blob: 219367884e640a60a99a99eba59478aaba9bc1da [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090024#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020029#include "rfbuffer.h"
30#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020031
32/*
33 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020035static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36 const struct ath5k_rf_reg *rf_regs,
37 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +020038{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020039 const struct ath5k_rf_reg *rfreg = NULL;
40 u8 offset, bank, num_bits, col, position;
41 u16 entry;
42 u32 mask, data, last_bit, bits_shifted, first_bit;
43 u32 *rfb;
44 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020045 int i;
46
47 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020048 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020049
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020050 for (i = 0; i < ah->ah_rf_regs_count; i++) {
51 if (rf_regs[i].index == reg_id) {
52 rfreg = &rf_regs[i];
53 break;
54 }
55 }
56
57 if (rfb == NULL || rfreg == NULL) {
58 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +020059 /* should not happen */
60 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020061 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +020062
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020063 bank = rfreg->bank;
64 num_bits = rfreg->field.len;
65 first_bit = rfreg->field.pos;
66 col = rfreg->field.col;
67
68 /* first_bit is an offset from bank's
69 * start. Since we have all banks on
70 * the same array, we use this offset
71 * to mark each bank's start */
72 offset = ah->ah_offset[bank];
73
74 /* Boundary check */
75 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +020076 ATH5K_PRINTF("invalid values at offset %u\n", offset);
77 return 0;
78 }
79
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020080 entry = ((first_bit - 1) / 8) + offset;
81 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020082
Joe Perchese9010e22008-03-07 14:21:16 -080083 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020084 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020085
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020086 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87 position = 0, entry++) {
88
89 last_bit = (position + bits_left > 8) ? 8 :
90 position + bits_left;
91
92 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020094
Joe Perchese9010e22008-03-07 14:21:16 -080095 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020096 rfb[entry] &= ~mask;
97 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020098 data >>= (8 - position);
99 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200100 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101 << bits_shifted;
102 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200103 }
104
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200105 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200106 }
107
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200108 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200109
110 return data;
111}
112
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200113/**********************\
114* RF Gain optimization *
115\**********************/
116
117/*
Bob Copelanda180a132010-08-15 13:03:12 -0400118 * This code is used to optimize RF gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200119 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200120 *
121 * It's only used on RF5111 and RF5112, later RF chips seem to have
122 * auto adjustment on hw -notice they have a much smaller BANK 7 and
123 * no gain optimization ladder-.
124 *
125 * For more infos check out this patent doc
126 * http://www.freepatentsonline.com/7400691.html
127 *
128 * This paper describes power drops as seen on the receiver due to
129 * probe packets
130 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131 * %20of%20Power%20Control.pdf
132 *
133 * And this is the MadWiFi bug entry related to the above
134 * http://madwifi-project.org/ticket/1659
135 * with various measurements and diagrams
136 *
137 * TODO: Deal with power drops due to probes by setting an apropriate
138 * tx power on the probe packets ! Make this part of the calibration process.
139 */
140
141/* Initialize ah_gain durring attach */
142int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143{
144 /* Initialize the gain optimization values */
145 switch (ah->ah_radio) {
146 case AR5K_RF5111:
147 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148 ah->ah_gain.g_low = 20;
149 ah->ah_gain.g_high = 35;
150 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151 break;
152 case AR5K_RF5112:
153 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154 ah->ah_gain.g_low = 20;
155 ah->ah_gain.g_high = 85;
156 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157 break;
158 default:
159 return -EINVAL;
160 }
161
162 return 0;
163}
164
165/* Schedule a gain probe check on the next transmited packet.
166 * That means our next packet is going to be sent with lower
167 * tx power and a Peak to Average Power Detector (PAPD) will try
168 * to measure the gain.
169 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200170 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
171 * just after we enable the probe so that we don't mess with
172 * standard traffic ? Maybe it's time to use sw interrupts and
173 * a probe tasklet !!!
