blob: dee857a8680b9ad43b265184a9990027944784cb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700106#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800107#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800108#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800174 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700204typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800249 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800250 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251};
252
253/*
254 * struct array_cache
255 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700270 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
276 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277};
278
Andrew Mortona737b3e2006-03-22 00:08:11 -0800279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800286 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287};
288
289/*
Christoph Lametere498be72005-09-09 13:03:32 -0700290 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291 */
292struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800298 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304};
305
Christoph Lametere498be72005-09-09 13:03:32 -0700306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define CACHE_CACHE 0
312#define SIZE_AC 1
313#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
Christoph Lametere498be72005-09-09 13:03:32 -0700315/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700318 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700319static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700320{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800321 extern void __bad_size(void);
322
Christoph Lametere498be72005-09-09 13:03:32 -0700323 if (__builtin_constant_p(size)) {
324 int i = 0;
325
326#define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800333 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700334 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800335 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700336 return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
341
Pekka Enberg5295a742006-02-01 03:05:48 -0800342static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700343{
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800349 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
353}
354
Andrew Mortona737b3e2006-03-22 00:08:11 -0800355#define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700359 } while (0)
360
Andrew Mortona737b3e2006-03-22 00:08:11 -0800361#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700367
368/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800369 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700370 *
371 * manages a cache.
372 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800373
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800374struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800376 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800377/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800381
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800382 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800384 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800385
Andrew Mortona737b3e2006-03-22 00:08:11 -0800386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800389/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800391 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392
393 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800394 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395
Andrew Mortona737b3e2006-03-22 00:08:11 -0800396 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800398 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800399 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800400 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
402 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700404
405 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800408/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800409 const char *name;
410 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800412/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 atomic_t allochit;
424 atomic_t allocmiss;
425 atomic_t freehit;
426 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427#endif
428#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800429 /*
430 * If debugging is enabled, then the allocator can add additional
431 * fields and/or padding to every object. buffer_size contains the total
432 * object size including these internal fields, the following two
433 * variables contain the offset to the user object and its size.
434 */
435 int obj_offset;
436 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437#endif
438};
439
440#define CFLGS_OFF_SLAB (0x80000000UL)
441#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
442
443#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800444/*
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100448 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700449 * which could lock up otherwise freeable slabs.
450 */
451#define REAPTIMEOUT_CPUC (2*HZ)
452#define REAPTIMEOUT_LIST3 (4*HZ)
453
454#if STATS
455#define STATS_INC_ACTIVE(x) ((x)->num_active++)
456#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
457#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
458#define STATS_INC_GROWN(x) ((x)->grown++)
459#define STATS_INC_REAPED(x) ((x)->reaped++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800460#define STATS_SET_HIGH(x) \
461 do { \
462 if ((x)->num_active > (x)->high_mark) \
463 (x)->high_mark = (x)->num_active; \
464 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465#define STATS_INC_ERR(x) ((x)->errors++)
466#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700467#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800468#define STATS_SET_FREEABLE(x, i) \
469 do { \
470 if ((x)->max_freeable < i) \
471 (x)->max_freeable = i; \
472 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
474#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
475#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
476#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
477#else
478#define STATS_INC_ACTIVE(x) do { } while (0)
479#define STATS_DEC_ACTIVE(x) do { } while (0)
480#define STATS_INC_ALLOCED(x) do { } while (0)
481#define STATS_INC_GROWN(x) do { } while (0)
482#define STATS_INC_REAPED(x) do { } while (0)
483#define STATS_SET_HIGH(x) do { } while (0)
484#define STATS_INC_ERR(x) do { } while (0)
485#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700486#define STATS_INC_NODEFREES(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800487#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700488#define STATS_INC_ALLOCHIT(x) do { } while (0)
489#define STATS_INC_ALLOCMISS(x) do { } while (0)
490#define STATS_INC_FREEHIT(x) do { } while (0)
491#define STATS_INC_FREEMISS(x) do { } while (0)
492#endif
493
494#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -0800495/*
496 * Magic nums for obj red zoning.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497 * Placed in the first word before and the first word after an obj.
498 */
499#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
500#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
501
502/* ...and for poisoning */
503#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
504#define POISON_FREE 0x6b /* for use-after-free poisoning */
505#define POISON_END 0xa5 /* end-byte of poisoning */
506
Andrew Mortona737b3e2006-03-22 00:08:11 -0800507/*
508 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800520static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800522 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523}
524
Pekka Enberg343e0d72006-02-01 03:05:50 -0800525static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800527 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528}
529
Pekka Enberg343e0d72006-02-01 03:05:50 -0800530static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531{
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534}
535
Pekka Enberg343e0d72006-02-01 03:05:50 -0800536static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537{
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800541 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700543}
544
Pekka Enberg343e0d72006-02-01 03:05:50 -0800545static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546{
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549}
550
551#else
552
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800553#define obj_offset(x) 0
554#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559#endif
560
561/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564 */
565#if defined(CONFIG_LARGE_ALLOCS)
566#define MAX_OBJ_ORDER 13 /* up to 32Mb */
567#define MAX_GFP_ORDER 13 /* up to 32Mb */
568#elif defined(CONFIG_MMU)
569#define MAX_OBJ_ORDER 5 /* 32 pages */
570#define MAX_GFP_ORDER 5 /* 32 pages */
571#else
572#define MAX_OBJ_ORDER 8 /* up to 1Mb */
573#define MAX_GFP_ORDER 8 /* up to 1Mb */
574#endif
575
576/*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579#define BREAK_GFP_ORDER_HI 1
580#define BREAK_GFP_ORDER_LO 0
581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
Andrew Mortona737b3e2006-03-22 00:08:11 -0800583/*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589{
590 page->lru.next = (struct list_head *)cache;
591}
592
593static inline struct kmem_cache *page_get_cache(struct page *page)
594{
Nick Piggin84097512006-03-22 00:08:34 -0800595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
Pekka Enberg065d41c2005-11-13 16:06:46 -0800597 return (struct kmem_cache *)page->lru.next;
598}
599
600static inline void page_set_slab(struct page *page, struct slab *slab)
601{
602 page->lru.prev = (struct list_head *)slab;
603}
604
605static inline struct slab *page_get_slab(struct page *page)
606{
Nick Piggin84097512006-03-22 00:08:34 -0800607 if (unlikely(PageCompound(page)))
608 page = (struct page *)page_private(page);
Pekka Enberg065d41c2005-11-13 16:06:46 -0800609 return (struct slab *)page->lru.prev;
610}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611
Pekka Enberg6ed5eb22006-02-01 03:05:49 -0800612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
Andrew Mortona737b3e2006-03-22 00:08:11 -0800636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800656 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800666static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800670 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800671 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800673 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674#endif
675};
676
677/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800678static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700679static struct list_head cache_chain;
680
681/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700695 PARTIAL_AC,
696 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697 FULL
698} g_cpucache_up;
699
700static DEFINE_PER_CPU(struct work_struct, reap_work);
701
Andrew Mortona737b3e2006-03-22 00:08:11 -0800702static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703 int node);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800704static void enable_cpucache(struct kmem_cache *cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800705static void cache_reap(void *unused);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800706static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707
Pekka Enberg343e0d72006-02-01 03:05:50 -0800708static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709{
710 return cachep->array[smp_processor_id()];
711}
712
Andrew Mortona737b3e2006-03-22 00:08:11 -0800713static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715{
716 struct cache_sizes *csizep = malloc_sizes;
717
718#if DEBUG
719 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
722 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724#endif
725 while (size > csizep->cs_size)
726 csizep++;
727
728 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700729 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730 * has cs_{dma,}cachep==NULL. Thus no special case
731 * for large kmalloc calls required.
732 */
733 if (unlikely(gfpflags & GFP_DMA))
734 return csizep->cs_dmacachep;
735 return csizep->cs_cachep;
736}
737
Pekka Enberg343e0d72006-02-01 03:05:50 -0800738struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700739{
740 return __find_general_cachep(size, gfpflags);
741}
742EXPORT_SYMBOL(kmem_find_general_cachep);
743
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800744static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700745{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800746 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
747}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748
Andrew Mortona737b3e2006-03-22 00:08:11 -0800749/*
750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800752static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753 size_t align, int flags, size_t *left_over,
754 unsigned int *num)
755{
756 int nr_objs;
757 size_t mgmt_size;
758 size_t slab_size = PAGE_SIZE << gfporder;
759
760 /*
761 * The slab management structure can be either off the slab or
762 * on it. For the latter case, the memory allocated for a
763 * slab is used for:
764 *
765 * - The struct slab
766 * - One kmem_bufctl_t for each object
767 * - Padding to respect alignment of @align
768 * - @buffer_size bytes for each object
769 *
770 * If the slab management structure is off the slab, then the
771 * alignment will already be calculated into the size. Because
772 * the slabs are all pages aligned, the objects will be at the
773 * correct alignment when allocated.
774 */
775 if (flags & CFLGS_OFF_SLAB) {
776 mgmt_size = 0;
777 nr_objs = slab_size / buffer_size;
778
779 if (nr_objs > SLAB_LIMIT)
780 nr_objs = SLAB_LIMIT;
781 } else {
782 /*
783 * Ignore padding for the initial guess. The padding
784 * is at most @align-1 bytes, and @buffer_size is at
785 * least @align. In the worst case, this result will
786 * be one greater than the number of objects that fit
787 * into the memory allocation when taking the padding
788 * into account.
789 */
790 nr_objs = (slab_size - sizeof(struct slab)) /
791 (buffer_size + sizeof(kmem_bufctl_t));
792
793 /*
794 * This calculated number will be either the right
795 * amount, or one greater than what we want.
796 */
797 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798 > slab_size)
799 nr_objs--;
800
801 if (nr_objs > SLAB_LIMIT)
802 nr_objs = SLAB_LIMIT;
803
804 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800806 *num = nr_objs;
807 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808}
809
810#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811
Andrew Mortona737b3e2006-03-22 00:08:11 -0800812static void __slab_error(const char *function, struct kmem_cache *cachep,
813 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814{
815 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800816 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817 dump_stack();
818}
819
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800820#ifdef CONFIG_NUMA
821/*
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
826 */
827static DEFINE_PER_CPU(unsigned long, reap_node);
828
829static void init_reap_node(int cpu)
830{
831 int node;
832
833 node = next_node(cpu_to_node(cpu), node_online_map);
834 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800835 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800836
837 __get_cpu_var(reap_node) = node;
838}
839
840static void next_reap_node(void)
841{
842 int node = __get_cpu_var(reap_node);
843
844 /*
845 * Also drain per cpu pages on remote zones
846 */
847 if (node != numa_node_id())
848 drain_node_pages(node);
849
850 node = next_node(node, node_online_map);
851 if (unlikely(node >= MAX_NUMNODES))
852 node = first_node(node_online_map);
853 __get_cpu_var(reap_node) = node;
854}
855
856#else
857#define init_reap_node(cpu) do { } while (0)
858#define next_reap_node(void) do { } while (0)
859#endif
860
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861/*
862 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
867 */
868static void __devinit start_cpu_timer(int cpu)
869{
870 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
871
872 /*
873 * When this gets called from do_initcalls via cpucache_init(),
874 * init_workqueues() has already run, so keventd will be setup
875 * at that time.
876 */
877 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800878 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 INIT_WORK(reap_work, cache_reap, NULL);
880 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
881 }
882}
883
Christoph Lametere498be72005-09-09 13:03:32 -0700884static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800885 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700886{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800887 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888 struct array_cache *nc = NULL;
889
Christoph Lametere498be72005-09-09 13:03:32 -0700890 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891 if (nc) {
892 nc->avail = 0;
893 nc->limit = entries;
894 nc->batchcount = batchcount;
895 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700896 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 }
898 return nc;
899}
900
Christoph Lameter3ded1752006-03-25 03:06:44 -0800901/*
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
904 *
905 * Return the number of entries transferred.
