |
| 118 | do { |
| 119 | struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; |
| 120 | |
| 121 | /* if next_to_watch is not set then there is no work pending */ |
| 122 | if (!eop_desc) |
| 123 | break; |
| 124 | |
| 125 | smp_rmb(); /* prevent any other reads prior to eop_desc */ |
| 126 | |
| 127 | /* if the descriptor isn't done, no work yet to do */ |
| 128 | if (!(eop_desc->cmd_type_offset_bsz & |
| 129 | cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| 130 | break; |
| 131 | |
| 132 | /* clear next_to_watch to prevent false hangs */ |
| 133 | tx_buf->next_to_watch = NULL; |
| 134 | |
| 135 | /* update the statistics for this packet */ |
| 136 | total_bytes += tx_buf->bytecount; |
| 137 | total_pkts += tx_buf->gso_segs; |
| 138 | |
| 139 | /* free the skb */ |
| 140 | napi_consume_skb(tx_buf->skb, napi_budget); |
| 141 | |
| 142 | /* unmap skb header data */ |
| 143 | dma_unmap_single(tx_ring->dev, |
| 144 | dma_unmap_addr(tx_buf, dma), |
| 145 | dma_unmap_len(tx_buf, len), |
| 146 | DMA_TO_DEVICE); |
| 147 | |
| 148 | /* clear tx_buf data */ |
| 149 | tx_buf->skb = NULL; |
| 150 | dma_unmap_len_set(tx_buf, len, 0); |
| 151 | |
| 152 | /* unmap remaining buffers */ |
| 153 | while (tx_desc != eop_desc) { |
| 154 | tx_buf++; |
| 155 | tx_desc++; |
| 156 | i++; |
| 157 | if (unlikely(!i)) { |
| 158 | i -= tx_ring->count; |
| 159 | tx_buf = tx_ring->tx_buf; |
| 160 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 161 | } |
| 162 | |
| 163 | /* unmap any remaining paged data */ |
| 164 | if (dma_unmap_len(tx_buf, len)) { |
| 165 | dma_unmap_page(tx_ring->dev, |
| 166 | dma_unmap_addr(tx_buf, dma), |
| 167 | dma_unmap_len(tx_buf, len), |
| 168 | DMA_TO_DEVICE); |
| 169 | dma_unmap_len_set(tx_buf, len, 0); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | /* move us one more past the eop_desc for start of next pkt */ |
| 174 | tx_buf++; |
| 175 | tx_desc++; |
| 176 | i++; |
| 177 | if (unlikely(!i)) { |
| 178 | i -= tx_ring->count; |
| 179 | tx_buf = tx_ring->tx_buf; |
| 180 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 181 | } |
| 182 | |
| 183 | prefetch(tx_desc); |
| 184 | |
| 185 | /* update budget accounting */ |
| 186 | budget--; |
| 187 | } while (likely(budget)); |
| 188 | |
| 189 | i += tx_ring->count; |
| 190 | tx_ring->next_to_clean = i; |
| 191 | u64_stats_update_begin(&tx_ring->syncp); |
| 192 | tx_ring->stats.bytes += total_bytes; |
| 193 | tx_ring->stats.pkts += total_pkts; |
| 194 | u64_stats_update_end(&tx_ring->syncp); |
| 195 | tx_ring->q_vector->tx.total_bytes += total_bytes; |
| 196 | tx_ring->q_vector->tx.total_pkts += total_pkts; |
| 197 | |
| 198 | netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, |
| 199 | total_bytes); |
| 200 | |
| 201 | #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
| 202 | if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && |
| 203 | (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| 204 | /* Make sure that anybody stopping the queue after this |
| 205 | * sees the new next_to_clean. |
| 206 | */ |
| 207 | smp_mb(); |
| 208 | if (__netif_subqueue_stopped(tx_ring->netdev, |
| 209 | tx_ring->q_index) && |
| 210 | !test_bit(__ICE_DOWN, vsi->state)) { |
| 211 | netif_wake_subqueue(tx_ring->netdev, |
| 212 | tx_ring->q_index); |
| 213 | ++tx_ring->tx_stats.restart_q; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | return !!budget; |
| 218 | } |
| 219 | |
| 220 | /** |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 221 | * ice_setup_tx_ring - Allocate the Tx descriptors |
| 222 | * @tx_ring: the tx ring to set up |
| 223 | * |
| 224 | * Return 0 on success, negative on error |
| 225 | */ |
| 226 | int ice_setup_tx_ring(struct ice_ring *tx_ring) |
| 227 | { |
| 228 | struct device *dev = tx_ring->dev; |
| 229 | int bi_size; |
| 230 | |
| 231 | if (!dev) |
| 232 | return -ENOMEM; |
| 233 | |
| 234 | /* warn if we are about to overwrite the pointer */ |
| 235 | WARN_ON(tx_ring->tx_buf); |
| 236 | bi_size = sizeof(struct ice_tx_buf) * tx_ring->count; |
| 237 | tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL); |
| 238 | if (!tx_ring->tx_buf) |
| 239 | return -ENOMEM; |
| 240 | |
| 241 | /* round up to nearest 4K */ |
| 242 | tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc); |
| 243 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
| 244 | tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, |
| 245 | GFP_KERNEL); |
| 246 | if (!tx_ring->desc) { |
| 247 | dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
| 248 | tx_ring->size); |
| 249 | goto err; |
| 250 | } |
| 251 | |
| 252 | tx_ring->next_to_use = 0; |
| 253 | tx_ring->next_to_clean = 0; |
| Sudheer Mogilappagari | b3969fd | 2018-08-09 06:29:53 -0700 | [diff] [blame] | 254 | tx_ring->tx_stats.prev_pkt = -1; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 255 | return 0; |
| 256 | |
| 257 | err: |
| 258 | devm_kfree(dev, tx_ring->tx_buf); |
| 259 | tx_ring->tx_buf = NULL; |
| 260 | return -ENOMEM; |
| 261 | } |
| 262 | |
| 263 | /** |
| 264 | * ice_clean_rx_ring - Free Rx buffers |
| 265 | * @rx_ring: ring to be cleaned |
| 266 | */ |
| 267 | void ice_clean_rx_ring(struct ice_ring *rx_ring) |
| 268 | { |
| 269 | struct device *dev = rx_ring->dev; |
| 270 | unsigned long size; |
| 271 | u16 i; |
| 272 | |
| 273 | /* ring already cleared, nothing to do */ |
| 274 | if (!rx_ring->rx_buf) |
| 275 | return; |
| 276 | |
| 277 | /* Free all the Rx ring sk_buffs */ |
| 278 | for (i = 0; i < rx_ring->count; i++) { |
| 279 | struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; |
| 280 | |
| 281 | if (rx_buf->skb) { |
| 282 | dev_kfree_skb(rx_buf->skb); |
| 283 | rx_buf->skb = NULL; |
| 284 | } |
| 285 | if (!rx_buf->page) |
| 286 | continue; |
| 287 | |
| 288 | dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE); |
| 289 | __free_pages(rx_buf->page, 0); |
| 290 | |
| 291 | rx_buf->page = NULL; |
| 292 | rx_buf->page_offset = 0; |
| 293 | } |
| 294 | |
| 295 | size = sizeof(struct ice_rx_buf) * rx_ring->count; |
| 296 | memset(rx_ring->rx_buf, 0, size); |
| 297 | |
| 298 | /* Zero out the descriptor ring */ |
| 299 | memset(rx_ring->desc, 0, rx_ring->size); |
| 300 | |
| 301 | rx_ring->next_to_alloc = 0; |
| 302 | rx_ring->next_to_clean = 0; |
| 303 | rx_ring->next_to_use = 0; |
| 304 | } |
| 305 | |
| 306 | /** |
| 307 | * ice_free_rx_ring - Free Rx resources |
| 308 | * @rx_ring: ring to clean the resources from |
| 309 | * |
| 310 | * Free all receive software resources |
| 311 | */ |
| 312 | void ice_free_rx_ring(struct ice_ring *rx_ring) |
| 313 | { |
| 314 | ice_clean_rx_ring(rx_ring); |
| 315 | devm_kfree(rx_ring->dev, rx_ring->rx_buf); |
| 316 | rx_ring->rx_buf = NULL; |
| 317 | |
| 318 | if (rx_ring->desc) { |
| 319 | dmam_free_coherent(rx_ring->dev, rx_ring->size, |
| 320 | rx_ring->desc, rx_ring->dma); |
| 321 | rx_ring->desc = NULL; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | /** |
| 326 | * ice_setup_rx_ring - Allocate the Rx descriptors |
| 327 | * @rx_ring: the rx ring to set up |
| 328 | * |
| 329 | * Return 0 on success, negative on error |
| 330 | */ |
| 331 | int ice_setup_rx_ring(struct ice_ring *rx_ring) |
| 332 | { |
| 333 | struct device *dev = rx_ring->dev; |
| 334 | int bi_size; |
| 335 | |
| 336 | if (!dev) |
| 337 | return -ENOMEM; |
| 338 | |
| 339 | /* warn if we are about to overwrite the pointer */ |
| 340 | WARN_ON(rx_ring->rx_buf); |
| 341 | bi_size = sizeof(struct ice_rx_buf) * rx_ring->count; |
| 342 | rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL); |
| 343 | if (!rx_ring->rx_buf) |
| 344 | return -ENOMEM; |
| 345 | |
| 346 | /* round up to nearest 4K */ |
| 347 | rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc); |
| 348 | rx_ring->size = ALIGN(rx_ring->size, 4096); |
| 349 | rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, |
| 350 | GFP_KERNEL); |
| 351 | if (!rx_ring->desc) { |
| 352 | dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
| 353 | rx_ring->size); |