174 */
175static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176{
177
178 /* Skip if gain calibration is inactive or
179 * we already handle a probe request */
180 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181 return;
182
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200183 /* Send the packet with 2dB below max power as
184 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400185 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200186 AR5K_PHY_PAPD_PROBE_TXPOWER) |
187 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191}
192
193/* Calculate gain_F measurement correction
194 * based on the current step for RF5112 rev. 2 */
195static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200196{
197 u32 mix, step;
198 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200199 const struct ath5k_gain_opt *go;
200 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200201 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200202
203 /* Only RF5112 Rev. 2 supports it */
204 if ((ah->ah_radio != AR5K_RF5112) ||
205 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206 return 0;
207
208 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200209 rf_regs = rf_regs_5112a;
210 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200211
212 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200213
214 if (ah->ah_rf_banks == NULL)
215 return 0;
216
217 rf = ah->ah_rf_banks;
218 ah->ah_gain.g_f_corr = 0;
219
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200220 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200221 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200222 return 0;
223
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200224 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200225 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200226
227 /* Mix gain override */
228 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200229
230 switch (mix) {
231 case 3:
232 ah->ah_gain.g_f_corr = step * 2;
233 break;
234 case 2:
235 ah->ah_gain.g_f_corr = (step - 5) * 2;
236 break;
237 case 1:
238 ah->ah_gain.g_f_corr = step;
239 break;
240 default:
241 ah->ah_gain.g_f_corr = 0;
242 break;
243 }
244
245 return ah->ah_gain.g_f_corr;
246}
247
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200248/* Check if current gain_F measurement is in the range of our
249 * power detector windows. If we get a measurement outside range
250 * we know it's not accurate (detectors can't measure anything outside
251 * their detection window) so we must ignore it */
252static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200253{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200254 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200255 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200256 u32 *rf;
257
258 if (ah->ah_rf_banks == NULL)
259 return false;
260
261 rf = ah->ah_rf_banks;
262
263 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200264
265 rf_regs = rf_regs_5111;
266 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269 false);
270
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200271 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200272 level[1] = (step == 63) ? 50 : step + 4;
273 level[2] = (step != 63) ? 64 : level[0];
274 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200275
276 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200277 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200278 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200279 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200280 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200281
282 rf_regs = rf_regs_5112;
283 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286 false);
287
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200288 level[0] = level[2] = 0;
289
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200290 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200291 level[1] = level[3] = 83;
292 } else {
293 level[1] = level[3] = 107;
294 ah->ah_gain.g_high = 55;
295 }
296 }
297
298 return (ah->ah_gain.g_current >= level[0] &&
299 ah->ah_gain.g_current <= level[1]) ||
300 (ah->ah_gain.g_current >= level[2] &&
301 ah->ah_gain.g_current <= level[3]);
302}
303
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200304/* Perform gain_F adjustment by choosing the right set
Bob Copelanda180a132010-08-15 13:03:12 -0400305 * of parameters from RF gain optimization ladder */
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200307{
308 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200309 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200310 int ret = 0;
311
312 switch (ah->ah_radio) {
313 case AR5K_RF5111:
314 go = &rfgain_opt_5111;
315 break;
316 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200317 go = &rfgain_opt_5112;
318 break;
319 default:
320 return 0;
321 }
322
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200323 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200324
325 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200326
327 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200328 if (ah->ah_gain.g_step_idx == 0)
329 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200330
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200331 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
333 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200334 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200335 ah->ah_gain.g_target -= 2 *
336 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200337 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200338
339 ret = 1;
340 goto done;
341 }
342
343 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200344
345 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200346 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200348
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200349 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200352 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200353 ah->ah_gain.g_target -= 2 *
354 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200355 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200356
357 ret = 2;
358 goto done;
359 }
360
361done:
362 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363 "ret %d, gain step %u, current gain %u, target gain %u\n",
364 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365 ah->ah_gain.g_target);