906 */
907static int transfer_objects(struct array_cache *to,
908 struct array_cache *from, unsigned int max)
909{
910 /* Figure out how many entries to transfer */
911 int nr = min(min(from->avail, max), to->limit - to->avail);
912
913 if (!nr)
914 return 0;
915
916 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917 sizeof(void *) *nr);
918
919 from->avail -= nr;
920 to->avail += nr;
921 to->touched = 1;
922 return nr;
923}
924
Christoph Lametere498be72005-09-09 13:03:32 -0700925#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800926static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -0800927static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800928
Pekka Enberg5295a742006-02-01 03:05:48 -0800929static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700930{
931 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800932 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700933 int i;
934
935 if (limit > 1)
936 limit = 12;
937 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
938 if (ac_ptr) {
939 for_each_node(i) {
940 if (i == node || !node_online(i)) {
941 ac_ptr[i] = NULL;
942 continue;
943 }
944 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
945 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800946 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700947 kfree(ac_ptr[i]);
948 kfree(ac_ptr);
949 return NULL;
950 }
951 }
952 }
953 return ac_ptr;
954}
955
Pekka Enberg5295a742006-02-01 03:05:48 -0800956static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700957{
958 int i;
959
960 if (!ac_ptr)
961 return;
Christoph Lametere498be72005-09-09 13:03:32 -0700962 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800963 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700964 kfree(ac_ptr);
965}
966
Pekka Enberg343e0d72006-02-01 03:05:50 -0800967static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -0800968 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700969{
970 struct kmem_list3 *rl3 = cachep->nodelists[node];
971
972 if (ac->avail) {
973 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700974 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700975 ac->avail = 0;
976 spin_unlock(&rl3->list_lock);
977 }
978}
979
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800980/*
981 * Called from cache_reap() to regularly drain alien caches round robin.
982 */
983static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
984{
985 int node = __get_cpu_var(reap_node);
986
987 if (l3->alien) {
988 struct array_cache *ac = l3->alien[node];
989 if (ac && ac->avail) {
990 spin_lock_irq(&ac->lock);
991 __drain_alien_cache(cachep, ac, node);
992 spin_unlock_irq(&ac->lock);
993 }
994 }
995}
996
Andrew Mortona737b3e2006-03-22 00:08:11 -0800997static void drain_alien_cache(struct kmem_cache *cachep,
998 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -0700999{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001000 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001001 struct array_cache *ac;
1002 unsigned long flags;
1003
1004 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001005 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001006 if (ac) {
1007 spin_lock_irqsave(&ac->lock, flags);
1008 __drain_alien_cache(cachep, ac, i);
1009 spin_unlock_irqrestore(&ac->lock, flags);
1010 }
1011 }
1012}
1013#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001014
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001015#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001016#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001017
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **) 0x01020304ul;
1021}
1022
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001026
Christoph Lametere498be72005-09-09 13:03:32 -07001027#endif
1028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029static int __devinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001030 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031{
1032 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001033 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001034 struct kmem_list3 *l3 = NULL;
1035 int node = cpu_to_node(cpu);
1036 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037
1038 switch (action) {
1039 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001040 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001041 /*
1042 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001043 * alloc_arraycache's are going to use this list.
1044 * kmalloc_node allows us to add the slab to the right
1045 * kmem_list3 and not this cpu's kmem_list3
1046 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047
Christoph Lametere498be72005-09-09 13:03:32 -07001048 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001049 /*
1050 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001051 * begin anything. Make sure some other cpu on this
1052 * node has not already allocated this
1053 */
1054 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001055 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1056 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001057 goto bad;
1058 kmem_list3_init(l3);
1059 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001060 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001061
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001062 /*
1063 * The l3s don't come and go as CPUs come and
1064 * go. cache_chain_mutex is sufficient
1065 * protection here.
1066 */
Christoph Lametere498be72005-09-09 13:03:32 -07001067 cachep->nodelists[node] = l3;
1068 }
1069
1070 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1071 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001072 (1 + nr_cpus_node(node)) *
1073 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001074 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1075 }
1076
Andrew Mortona737b3e2006-03-22 00:08:11 -08001077 /*
1078 * Now we can go ahead with allocating the shared arrays and
1079 * array caches
1080 */
Christoph Lametere498be72005-09-09 13:03:32 -07001081 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001082 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001083 struct array_cache *shared;
1084 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001085
Christoph Lametere498be72005-09-09 13:03:32 -07001086 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001087 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088 if (!nc)
1089 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001090 shared = alloc_arraycache(node,
1091 cachep->shared * cachep->batchcount,
1092 0xbaadf00d);
1093 if (!shared)
1094 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001095
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001096 alien = alloc_alien_cache(node, cachep->limit);
1097 if (!alien)
1098 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001100 l3 = cachep->nodelists[node];
1101 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001102
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001103 spin_lock_irq(&l3->list_lock);
1104 if (!l3->shared) {
1105 /*
1106 * We are serialised from CPU_DEAD or
1107 * CPU_UP_CANCELLED by the cpucontrol lock
1108 */
1109 l3->shared = shared;
1110 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001111 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001112#ifdef CONFIG_NUMA
1113 if (!l3->alien) {
1114 l3->alien = alien;
1115 alien = NULL;
1116 }
1117#endif
1118 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001119 kfree(shared);
1120 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001122 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 break;
1124 case CPU_ONLINE:
1125 start_cpu_timer(cpu);
1126 break;
1127#ifdef CONFIG_HOTPLUG_CPU
1128 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001129 /*
1130 * Even if all the cpus of a node are down, we don't free the
1131 * kmem_list3 of any cache. This to avoid a race between
1132 * cpu_down, and a kmalloc allocation from another cpu for
1133 * memory from the node of the cpu going down. The list3
1134 * structure is usually allocated from kmem_cache_create() and
1135 * gets destroyed at kmem_cache_destroy().
1136 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137 /* fall thru */
1138 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001139 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140 list_for_each_entry(cachep, &cache_chain, next) {
1141 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001142 struct array_cache *shared;
1143 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001144 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001145
Christoph Lametere498be72005-09-09 13:03:32 -07001146 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147 /* cpu is dead; no one can alloc from it. */
1148 nc = cachep->array[cpu];
1149 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001150 l3 = cachep->nodelists[node];
1151
1152 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001153 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001154
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001155 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001156
1157 /* Free limit for this kmem_list3 */
1158 l3->free_limit -= cachep->batchcount;
1159 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001160 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001161
1162 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001163 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001164 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001165 }
Christoph Lametere498be72005-09-09 13:03:32 -07001166
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001167 shared = l3->shared;
1168 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001169 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001170 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001171 l3->shared = NULL;
1172 }
Christoph Lametere498be72005-09-09 13:03:32 -07001173
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001174 alien = l3->alien;
1175 l3->alien = NULL;
1176
1177 spin_unlock_irq(&l3->list_lock);
1178
1179 kfree(shared);
1180 if (alien) {
1181 drain_alien_cache(cachep, alien);
1182 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001183 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001184free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185 kfree(nc);
1186 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001187 /*
1188 * In the previous loop, all the objects were freed to
1189 * the respective cache's slabs, now we can go ahead and
1190 * shrink each nodelist to its limit.
1191 */
1192 list_for_each_entry(cachep, &cache_chain, next) {
1193 l3 = cachep->nodelists[node];
1194 if (!l3)
1195 continue;
1196 spin_lock_irq(&l3->list_lock);
1197 /* free slabs belonging to this node */
1198 __node_shrink(cachep, node);
1199 spin_unlock_irq(&l3->list_lock);
1200 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001201 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 break;
1203#endif
1204 }
1205 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001206bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001207 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 return NOTIFY_BAD;
1209}
1210
1211static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1212
Christoph Lametere498be72005-09-09 13:03:32 -07001213/*
1214 * swap the static kmem_list3 with kmalloced memory
1215 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001216static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1217 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001218{
1219 struct kmem_list3 *ptr;
1220
1221 BUG_ON(cachep->nodelists[nodeid] != list);
1222 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1223 BUG_ON(!ptr);
1224
1225 local_irq_disable();
1226 memcpy(ptr, list, sizeof(struct kmem_list3));
1227 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1228 cachep->nodelists[nodeid] = ptr;
1229 local_irq_enable();
1230}
1231
Andrew Mortona737b3e2006-03-22 00:08:11 -08001232/*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235 */
1236void __init kmem_cache_init(void)
1237{
1238 size_t left_over;
1239 struct cache_sizes *sizes;
1240 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001241 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001242 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001243
1244 for (i = 0; i < NUM_INIT_LISTS; i++) {
1245 kmem_list3_init(&initkmem_list3[i]);
1246 if (i < MAX_NUMNODES)
1247 cache_cache.nodelists[i] = NULL;
1248 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
1252 * page orders on machines with more than 32MB of memory.
1253 */
1254 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1255 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1256
Linus Torvalds1da177e2005-04-16 15:20:36 -07001257 /* Bootstrap is tricky, because several objects are allocated
1258 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001259 * 1) initialize the cache_cache cache: it contains the struct
1260 * kmem_cache structures of all caches, except cache_cache itself:
1261 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001262 * Initially an __init data area is used for the head array and the
1263 * kmem_list3 structures, it's replaced with a kmalloc allocated
1264 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001266 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001267 * An __init data area is used for the head array.
1268 * 3) Create the remaining kmalloc caches, with minimally sized
1269 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270 * 4) Replace the __init data head arrays for cache_cache and the first
1271 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001272 * 5) Replace the __init data for kmem_list3 for cache_cache and
1273 * the other cache's with kmalloc allocated memory.
1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 */
1276
1277 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 INIT_LIST_HEAD(&cache_chain);
1279 list_add(&cache_cache.next, &cache_chain);
1280 cache_cache.colour_off = cache_line_size();
1281 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001282 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283
Andrew Mortona737b3e2006-03-22 00:08:11 -08001284 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1285 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001286
Jack Steiner07ed76b2006-03-07 21:55:46 -08001287 for (order = 0; order < MAX_ORDER; order++) {
1288 cache_estimate(order, cache_cache.buffer_size,
1289 cache_line_size(), 0, &left_over, &cache_cache.num);
1290 if (cache_cache.num)
1291 break;
1292 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 if (!cache_cache.num)
1294 BUG();
Jack Steiner07ed76b2006-03-07 21:55:46 -08001295 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001296 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001297 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1298 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299
1300 /* 2+3) create the kmalloc caches */
1301 sizes = malloc_sizes;
1302 names = cache_names;
1303
Andrew Mortona737b3e2006-03-22 00:08:11 -08001304 /*
1305 * Initialize the caches that provide memory for the array cache and the
1306 * kmem_list3 structures first. Without this, further allocations will
1307 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001308 */
1309
1310 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001311 sizes[INDEX_AC].cs_size,
1312 ARCH_KMALLOC_MINALIGN,
1313 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1314 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001315
Andrew Mortona737b3e2006-03-22 00:08:11 -08001316 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001317 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001318 kmem_cache_create(names[INDEX_L3].name,
1319 sizes[INDEX_L3].cs_size,
1320 ARCH_KMALLOC_MINALIGN,
1321 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1322 NULL, NULL);
1323 }
Christoph Lametere498be72005-09-09 13:03:32 -07001324
Linus Torvalds1da177e2005-04-16 15:20:36 -07001325 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001326 /*
1327 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328 * This should be particularly beneficial on SMP boxes, as it
1329 * eliminates "false sharing".
1330 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001331 * allow tighter packing of the smaller caches.