| 354 | goto err; |
| 355 | } |
| 356 | |
| 357 | rx_ring->next_to_use = 0; |
| 358 | rx_ring->next_to_clean = 0; |
| 359 | return 0; |
| 360 | |
| 361 | err: |
| 362 | devm_kfree(dev, rx_ring->rx_buf); |
| 363 | rx_ring->rx_buf = NULL; |
| 364 | return -ENOMEM; |
| 365 | } |
| 366 | |
| 367 | /** |
| 368 | * ice_release_rx_desc - Store the new tail and head values |
| 369 | * @rx_ring: ring to bump |
| 370 | * @val: new head index |
| 371 | */ |
| 372 | static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val) |
| 373 | { |
| 374 | rx_ring->next_to_use = val; |
| 375 | |
| 376 | /* update next to alloc since we have filled the ring */ |
| 377 | rx_ring->next_to_alloc = val; |
| 378 | |
| 379 | /* Force memory writes to complete before letting h/w |
| 380 | * know there are new descriptors to fetch. (Only |
| 381 | * applicable for weak-ordered memory model archs, |
| 382 | * such as IA-64). |
| 383 | */ |
| 384 | wmb(); |
| 385 | writel(val, rx_ring->tail); |
| 386 | } |
| 387 | |
| 388 | /** |
| 389 | * ice_alloc_mapped_page - recycle or make a new page |
| 390 | * @rx_ring: ring to use |
| 391 | * @bi: rx_buf struct to modify |
| 392 | * |
| 393 | * Returns true if the page was successfully allocated or |
| 394 | * reused. |
| 395 | */ |
| 396 | static bool ice_alloc_mapped_page(struct ice_ring *rx_ring, |
| 397 | struct ice_rx_buf *bi) |
| 398 | { |
| 399 | struct page *page = bi->page; |
| 400 | dma_addr_t dma; |
| 401 | |
| 402 | /* since we are recycling buffers we should seldom need to alloc */ |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 403 | if (likely(page)) { |
| 404 | rx_ring->rx_stats.page_reuse_count++; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 405 | return true; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 406 | } |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 407 | |
| 408 | /* alloc new page for storage */ |
| 409 | page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 410 | if (unlikely(!page)) { |
| 411 | rx_ring->rx_stats.alloc_page_failed++; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 412 | return false; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 413 | } |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 414 | |
| 415 | /* map page for use */ |
| 416 | dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| 417 | |
| 418 | /* if mapping failed free memory back to system since |
| 419 | * there isn't much point in holding memory we can't use |
| 420 | */ |
| 421 | if (dma_mapping_error(rx_ring->dev, dma)) { |
| 422 | __free_pages(page, 0); |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 423 | rx_ring->rx_stats.alloc_page_failed++; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 424 | return false; |
| 425 | } |
| 426 | |
| 427 | bi->dma = dma; |
| 428 | bi->page = page; |
| 429 | bi->page_offset = 0; |
| 430 | |
| 431 | return true; |
| 432 | } |
| 433 | |
| 434 | /** |
| 435 | * ice_alloc_rx_bufs - Replace used receive buffers |
| 436 | * @rx_ring: ring to place buffers on |
| 437 | * @cleaned_count: number of buffers to replace |
| 438 | * |
| 439 | * Returns false if all allocations were successful, true if any fail |
| 440 | */ |
| 441 | bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) |
| 442 | { |
| 443 | union ice_32b_rx_flex_desc *rx_desc; |
| 444 | u16 ntu = rx_ring->next_to_use; |
| 445 | struct ice_rx_buf *bi; |
| 446 | |
| 447 | /* do nothing if no valid netdev defined */ |
| 448 | if (!rx_ring->netdev || !cleaned_count) |
| 449 | return false; |
| 450 | |
| 451 | /* get the RX descriptor and buffer based on next_to_use */ |
| 452 | rx_desc = ICE_RX_DESC(rx_ring, ntu); |
| 453 | bi = &rx_ring->rx_buf[ntu]; |
| 454 | |
| 455 | do { |
| 456 | if (!ice_alloc_mapped_page(rx_ring, bi)) |
| 457 | goto no_bufs; |
| 458 | |
| 459 | /* Refresh the desc even if buffer_addrs didn't change |
| 460 | * because each write-back erases this info. |
| 461 | */ |
| 462 | rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| 463 | |
| 464 | rx_desc++; |
| 465 | bi++; |
| 466 | ntu++; |
| 467 | if (unlikely(ntu == rx_ring->count)) { |
| 468 | rx_desc = ICE_RX_DESC(rx_ring, 0); |
| 469 | bi = rx_ring->rx_buf; |
| 470 | ntu = 0; |
| 471 | } |
| 472 | |
| 473 | /* clear the status bits for the next_to_use descriptor */ |
| 474 | rx_desc->wb.status_error0 = 0; |
| 475 | |
| 476 | cleaned_count--; |
| 477 | } while (cleaned_count); |
| 478 | |
| 479 | if (rx_ring->next_to_use != ntu) |
| 480 | ice_release_rx_desc(rx_ring, ntu); |
| 481 | |
| 482 | return false; |
| 483 | |
| 484 | no_bufs: |
| 485 | if (rx_ring->next_to_use != ntu) |
| 486 | ice_release_rx_desc(rx_ring, ntu); |
| 487 | |
| 488 | /* make sure to come back via polling to try again after |
| 489 | * allocation failure |
| 490 | */ |
| 491 | return true; |
| 492 | } |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 493 | |
| 494 | /** |
| 495 | * ice_page_is_reserved - check if reuse is possible |
| 496 | * @page: page struct to check |
| 497 | */ |
| 498 | static bool ice_page_is_reserved(struct page *page) |
| 499 | { |
| 500 | return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); |
| 501 | } |
| 502 | |
| 503 | /** |
| 504 | * ice_add_rx_frag - Add contents of Rx buffer to sk_buff |
| 505 | * @rx_buf: buffer containing page to add |
| 506 | * @rx_desc: descriptor containing length of buffer written by hardware |
| 507 | * @skb: sk_buf to place the data into |
| 508 | * |
| 509 | * This function will add the data contained in rx_buf->page to the skb. |
| 510 | * This is done either through a direct copy if the data in the buffer is |
| 511 | * less than the skb header size, otherwise it will just attach the page as |
| 512 | * a frag to the skb. |
| 513 | * |
| 514 | * The function will then update the page offset if necessary and return |
| 515 | * true if the buffer can be reused by the adapter. |
| 516 | */ |
| 517 | static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf, |
| 518 | union ice_32b_rx_flex_desc *rx_desc, |
| 519 | struct sk_buff *skb) |
| 520 | { |
| 521 | #if (PAGE_SIZE < 8192) |
| 522 | unsigned int truesize = ICE_RXBUF_2048; |
| 523 | #else |
| 524 | unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048; |
| 525 | unsigned int truesize; |
| 526 | #endif /* PAGE_SIZE < 8192) */ |
| 527 | |
| 528 | struct page *page; |
| 529 | unsigned int size; |
| 530 | |
| 531 | size = le16_to_cpu(rx_desc->wb.pkt_len) & |
| 532 | ICE_RX_FLX_DESC_PKT_LEN_M; |
| 533 | |
| 534 | page = rx_buf->page; |
| 535 | |
| 536 | #if (PAGE_SIZE >= 8192) |
| 537 | truesize = ALIGN(size, L1_CACHE_BYTES); |
| 538 | #endif /* PAGE_SIZE >= 8192) */ |
| 539 | |
| 540 | /* will the data fit in the skb we allocated? if so, just |
| 541 | * copy it as it is pretty small anyway |
| 542 | */ |
| 543 | if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) { |
| 544 | unsigned char *va = page_address(page) + rx_buf->page_offset; |
| 545 | |
| 546 | memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); |
| 547 | |
| 548 | /* page is not reserved, we can reuse buffer as-is */ |
| 549 | if (likely(!ice_page_is_reserved(page))) |
| 550 | return true; |
| 551 | |
| 552 | /* this page cannot be reused so discard it */ |
| 553 | __free_pages(page, 0); |
| 554 | return false; |
| 555 | } |
| 556 | |
| 557 | skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| 558 | rx_buf->page_offset, size, truesize); |
| 559 | |
| 560 | /* avoid re-using remote pages */ |
| 561 | if (unlikely(ice_page_is_reserved(page))) |
| 562 | return false; |
| 563 | |
| 564 | #if (PAGE_SIZE < 8192) |
| 565 | /* if we are only owner of page we can reuse it */ |
| 566 | if (unlikely(page_count(page) != 1)) |
| 567 | return false; |
| 568 | |
| 569 | /* flip page offset to other buffer */ |
| 570 | rx_buf->page_offset ^= truesize; |
| 571 | #else |
| 572 | /* move offset up to the next cache line */ |
| 573 | rx_buf->page_offset += truesize; |
| 574 | |