366
367 return ret;
368}
369
Bob Copelanda180a132010-08-15 13:03:12 -0400370/* Main callback for thermal RF gain calibration engine
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200371 * Check for a new gain reading and schedule an adjustment
372 * if needed.
373 *
374 * TODO: Use sw interrupt to schedule reset if gain_F needs
375 * adjustment */
376enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377{
378 u32 data, type;
379 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200381 if (ah->ah_rf_banks == NULL ||
382 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
383 return AR5K_RFGAIN_INACTIVE;
384
385 /* No check requested, either engine is inactive
386 * or an adjustment is already requested */
387 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
388 goto done;
389
390 /* Read the PAPD (Peak to Average Power Detector)
391 * register */
392 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
393
394 /* No probe is scheduled, read gain_F measurement */
395 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
396 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
397 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
398
399 /* If tx packet is CCK correct the gain_F measurement
400 * by cck ofdm gain delta */
401 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
402 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
403 ah->ah_gain.g_current +=
404 ee->ee_cck_ofdm_gain_delta;
405 else
406 ah->ah_gain.g_current +=
407 AR5K_GAIN_CCK_PROBE_CORR;
408 }
409
410 /* Further correct gain_F measurement for
411 * RF5112A radios */
412 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
413 ath5k_hw_rf_gainf_corr(ah);
414 ah->ah_gain.g_current =
415 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
416 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
417 0;
418 }
419
420 /* Check if measurement is ok and if we need
421 * to adjust gain, schedule a gain adjustment,
422 * else switch back to the acive state */
423 if (ath5k_hw_rf_check_gainf_readback(ah) &&
424 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
425 ath5k_hw_rf_gainf_adjust(ah)) {
426 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
427 } else {
428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 }
430 }
431
432done:
433 return ah->ah_gain.g_state;
434}
435
Bob Copelanda180a132010-08-15 13:03:12 -0400436/* Write initial RF gain table to set the RF sensitivity
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200437 * this one works on all RF chips and has nothing to do
438 * with gain_F calibration */
439int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
440{
441 const struct ath5k_ini_rfgain *ath5k_rfg;
442 unsigned int i, size;
443
444 switch (ah->ah_radio) {
445 case AR5K_RF5111:
446 ath5k_rfg = rfgain_5111;
447 size = ARRAY_SIZE(rfgain_5111);
448 break;
449 case AR5K_RF5112:
450 ath5k_rfg = rfgain_5112;
451 size = ARRAY_SIZE(rfgain_5112);
452 break;
453 case AR5K_RF2413:
454 ath5k_rfg = rfgain_2413;
455 size = ARRAY_SIZE(rfgain_2413);
456 break;
457 case AR5K_RF2316:
458 ath5k_rfg = rfgain_2316;
459 size = ARRAY_SIZE(rfgain_2316);
460 break;
461 case AR5K_RF5413:
462 ath5k_rfg = rfgain_5413;
463 size = ARRAY_SIZE(rfgain_5413);
464 break;
465 case AR5K_RF2317:
466 case AR5K_RF2425:
467 ath5k_rfg = rfgain_2425;
468 size = ARRAY_SIZE(rfgain_2425);
469 break;
470 default:
471 return -EINVAL;
472 }
473
474 switch (freq) {
475 case AR5K_INI_RFGAIN_2GHZ:
476 case AR5K_INI_RFGAIN_5GHZ:
477 break;
478 default:
479 return -EINVAL;
480 }
481
482 for (i = 0; i < size; i++) {
483 AR5K_REG_WAIT(i);
484 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
485 (u32)ath5k_rfg[i].rfg_register);
486 }
487
488 return 0;
489}
490
491
492
493/********************\
494* RF Registers setup *
495\********************/
496
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200497
498/*
Bob Copelanda180a132010-08-15 13:03:12 -0400499 * Setup RF registers by writing RF buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200500 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200501int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200502 unsigned int mode)
503{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200504 const struct ath5k_rf_reg *rf_regs;
505 const struct ath5k_ini_rfbuffer *ini_rfb;
506 const struct ath5k_gain_opt *go = NULL;
507 const struct ath5k_gain_opt_step *g_step;
508 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
509 u8 ee_mode = 0;
510 u32 *rfb;
511 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200512
513 switch (ah->ah_radio) {
514 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200515 rf_regs = rf_regs_5111;
516 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
517 ini_rfb = rfb_5111;
518 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
519 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200520 break;
521 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200522 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
523 rf_regs = rf_regs_5112a;
524 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
525 ini_rfb = rfb_5112a;
526 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
527 } else {
528 rf_regs = rf_regs_5112;
529 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
530 ini_rfb = rfb_5112;
531 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
532 }
533 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200534 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500535 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200536 rf_regs = rf_regs_2413;
537 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
538 ini_rfb = rfb_2413;
539 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
540 break;
541 case AR5K_RF2316:
542 rf_regs = rf_regs_2316;
543 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
544 ini_rfb = rfb_2316;
545 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
546 break;
547 case AR5K_RF5413:
548 rf_regs = rf_regs_5413;
549 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
550 ini_rfb = rfb_5413;
551 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
552 break;
553 case AR5K_RF2317:
554 rf_regs = rf_regs_2425;
555 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
556 ini_rfb = rfb_2317;
557 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500558 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300559 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200560 rf_regs = rf_regs_2425;