1332 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001333 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001334 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001335 sizes->cs_size,
1336 ARCH_KMALLOC_MINALIGN,
1337 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1338 NULL, NULL);
1339 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001340
1341 /* Inc off-slab bufctl limit until the ceiling is hit. */
1342 if (!(OFF_SLAB(sizes->cs_cachep))) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001343 offslab_limit = sizes->cs_size - sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 offslab_limit /= sizeof(kmem_bufctl_t);
1345 }
1346
1347 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001348 sizes->cs_size,
1349 ARCH_KMALLOC_MINALIGN,
1350 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1351 SLAB_PANIC,
1352 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001353 sizes++;
1354 names++;
1355 }
1356 /* 4) Replace the bootstrap head arrays */
1357 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001358 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001359
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001361
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001363 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1364 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001365 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366 cache_cache.array[smp_processor_id()] = ptr;
1367 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001368
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001370
Linus Torvalds1da177e2005-04-16 15:20:36 -07001371 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001372 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001373 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001374 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001375 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001376 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001377 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 local_irq_enable();
1379 }
Christoph Lametere498be72005-09-09 13:03:32 -07001380 /* 5) Replace the bootstrap kmem_list3's */
1381 {
1382 int node;
1383 /* Replace the static kmem_list3 structures for the boot cpu */
1384 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001385 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386
Christoph Lametere498be72005-09-09 13:03:32 -07001387 for_each_online_node(node) {
1388 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001389 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001390
1391 if (INDEX_AC != INDEX_L3) {
1392 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001393 &initkmem_list3[SIZE_L3 + node],
1394 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001395 }
1396 }
1397 }
1398
1399 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001401 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001402 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001403 list_for_each_entry(cachep, &cache_chain, next)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001404 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001405 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406 }
1407
1408 /* Done! */
1409 g_cpucache_up = FULL;
1410
Andrew Mortona737b3e2006-03-22 00:08:11 -08001411 /*
1412 * Register a cpu startup notifier callback that initializes
1413 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001414 */
1415 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416
Andrew Mortona737b3e2006-03-22 00:08:11 -08001417 /*
1418 * The reap timers are started later, with a module init call: That part
1419 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 */
1421}
1422
1423static int __init cpucache_init(void)
1424{
1425 int cpu;
1426
Andrew Mortona737b3e2006-03-22 00:08:11 -08001427 /*
1428 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429 */
Christoph Lametere498be72005-09-09 13:03:32 -07001430 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001431 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 return 0;
1433}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001434__initcall(cpucache_init);
1435
1436/*
1437 * Interface to system's page allocator. No need to hold the cache-lock.
1438 *
1439 * If we requested dmaable memory, we will get it. Even if we
1440 * did not request dmaable memory, we might get it, but that
1441 * would be relatively rare and ignorable.
1442 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001443static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444{
1445 struct page *page;
1446 void *addr;
1447 int i;
1448
1449 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001450 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 if (!page)
1452 return NULL;
1453 addr = page_address(page);
1454
1455 i = (1 << cachep->gfporder);
1456 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1457 atomic_add(i, &slab_reclaim_pages);
1458 add_page_state(nr_slab, i);
1459 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001460 __SetPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 page++;
1462 }
1463 return addr;
1464}
1465
1466/*
1467 * Interface to system's page release.
1468 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001469static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001471 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472 struct page *page = virt_to_page(addr);
1473 const unsigned long nr_freed = i;
1474
1475 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001476 BUG_ON(!PageSlab(page));
1477 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478 page++;
1479 }
1480 sub_page_state(nr_slab, nr_freed);
1481 if (current->reclaim_state)
1482 current->reclaim_state->reclaimed_slab += nr_freed;
1483 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001484 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1485 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001486}
1487
1488static void kmem_rcu_free(struct rcu_head *head)
1489{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001490 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001491 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492
1493 kmem_freepages(cachep, slab_rcu->addr);
1494 if (OFF_SLAB(cachep))
1495 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1496}
1497
1498#if DEBUG
1499
1500#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001501static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001502 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001503{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001504 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001505
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001506 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001508 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001509 return;
1510
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001511 *addr++ = 0x12345678;
1512 *addr++ = caller;
1513 *addr++ = smp_processor_id();
1514 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001515 {
1516 unsigned long *sptr = &caller;
1517 unsigned long svalue;
1518
1519 while (!kstack_end(sptr)) {
1520 svalue = *sptr++;
1521 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001522 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 size -= sizeof(unsigned long);
1524 if (size <= sizeof(unsigned long))
1525 break;
1526 }
1527 }
1528
1529 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001530 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531}
1532#endif
1533
Pekka Enberg343e0d72006-02-01 03:05:50 -08001534static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001535{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001536 int size = obj_size(cachep);
1537 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538
1539 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001540 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541}
1542
1543static void dump_line(char *data, int offset, int limit)
1544{
1545 int i;
1546 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001547 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001548 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 printk("\n");
1550}
1551#endif
1552
1553#if DEBUG
1554
Pekka Enberg343e0d72006-02-01 03:05:50 -08001555static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001556{
1557 int i, size;
1558 char *realobj;
1559
1560 if (cachep->flags & SLAB_RED_ZONE) {
1561 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001562 *dbg_redzone1(cachep, objp),
1563 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 }
1565
1566 if (cachep->flags & SLAB_STORE_USER) {
1567 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001568 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001569 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001570 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001571 printk("\n");
1572 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001573 realobj = (char *)objp + obj_offset(cachep);
1574 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001575 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576 int limit;
1577 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001578 if (i + limit > size)
1579 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580 dump_line(realobj, i, limit);
1581 }
1582}
1583
Pekka Enberg343e0d72006-02-01 03:05:50 -08001584static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585{
1586 char *realobj;
1587 int size, i;
1588 int lines = 0;
1589
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001590 realobj = (char *)objp + obj_offset(cachep);
1591 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001593 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001594 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001595 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596 exp = POISON_END;
1597 if (realobj[i] != exp) {
1598 int limit;
1599 /* Mismatch ! */
1600 /* Print header */
1601 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001602 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001603 "Slab corruption: start=%p, len=%d\n",
1604 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605 print_objinfo(cachep, objp, 0);
1606 }
1607 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001608 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001609 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001610 if (i + limit > size)
1611 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001612 dump_line(realobj, i, limit);
1613 i += 16;
1614 lines++;
1615 /* Limit to 5 lines */
1616 if (lines > 5)
1617 break;
1618 }
1619 }
1620 if (lines != 0) {
1621 /* Print some data about the neighboring objects, if they
1622 * exist:
1623 */
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08001624 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001625 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001627 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001628 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001629 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001630 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001632 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 print_objinfo(cachep, objp, 2);
1634 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001635 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001636 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001637 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001638 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001639 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001640 print_objinfo(cachep, objp, 2);
1641 }
1642 }
1643}
1644#endif
1645
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001647/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001648 * slab_destroy_objs - destroy a slab and its objects
1649 * @cachep: cache pointer being destroyed
1650 * @slabp: slab pointer being destroyed
1651 *
1652 * Call the registered destructor for each object in a slab that is being
1653 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001654 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001655static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001656{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657 int i;
1658 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001659 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660
1661 if (cachep->flags & SLAB_POISON) {
1662#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001663 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1664 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001665 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001666 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 else
1668 check_poison_obj(cachep, objp);
1669#else
1670 check_poison_obj(cachep, objp);
1671#endif
1672 }
1673 if (cachep->flags & SLAB_RED_ZONE) {
1674 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1675 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001676 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1678 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001679 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680 }
1681 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001682 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001684}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001686static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001687{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001688 if (cachep->dtor) {
1689 int i;
1690 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001691 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001692 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693 }
1694 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001695}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001696#endif
1697
Randy Dunlap911851e2006-03-22 00:08:14 -08001698/**
1699 * slab_destroy - destroy and release all objects in a slab
1700 * @cachep: cache pointer being destroyed
1701 * @slabp: slab pointer being destroyed
1702 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001703 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001704 * Before calling the slab must have been unlinked from the cache. The
1705 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001706 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001707static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001708{
1709 void *addr = slabp->s_mem - slabp->colouroff;
1710
1711 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1713 struct slab_rcu *slab_rcu;
1714
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001715 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716 slab_rcu->cachep = cachep;
1717 slab_rcu->addr = addr;
1718 call_rcu(&slab_rcu->head, kmem_rcu_free);
1719 } else {
1720 kmem_freepages(cachep, addr);
1721 if (OFF_SLAB(cachep))
1722 kmem_cache_free(cachep->slabp_cache, slabp);
1723 }
1724}
1725
Andrew Mortona737b3e2006-03-22 00:08:11 -08001726/*
1727 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1728 * size of kmem_list3.
1729 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001730static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001731{
1732 int node;
1733
1734 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001735 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001736 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001737 REAPTIMEOUT_LIST3 +
1738 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001739 }
1740}
1741
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001743 * calculate_slab_order - calculate size (page order) of slabs
1744 * @cachep: pointer to the cache that is being created
1745 * @size: size of objects to be created in this cache.
1746 * @align: required alignment for the objects.
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001750 *
1751 * This could be made much more intelligent. For now, try to avoid using
1752 * high order pages for slabs. When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001755static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001756 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001757{
1758 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001759 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001760
Andrew Mortona737b3e2006-03-22 00:08:11 -08001761 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001762 unsigned int num;
1763 size_t remainder;
1764
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001765 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001766 if (!num)
1767 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001768
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001769 /* More than offslab_limit objects will cause problems */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001770 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001771 break;
1772
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001773 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001774 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001775 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001776 left_over = remainder;
1777
1778 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001779 * A VFS-reclaimable slab tends to have most allocations
1780 * as GFP_NOFS and we really don't want to have to be allocating
1781 * higher-order pages when we are unable to shrink dcache.
1782 */
1783 if (flags & SLAB_RECLAIM_ACCOUNT)
1784 break;
1785
1786 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001787 * Large number of objects is good, but very large slabs are
1788 * currently bad for the gfp()s.
1789 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001790 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001791 break;
1792
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001793 /*
1794 * Acceptable internal fragmentation?
1795 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001796 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001797 break;
1798 }
1799 return left_over;
1800}
1801
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001802static void setup_cpu_cache(struct kmem_cache *cachep)
1803{
1804 if (g_cpucache_up == FULL) {
1805 enable_cpucache(cachep);
1806 return;
1807 }
1808 if (g_cpucache_up == NONE) {
1809 /*
1810 * Note: the first kmem_cache_create must create the cache
1811 * that's used by kmalloc(24), otherwise the creation of
1812 * further caches will BUG().
1813 */
1814 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1815
1816 /*
1817 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1818 * the first cache, then we need to set up all its list3s,
1819 * otherwise the creation of further caches will BUG().
1820 */
1821 set_up_list3s(cachep, SIZE_AC);
1822 if (INDEX_AC == INDEX_L3)
1823 g_cpucache_up = PARTIAL_L3;
1824 else
1825 g_cpucache_up = PARTIAL_AC;
1826 } else {
1827 cachep->array[smp_processor_id()] =
1828 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1829
1830 if (g_cpucache_up == PARTIAL_AC) {
1831 set_up_list3s(cachep, SIZE_L3);
1832 g_cpucache_up = PARTIAL_L3;
1833 } else {
1834 int node;
1835 for_each_online_node(node) {
1836 cachep->nodelists[node] =
1837 kmalloc_node(sizeof(struct kmem_list3),
1838 GFP_KERNEL, node);
1839 BUG_ON(!cachep->nodelists[node]);
1840 kmem_list3_init(cachep->nodelists[node]);
1841 }
1842 }
1843 }
1844 cachep->nodelists[numa_node_id()]->next_reap =
1845 jiffies + REAPTIMEOUT_LIST3 +
1846 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1847
1848 cpu_cache_get(cachep)->avail = 0;
1849 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1850 cpu_cache_get(cachep)->batchcount = 1;
1851 cpu_cache_get(cachep)->touched = 0;
1852 cachep->batchcount = 1;
1853 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1854}
1855
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001856/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857 * kmem_cache_create - Create a cache.
1858 * @name: A string which is used in /proc/slabinfo to identify this cache.
1859 * @size: The size of objects to be created in this cache.
1860 * @align: The required alignment for the objects.
1861 * @flags: SLAB flags
1862 * @ctor: A constructor for the objects.
1863 * @dtor: A destructor for the objects.
1864 *
1865 * Returns a ptr to the cache on success, NULL on failure.
1866 * Cannot be called within a int, but can be interrupted.
1867 * The @ctor is run when new pages are allocated by the cache
1868 * and the @dtor is run before the pages are handed back.
1869 *
1870 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08001871 * the module calling this has to destroy the cache before getting unloaded.
1872 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873 * The flags are
1874 *
1875 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1876 * to catch references to uninitialised memory.
1877 *
1878 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1879 * for buffer overruns.