| 575 | if (rx_buf->page_offset > last_offset) |
| 576 | return false; |
| 577 | #endif /* PAGE_SIZE < 8192) */ |
| 578 | |
| 579 | /* Even if we own the page, we are not allowed to use atomic_set() |
| 580 | * This would break get_page_unless_zero() users. |
| 581 | */ |
| 582 | get_page(rx_buf->page); |
| 583 | |
| 584 | return true; |
| 585 | } |
| 586 | |
| 587 | /** |
| 588 | * ice_reuse_rx_page - page flip buffer and store it back on the ring |
| 589 | * @rx_ring: rx descriptor ring to store buffers on |
| 590 | * @old_buf: donor buffer to have page reused |
| 591 | * |
| 592 | * Synchronizes page for reuse by the adapter |
| 593 | */ |
| 594 | static void ice_reuse_rx_page(struct ice_ring *rx_ring, |
| 595 | struct ice_rx_buf *old_buf) |
| 596 | { |
| 597 | u16 nta = rx_ring->next_to_alloc; |
| 598 | struct ice_rx_buf *new_buf; |
| 599 | |
| 600 | new_buf = &rx_ring->rx_buf[nta]; |
| 601 | |
| 602 | /* update, and store next to alloc */ |
| 603 | nta++; |
| 604 | rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| 605 | |
| 606 | /* transfer page from old buffer to new buffer */ |
| 607 | *new_buf = *old_buf; |
| 608 | } |
| 609 | |
| 610 | /** |
| 611 | * ice_fetch_rx_buf - Allocate skb and populate it |
| 612 | * @rx_ring: rx descriptor ring to transact packets on |
| 613 | * @rx_desc: descriptor containing info written by hardware |
| 614 | * |
| 615 | * This function allocates an skb on the fly, and populates it with the page |
| 616 | * data from the current receive descriptor, taking care to set up the skb |
| 617 | * correctly, as well as handling calling the page recycle function if |
| 618 | * necessary. |
| 619 | */ |
| 620 | static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring, |
| 621 | union ice_32b_rx_flex_desc *rx_desc) |
| 622 | { |
| 623 | struct ice_rx_buf *rx_buf; |
| 624 | struct sk_buff *skb; |
| 625 | struct page *page; |
| 626 | |
| 627 | rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; |
| 628 | page = rx_buf->page; |
| 629 | prefetchw(page); |
| 630 | |
| 631 | skb = rx_buf->skb; |
| 632 | |
| 633 | if (likely(!skb)) { |
| 634 | u8 *page_addr = page_address(page) + rx_buf->page_offset; |
| 635 | |
| 636 | /* prefetch first cache line of first page */ |
| 637 | prefetch(page_addr); |
| 638 | #if L1_CACHE_BYTES < 128 |
| 639 | prefetch((void *)(page_addr + L1_CACHE_BYTES)); |
| 640 | #endif /* L1_CACHE_BYTES */ |
| 641 | |
| 642 | /* allocate a skb to store the frags */ |
| 643 | skb = __napi_alloc_skb(&rx_ring->q_vector->napi, |
| 644 | ICE_RX_HDR_SIZE, |
| 645 | GFP_ATOMIC | __GFP_NOWARN); |
| 646 | if (unlikely(!skb)) { |
| 647 | rx_ring->rx_stats.alloc_buf_failed++; |
| 648 | return NULL; |
| 649 | } |
| 650 | |
| 651 | /* we will be copying header into skb->data in |
| 652 | * pskb_may_pull so it is in our interest to prefetch |
| 653 | * it now to avoid a possible cache miss |
| 654 | */ |
| 655 | prefetchw(skb->data); |
| 656 | |
| 657 | skb_record_rx_queue(skb, rx_ring->q_index); |
| 658 | } else { |
| 659 | /* we are reusing so sync this buffer for CPU use */ |
| 660 | dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, |
| 661 | rx_buf->page_offset, |
| 662 | ICE_RXBUF_2048, |
| 663 | DMA_FROM_DEVICE); |
| 664 | |
| 665 | rx_buf->skb = NULL; |
| 666 | } |
| 667 | |
| 668 | /* pull page into skb */ |
| 669 | if (ice_add_rx_frag(rx_buf, rx_desc, skb)) { |
| 670 | /* hand second half of page back to the ring */ |
| 671 | ice_reuse_rx_page(rx_ring, rx_buf); |
| 672 | rx_ring->rx_stats.page_reuse_count++; |
| 673 | } else { |
| 674 | /* we are not reusing the buffer so unmap it */ |
| 675 | dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE, |
| 676 | DMA_FROM_DEVICE); |
| 677 | } |
| 678 | |
| 679 | /* clear contents of buffer_info */ |
| 680 | rx_buf->page = NULL; |
| 681 | |
| 682 | return skb; |
| 683 | } |
| 684 | |
| 685 | /** |
| 686 | * ice_pull_tail - ice specific version of skb_pull_tail |
| 687 | * @skb: pointer to current skb being adjusted |
| 688 | * |
| 689 | * This function is an ice specific version of __pskb_pull_tail. The |
| 690 | * main difference between this version and the original function is that |
| 691 | * this function can make several assumptions about the state of things |
| 692 | * that allow for significant optimizations versus the standard function. |
| 693 | * As a result we can do things like drop a frag and maintain an accurate |
| 694 | * truesize for the skb. |
| 695 | */ |
| 696 | static void ice_pull_tail(struct sk_buff *skb) |
| 697 | { |
| 698 | struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| 699 | unsigned int pull_len; |
| 700 | unsigned char *va; |
| 701 | |
| 702 | /* it is valid to use page_address instead of kmap since we are |
| 703 | * working with pages allocated out of the lomem pool per |
| 704 | * alloc_page(GFP_ATOMIC) |
| 705 | */ |
| 706 | va = skb_frag_address(frag); |
| 707 | |
| 708 | /* we need the header to contain the greater of either ETH_HLEN or |
| 709 | * 60 bytes if the skb->len is less than 60 for skb_pad. |
| 710 | */ |
| 711 | pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE); |
| 712 | |
| 713 | /* align pull length to size of long to optimize memcpy performance */ |
| 714 | skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); |
| 715 | |
| 716 | /* update all of the pointers */ |
| 717 | skb_frag_size_sub(frag, pull_len); |
| 718 | frag->page_offset += pull_len; |
| 719 | skb->data_len -= pull_len; |
| 720 | skb->tail += pull_len; |
| 721 | } |
| 722 | |
| 723 | /** |
| 724 | * ice_cleanup_headers - Correct empty headers |
| 725 | * @skb: pointer to current skb being fixed |
| 726 | * |
| 727 | * Also address the case where we are pulling data in on pages only |
| 728 | * and as such no data is present in the skb header. |
| 729 | * |
| 730 | * In addition if skb is not at least 60 bytes we need to pad it so that |
| 731 | * it is large enough to qualify as a valid Ethernet frame. |
| 732 | * |
| 733 | * Returns true if an error was encountered and skb was freed. |
| 734 | */ |
| 735 | static bool ice_cleanup_headers(struct sk_buff *skb) |
| 736 | { |
| 737 | /* place header in linear portion of buffer */ |
| 738 | if (skb_is_nonlinear(skb)) |
| 739 | ice_pull_tail(skb); |
| 740 | |
| 741 | /* if eth_skb_pad returns an error the skb was freed */ |
| 742 | if (eth_skb_pad(skb)) |
| 743 | return true; |
| 744 | |
| 745 | return false; |
| 746 | } |
| 747 | |
| 748 | /** |
| 749 | * ice_test_staterr - tests bits in Rx descriptor status and error fields |
| 750 | * @rx_desc: pointer to receive descriptor (in le64 format) |
| 751 | * @stat_err_bits: value to mask |
| 752 | * |
| 753 | * This function does some fast chicanery in order to return the |
| 754 | * value of the mask which is really only used for boolean tests. |
| 755 | * The status_error_len doesn't need to be shifted because it begins |
| 756 | * at offset zero. |
| 757 | */ |
| 758 | static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, |
| 759 | const u16 stat_err_bits) |
| 760 | { |
| 761 | return !!(rx_desc->wb.status_error0 & |
| 762 | cpu_to_le16(stat_err_bits)); |
| 763 | } |
| 764 | |
| 765 | /** |
| 766 | * ice_is_non_eop - process handling of non-EOP buffers |
| 767 | * @rx_ring: Rx ring being processed |
| 768 | * @rx_desc: Rx descriptor for current buffer |
| 769 | * @skb: Current socket buffer containing buffer in progress |
| 770 | * |
| 771 | * This function updates next to clean. If the buffer is an EOP buffer |
| 772 | * this function exits returning false, otherwise it will place the |
| 773 | * sk_buff in the next buffer to be chained and return true indicating |
| 774 | * that this is in fact a non-EOP buffer. |
| 775 | */ |
| 776 | static bool ice_is_non_eop(struct ice_ring *rx_ring, |
| 777 | union ice_32b_rx_flex_desc *rx_desc, |
| 778 | struct sk_buff *skb) |
| 779 | { |
| 780 | u32 ntc = rx_ring->next_to_clean + 1; |
| 781 | |
| 782 | /* fetch, update, and store next to clean */ |