1880 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1882 * cacheline. This can be beneficial if you're counting cycles as closely
1883 * as davem.
1884 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001885struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001887 unsigned long flags,
1888 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08001889 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890{
1891 size_t left_over, slab_size, ralign;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001892 struct kmem_cache *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001893 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894
1895 /*
1896 * Sanity checks... these are all serious usage bugs.
1897 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001898 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001899 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001900 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1901 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001902 BUG();
1903 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001904
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08001905 /*
1906 * Prevent CPUs from coming and going.
1907 * lock_cpu_hotplug() nests outside cache_chain_mutex
1908 */
1909 lock_cpu_hotplug();
1910
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001911 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001912
1913 list_for_each(p, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001914 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001915 mm_segment_t old_fs = get_fs();
1916 char tmp;
1917 int res;
1918
1919 /*
1920 * This happens when the module gets unloaded and doesn't
1921 * destroy its slab cache and no-one else reuses the vmalloc
1922 * area of the module. Print a warning.
1923 */
1924 set_fs(KERNEL_DS);
1925 res = __get_user(tmp, pc->name);
1926 set_fs(old_fs);
1927 if (res) {
1928 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001929 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001930 continue;
1931 }
1932
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001933 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001934 printk("kmem_cache_create: duplicate cache %s\n", name);
1935 dump_stack();
1936 goto oops;
1937 }
1938 }
1939
Linus Torvalds1da177e2005-04-16 15:20:36 -07001940#if DEBUG
1941 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1942 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1943 /* No constructor, but inital state check requested */
1944 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001945 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 flags &= ~SLAB_DEBUG_INITIAL;
1947 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948#if FORCED_DEBUG
1949 /*
1950 * Enable redzoning and last user accounting, except for caches with
1951 * large objects, if the increased size would increase the object size
1952 * above the next power of two: caches with object sizes just above a
1953 * power of two have a significant amount of internal fragmentation.
1954 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001955 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001956 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957 if (!(flags & SLAB_DESTROY_BY_RCU))
1958 flags |= SLAB_POISON;
1959#endif
1960 if (flags & SLAB_DESTROY_BY_RCU)
1961 BUG_ON(flags & SLAB_POISON);
1962#endif
1963 if (flags & SLAB_DESTROY_BY_RCU)
1964 BUG_ON(dtor);
1965
1966 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08001967 * Always checks flags, a caller might be expecting debug support which
1968 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969 */
1970 if (flags & ~CREATE_MASK)
1971 BUG();
1972
Andrew Mortona737b3e2006-03-22 00:08:11 -08001973 /*
1974 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07001975 * unaligned accesses for some archs when redzoning is used, and makes
1976 * sure any on-slab bufctl's are also correctly aligned.
1977 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001978 if (size & (BYTES_PER_WORD - 1)) {
1979 size += (BYTES_PER_WORD - 1);
1980 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 }
1982
Andrew Mortona737b3e2006-03-22 00:08:11 -08001983 /* calculate the final buffer alignment: */
1984
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 /* 1) arch recommendation: can be overridden for debug */
1986 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001987 /*
1988 * Default alignment: as specified by the arch code. Except if
1989 * an object is really small, then squeeze multiple objects into
1990 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 */
1992 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001993 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001994 ralign /= 2;
1995 } else {
1996 ralign = BYTES_PER_WORD;
1997 }
1998 /* 2) arch mandated alignment: disables debug if necessary */
1999 if (ralign < ARCH_SLAB_MINALIGN) {
2000 ralign = ARCH_SLAB_MINALIGN;
2001 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002002 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 }
2004 /* 3) caller mandated alignment: disables debug if necessary */
2005 if (ralign < align) {
2006 ralign = align;
2007 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002008 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002010 /*
2011 * 4) Store it. Note that the debug code below can reduce
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012 * the alignment to BYTES_PER_WORD.
2013 */
2014 align = ralign;
2015
2016 /* Get cache's description obj. */
Pekka Enbergc5e3b832006-03-25 03:06:43 -08002017 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002019 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020
2021#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002022 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002023
2024 if (flags & SLAB_RED_ZONE) {
2025 /* redzoning only works with word aligned caches */
2026 align = BYTES_PER_WORD;
2027
2028 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002029 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002030 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031 }
2032 if (flags & SLAB_STORE_USER) {
2033 /* user store requires word alignment and
2034 * one word storage behind the end of the real
2035 * object.
2036 */
2037 align = BYTES_PER_WORD;
2038 size += BYTES_PER_WORD;
2039 }
2040#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002041 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002042 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2043 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002044 size = PAGE_SIZE;
2045 }
2046#endif
2047#endif
2048
2049 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002050 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002051 /*
2052 * Size is large, assume best to place the slab management obj
2053 * off-slab (should allow better packing of objs).
2054 */
2055 flags |= CFLGS_OFF_SLAB;
2056
2057 size = ALIGN(size, align);
2058
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002059 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002060
2061 if (!cachep->num) {
2062 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2063 kmem_cache_free(&cache_cache, cachep);
2064 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002065 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002067 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2068 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069
2070 /*
2071 * If the slab has been placed off-slab, and we have enough space then
2072 * move it on-slab. This is at the expense of any extra colouring.
2073 */
2074 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2075 flags &= ~CFLGS_OFF_SLAB;
2076 left_over -= slab_size;
2077 }
2078
2079 if (flags & CFLGS_OFF_SLAB) {
2080 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002081 slab_size =
2082 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083 }
2084
2085 cachep->colour_off = cache_line_size();
2086 /* Offset must be a multiple of the alignment. */
2087 if (cachep->colour_off < align)
2088 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002089 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 cachep->slab_size = slab_size;
2091 cachep->flags = flags;
2092 cachep->gfpflags = 0;
2093 if (flags & SLAB_CACHE_DMA)
2094 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002095 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096
2097 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07002098 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 cachep->ctor = ctor;
2100 cachep->dtor = dtor;
2101 cachep->name = name;
2102
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002104 setup_cpu_cache(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002105
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106 /* cache setup completed, link it into the list */
2107 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002108oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109 if (!cachep && (flags & SLAB_PANIC))
2110 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002111 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002112 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002113 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114 return cachep;
2115}
2116EXPORT_SYMBOL(kmem_cache_create);
2117
2118#if DEBUG
2119static void check_irq_off(void)
2120{
2121 BUG_ON(!irqs_disabled());
2122}
2123
2124static void check_irq_on(void)
2125{
2126 BUG_ON(irqs_disabled());
2127}
2128
Pekka Enberg343e0d72006-02-01 03:05:50 -08002129static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130{
2131#ifdef CONFIG_SMP
2132 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002133 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002134#endif
2135}
Christoph Lametere498be72005-09-09 13:03:32 -07002136
Pekka Enberg343e0d72006-02-01 03:05:50 -08002137static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002138{
2139#ifdef CONFIG_SMP
2140 check_irq_off();
2141 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2142#endif
2143}
2144
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145#else
2146#define check_irq_off() do { } while(0)
2147#define check_irq_on() do { } while(0)
2148#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002149#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002150#endif
2151
Christoph Lameteraab22072006-03-22 00:09:06 -08002152static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2153 struct array_cache *ac,
2154 int force, int node);
2155
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156static void do_drain(void *arg)
2157{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002158 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002160 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002161
2162 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002163 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002164 spin_lock(&cachep->nodelists[node]->list_lock);
2165 free_block(cachep, ac->entry, ac->avail, node);
2166 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 ac->avail = 0;
2168}
2169
Pekka Enberg343e0d72006-02-01 03:05:50 -08002170static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171{
Christoph Lametere498be72005-09-09 13:03:32 -07002172 struct kmem_list3 *l3;
2173 int node;
2174
Andrew Mortona07fa392006-03-22 00:08:17 -08002175 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002176 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002177 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002178 l3 = cachep->nodelists[node];
2179 if (l3) {
Christoph Lameteraab22072006-03-22 00:09:06 -08002180 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002181 if (l3->alien)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08002182 drain_alien_cache(cachep, l3->alien);
Christoph Lametere498be72005-09-09 13:03:32 -07002183 }
2184 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002185}
2186
Pekka Enberg343e0d72006-02-01 03:05:50 -08002187static int __node_shrink(struct kmem_cache *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188{
2189 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07002190 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191 int ret;
2192
Christoph Lametere498be72005-09-09 13:03:32 -07002193 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 struct list_head *p;
2195
Christoph Lametere498be72005-09-09 13:03:32 -07002196 p = l3->slabs_free.prev;
2197 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002198 break;
2199
Christoph Lametere498be72005-09-09 13:03:32 -07002200 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201#if DEBUG
2202 if (slabp->inuse)
2203 BUG();
2204#endif
2205 list_del(&slabp->list);
2206
Christoph Lametere498be72005-09-09 13:03:32 -07002207 l3->free_objects -= cachep->num;
2208 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002209 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002210 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002212 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 return ret;
2214}
2215
Pekka Enberg343e0d72006-02-01 03:05:50 -08002216static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002217{
2218 int ret = 0, i = 0;
2219 struct kmem_list3 *l3;
2220
2221 drain_cpu_caches(cachep);
2222
2223 check_irq_on();
2224 for_each_online_node(i) {
2225 l3 = cachep->nodelists[i];
2226 if (l3) {
2227 spin_lock_irq(&l3->list_lock);
2228 ret += __node_shrink(cachep, i);
2229 spin_unlock_irq(&l3->list_lock);
2230 }
2231 }
2232 return (ret ? 1 : 0);
2233}
2234
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235/**
2236 * kmem_cache_shrink - Shrink a cache.
2237 * @cachep: The cache to shrink.
2238 *
2239 * Releases as many slabs as possible for a cache.
2240 * To help debugging, a zero exit status indicates all slabs were released.
2241 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002242int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243{
2244 if (!cachep || in_interrupt())
2245 BUG();
2246
2247 return __cache_shrink(cachep);
2248}
2249EXPORT_SYMBOL(kmem_cache_shrink);
2250
2251/**
2252 * kmem_cache_destroy - delete a cache
2253 * @cachep: the cache to destroy
2254 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002255 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256 * Returns 0 on success.
2257 *
2258 * It is expected this function will be called by a module when it is
2259 * unloaded. This will remove the cache completely, and avoid a duplicate
2260 * cache being allocated each time a module is loaded and unloaded, if the
2261 * module doesn't have persistent in-kernel storage across loads and unloads.
2262 *
2263 * The cache must be empty before calling this function.
2264 *
2265 * The caller must guarantee that noone will allocate memory from the cache
2266 * during the kmem_cache_destroy().
2267 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002268int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269{
2270 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002271 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272
2273 if (!cachep || in_interrupt())
2274 BUG();
2275
2276 /* Don't let CPUs to come and go */
2277 lock_cpu_hotplug();
2278
2279 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002280 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 /*
2282 * the chain is never empty, cache_cache is never destroyed
2283 */
2284 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002285 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286
2287 if (__cache_shrink(cachep)) {
2288 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002289 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002290 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002291 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002292 unlock_cpu_hotplug();
2293 return 1;
2294 }
2295
2296 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002297 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002298
Christoph Lametere498be72005-09-09 13:03:32 -07002299 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002300 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301
2302 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002303 for_each_online_node(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002304 l3 = cachep->nodelists[i];
2305 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07002306 kfree(l3->shared);
2307 free_alien_cache(l3->alien);
2308 kfree(l3);
2309 }
2310 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002311 kmem_cache_free(&cache_cache, cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313 return 0;
2314}
2315EXPORT_SYMBOL(kmem_cache_destroy);
2316
2317/* Get the memory for a slab management obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002318static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002319 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002320{
2321 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002322
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323 if (OFF_SLAB(cachep)) {
2324 /* Slab management obj is off-slab. */
2325 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2326 if (!slabp)
2327 return NULL;
2328 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002329 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330 colour_off += cachep->slab_size;
2331 }
2332 slabp->inuse = 0;
2333 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002334 slabp->s_mem = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335 return slabp;
2336}
2337
2338static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2339{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002340 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002341}
2342
Pekka Enberg343e0d72006-02-01 03:05:50 -08002343static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002344 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002345{
2346 int i;
2347
2348 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002349 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350#if DEBUG
2351 /* need to poison the objs? */
2352 if (cachep->flags & SLAB_POISON)
2353 poison_obj(cachep, objp, POISON_FREE);
2354 if (cachep->flags & SLAB_STORE_USER)
2355 *dbg_userword(cachep, objp) = NULL;
2356
2357 if (cachep->flags & SLAB_RED_ZONE) {
2358 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2359 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2360 }
2361 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002362 * Constructors are not allowed to allocate memory from the same
2363 * cache which they are a constructor for. Otherwise, deadlock.
2364 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365 */
2366 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002367 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002368 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369
2370 if (cachep->flags & SLAB_RED_ZONE) {
2371 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2372 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002373 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2375 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002376 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002378 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2379 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002380 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002381 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382#else
2383 if (cachep->ctor)
2384 cachep->ctor(objp, cachep, ctor_flags);
2385#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002386 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002387 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002388 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 slabp->free = 0;
2390}
2391
Pekka Enberg343e0d72006-02-01 03:05:50 -08002392static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002394 if (flags & SLAB_DMA)
2395 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2396 else
2397 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398}
2399
Andrew Mortona737b3e2006-03-22 00:08:11 -08002400static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2401 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002402{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002403 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002404 kmem_bufctl_t next;
2405
2406 slabp->inuse++;
2407 next = slab_bufctl(slabp)[slabp->free];
2408#if DEBUG
2409 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2410 WARN_ON(slabp->nodeid != nodeid);
2411#endif
2412 slabp->free = next;
2413
2414 return objp;
2415}
2416
Andrew Mortona737b3e2006-03-22 00:08:11 -08002417static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2418 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002419{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002420 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002421
2422#if DEBUG
2423 /* Verify that the slab belongs to the intended node */
2424 WARN_ON(slabp->nodeid != nodeid);
2425
Al Viro871751e2006-03-25 03:06:39 -08002426 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002427 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002428 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002429 BUG();
2430 }
2431#endif
2432 slab_bufctl(slabp)[objnr] = slabp->free;
2433 slabp->free = objnr;
2434 slabp->inuse--;
2435}
2436
Andrew Mortona737b3e2006-03-22 00:08:11 -08002437static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2438 void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439{
2440 int i;
2441 struct page *page;
2442
2443 /* Nasty!!!!!! I hope this is OK. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444 page = virt_to_page(objp);
Nick Piggin84097512006-03-22 00:08:34 -08002445
2446 i = 1;
2447 if (likely(!PageCompound(page)))
2448 i <<= cachep->gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002450 page_set_cache(page, cachep);
2451 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452 page++;
2453 } while (--i);
2454}
2455
2456/*
2457 * Grow (by 1) the number of slabs within a cache. This is called by
2458 * kmem_cache_alloc() when there are no active objs left in a cache.
2459 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002460static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002462 struct slab *slabp;
2463 void *objp;
2464 size_t offset;
2465 gfp_t local_flags;
2466 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002467 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002468
Andrew Mortona737b3e2006-03-22 00:08:11 -08002469 /*
2470 * Be lazy and only check for valid flags here, keeping it out of the
2471 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002473 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474 BUG();
2475 if (flags & SLAB_NO_GROW)
2476 return 0;
2477
2478 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2479 local_flags = (flags & SLAB_LEVEL_MASK);
2480 if (!(local_flags & __GFP_WAIT))
2481 /*
2482 * Not allowed to sleep. Need to tell a constructor about
2483 * this - it might need to know...
2484 */
2485 ctor_flags |= SLAB_CTOR_ATOMIC;
2486
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002487 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002489 l3 = cachep->nodelists[nodeid];
2490 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491
2492 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002493 offset = l3->colour_next;
2494 l3->colour_next++;
2495 if (l3->colour_next >= cachep->colour)
2496 l3->colour_next = 0;
2497 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002498
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002499 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002500
2501 if (local_flags & __GFP_WAIT)
2502 local_irq_enable();
2503
2504 /*
2505 * The test for missing atomic flag is performed here, rather than
2506 * the more obvious place, simply to reduce the critical path length
2507 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2508 * will eventually be caught here (where it matters).
2509 */
2510 kmem_flagcheck(cachep, flags);
2511
Andrew Mortona737b3e2006-03-22 00:08:11 -08002512 /*
2513 * Get mem for the objs. Attempt to allocate a physical page from
2514 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002515 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002516 objp = kmem_getpages(cachep, flags, nodeid);
2517 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002518 goto failed;
2519
2520 /* Get slab management. */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002521 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2522 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002523 goto opps1;
2524
Christoph Lametere498be72005-09-09 13:03:32 -07002525 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526 set_slab_attr(cachep, slabp, objp);
2527
2528 cache_init_objs(cachep, slabp, ctor_flags);
2529
2530 if (local_flags & __GFP_WAIT)
2531 local_irq_disable();
2532 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002533 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534
2535 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002536 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002537 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002538 l3->free_objects += cachep->num;
2539 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002541opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002543failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544 if (local_flags & __GFP_WAIT)
2545 local_irq_disable();
2546 return 0;
2547}
2548
2549#if DEBUG
2550
2551/*
2552 * Perform extra freeing checks:
2553 * - detect bad pointers.
2554 * - POISON/RED_ZONE checking
2555 * - destructor calls, for caches with POISON+dtor
2556 */
2557static void kfree_debugcheck(const void *objp)
2558{
2559 struct page *page;
2560
2561 if (!virt_addr_valid(objp)) {
2562 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002563 (unsigned long)objp);
2564 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565 }
2566 page = virt_to_page(objp);
2567 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002568 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2569 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570 BUG();
2571 }
2572}
2573
Pekka Enberg343e0d72006-02-01 03:05:50 -08002574static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002575 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002576{
2577 struct page *page;
2578 unsigned int objnr;
2579 struct slab *slabp;
2580
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002581 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002582 kfree_debugcheck(objp);
2583 page = virt_to_page(objp);
2584
Pekka Enberg065d41c2005-11-13 16:06:46 -08002585 if (page_get_cache(page) != cachep) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002586 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2587 "cache %p, got %p\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002588 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002589 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002590 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2591 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002592 WARN_ON(1);
2593 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002594 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002595
2596 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002597 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2598 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2599 slab_error(cachep, "double free, or memory outside"
2600 " object was overwritten");
2601 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2602 "redzone 2:0x%lx.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002603 objp, *dbg_redzone1(cachep, objp),
2604 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605 }
2606 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2607 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2608 }
2609 if (cachep->flags & SLAB_STORE_USER)
2610 *dbg_userword(cachep, objp) = caller;
2611
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002612 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613
2614 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002615 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616
2617 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002618 /*
2619 * Need to call the slab's constructor so the caller can
2620 * perform a verify of its state (debugging). Called without
2621 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002622 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002623 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002624 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625 }
2626 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2627 /* we want to cache poison the object,
2628 * call the destruction callback
2629 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002630 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002631 }
Al Viro871751e2006-03-25 03:06:39 -08002632#ifdef CONFIG_DEBUG_SLAB_LEAK
2633 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2634#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 if (cachep->flags & SLAB_POISON) {
2636#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002637 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002639 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002640 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641 } else {
2642 poison_obj(cachep, objp, POISON_FREE);
2643 }
2644#else
2645 poison_obj(cachep, objp, POISON_FREE);
2646#endif
2647 }
2648 return objp;
2649}
2650
Pekka Enberg343e0d72006-02-01 03:05:50 -08002651static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652{
2653 kmem_bufctl_t i;
2654 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002655
Linus Torvalds1da177e2005-04-16 15:20:36 -07002656 /* Check slab's freelist to see if this obj is there. */
2657 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2658 entries++;
2659 if (entries > cachep->num || i >= cachep->num)
2660 goto bad;
2661 }
2662 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002663bad:
2664 printk(KERN_ERR "slab: Internal list corruption detected in "
2665 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2666 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002667 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002668 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002669 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002670 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002672 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673 }
2674 printk("\n");
2675 BUG();
2676 }
2677}
2678#else
2679#define kfree_debugcheck(x) do { } while(0)
2680#define cache_free_debugcheck(x,objp,z) (objp)
2681#define check_slabp(x,y) do { } while(0)
2682#endif
2683
Pekka Enberg343e0d72006-02-01 03:05:50 -08002684static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685{
2686 int batchcount;
2687 struct kmem_list3 *l3;
2688 struct array_cache *ac;
2689
2690 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002691 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002692retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002693 batchcount = ac->batchcount;
2694 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002695 /*
2696 * If there was little recent activity on this cache, then
2697 * perform only a partial refill. Otherwise we could generate
2698 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699 */
2700 batchcount = BATCHREFILL_LIMIT;
2701 }
Christoph Lametere498be72005-09-09 13:03:32 -07002702 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703
Christoph Lametere498be72005-09-09 13:03:32 -07002704 BUG_ON(ac->avail > 0 || !l3);
2705 spin_lock(&l3->list_lock);
2706
Christoph Lameter3ded1752006-03-25 03:06:44 -08002707 /* See if we can refill from the shared array */
2708 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2709 goto alloc_done;
2710
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 while (batchcount > 0) {
2712 struct list_head *entry;
2713 struct slab *slabp;
2714 /* Get slab alloc is to come from. */
2715 entry = l3->slabs_partial.next;
2716 if (entry == &l3->slabs_partial) {
2717 l3->free_touched = 1;
2718 entry = l3->slabs_free.next;
2719 if (entry == &l3->slabs_free)
2720 goto must_grow;
2721 }
2722
2723 slabp = list_entry(entry, struct slab, list);
2724 check_slabp(cachep, slabp);
2725 check_spinlock_acquired(cachep);
2726 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002727 STATS_INC_ALLOCED(cachep);
2728 STATS_INC_ACTIVE(cachep);
2729 STATS_SET_HIGH(cachep);
2730
Matthew Dobson78d382d2006-02-01 03:05:47 -08002731 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2732 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 }
2734 check_slabp(cachep, slabp);
2735
2736 /* move slabp to correct slabp list: */
2737 list_del(&slabp->list);
2738 if (slabp->free == BUFCTL_END)
2739 list_add(&slabp->list, &l3->slabs_full);
2740 else
2741 list_add(&slabp->list, &l3->slabs_partial);
2742 }
2743
Andrew Mortona737b3e2006-03-22 00:08:11 -08002744must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002745 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002746alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002747 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002748
2749 if (unlikely(!ac->avail)) {
2750 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002751 x = cache_grow(cachep, flags, numa_node_id());
2752
Andrew Mortona737b3e2006-03-22 00:08:11 -08002753 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002754 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002755 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756 return NULL;
2757
Andrew Mortona737b3e2006-03-22 00:08:11 -08002758 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759 goto retry;
2760 }
2761 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002762 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763}
2764
Andrew Mortona737b3e2006-03-22 00:08:11 -08002765static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2766 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767{
2768 might_sleep_if(flags & __GFP_WAIT);
2769#if DEBUG
2770 kmem_flagcheck(cachep, flags);
2771#endif
2772}
2773
2774#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002775static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2776 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002778 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002780 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002782 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002783 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002784 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785 else
2786 check_poison_obj(cachep, objp);
2787#else
2788 check_poison_obj(cachep, objp);
2789#endif
2790 poison_obj(cachep, objp, POISON_INUSE);
2791 }
2792 if (cachep->flags & SLAB_STORE_USER)
2793 *dbg_userword(cachep, objp) = caller;
2794
2795 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002796 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2797 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2798 slab_error(cachep, "double free, or memory outside"
2799 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002800 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002801 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2802 objp, *dbg_redzone1(cachep, objp),
2803 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804 }
2805 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2806 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2807 }
Al Viro871751e2006-03-25 03:06:39 -08002808#ifdef CONFIG_DEBUG_SLAB_LEAK
2809 {
2810 struct slab *slabp;
2811 unsigned objnr;
2812
2813 slabp = page_get_slab(virt_to_page(objp));
2814 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2815 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2816 }
2817#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002818 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002819 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002820 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821
2822 if (!(flags & __GFP_WAIT))
2823 ctor_flags |= SLAB_CTOR_ATOMIC;
2824
2825 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002826 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002827 return objp;
2828}
2829#else
2830#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2831#endif
2832
Pekka Enberg343e0d72006-02-01 03:05:50 -08002833static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002834{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002835 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002836 struct array_cache *ac;
2837
Christoph Lameterdc85da12006-01-18 17:42:36 -08002838#ifdef CONFIG_NUMA
Paul Jacksonb2455392006-03-24 03:16:12 -08002839 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
Paul Jacksonc61afb12006-03-24 03:16:08 -08002840 objp = alternate_node_alloc(cachep, flags);
2841 if (objp != NULL)
2842 return objp;
Paul Jackson101a5002006-03-24 03:16:07 -08002843 }
Christoph Lameterdc85da12006-01-18 17:42:36 -08002844#endif
2845
Alok N Kataria5c382302005-09-27 21:45:46 -07002846 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002847 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002848 if (likely(ac->avail)) {
2849 STATS_INC_ALLOCHIT(cachep);
2850 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002851 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852 } else {
2853 STATS_INC_ALLOCMISS(cachep);
2854 objp = cache_alloc_refill(cachep, flags);
2855 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002856 return objp;
2857}
2858
Andrew Mortona737b3e2006-03-22 00:08:11 -08002859static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2860 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07002861{
2862 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002863 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002864
2865 cache_alloc_debugcheck_before(cachep, flags);
2866
2867 local_irq_save(save_flags);
2868 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002869 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002870 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002871 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07002872 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002873 return objp;
2874}
2875
Christoph Lametere498be72005-09-09 13:03:32 -07002876#ifdef CONFIG_NUMA
2877/*
Paul Jacksonb2455392006-03-24 03:16:12 -08002878 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08002879 *
2880 * If we are in_interrupt, then process context, including cpusets and
2881 * mempolicy, may not apply and should not be used for allocation policy.