| 783 | ntc = (ntc < rx_ring->count) ? ntc : 0; |
| 784 | rx_ring->next_to_clean = ntc; |
| 785 | |
| 786 | prefetch(ICE_RX_DESC(rx_ring, ntc)); |
| 787 | |
| 788 | /* if we are the last buffer then there is nothing else to do */ |
| 789 | #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) |
| 790 | if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) |
| 791 | return false; |
| 792 | |
| 793 | /* place skb in next buffer to be received */ |
| 794 | rx_ring->rx_buf[ntc].skb = skb; |
| 795 | rx_ring->rx_stats.non_eop_descs++; |
| 796 | |
| 797 | return true; |
| 798 | } |
| 799 | |
| 800 | /** |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 801 | * ice_ptype_to_htype - get a hash type |
| 802 | * @ptype: the ptype value from the descriptor |
| 803 | * |
| 804 | * Returns a hash type to be used by skb_set_hash |
| 805 | */ |
| 806 | static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype) |
| 807 | { |
| 808 | return PKT_HASH_TYPE_NONE; |
| 809 | } |
| 810 | |
| 811 | /** |
| 812 | * ice_rx_hash - set the hash value in the skb |
| 813 | * @rx_ring: descriptor ring |
| 814 | * @rx_desc: specific descriptor |
| 815 | * @skb: pointer to current skb |
| 816 | * @rx_ptype: the ptype value from the descriptor |
| 817 | */ |
| 818 | static void |
| 819 | ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, |
| 820 | struct sk_buff *skb, u8 rx_ptype) |
| 821 | { |
| 822 | struct ice_32b_rx_flex_desc_nic *nic_mdid; |
| 823 | u32 hash; |
| 824 | |
| 825 | if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) |
| 826 | return; |
| 827 | |
| 828 | if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) |
| 829 | return; |
| 830 | |
| 831 | nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; |
| 832 | hash = le32_to_cpu(nic_mdid->rss_hash); |
| 833 | skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); |
| 834 | } |
| 835 | |
| 836 | /** |
| 837 | * ice_rx_csum - Indicate in skb if checksum is good |
| 838 | * @vsi: the VSI we care about |
| 839 | * @skb: skb currently being received and modified |
| 840 | * @rx_desc: the receive descriptor |
| 841 | * @ptype: the packet type decoded by hardware |
| 842 | * |
| 843 | * skb->protocol must be set before this function is called |
| 844 | */ |
| 845 | static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb, |
| 846 | union ice_32b_rx_flex_desc *rx_desc, u8 ptype) |
| 847 | { |
| 848 | struct ice_rx_ptype_decoded decoded; |
| 849 | u32 rx_error, rx_status; |
| 850 | bool ipv4, ipv6; |
| 851 | |
| 852 | rx_status = le16_to_cpu(rx_desc->wb.status_error0); |
| 853 | rx_error = rx_status; |
| 854 | |
| 855 | decoded = ice_decode_rx_desc_ptype(ptype); |
| 856 | |
| 857 | /* Start with CHECKSUM_NONE and by default csum_level = 0 */ |
| 858 | skb->ip_summed = CHECKSUM_NONE; |
| 859 | skb_checksum_none_assert(skb); |
| 860 | |
| 861 | /* check if Rx checksum is enabled */ |
| 862 | if (!(vsi->netdev->features & NETIF_F_RXCSUM)) |
| 863 | return; |
| 864 | |
| 865 | /* check if HW has decoded the packet and checksum */ |
| 866 | if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) |
| 867 | return; |
| 868 | |
| 869 | if (!(decoded.known && decoded.outer_ip)) |
| 870 | return; |
| 871 | |
| 872 | ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && |
| 873 | (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); |
| 874 | ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && |
| 875 | (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); |
| 876 | |
| 877 | if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | |
| 878 | BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) |
| 879 | goto checksum_fail; |
| 880 | else if (ipv6 && (rx_status & |
| 881 | (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) |
| 882 | goto checksum_fail; |
| 883 | |
| 884 | /* check for L4 errors and handle packets that were not able to be |
| 885 | * checksummed due to arrival speed |
| 886 | */ |
| 887 | if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) |
| 888 | goto checksum_fail; |
| 889 | |
| 890 | /* Only report checksum unnecessary for TCP, UDP, or SCTP */ |
| 891 | switch (decoded.inner_prot) { |
| 892 | case ICE_RX_PTYPE_INNER_PROT_TCP: |
| 893 | case ICE_RX_PTYPE_INNER_PROT_UDP: |
| 894 | case ICE_RX_PTYPE_INNER_PROT_SCTP: |
| 895 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 896 | default: |
| 897 | break; |
| 898 | } |
| 899 | return; |
| 900 | |
| 901 | checksum_fail: |
| 902 | vsi->back->hw_csum_rx_error++; |
| 903 | } |
| 904 | |
| 905 | /** |
| 906 | * ice_process_skb_fields - Populate skb header fields from Rx descriptor |
| 907 | * @rx_ring: rx descriptor ring packet is being transacted on |
| 908 | * @rx_desc: pointer to the EOP Rx descriptor |
| 909 | * @skb: pointer to current skb being populated |
| 910 | * @ptype: the packet type decoded by hardware |
| 911 | * |
| 912 | * This function checks the ring, descriptor, and packet information in |
| 913 | * order to populate the hash, checksum, VLAN, protocol, and |
| 914 | * other fields within the skb. |
| 915 | */ |
| 916 | static void ice_process_skb_fields(struct ice_ring *rx_ring, |
| 917 | union ice_32b_rx_flex_desc *rx_desc, |
| 918 | struct sk_buff *skb, u8 ptype) |
| 919 | { |
| 920 | ice_rx_hash(rx_ring, rx_desc, skb, ptype); |
| 921 | |
| 922 | /* modifies the skb - consumes the enet header */ |
| 923 | skb->protocol = eth_type_trans(skb, rx_ring->netdev); |
| 924 | |
| 925 | ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype); |
| 926 | } |
| 927 | |
| 928 | /** |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 929 | * ice_receive_skb - Send a completed packet up the stack |
| 930 | * @rx_ring: rx ring in play |
| 931 | * @skb: packet to send up |
| 932 | * @vlan_tag: vlan tag for packet |
| 933 | * |
| 934 | * This function sends the completed packet (via. skb) up the stack using |
| 935 | * gro receive functions (with/without vlan tag) |
| 936 | */ |
| 937 | static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, |
| 938 | u16 vlan_tag) |
| 939 | { |
| 940 | if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && |
| 941 | (vlan_tag & VLAN_VID_MASK)) { |
| 942 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| 943 | } |
| 944 | napi_gro_receive(&rx_ring->q_vector->napi, skb); |
| 945 | } |
| 946 | |
| 947 | /** |
| 948 | * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
| 949 | * @rx_ring: rx descriptor ring to transact packets on |
| 950 | * @budget: Total limit on number of packets to process |
| 951 | * |
| 952 | * This function provides a "bounce buffer" approach to Rx interrupt |
| 953 | * processing. The advantage to this is that on systems that have |
| 954 | * expensive overhead for IOMMU access this provides a means of avoiding |
| 955 | * it by maintaining the mapping of the page to the system. |
| 956 | * |
| 957 | * Returns amount of work completed |
| 958 | */ |
| 959 | static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) |
| 960 | { |
| 961 | unsigned int total_rx_bytes = 0, total_rx_pkts = 0; |
| 962 | u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); |
| 963 | bool failure = false; |
| 964 | |
| 965 | /* start the loop to process RX packets bounded by 'budget' */ |
| 966 | while (likely(total_rx_pkts < (unsigned int)budget)) { |
| 967 | union ice_32b_rx_flex_desc *rx_desc; |
| 968 | struct sk_buff *skb; |
| 969 | u16 stat_err_bits; |
| 970 | u16 vlan_tag = 0; |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 971 | u8 rx_ptype; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 972 | |
| 973 | /* return some buffers to hardware, one at a time is too slow */ |
| 974 | if (cleaned_count >= ICE_RX_BUF_WRITE) { |
| 975 | failure = failure || |
| 976 | ice_alloc_rx_bufs(rx_ring, cleaned_count); |
| 977 | cleaned_count = 0; |
| 978 | } |
| 979 | |
| 980 | /* get the RX desc from RX ring based on 'next_to_clean' */ |
| 981 | rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| 982 | |
| 983 | /* status_error_len will always be zero for unused descriptors |
| 984 | * because it's cleared in cleanup, and overlaps with hdr_addr |
| 985 | * which is always zero because packet split isn't used, if the |
| 986 | * hardware wrote DD then it will be non-zero |
| 987 | */ |
| 988 | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); |
| 989 | if (!ice_test_staterr(rx_desc, stat_err_bits)) |
| 990 | break; |
| 991 | |
| 992 | /* This memory barrier is needed to keep us from reading |
| 993 | * any other fields out of the rx_desc until we know the |
| 994 | * DD bit is set. |
| 995 | */ |
| 996 | dma_rmb(); |
| 997 | |
| 998 | /* allocate (if needed) and populate skb */ |
| 999 | skb = ice_fetch_rx_buf(rx_ring, rx_desc); |
| 1000 | if (!skb) |
| 1001 | break; |
| 1002 | |
| 1003 | cleaned_count++; |
| 1004 | |
| 1005 | /* skip if it is NOP desc */ |
| 1006 | if (ice_is_non_eop(rx_ring, rx_desc, skb)) |
| 1007 | continue; |
| 1008 | |
| 1009 | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); |
| 1010 | if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { |
| 1011 | dev_kfree_skb_any(skb); |
| 1012 | continue; |
| 1013 | } |
| 1014 | |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1015 | rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & |
| 1016 | ICE_RX_FLEX_DESC_PTYPE_M; |
| 1017 | |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1018 | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); |
| 1019 | if (ice_test_staterr(rx_desc, stat_err_bits)) |
| 1020 | vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); |
| 1021 | |
| 1022 | /* correct empty headers and pad skb if needed (to make valid |
| 1023 | * ethernet frame |
| 1024 | */ |
| 1025 | if (ice_cleanup_headers(skb)) { |
| 1026 | skb = NULL; |
| 1027 | continue; |
| 1028 | } |
| 1029 | |
| 1030 | /* probably a little skewed due to removing CRC */ |
| 1031 | total_rx_bytes += skb->len; |
| 1032 | |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1033 | /* populate checksum, VLAN, and protocol */ |
| 1034 | ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| 1035 | |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1036 | /* send completed skb up the stack */ |
| 1037 | ice_receive_skb(rx_ring, skb, vlan_tag); |
| 1038 | |
| 1039 | /* update budget accounting */ |
| 1040 | total_rx_pkts++; |
| 1041 | } |
| 1042 | |
| 1043 | /* update queue and vector specific stats */ |
| 1044 | u64_stats_update_begin(&rx_ring->syncp); |
| 1045 | rx_ring->stats.pkts += total_rx_pkts; |
| 1046 | rx_ring->stats.bytes += total_rx_bytes; |
| 1047 | u64_stats_update_end(&rx_ring->syncp); |
| 1048 | rx_ring->q_vector->rx.total_pkts += total_rx_pkts; |
| 1049 | rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
| 1050 | |
| 1051 | /* guarantee a trip back through this routine if there was a failure */ |
| 1052 | return failure ? budget : (int)total_rx_pkts; |
| 1053 | } |
| 1054 | |
| 1055 | /** |
| 1056 | * ice_napi_poll - NAPI polling Rx/Tx cleanup routine |
| 1057 | * @napi: napi struct with our devices info in it |
| 1058 | * @budget: amount of work driver is allowed to do this pass, in packets |
| 1059 | * |
| 1060 | * This function will clean all queues associated with a q_vector. |
| 1061 | * |
| 1062 | * Returns the amount of work done |
| 1063 | */ |
| 1064 | int ice_napi_poll(struct napi_struct *napi, int budget) |
| 1065 | { |
| 1066 | struct ice_q_vector *q_vector = |
| 1067 | container_of(napi, struct ice_q_vector, napi); |
| 1068 | struct ice_vsi *vsi = q_vector->vsi; |
| 1069 | struct ice_pf *pf = vsi->back; |
| 1070 | bool clean_complete = true; |
| 1071 | int budget_per_ring = 0; |
| 1072 | struct ice_ring *ring; |
| 1073 | int work_done = 0; |
| 1074 | |
| 1075 | /* Since the actual Tx work is minimal, we can give the Tx a larger |
| 1076 | * budget and be more aggressive about cleaning up the Tx descriptors. |
| 1077 | */ |
| 1078 | ice_for_each_ring(ring, q_vector->tx) |
| 1079 | if (!ice_clean_tx_irq(vsi, ring, budget)) |
| 1080 | clean_complete = false; |
| 1081 | |
| 1082 | /* Handle case where we are called by netpoll with a budget of 0 */ |
| 1083 | if (budget <= 0) |
| 1084 | return budget; |
| 1085 | |
| 1086 | /* We attempt to distribute budget to each Rx queue fairly, but don't |
| 1087 | * allow the budget to go below 1 because that would exit polling early. |
| 1088 | */ |
| 1089 | if (q_vector->num_ring_rx) |
| 1090 | budget_per_ring = max(budget / q_vector->num_ring_rx, 1); |
| 1091 | |
| 1092 | ice_for_each_ring(ring, q_vector->rx) { |
| 1093 | int cleaned; |
| 1094 | |
| 1095 | cleaned = ice_clean_rx_irq(ring, budget_per_ring); |
| 1096 | work_done += cleaned; |
| 1097 | /* if we clean as many as budgeted, we must not be done */ |
| 1098 | if (cleaned >= budget_per_ring) |
| 1099 | clean_complete = false; |
| 1100 | } |
| 1101 | |
| 1102 | /* If work not completed, return budget and polling will return */ |
| 1103 | if (!clean_complete) |
| 1104 | return budget; |
| 1105 | |
| 1106 | /* Work is done so exit the polling mode and re-enable the interrupt */ |
| 1107 | napi_complete_done(napi, work_done); |
| 1108 | if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) |
| 1109 | ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector); |
| 1110 | return 0; |
| 1111 | } |
| 1112 | |
| 1113 | /* helper function for building cmd/type/offset */ |
| 1114 | static __le64 |
| 1115 | build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag) |
| 1116 | { |
| 1117 | return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | |
| 1118 | (td_cmd << ICE_TXD_QW1_CMD_S) | |
| 1119 | (td_offset << ICE_TXD_QW1_OFFSET_S) | |
| 1120 | ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | |
| 1121 | (td_tag << ICE_TXD_QW1_L2TAG1_S)); |
| 1122 | } |
| 1123 | |
| 1124 | /** |
| 1125 | * __ice_maybe_stop_tx - 2nd level check for tx stop conditions |
| 1126 | * @tx_ring: the ring to be checked |
| 1127 | * @size: the size buffer we want to assure is available |
| 1128 | * |
| 1129 | * Returns -EBUSY if a stop is needed, else 0 |
| 1130 | */ |
| 1131 | static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) |
| 1132 | { |
| 1133 | netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); |
| 1134 | /* Memory barrier before checking head and tail */ |
| 1135 | smp_mb(); |
| 1136 | |
| 1137 | /* Check again in a case another CPU has just made room available. */ |
| 1138 | if (likely(ICE_DESC_UNUSED(tx_ring) < size)) |
| 1139 | return -EBUSY; |
| 1140 | |
| 1141 | /* A reprieve! - use start_subqueue because it doesn't call schedule */ |
| 1142 | netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); |
| 1143 | ++tx_ring->tx_stats.restart_q; |
| 1144 | return 0; |
| 1145 | } |
| 1146 | |
| 1147 | /** |
| 1148 | * ice_maybe_stop_tx - 1st level check for tx stop conditions |
| 1149 | * @tx_ring: the ring to be checked |
| 1150 | * @size: the size buffer we want to assure is available |
| 1151 | * |
| 1152 | * Returns 0 if stop is not needed |
| 1153 | */ |
| 1154 | static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) |
| 1155 | { |
| 1156 | if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) |
| 1157 | return 0; |
| 1158 | return __ice_maybe_stop_tx(tx_ring, size); |
| 1159 | } |
| 1160 | |
| 1161 | /** |
| 1162 | * ice_tx_map - Build the Tx descriptor |
| 1163 | * @tx_ring: ring to send buffer on |
| 1164 | * @first: first buffer info buffer to use |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1165 | * @off: pointer to struct that holds offload parameters |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1166 | * |
| 1167 | * This function loops over the skb data pointed to by *first |
| 1168 | * and gets a physical address for each memory location and programs |
| 1169 | * it and the length into the transmit descriptor. |
| 1170 | */ |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1171 | static void |
| 1172 | ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, |