2882 */
2883static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2884{
2885 int nid_alloc, nid_here;
2886
2887 if (in_interrupt())
2888 return NULL;
2889 nid_alloc = nid_here = numa_node_id();
2890 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2891 nid_alloc = cpuset_mem_spread_node();
2892 else if (current->mempolicy)
2893 nid_alloc = slab_node(current->mempolicy);
2894 if (nid_alloc != nid_here)
2895 return __cache_alloc_node(cachep, flags, nid_alloc);
2896 return NULL;
2897}
2898
2899/*
Christoph Lametere498be72005-09-09 13:03:32 -07002900 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002902static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2903 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002904{
2905 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002906 struct slab *slabp;
2907 struct kmem_list3 *l3;
2908 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002909 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002910
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002911 l3 = cachep->nodelists[nodeid];
2912 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002913
Andrew Mortona737b3e2006-03-22 00:08:11 -08002914retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002915 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002916 spin_lock(&l3->list_lock);
2917 entry = l3->slabs_partial.next;
2918 if (entry == &l3->slabs_partial) {
2919 l3->free_touched = 1;
2920 entry = l3->slabs_free.next;
2921 if (entry == &l3->slabs_free)
2922 goto must_grow;
2923 }
Christoph Lametere498be72005-09-09 13:03:32 -07002924
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002925 slabp = list_entry(entry, struct slab, list);
2926 check_spinlock_acquired_node(cachep, nodeid);
2927 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002928
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002929 STATS_INC_NODEALLOCS(cachep);
2930 STATS_INC_ACTIVE(cachep);
2931 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002932
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002933 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07002934
Matthew Dobson78d382d2006-02-01 03:05:47 -08002935 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002936 check_slabp(cachep, slabp);
2937 l3->free_objects--;
2938 /* move slabp to correct slabp list: */
2939 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07002940
Andrew Mortona737b3e2006-03-22 00:08:11 -08002941 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002942 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002943 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002944 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002945
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002946 spin_unlock(&l3->list_lock);
2947 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07002948
Andrew Mortona737b3e2006-03-22 00:08:11 -08002949must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002950 spin_unlock(&l3->list_lock);
2951 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002952
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002953 if (!x)
2954 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07002955
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002956 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002957done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002958 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07002959}
2960#endif
2961
2962/*
2963 * Caller needs to acquire correct kmem_list's list_lock
2964 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002965static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002966 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002967{
2968 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002969 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002970
2971 for (i = 0; i < nr_objects; i++) {
2972 void *objp = objpp[i];
2973 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08002975 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07002976 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002977 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07002978 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002980 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002982 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002983 check_slabp(cachep, slabp);
2984
2985 /* fixup slab chains */
2986 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002987 if (l3->free_objects > l3->free_limit) {
2988 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989 slab_destroy(cachep, slabp);
2990 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002991 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002992 }
2993 } else {
2994 /* Unconditionally move a slab to the end of the
2995 * partial list on free - maximum time for the
2996 * other objects to be freed, too.
2997 */
Christoph Lametere498be72005-09-09 13:03:32 -07002998 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002999 }
3000 }
3001}
3002
Pekka Enberg343e0d72006-02-01 03:05:50 -08003003static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003004{
3005 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003006 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003007 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003008
3009 batchcount = ac->batchcount;
3010#if DEBUG
3011 BUG_ON(!batchcount || batchcount > ac->avail);
3012#endif
3013 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003014 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07003015 spin_lock(&l3->list_lock);
3016 if (l3->shared) {
3017 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003018 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019 if (max) {
3020 if (batchcount > max)
3021 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003022 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003023 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003024 shared_array->avail += batchcount;
3025 goto free_done;
3026 }
3027 }
3028
Christoph Lameterff694162005-09-22 21:44:02 -07003029 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003030free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031#if STATS
3032 {
3033 int i = 0;
3034 struct list_head *p;
3035
Christoph Lametere498be72005-09-09 13:03:32 -07003036 p = l3->slabs_free.next;
3037 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003038 struct slab *slabp;
3039
3040 slabp = list_entry(p, struct slab, list);
3041 BUG_ON(slabp->inuse);
3042
3043 i++;
3044 p = p->next;
3045 }
3046 STATS_SET_FREEABLE(cachep, i);
3047 }
3048#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003049 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003050 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003051 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003052}
3053
3054/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003055 * Release an obj back to its cache. If the obj has a constructed state, it must
3056 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003058static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003059{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003060 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003061
3062 check_irq_off();
3063 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3064
Christoph Lametere498be72005-09-09 13:03:32 -07003065 /* Make sure we are not freeing a object from another
3066 * node to the array cache on this cpu.
3067 */
3068#ifdef CONFIG_NUMA
3069 {
3070 struct slab *slabp;
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003071 slabp = virt_to_slab(objp);
Christoph Lametere498be72005-09-09 13:03:32 -07003072 if (unlikely(slabp->nodeid != numa_node_id())) {
3073 struct array_cache *alien = NULL;
3074 int nodeid = slabp->nodeid;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003075 struct kmem_list3 *l3;
Christoph Lametere498be72005-09-09 13:03:32 -07003076
Andrew Mortona737b3e2006-03-22 00:08:11 -08003077 l3 = cachep->nodelists[numa_node_id()];
Christoph Lametere498be72005-09-09 13:03:32 -07003078 STATS_INC_NODEFREES(cachep);
3079 if (l3->alien && l3->alien[nodeid]) {
3080 alien = l3->alien[nodeid];
3081 spin_lock(&alien->lock);
3082 if (unlikely(alien->avail == alien->limit))
3083 __drain_alien_cache(cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003084 alien, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003085 alien->entry[alien->avail++] = objp;
3086 spin_unlock(&alien->lock);
3087 } else {
3088 spin_lock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003089 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003090 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003091 spin_unlock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003092 list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003093 }
3094 return;
3095 }
3096 }
3097#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003098 if (likely(ac->avail < ac->limit)) {
3099 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003100 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003101 return;
3102 } else {
3103 STATS_INC_FREEMISS(cachep);
3104 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003105 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003106 }
3107}
3108
3109/**
3110 * kmem_cache_alloc - Allocate an object
3111 * @cachep: The cache to allocate from.
3112 * @flags: See kmalloc().
3113 *
3114 * Allocate an object from this cache. The flags are only relevant
3115 * if the cache has no available objects.
3116 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003117void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003118{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003119 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003120}
3121EXPORT_SYMBOL(kmem_cache_alloc);
3122
3123/**
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003124 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3125 * @cache: The cache to allocate from.
3126 * @flags: See kmalloc().
3127 *
3128 * Allocate an object from this cache and set the allocated memory to zero.
3129 * The flags are only relevant if the cache has no available objects.
3130 */
3131void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3132{
3133 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3134 if (ret)
3135 memset(ret, 0, obj_size(cache));
3136 return ret;
3137}
3138EXPORT_SYMBOL(kmem_cache_zalloc);
3139
3140/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003141 * kmem_ptr_validate - check if an untrusted pointer might
3142 * be a slab entry.
3143 * @cachep: the cache we're checking against
3144 * @ptr: pointer to validate
3145 *
3146 * This verifies that the untrusted pointer looks sane:
3147 * it is _not_ a guarantee that the pointer is actually
3148 * part of the slab cache in question, but it at least
3149 * validates that the pointer can be dereferenced and
3150 * looks half-way sane.
3151 *
3152 * Currently only used for dentry validation.
3153 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003154int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003156 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003157 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003158 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003159 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003160 struct page *page;
3161
3162 if (unlikely(addr < min_addr))
3163 goto out;
3164 if (unlikely(addr > (unsigned long)high_memory - size))
3165 goto out;
3166 if (unlikely(addr & align_mask))
3167 goto out;
3168 if (unlikely(!kern_addr_valid(addr)))
3169 goto out;
3170 if (unlikely(!kern_addr_valid(addr + size - 1)))
3171 goto out;
3172 page = virt_to_page(ptr);
3173 if (unlikely(!PageSlab(page)))
3174 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003175 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003176 goto out;
3177 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003178out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003179 return 0;
3180}
3181
3182#ifdef CONFIG_NUMA
3183/**
3184 * kmem_cache_alloc_node - Allocate an object on the specified node
3185 * @cachep: The cache to allocate from.
3186 * @flags: See kmalloc().
3187 * @nodeid: node number of the target node.
3188 *
3189 * Identical to kmem_cache_alloc, except that this function is slow
3190 * and can sleep. And it will allocate memory on the given node, which
3191 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003192 * New and improved: it will now make sure that the object gets
3193 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003194 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003195void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003196{
Christoph Lametere498be72005-09-09 13:03:32 -07003197 unsigned long save_flags;
3198 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003199
Christoph Lametere498be72005-09-09 13:03:32 -07003200 cache_alloc_debugcheck_before(cachep, flags);
3201 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003202
3203 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003204 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003205 ptr = ____cache_alloc(cachep, flags);
3206 else
3207 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003208 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003209
3210 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3211 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212
Christoph Lametere498be72005-09-09 13:03:32 -07003213 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214}
3215EXPORT_SYMBOL(kmem_cache_alloc_node);
3216
Al Virodd0fc662005-10-07 07:46:04 +01003217void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003218{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003219 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003220
3221 cachep = kmem_find_general_cachep(size, flags);
3222 if (unlikely(cachep == NULL))
3223 return NULL;
3224 return kmem_cache_alloc_node(cachep, flags, node);
3225}
3226EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227#endif
3228
3229/**
3230 * kmalloc - allocate memory
3231 * @size: how many bytes of memory are required.
3232 * @flags: the type of memory to allocate.
Randy Dunlap911851e2006-03-22 00:08:14 -08003233 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003234 *
3235 * kmalloc is the normal method of allocating memory
3236 * in the kernel.
3237 *
3238 * The @flags argument may be one of:
3239 *
3240 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3241 *
3242 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3243 *
3244 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3245 *
3246 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3247 * must be suitable for DMA. This can mean different things on different
3248 * platforms. For example, on i386, it means that the memory must come
3249 * from the first 16MB.
3250 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003251static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3252 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003253{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003254 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003255
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003256 /* If you want to save a few bytes .text space: replace
3257 * __ with kmem_.
3258 * Then kmalloc uses the uninlined functions instead of the inline
3259 * functions.
3260 */
3261 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003262 if (unlikely(cachep == NULL))
3263 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003264 return __cache_alloc(cachep, flags, caller);
3265}
3266
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003267
3268void *__kmalloc(size_t size, gfp_t flags)
3269{
Al Viro871751e2006-03-25 03:06:39 -08003270#ifndef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003271 return __do_kmalloc(size, flags, NULL);
Al Viro871751e2006-03-25 03:06:39 -08003272#else
3273 return __do_kmalloc(size, flags, __builtin_return_address(0));
3274#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003275}
3276EXPORT_SYMBOL(__kmalloc);
3277
Al Viro871751e2006-03-25 03:06:39 -08003278#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003279void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3280{
3281 return __do_kmalloc(size, flags, caller);
3282}
3283EXPORT_SYMBOL(__kmalloc_track_caller);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003284#endif
3285
Linus Torvalds1da177e2005-04-16 15:20:36 -07003286#ifdef CONFIG_SMP
3287/**
3288 * __alloc_percpu - allocate one copy of the object for every present
3289 * cpu in the system, zeroing them.
3290 * Objects should be dereferenced using the per_cpu_ptr macro only.
3291 *
3292 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003293 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003294void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003295{
3296 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003297 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003298
3299 if (!pdata)
3300 return NULL;
3301
Christoph Lametere498be72005-09-09 13:03:32 -07003302 /*
3303 * Cannot use for_each_online_cpu since a cpu may come online
3304 * and we have no way of figuring out how to fix the array
3305 * that we have allocated then....
3306 */
3307 for_each_cpu(i) {
3308 int node = cpu_to_node(i);
3309
3310 if (node_online(node))
3311 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3312 else
3313 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003314
3315 if (!pdata->ptrs[i])
3316 goto unwind_oom;
3317 memset(pdata->ptrs[i], 0, size);
3318 }
3319
3320 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003321 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322
Andrew Mortona737b3e2006-03-22 00:08:11 -08003323unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324 while (--i >= 0) {
3325 if (!cpu_possible(i))
3326 continue;
3327 kfree(pdata->ptrs[i]);
3328 }
3329 kfree(pdata);
3330 return NULL;
3331}
3332EXPORT_SYMBOL(__alloc_percpu);
3333#endif
3334
3335/**
3336 * kmem_cache_free - Deallocate an object
3337 * @cachep: The cache the allocation was from.
3338 * @objp: The previously allocated object.
3339 *
3340 * Free an object which was previously allocated from this
3341 * cache.
3342 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003343void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003344{
3345 unsigned long flags;
3346
3347 local_irq_save(flags);
3348 __cache_free(cachep, objp);
3349 local_irq_restore(flags);
3350}
3351EXPORT_SYMBOL(kmem_cache_free);
3352
3353/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003354 * kfree - free previously allocated memory
3355 * @objp: pointer returned by kmalloc.
3356 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003357 * If @objp is NULL, no operation is performed.
3358 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003359 * Don't free memory not originally allocated by kmalloc()
3360 * or you will run into trouble.
3361 */
3362void kfree(const void *objp)
3363{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003364 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003365 unsigned long flags;
3366
3367 if (unlikely(!objp))
3368 return;
3369 local_irq_save(flags);
3370 kfree_debugcheck(objp);
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003371 c = virt_to_cache(objp);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003372 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003373 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003374 local_irq_restore(flags);
3375}
3376EXPORT_SYMBOL(kfree);
3377
3378#ifdef CONFIG_SMP
3379/**
3380 * free_percpu - free previously allocated percpu memory
3381 * @objp: pointer returned by alloc_percpu.
3382 *
3383 * Don't free memory not originally allocated by alloc_percpu()
3384 * The complemented objp is to check for that.
3385 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003386void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387{
3388 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003389 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003390
Christoph Lametere498be72005-09-09 13:03:32 -07003391 /*
3392 * We allocate for all cpus so we cannot use for online cpu here.
3393 */
3394 for_each_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003395 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003396 kfree(p);
3397}
3398EXPORT_SYMBOL(free_percpu);
3399#endif
3400
Pekka Enberg343e0d72006-02-01 03:05:50 -08003401unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003402{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003403 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404}
3405EXPORT_SYMBOL(kmem_cache_size);
3406
Pekka Enberg343e0d72006-02-01 03:05:50 -08003407const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003408{
3409 return cachep->name;
3410}
3411EXPORT_SYMBOL_GPL(kmem_cache_name);
3412
Christoph Lametere498be72005-09-09 13:03:32 -07003413/*
3414 * This initializes kmem_list3 for all nodes.
3415 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003416static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003417{
3418 int node;
3419 struct kmem_list3 *l3;
3420 int err = 0;
3421
3422 for_each_online_node(node) {
3423 struct array_cache *nc = NULL, *new;
3424 struct array_cache **new_alien = NULL;
3425#ifdef CONFIG_NUMA
Andrew Mortona737b3e2006-03-22 00:08:11 -08003426 new_alien = alloc_alien_cache(node, cachep->limit);
3427 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003428 goto fail;
3429#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08003430 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3431 0xbaadf00d);
3432 if (!new)
Christoph Lametere498be72005-09-09 13:03:32 -07003433 goto fail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003434 l3 = cachep->nodelists[node];
3435 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07003436 spin_lock_irq(&l3->list_lock);
3437
Andrew Mortona737b3e2006-03-22 00:08:11 -08003438 nc = cachep->nodelists[node]->shared;
3439 if (nc)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003440 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003441
3442 l3->shared = new;
3443 if (!cachep->nodelists[node]->alien) {
3444 l3->alien = new_alien;
3445 new_alien = NULL;
3446 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003447 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003448 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003449 spin_unlock_irq(&l3->list_lock);
3450 kfree(nc);
3451 free_alien_cache(new_alien);
3452 continue;
3453 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003454 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3455 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07003456 goto fail;
3457
3458 kmem_list3_init(l3);
3459 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003460 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07003461 l3->shared = new;
3462 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003463 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003464 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003465 cachep->nodelists[node] = l3;
3466 }
3467 return err;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003468fail:
Christoph Lametere498be72005-09-09 13:03:32 -07003469 err = -ENOMEM;
3470 return err;
3471}
3472
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003474 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003475 struct array_cache *new[NR_CPUS];
3476};
3477
3478static void do_ccupdate_local(void *info)
3479{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003480 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003481 struct array_cache *old;
3482
3483 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003484 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003485
Linus Torvalds1da177e2005-04-16 15:20:36 -07003486 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3487 new->new[smp_processor_id()] = old;
3488}
3489
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003490/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003491static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3492 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493{
3494 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003495 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003496
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003497 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003498 for_each_online_cpu(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003499 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3500 batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003501 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003502 for (i--; i >= 0; i--)
3503 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003504 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505 }
3506 }
3507 new.cachep = cachep;
3508
Andrew Mortona07fa392006-03-22 00:08:17 -08003509 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003510
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003512 cachep->batchcount = batchcount;
3513 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003514 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515
Christoph Lametere498be72005-09-09 13:03:32 -07003516 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003517 struct array_cache *ccold = new.new[i];
3518 if (!ccold)
3519 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003520 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003521 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003522 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003523 kfree(ccold);
3524 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525
Christoph Lametere498be72005-09-09 13:03:32 -07003526 err = alloc_kmemlist(cachep);
3527 if (err) {
3528 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003529 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003530 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003531 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 return 0;
3533}
3534
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003535/* Called with cache_chain_mutex held always */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003536static void enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537{
3538 int err;
3539 int limit, shared;
3540
Andrew Mortona737b3e2006-03-22 00:08:11 -08003541 /*
3542 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003543 * - create a LIFO ordering, i.e. return objects that are cache-warm
3544 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003545 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003546 * bufctl chains: array operations are cheaper.
3547 * The numbers are guessed, we should auto-tune as described by
3548 * Bonwick.
3549 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003550 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003552 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003554 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003556 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557 limit = 54;
3558 else
3559 limit = 120;
3560
Andrew Mortona737b3e2006-03-22 00:08:11 -08003561 /*
3562 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 * allocation behaviour: Most allocs on one cpu, most free operations
3564 * on another cpu. For these cases, an efficient object passing between
3565 * cpus is necessary. This is provided by a shared array. The array
3566 * replaces Bonwick's magazine layer.
3567 * On uniprocessor, it's functionally equivalent (but less efficient)
3568 * to a larger limit. Thus disabled by default.
3569 */
3570 shared = 0;
3571#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003572 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003573 shared = 8;
3574#endif
3575
3576#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003577 /*
3578 * With debugging enabled, large batchcount lead to excessively long
3579 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003580 */
3581 if (limit > 32)
3582 limit = 32;
3583#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003584 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003585 if (err)
3586 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003587 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588}
3589
Christoph Lameter1b552532006-03-22 00:09:07 -08003590/*
3591 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003592 * necessary. Note that the l3 listlock also protects the array_cache
3593 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003594 */
3595void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3596 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003597{
3598 int tofree;
3599
Christoph Lameter1b552532006-03-22 00:09:07 -08003600 if (!ac || !ac->avail)
3601 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602 if (ac->touched && !force) {
3603 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003604 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003605 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003606 if (ac->avail) {
3607 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3608 if (tofree > ac->avail)
3609 tofree = (ac->avail + 1) / 2;
3610 free_block(cachep, ac->entry, tofree, node);
3611 ac->avail -= tofree;
3612 memmove(ac->entry, &(ac->entry[tofree]),
3613 sizeof(void *) * ac->avail);
3614 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003615 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003616 }
3617}
3618
3619/**
3620 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003621 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003622 *
3623 * Called from workqueue/eventd every few seconds.
3624 * Purpose:
3625 * - clear the per-cpu caches for this CPU.
3626 * - return freeable pages to the main free memory pool.
3627 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003628 * If we cannot acquire the cache chain mutex then just give up - we'll try
3629 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003630 */
3631static void cache_reap(void *unused)
3632{
3633 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003634 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08003635 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003636
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003637 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003638 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003639 schedule_delayed_work(&__get_cpu_var(reap_work),
3640 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641 return;
3642 }
3643
3644 list_for_each(walk, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003645 struct kmem_cache *searchp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003646 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003647 int tofree;
3648 struct slab *slabp;
3649
Pekka Enberg343e0d72006-02-01 03:05:50 -08003650 searchp = list_entry(walk, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003651 check_irq_on();
3652
Christoph Lameter35386e32006-03-22 00:09:05 -08003653 /*
3654 * We only take the l3 lock if absolutely necessary and we
3655 * have established with reasonable certainty that
3656 * we can do some work if the lock was obtained.
3657 */
Christoph Lameteraab22072006-03-22 00:09:06 -08003658 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08003659
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003660 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003661
Christoph Lameteraab22072006-03-22 00:09:06 -08003662 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003663
Christoph Lameter35386e32006-03-22 00:09:05 -08003664 /*
3665 * These are racy checks but it does not matter
3666 * if we skip one check or scan twice.
3667 */
Christoph Lametere498be72005-09-09 13:03:32 -07003668 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08003669 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670
Christoph Lametere498be72005-09-09 13:03:32 -07003671 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003672
Christoph Lameteraab22072006-03-22 00:09:06 -08003673 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674
Christoph Lametere498be72005-09-09 13:03:32 -07003675 if (l3->free_touched) {
3676 l3->free_touched = 0;
Christoph Lameter35386e32006-03-22 00:09:05 -08003677 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003678 }
3679
Andrew Mortona737b3e2006-03-22 00:08:11 -08003680 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3681 (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003682 do {
Christoph Lameter35386e32006-03-22 00:09:05 -08003683 /*
3684 * Do not lock if there are no free blocks.