| 1173 | struct ice_tx_offload_params *off) |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1174 | { |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1175 | u64 td_offset, td_tag, td_cmd; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1176 | u16 i = tx_ring->next_to_use; |
| 1177 | struct skb_frag_struct *frag; |
| 1178 | unsigned int data_len, size; |
| 1179 | struct ice_tx_desc *tx_desc; |
| 1180 | struct ice_tx_buf *tx_buf; |
| 1181 | struct sk_buff *skb; |
| 1182 | dma_addr_t dma; |
| 1183 | |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1184 | td_tag = off->td_l2tag1; |
| 1185 | td_cmd = off->td_cmd; |
| 1186 | td_offset = off->td_offset; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1187 | skb = first->skb; |
| 1188 | |
| 1189 | data_len = skb->data_len; |
| 1190 | size = skb_headlen(skb); |
| 1191 | |
| 1192 | tx_desc = ICE_TX_DESC(tx_ring, i); |
| 1193 | |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1194 | if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { |
| 1195 | td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; |
| 1196 | td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> |
| 1197 | ICE_TX_FLAGS_VLAN_S; |
| 1198 | } |
| 1199 | |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1200 | dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| 1201 | |
| 1202 | tx_buf = first; |
| 1203 | |
| 1204 | for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| 1205 | unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| 1206 | |
| 1207 | if (dma_mapping_error(tx_ring->dev, dma)) |
| 1208 | goto dma_error; |
| 1209 | |
| 1210 | /* record length, and DMA address */ |
| 1211 | dma_unmap_len_set(tx_buf, len, size); |
| 1212 | dma_unmap_addr_set(tx_buf, dma, dma); |
| 1213 | |
| 1214 | /* align size to end of page */ |
| 1215 | max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); |
| 1216 | tx_desc->buf_addr = cpu_to_le64(dma); |
| 1217 | |
| 1218 | /* account for data chunks larger than the hardware |
| 1219 | * can handle |
| 1220 | */ |
| 1221 | while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { |
| 1222 | tx_desc->cmd_type_offset_bsz = |
| 1223 | build_ctob(td_cmd, td_offset, max_data, td_tag); |
| 1224 | |
| 1225 | tx_desc++; |
| 1226 | i++; |
| 1227 | |
| 1228 | if (i == tx_ring->count) { |
| 1229 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 1230 | i = 0; |
| 1231 | } |
| 1232 | |
| 1233 | dma += max_data; |
| 1234 | size -= max_data; |
| 1235 | |
| 1236 | max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| 1237 | tx_desc->buf_addr = cpu_to_le64(dma); |
| 1238 | } |
| 1239 | |
| 1240 | if (likely(!data_len)) |
| 1241 | break; |
| 1242 | |
| 1243 | tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, |
| 1244 | size, td_tag); |
| 1245 | |
| 1246 | tx_desc++; |
| 1247 | i++; |
| 1248 | |
| 1249 | if (i == tx_ring->count) { |
| 1250 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 1251 | i = 0; |
| 1252 | } |
| 1253 | |
| 1254 | size = skb_frag_size(frag); |
| 1255 | data_len -= size; |
| 1256 | |
| 1257 | dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| 1258 | DMA_TO_DEVICE); |
| 1259 | |
| 1260 | tx_buf = &tx_ring->tx_buf[i]; |
| 1261 | } |
| 1262 | |
| 1263 | /* record bytecount for BQL */ |
| 1264 | netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); |
| 1265 | |
| 1266 | /* record SW timestamp if HW timestamp is not available */ |
| 1267 | skb_tx_timestamp(first->skb); |
| 1268 | |
| 1269 | i++; |
| 1270 | if (i == tx_ring->count) |
| 1271 | i = 0; |
| 1272 | |
| 1273 | /* write last descriptor with RS and EOP bits */ |
| 1274 | td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); |
| 1275 | tx_desc->cmd_type_offset_bsz = |
| 1276 | build_ctob(td_cmd, td_offset, size, td_tag); |
| 1277 | |
| 1278 | /* Force memory writes to complete before letting h/w know there |
| 1279 | * are new descriptors to fetch. |
| 1280 | * |
| 1281 | * We also use this memory barrier to make certain all of the |
| 1282 | * status bits have been updated before next_to_watch is written. |
| 1283 | */ |
| 1284 | wmb(); |
| 1285 | |
| 1286 | /* set next_to_watch value indicating a packet is present */ |
| 1287 | first->next_to_watch = tx_desc; |
| 1288 | |
| 1289 | tx_ring->next_to_use = i; |
| 1290 | |
| 1291 | ice_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| 1292 | |
| 1293 | /* notify HW of packet */ |
| 1294 | if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { |
| 1295 | writel(i, tx_ring->tail); |
| 1296 | |
| 1297 | /* we need this if more than one processor can write to our tail |
| 1298 | * at a time, it synchronizes IO on IA64/Altix systems |
| 1299 | */ |
| 1300 | mmiowb(); |
| 1301 | } |
| 1302 | |
| 1303 | return; |
| 1304 | |
| 1305 | dma_error: |
| 1306 | /* clear dma mappings for failed tx_buf map */ |
| 1307 | for (;;) { |
| 1308 | tx_buf = &tx_ring->tx_buf[i]; |
| 1309 | ice_unmap_and_free_tx_buf(tx_ring, tx_buf); |
| 1310 | if (tx_buf == first) |
| 1311 | break; |
| 1312 | if (i == 0) |
| 1313 | i = tx_ring->count; |
| 1314 | i--; |
| 1315 | } |
| 1316 | |
| 1317 | tx_ring->next_to_use = i; |
| 1318 | } |
| 1319 | |
| 1320 | /** |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1321 | * ice_tx_csum - Enable Tx checksum offloads |
| 1322 | * @first: pointer to the first descriptor |
| 1323 | * @off: pointer to struct that holds offload parameters |
| 1324 | * |
| 1325 | * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. |
| 1326 | */ |
| 1327 | static |
| 1328 | int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| 1329 | { |
| 1330 | u32 l4_len = 0, l3_len = 0, l2_len = 0; |
| 1331 | struct sk_buff *skb = first->skb; |
| 1332 | union { |
| 1333 | struct iphdr *v4; |
| 1334 | struct ipv6hdr *v6; |
| 1335 | unsigned char *hdr; |
| 1336 | } ip; |
| 1337 | union { |
| 1338 | struct tcphdr *tcp; |
| 1339 | unsigned char *hdr; |
| 1340 | } l4; |
| 1341 | __be16 frag_off, protocol; |
| 1342 | unsigned char *exthdr; |
| 1343 | u32 offset, cmd = 0; |
| 1344 | u8 l4_proto = 0; |
| 1345 | |
| 1346 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 1347 | return 0; |
| 1348 | |
| 1349 | ip.hdr = skb_network_header(skb); |
| 1350 | l4.hdr = skb_transport_header(skb); |
| 1351 | |
| 1352 | /* compute outer L2 header size */ |
| 1353 | l2_len = ip.hdr - skb->data; |
| 1354 | offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; |
| 1355 | |
| 1356 | if (skb->encapsulation) |
| 1357 | return -1; |
| 1358 | |
| 1359 | /* Enable IP checksum offloads */ |
| 1360 | protocol = vlan_get_protocol(skb); |
| 1361 | if (protocol == htons(ETH_P_IP)) { |
| 1362 | l4_proto = ip.v4->protocol; |
| 1363 | /* the stack computes the IP header already, the only time we |
| 1364 | * need the hardware to recompute it is in the case of TSO. |
| 1365 | */ |
| 1366 | if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| 1367 | cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; |
| 1368 | else |
| 1369 | cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; |
| 1370 | |
| 1371 | } else if (protocol == htons(ETH_P_IPV6)) { |
| 1372 | cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; |
| 1373 | exthdr = ip.hdr + sizeof(*ip.v6); |
| 1374 | l4_proto = ip.v6->nexthdr; |
| 1375 | if (l4.hdr != exthdr) |
| 1376 | ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, |
| 1377 | &frag_off); |
| 1378 | } else { |
| 1379 | return -1; |
| 1380 | } |
| 1381 | |
| 1382 | /* compute inner L3 header size */ |
| 1383 | l3_len = l4.hdr - ip.hdr; |
| 1384 | offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; |
| 1385 | |
| 1386 | /* Enable L4 checksum offloads */ |
| 1387 | switch (l4_proto) { |
| 1388 | case IPPROTO_TCP: |
| 1389 | /* enable checksum offloads */ |
| 1390 | cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; |
| 1391 | l4_len = l4.tcp->doff; |
| 1392 | offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| 1393 | break; |
| 1394 | case IPPROTO_UDP: |
| 1395 | /* enable UDP checksum offload */ |
| 1396 | cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; |
| 1397 | l4_len = (sizeof(struct udphdr) >> 2); |
| 1398 | offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| 1399 | break; |
| 1400 | case IPPROTO_SCTP: |
| 1401 | default: |
| 1402 | if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| 1403 | return -1; |
| 1404 | skb_checksum_help(skb); |
| 1405 | return 0; |
| 1406 | } |
| 1407 | |
| 1408 | off->td_cmd |= cmd; |
| 1409 | off->td_offset |= offset; |
| 1410 | return 1; |
| 1411 | } |
| 1412 | |
| 1413 | /** |
| 1414 | * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW |
| 1415 | * @tx_ring: ring to send buffer on |
| 1416 | * @first: pointer to struct ice_tx_buf |
| 1417 | * |
| 1418 | * Checks the skb and set up correspondingly several generic transmit flags |
| 1419 | * related to VLAN tagging for the HW, such as VLAN, DCB, etc. |
| 1420 | * |
| 1421 | * Returns error code indicate the frame should be dropped upon error and the |
| 1422 | * otherwise returns 0 to indicate the flags has been set properly. |
| 1423 | */ |
| 1424 | static int |
| 1425 | ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) |
| 1426 | { |
| 1427 | struct sk_buff *skb = first->skb; |
| 1428 | __be16 protocol = skb->protocol; |
| 1429 | |
| 1430 | if (protocol == htons(ETH_P_8021Q) && |
| 1431 | !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { |
| 1432 | /* when HW VLAN acceleration is turned off by the user the |
| 1433 | * stack sets the protocol to 8021q so that the driver |
| 1434 | * can take any steps required to support the SW only |
| 1435 | * VLAN handling. In our case the driver doesn't need |
| 1436 | * to take any further steps so just set the protocol |
| 1437 | * to the encapsulated ethertype. |
| 1438 | */ |
| 1439 | skb->protocol = vlan_get_protocol(skb); |
| 1440 | goto out; |
| 1441 | } |
| 1442 | |
| 1443 | /* if we have a HW VLAN tag being added, default to the HW one */ |
| 1444 | if (skb_vlan_tag_present(skb)) { |
| 1445 | first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; |
| 1446 | first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; |
| 1447 | } else if (protocol == htons(ETH_P_8021Q)) { |
| 1448 | struct vlan_hdr *vhdr, _vhdr; |
| 1449 | |
| 1450 | /* for SW VLAN, check the next protocol and store the tag */ |
| 1451 | vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN, |
| 1452 | sizeof(_vhdr), |
| 1453 | &_vhdr); |
| 1454 | if (!vhdr) |
| 1455 | return -EINVAL; |
| 1456 | |
| 1457 | first->tx_flags |= ntohs(vhdr->h_vlan_TCI) << |
| 1458 | ICE_TX_FLAGS_VLAN_S; |
| 1459 | first->tx_flags |= ICE_TX_FLAGS_SW_VLAN; |
| 1460 | } |
| 1461 | |
| 1462 | out: |
| 1463 | return 0; |
| 1464 | } |
| 1465 | |
| 1466 | /** |
| 1467 | * ice_tso - computes mss and TSO length to prepare for TSO |
| 1468 | * @first: pointer to struct ice_tx_buf |
| 1469 | * @off: pointer to struct that holds offload parameters |
| 1470 | * |
| 1471 | * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. |
| 1472 | */ |
| 1473 | static |
| 1474 | int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| 1475 | { |
| 1476 | struct sk_buff *skb = first->skb; |
| 1477 | union { |
| 1478 | struct iphdr *v4; |
| 1479 | struct ipv6hdr *v6; |
| 1480 | unsigned char *hdr; |
| 1481 | } ip; |
| 1482 | union { |
| 1483 | struct tcphdr *tcp; |
| 1484 | unsigned char *hdr; |
| 1485 | } l4; |
| 1486 | u64 cd_mss, cd_tso_len; |
| 1487 | u32 paylen, l4_start; |
| 1488 | int err; |
| 1489 | |
| 1490 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 1491 | return 0; |
| 1492 | |
| 1493 | if (!skb_is_gso(skb)) |
| 1494 | return 0; |
| 1495 | |
| 1496 | err = skb_cow_head(skb, 0); |
| 1497 | if (err < 0) |
| 1498 | return err; |
| 1499 | |
| 1500 | ip.hdr = skb_network_header(skb); |
| 1501 | l4.hdr = skb_transport_header(skb); |
| 1502 | |
| 1503 | /* initialize outer IP header fields */ |
| 1504 | if (ip.v4->version == 4) { |
| 1505 | ip.v4->tot_len = 0; |
| 1506 | ip.v4->check = 0; |
| 1507 | } else { |
| 1508 | ip.v6->payload_len = 0; |
| 1509 | } |
| 1510 | |
| 1511 | /* determine offset of transport header */ |
| 1512 | l4_start = l4.hdr - skb->data; |
| 1513 | |
| 1514 | /* remove payload length from checksum */ |
| 1515 | paylen = skb->len - l4_start; |
| 1516 | csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); |
| 1517 | |
| 1518 | /* compute length of segmentation header */ |
| 1519 | off->header_len = (l4.tcp->doff * 4) + l4_start; |
| 1520 | |
| 1521 | /* update gso_segs and bytecount */ |
| 1522 | first->gso_segs = skb_shinfo(skb)->gso_segs; |
| Brett Creeley | d944b46 | 2018-10-26 10:40:59 -0700 | [diff] [blame^] | 1523 | first->bytecount += (first->gso_segs - 1) * off->header_len; |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1524 | |
| 1525 | cd_tso_len = skb->len - off->header_len; |
| 1526 | cd_mss = skb_shinfo(skb)->gso_size; |
| 1527 | |
| 1528 | /* record cdesc_qw1 with TSO parameters */ |
| 1529 | off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX | |
| 1530 | (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | |
| 1531 | (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | |
| 1532 | (cd_mss << ICE_TXD_CTX_QW1_MSS_S); |
| 1533 | first->tx_flags |= ICE_TX_FLAGS_TSO; |
| 1534 | return 1; |
| 1535 | } |
| 1536 | |
| 1537 | /** |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1538 | * ice_txd_use_count - estimate the number of descriptors needed for Tx |
| 1539 | * @size: transmit request size in bytes |
| 1540 | * |
| 1541 | * Due to hardware alignment restrictions (4K alignment), we need to |
| 1542 | * assume that we can have no more than 12K of data per descriptor, even |
| 1543 | * though each descriptor can take up to 16K - 1 bytes of aligned memory. |
| 1544 | * Thus, we need to divide by 12K. But division is slow! Instead, |
| 1545 | * we decompose the operation into shifts and one relatively cheap |
| 1546 | * multiply operation. |
| 1547 | * |
| 1548 | * To divide by 12K, we first divide by 4K, then divide by 3: |
| 1549 | * To divide by 4K, shift right by 12 bits |
| 1550 | * To divide by 3, multiply by 85, then divide by 256 |
| 1551 | * (Divide by 256 is done by shifting right by 8 bits) |
| 1552 | * Finally, we add one to round up. Because 256 isn't an exact multiple of |
| 1553 | * 3, we'll underestimate near each multiple of 12K. This is actually more |
| 1554 | * accurate as we have 4K - 1 of wiggle room that we can fit into the last |
| 1555 | * segment. For our purposes this is accurate out to 1M which is orders of |
| 1556 | * magnitude greater than our largest possible GSO size. |
| 1557 | * |
| 1558 | * This would then be implemented as: |
| Brett Creeley | c585ea4 | 2018-10-26 10:40:58 -0700 | [diff] [blame] | 1559 | * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1560 | * |
| 1561 | * Since multiplication and division are commutative, we can reorder |
| 1562 | * operations into: |
| Brett Creeley | c585ea4 | 2018-10-26 10:40:58 -0700 | [diff] [blame] | 1563 | * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1564 | */ |
| 1565 | static unsigned int ice_txd_use_count(unsigned int size) |
| 1566 | { |
| Brett Creeley | c585ea4 | 2018-10-26 10:40:58 -0700 | [diff] [blame] | 1567 | return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1568 | } |
| 1569 | |
| 1570 | /** |
| 1571 | * ice_xmit_desc_count - calculate number of tx descriptors needed |
| 1572 | * @skb: send buffer |
| 1573 | * |
| 1574 | * Returns number of data descriptors needed for this skb. |
| 1575 | */ |
| 1576 | static unsigned int ice_xmit_desc_count(struct sk_buff *skb) |
| 1577 | { |
| 1578 | const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| 1579 | unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
| 1580 | unsigned int count = 0, size = skb_headlen(skb); |
| 1581 | |
| 1582 | for (;;) { |
| 1583 | count += ice_txd_use_count(size); |
| 1584 | |
| 1585 | if (!nr_frags--) |
| 1586 | break; |
| 1587 | |
| 1588 | size = skb_frag_size(frag++); |