3685 */
3686 if (list_empty(&l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003687 break;
3688
Christoph Lameter35386e32006-03-22 00:09:05 -08003689 spin_lock_irq(&l3->list_lock);
3690 p = l3->slabs_free.next;
3691 if (p == &(l3->slabs_free)) {
3692 spin_unlock_irq(&l3->list_lock);
3693 break;
3694 }
3695
Linus Torvalds1da177e2005-04-16 15:20:36 -07003696 slabp = list_entry(p, struct slab, list);
3697 BUG_ON(slabp->inuse);
3698 list_del(&slabp->list);
3699 STATS_INC_REAPED(searchp);
3700
Andrew Mortona737b3e2006-03-22 00:08:11 -08003701 /*
3702 * Safe to drop the lock. The slab is no longer linked
3703 * to the cache. searchp cannot disappear, we hold
Linus Torvalds1da177e2005-04-16 15:20:36 -07003704 * cache_chain_lock
3705 */
Christoph Lametere498be72005-09-09 13:03:32 -07003706 l3->free_objects -= searchp->num;
3707 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003708 slab_destroy(searchp, slabp);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003709 } while (--tofree > 0);
Christoph Lameter35386e32006-03-22 00:09:05 -08003710next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003711 cond_resched();
3712 }
3713 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003714 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003715 next_reap_node();
Andrew Mortona737b3e2006-03-22 00:08:11 -08003716 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003717 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003718}
3719
3720#ifdef CONFIG_PROC_FS
3721
Pekka Enberg85289f92006-01-08 01:00:36 -08003722static void print_slabinfo_header(struct seq_file *m)
3723{
3724 /*
3725 * Output format version, so at least we can change it
3726 * without _too_ many complaints.
3727 */
3728#if STATS
3729 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3730#else
3731 seq_puts(m, "slabinfo - version: 2.1\n");
3732#endif
3733 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3734 "<objperslab> <pagesperslab>");
3735 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3736 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3737#if STATS
3738 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3739 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3740 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3741#endif
3742 seq_putc(m, '\n');
3743}
3744
Linus Torvalds1da177e2005-04-16 15:20:36 -07003745static void *s_start(struct seq_file *m, loff_t *pos)
3746{
3747 loff_t n = *pos;
3748 struct list_head *p;
3749
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003750 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003751 if (!n)
3752 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003753 p = cache_chain.next;
3754 while (n--) {
3755 p = p->next;
3756 if (p == &cache_chain)
3757 return NULL;
3758 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003759 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760}
3761
3762static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3763{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003764 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003765 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003766 return cachep->next.next == &cache_chain ?
3767 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003768}
3769
3770static void s_stop(struct seq_file *m, void *p)
3771{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003772 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003773}
3774
3775static int s_show(struct seq_file *m, void *p)
3776{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003777 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003778 struct list_head *q;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003779 struct slab *slabp;
3780 unsigned long active_objs;
3781 unsigned long num_objs;
3782 unsigned long active_slabs = 0;
3783 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003784 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003785 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003786 int node;
3787 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003788
Linus Torvalds1da177e2005-04-16 15:20:36 -07003789 active_objs = 0;
3790 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003791 for_each_online_node(node) {
3792 l3 = cachep->nodelists[node];
3793 if (!l3)
3794 continue;
3795
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003796 check_irq_on();
3797 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003798
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003799 list_for_each(q, &l3->slabs_full) {
Christoph Lametere498be72005-09-09 13:03:32 -07003800 slabp = list_entry(q, struct slab, list);
3801 if (slabp->inuse != cachep->num && !error)
3802 error = "slabs_full accounting error";
3803 active_objs += cachep->num;
3804 active_slabs++;
3805 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003806 list_for_each(q, &l3->slabs_partial) {
Christoph Lametere498be72005-09-09 13:03:32 -07003807 slabp = list_entry(q, struct slab, list);
3808 if (slabp->inuse == cachep->num && !error)
3809 error = "slabs_partial inuse accounting error";
3810 if (!slabp->inuse && !error)
3811 error = "slabs_partial/inuse accounting error";
3812 active_objs += slabp->inuse;
3813 active_slabs++;
3814 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003815 list_for_each(q, &l3->slabs_free) {
Christoph Lametere498be72005-09-09 13:03:32 -07003816 slabp = list_entry(q, struct slab, list);
3817 if (slabp->inuse && !error)
3818 error = "slabs_free/inuse accounting error";
3819 num_slabs++;
3820 }
3821 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003822 if (l3->shared)
3823 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003824
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003825 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003826 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003827 num_slabs += active_slabs;
3828 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003829 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830 error = "free_objects accounting error";
3831
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003832 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833 if (error)
3834 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3835
3836 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003837 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003838 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003839 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003840 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003841 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003842 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003843#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003844 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845 unsigned long high = cachep->high_mark;
3846 unsigned long allocs = cachep->num_allocations;
3847 unsigned long grown = cachep->grown;
3848 unsigned long reaped = cachep->reaped;
3849 unsigned long errors = cachep->errors;
3850 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003851 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003852 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003853
Christoph Lametere498be72005-09-09 13:03:32 -07003854 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Andrew Mortona737b3e2006-03-22 00:08:11 -08003855 %4lu %4lu %4lu %4lu", allocs, high, grown,
3856 reaped, errors, max_freeable, node_allocs,
3857 node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858 }
3859 /* cpu stats */
3860 {
3861 unsigned long allochit = atomic_read(&cachep->allochit);
3862 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3863 unsigned long freehit = atomic_read(&cachep->freehit);
3864 unsigned long freemiss = atomic_read(&cachep->freemiss);
3865
3866 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003867 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003868 }
3869#endif
3870 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07003871 return 0;
3872}
3873
3874/*
3875 * slabinfo_op - iterator that generates /proc/slabinfo
3876 *
3877 * Output layout:
3878 * cache-name
3879 * num-active-objs
3880 * total-objs
3881 * object size
3882 * num-active-slabs
3883 * total-slabs
3884 * num-pages-per-slab
3885 * + further values on SMP and with statistics enabled
3886 */
3887
3888struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003889 .start = s_start,
3890 .next = s_next,
3891 .stop = s_stop,
3892 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003893};
3894
3895#define MAX_SLABINFO_WRITE 128
3896/**
3897 * slabinfo_write - Tuning for the slab allocator
3898 * @file: unused
3899 * @buffer: user buffer
3900 * @count: data length
3901 * @ppos: unused
3902 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003903ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3904 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003905{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003906 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003907 int limit, batchcount, shared, res;
3908 struct list_head *p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003909
Linus Torvalds1da177e2005-04-16 15:20:36 -07003910 if (count > MAX_SLABINFO_WRITE)
3911 return -EINVAL;
3912 if (copy_from_user(&kbuf, buffer, count))
3913 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003914 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003915
3916 tmp = strchr(kbuf, ' ');
3917 if (!tmp)
3918 return -EINVAL;
3919 *tmp = '\0';
3920 tmp++;
3921 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3922 return -EINVAL;
3923
3924 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003925 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003926 res = -EINVAL;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003927 list_for_each(p, &cache_chain) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003928 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003929
Andrew Mortona737b3e2006-03-22 00:08:11 -08003930 cachep = list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003932 if (limit < 1 || batchcount < 1 ||
3933 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003934 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003935 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003936 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003937 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003938 }
3939 break;
3940 }
3941 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003942 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003943 if (res >= 0)
3944 res = count;
3945 return res;
3946}
Al Viro871751e2006-03-25 03:06:39 -08003947
3948#ifdef CONFIG_DEBUG_SLAB_LEAK
3949
3950static void *leaks_start(struct seq_file *m, loff_t *pos)
3951{
3952 loff_t n = *pos;
3953 struct list_head *p;
3954
3955 mutex_lock(&cache_chain_mutex);
3956 p = cache_chain.next;
3957 while (n--) {
3958 p = p->next;
3959 if (p == &cache_chain)
3960 return NULL;
3961 }
3962 return list_entry(p, struct kmem_cache, next);
3963}
3964
3965static inline int add_caller(unsigned long *n, unsigned long v)
3966{
3967 unsigned long *p;
3968 int l;
3969 if (!v)
3970 return 1;
3971 l = n[1];
3972 p = n + 2;
3973 while (l) {
3974 int i = l/2;
3975 unsigned long *q = p + 2 * i;
3976 if (*q == v) {
3977 q[1]++;
3978 return 1;
3979 }
3980 if (*q > v) {
3981 l = i;
3982 } else {
3983 p = q + 2;
3984 l -= i + 1;
3985 }
3986 }
3987 if (++n[1] == n[0])
3988 return 0;
3989 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
3990 p[0] = v;
3991 p[1] = 1;
3992 return 1;
3993}
3994
3995static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
3996{
3997 void *p;
3998 int i;
3999 if (n[0] == n[1])
4000 return;
4001 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4002 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4003 continue;
4004 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4005 return;
4006 }
4007}
4008
4009static void show_symbol(struct seq_file *m, unsigned long address)
4010{
4011#ifdef CONFIG_KALLSYMS
4012 char *modname;
4013 const char *name;
4014 unsigned long offset, size;
4015 char namebuf[KSYM_NAME_LEN+1];
4016
4017 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4018
4019 if (name) {
4020 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4021 if (modname)
4022 seq_printf(m, " [%s]", modname);
4023 return;
4024 }
4025#endif
4026 seq_printf(m, "%p", (void *)address);
4027}
4028
4029static int leaks_show(struct seq_file *m, void *p)
4030{
4031 struct kmem_cache *cachep = p;
4032 struct list_head *q;
4033 struct slab *slabp;
4034 struct kmem_list3 *l3;
4035 const char *name;
4036 unsigned long *n = m->private;
4037 int node;
4038 int i;
4039
4040 if (!(cachep->flags & SLAB_STORE_USER))
4041 return 0;
4042 if (!(cachep->flags & SLAB_RED_ZONE))
4043 return 0;
4044
4045 /* OK, we can do it */
4046
4047 n[1] = 0;
4048
4049 for_each_online_node(node) {
4050 l3 = cachep->nodelists[node];
4051 if (!l3)
4052 continue;
4053
4054 check_irq_on();
4055 spin_lock_irq(&l3->list_lock);
4056
4057 list_for_each(q, &l3->slabs_full) {
4058 slabp = list_entry(q, struct slab, list);
4059 handle_slab(n, cachep, slabp);
4060 }
4061 list_for_each(q, &l3->slabs_partial) {
4062 slabp = list_entry(q, struct slab, list);
4063 handle_slab(n, cachep, slabp);
4064 }
4065 spin_unlock_irq(&l3->list_lock);
4066 }
4067 name = cachep->name;
4068 if (n[0] == n[1]) {
4069 /* Increase the buffer size */
4070 mutex_unlock(&cache_chain_mutex);
4071 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4072 if (!m->private) {
4073 /* Too bad, we are really out */
4074 m->private = n;
4075 mutex_lock(&cache_chain_mutex);
4076 return -ENOMEM;
4077 }
4078 *(unsigned long *)m->private = n[0] * 2;
4079 kfree(n);
4080 mutex_lock(&cache_chain_mutex);
4081 /* Now make sure this entry will be retried */
4082 m->count = m->size;
4083 return 0;
4084 }
4085 for (i = 0; i < n[1]; i++) {
4086 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4087 show_symbol(m, n[2*i+2]);
4088 seq_putc(m, '\n');
4089 }
4090 return 0;
4091}
4092
4093struct seq_operations slabstats_op = {
4094 .start = leaks_start,
4095 .next = s_next,
4096 .stop = s_stop,
4097 .show = leaks_show,
4098};
4099#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100#endif
4101
Manfred Spraul00e145b2005-09-03 15:55:07 -07004102/**
4103 * ksize - get the actual amount of memory allocated for a given object
4104 * @objp: Pointer to the object
4105 *
4106 * kmalloc may internally round up allocations and return more memory
4107 * than requested. ksize() can be used to determine the actual amount of
4108 * memory allocated. The caller may use this additional memory, even though
4109 * a smaller amount of memory was initially specified with the kmalloc call.
4110 * The caller must guarantee that objp points to a valid object previously
4111 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4112 * must not be freed during the duration of the call.
4113 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004114unsigned int ksize(const void *objp)
4115{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004116 if (unlikely(objp == NULL))
4117 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004118
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08004119 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120}