| 1589 | } |
| 1590 | |
| 1591 | return count; |
| 1592 | } |
| 1593 | |
| 1594 | /** |
| 1595 | * __ice_chk_linearize - Check if there are more than 8 buffers per packet |
| 1596 | * @skb: send buffer |
| 1597 | * |
| 1598 | * Note: This HW can't DMA more than 8 buffers to build a packet on the wire |
| 1599 | * and so we need to figure out the cases where we need to linearize the skb. |
| 1600 | * |
| 1601 | * For TSO we need to count the TSO header and segment payload separately. |
| 1602 | * As such we need to check cases where we have 7 fragments or more as we |
| 1603 | * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for |
| 1604 | * the segment payload in the first descriptor, and another 7 for the |
| 1605 | * fragments. |
| 1606 | */ |
| 1607 | static bool __ice_chk_linearize(struct sk_buff *skb) |
| 1608 | { |
| 1609 | const struct skb_frag_struct *frag, *stale; |
| 1610 | int nr_frags, sum; |
| 1611 | |
| 1612 | /* no need to check if number of frags is less than 7 */ |
| 1613 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 1614 | if (nr_frags < (ICE_MAX_BUF_TXD - 1)) |
| 1615 | return false; |
| 1616 | |
| 1617 | /* We need to walk through the list and validate that each group |
| 1618 | * of 6 fragments totals at least gso_size. |
| 1619 | */ |
| 1620 | nr_frags -= ICE_MAX_BUF_TXD - 2; |
| 1621 | frag = &skb_shinfo(skb)->frags[0]; |
| 1622 | |
| 1623 | /* Initialize size to the negative value of gso_size minus 1. We |
| 1624 | * use this as the worst case scenerio in which the frag ahead |
| 1625 | * of us only provides one byte which is why we are limited to 6 |
| 1626 | * descriptors for a single transmit as the header and previous |
| 1627 | * fragment are already consuming 2 descriptors. |
| 1628 | */ |
| 1629 | sum = 1 - skb_shinfo(skb)->gso_size; |
| 1630 | |
| 1631 | /* Add size of frags 0 through 4 to create our initial sum */ |
| 1632 | sum += skb_frag_size(frag++); |
| 1633 | sum += skb_frag_size(frag++); |
| 1634 | sum += skb_frag_size(frag++); |
| 1635 | sum += skb_frag_size(frag++); |
| 1636 | sum += skb_frag_size(frag++); |
| 1637 | |
| 1638 | /* Walk through fragments adding latest fragment, testing it, and |
| 1639 | * then removing stale fragments from the sum. |
| 1640 | */ |
| 1641 | stale = &skb_shinfo(skb)->frags[0]; |
| 1642 | for (;;) { |
| 1643 | sum += skb_frag_size(frag++); |
| 1644 | |
| 1645 | /* if sum is negative we failed to make sufficient progress */ |
| 1646 | if (sum < 0) |
| 1647 | return true; |
| 1648 | |
| 1649 | if (!nr_frags--) |
| 1650 | break; |
| 1651 | |
| 1652 | sum -= skb_frag_size(stale++); |
| 1653 | } |
| 1654 | |
| 1655 | return false; |
| 1656 | } |
| 1657 | |
| 1658 | /** |
| 1659 | * ice_chk_linearize - Check if there are more than 8 fragments per packet |
| 1660 | * @skb: send buffer |
| 1661 | * @count: number of buffers used |
| 1662 | * |
| 1663 | * Note: Our HW can't scatter-gather more than 8 fragments to build |
| 1664 | * a packet on the wire and so we need to figure out the cases where we |
| 1665 | * need to linearize the skb. |
| 1666 | */ |
| 1667 | static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) |
| 1668 | { |
| 1669 | /* Both TSO and single send will work if count is less than 8 */ |
| 1670 | if (likely(count < ICE_MAX_BUF_TXD)) |
| 1671 | return false; |
| 1672 | |
| 1673 | if (skb_is_gso(skb)) |
| 1674 | return __ice_chk_linearize(skb); |
| 1675 | |
| 1676 | /* we can support up to 8 data buffers for a single send */ |
| 1677 | return count != ICE_MAX_BUF_TXD; |
| 1678 | } |
| 1679 | |
| 1680 | /** |
| 1681 | * ice_xmit_frame_ring - Sends buffer on Tx ring |
| 1682 | * @skb: send buffer |
| 1683 | * @tx_ring: ring to send buffer on |
| 1684 | * |
| 1685 | * Returns NETDEV_TX_OK if sent, else an error code |
| 1686 | */ |
| 1687 | static netdev_tx_t |
| 1688 | ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) |
| 1689 | { |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1690 | struct ice_tx_offload_params offload = { 0 }; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1691 | struct ice_tx_buf *first; |
| 1692 | unsigned int count; |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1693 | int tso, csum; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1694 | |
| 1695 | count = ice_xmit_desc_count(skb); |
| 1696 | if (ice_chk_linearize(skb, count)) { |
| 1697 | if (__skb_linearize(skb)) |
| 1698 | goto out_drop; |
| 1699 | count = ice_txd_use_count(skb->len); |
| 1700 | tx_ring->tx_stats.tx_linearize++; |
| 1701 | } |
| 1702 | |
| 1703 | /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, |
| 1704 | * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, |
| 1705 | * + 4 desc gap to avoid the cache line where head is, |
| 1706 | * + 1 desc for context descriptor, |
| 1707 | * otherwise try next time |
| 1708 | */ |
| Brett Creeley | c585ea4 | 2018-10-26 10:40:58 -0700 | [diff] [blame] | 1709 | if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + |
| 1710 | ICE_DESCS_FOR_CTX_DESC)) { |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1711 | tx_ring->tx_stats.tx_busy++; |
| 1712 | return NETDEV_TX_BUSY; |
| 1713 | } |
| 1714 | |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1715 | offload.tx_ring = tx_ring; |
| 1716 | |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1717 | /* record the location of the first descriptor for this packet */ |
| 1718 | first = &tx_ring->tx_buf[tx_ring->next_to_use]; |
| 1719 | first->skb = skb; |
| 1720 | first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); |
| 1721 | first->gso_segs = 1; |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1722 | first->tx_flags = 0; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1723 | |
| Anirudh Venkataramanan | d76a60b | 2018-03-20 07:58:15 -0700 | [diff] [blame] | 1724 | /* prepare the VLAN tagging flags for Tx */ |
| 1725 | if (ice_tx_prepare_vlan_flags(tx_ring, first)) |
| 1726 | goto out_drop; |
| 1727 | |
| 1728 | /* set up TSO offload */ |
| 1729 | tso = ice_tso(first, &offload); |
| 1730 | if (tso < 0) |
| 1731 | goto out_drop; |
| 1732 | |
| 1733 | /* always set up Tx checksum offload */ |
| 1734 | csum = ice_tx_csum(first, &offload); |
| 1735 | if (csum < 0) |
| 1736 | goto out_drop; |
| 1737 | |
| 1738 | if (tso || offload.cd_tunnel_params) { |
| 1739 | struct ice_tx_ctx_desc *cdesc; |
| 1740 | int i = tx_ring->next_to_use; |
| 1741 | |
| 1742 | /* grab the next descriptor */ |
| 1743 | cdesc = ICE_TX_CTX_DESC(tx_ring, i); |
| 1744 | i++; |
| 1745 | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| 1746 | |
| 1747 | /* setup context descriptor */ |
| 1748 | cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); |
| 1749 | cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); |
| 1750 | cdesc->rsvd = cpu_to_le16(0); |
| 1751 | cdesc->qw1 = cpu_to_le64(offload.cd_qw1); |
| 1752 | } |
| 1753 | |
| 1754 | ice_tx_map(tx_ring, first, &offload); |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame] | 1755 | return NETDEV_TX_OK; |
| 1756 | |
| 1757 | out_drop: |
| 1758 | dev_kfree_skb_any(skb); |
| 1759 | return NETDEV_TX_OK; |
| 1760 | } |
| 1761 | |
| 1762 | /** |
| 1763 | * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer |
| 1764 | * @skb: send buffer |
| 1765 | * @netdev: network interface device structure |
| 1766 | * |
| 1767 | * Returns NETDEV_TX_OK if sent, else an error code |
| 1768 | */ |
| 1769 | netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) |
| 1770 | { |
| 1771 | struct ice_netdev_priv *np = netdev_priv(netdev); |
| 1772 | struct ice_vsi *vsi = np->vsi; |
| 1773 | struct ice_ring *tx_ring; |
| 1774 | |
| 1775 | tx_ring = vsi->tx_rings[skb->queue_mapping]; |
| 1776 | |
| 1777 | /* hardware can't handle really short frames, hardware padding works |
| 1778 | * beyond this point |
| 1779 | */ |
| 1780 | if (skb_put_padto(skb, ICE_MIN_TX_LEN)) |
| 1781 | return NETDEV_TX_OK; |
| 1782 | |
| 1783 | return ice_xmit_frame_ring(skb, tx_ring); |
| 1784 | } |