561 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
563 ini_rfb = rfb_2425;
564 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
565 } else {
566 ini_rfb = rfb_2417;
567 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
568 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300569 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200570 default:
571 return -EINVAL;
572 }
573
Bob Copelanda180a132010-08-15 13:03:12 -0400574 /* If it's the first time we set RF buffer, allocate
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200575 * ah->ah_rf_banks based on ah->ah_rf_banks_size
576 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200577 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200578 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
579 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200580 if (ah->ah_rf_banks == NULL) {
581 ATH5K_ERR(ah->ah_sc, "out of memory\n");
582 return -ENOMEM;
583 }
584 }
585
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200586 /* Copy values to modify them */
587 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200588
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200589 for (i = 0; i < ah->ah_rf_banks_size; i++) {
590 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
591 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
592 return -EINVAL;
593 }
594
595 /* Bank changed, write down the offset */
596 if (bank != ini_rfb[i].rfb_bank) {
597 bank = ini_rfb[i].rfb_bank;
598 ah->ah_offset[bank] = i;
599 }
600
601 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
602 }
603
604 /* Set Output and Driver bias current (OB/DB) */
605 if (channel->hw_value & CHANNEL_2GHZ) {
606
607 if (channel->hw_value & CHANNEL_CCK)
608 ee_mode = AR5K_EEPROM_MODE_11B;
609 else
610 ee_mode = AR5K_EEPROM_MODE_11G;
611
612 /* For RF511X/RF211X combination we
613 * use b_OB and b_DB parameters stored
614 * in eeprom on ee->ee_ob[ee_mode][0]
615 *
616 * For all other chips we use OB/DB for 2Ghz
617 * stored in the b/g modal section just like
618 * 802.11a on ee->ee_ob[ee_mode][1] */
619 if ((ah->ah_radio == AR5K_RF5111) ||
620 (ah->ah_radio == AR5K_RF5112))
621 obdb = 0;
622 else
623 obdb = 1;
624
625 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
626 AR5K_RF_OB_2GHZ, true);
627
628 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
629 AR5K_RF_DB_2GHZ, true);
630
631 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
632 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
633 (ah->ah_radio == AR5K_RF5111)) {
634
635 /* For 11a, Turbo and XR we need to choose
636 * OB/DB based on frequency range */
637 ee_mode = AR5K_EEPROM_MODE_11A;
638 obdb = channel->center_freq >= 5725 ? 3 :
639 (channel->center_freq >= 5500 ? 2 :
640 (channel->center_freq >= 5260 ? 1 :
641 (channel->center_freq > 4000 ? 0 : -1)));
642
643 if (obdb < 0)
644 return -EINVAL;
645
646 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
647 AR5K_RF_OB_5GHZ, true);
648
649 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
650 AR5K_RF_DB_5GHZ, true);
651 }
652
653 g_step = &go->go_step[ah->ah_gain.g_step_idx];
654
655 /* Bank Modifications (chip-specific) */
656 if (ah->ah_radio == AR5K_RF5111) {
657
658 /* Set gain_F settings according to current step */
659 if (channel->hw_value & CHANNEL_OFDM) {
660
661 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
662 AR5K_PHY_FRAME_CTL_TX_CLIP,
663 g_step->gos_param[0]);
664
665 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
666 AR5K_RF_PWD_90, true);
667
668 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
669 AR5K_RF_PWD_84, true);
670
671 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
672 AR5K_RF_RFGAIN_SEL, true);
673
674 /* We programmed gain_F parameters, switch back
675 * to active state */
676 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
677
678 }
679
680 /* Bank 6/7 setup */
681
682 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
683 AR5K_RF_PWD_XPD, true);
684
685 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
686 AR5K_RF_XPD_GAIN, true);
687
688 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
689 AR5K_RF_GAIN_I, true);
690
691 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
692 AR5K_RF_PLO_SEL, true);
693
694 /* TODO: Half/quarter channel support */
695 }
696
697 if (ah->ah_radio == AR5K_RF5112) {
698
699 /* Set gain_F settings according to current step */
700 if (channel->hw_value & CHANNEL_OFDM) {
701
702 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
703 AR5K_RF_MIXGAIN_OVR, true);
704
705 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
706 AR5K_RF_PWD_138, true);
707
708 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
709 AR5K_RF_PWD_137, true);
710
711 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
712 AR5K_RF_PWD_136, true);
713
714 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
715 AR5K_RF_PWD_132, true);
716
717 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
718 AR5K_RF_PWD_131, true);
719
720 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
721 AR5K_RF_PWD_130, true);
722
723 /* We programmed gain_F parameters, switch back
724 * to active state */
725 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
726 }
727
728 /* Bank 6/7 setup */
729
730 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
731 AR5K_RF_XPD_SEL, true);
732
733 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
734 /* Rev. 1 supports only one xpd */
735 ath5k_hw_rfb_op(ah, rf_regs,
736 ee->ee_x_gain[ee_mode],
737 AR5K_RF_XPD_GAIN, true);
738
739 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300740 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
741 if (ee->ee_pd_gains[ee_mode] > 1) {
742 ath5k_hw_rfb_op(ah, rf_regs,
743 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200744 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300745 ath5k_hw_rfb_op(ah, rf_regs,
746 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200747 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300748 } else {
749 ath5k_hw_rfb_op(ah, rf_regs,
750 pdg_curve_to_idx[0],
751 AR5K_RF_PD_GAIN_LO, true);
752 ath5k_hw_rfb_op(ah, rf_regs,
753 pdg_curve_to_idx[0],
754 AR5K_RF_PD_GAIN_HI, true);
755 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200756
757 /* Lower synth voltage on Rev 2 */
758 ath5k_hw_rfb_op(ah, rf_regs, 2,
759 AR5K_RF_HIGH_VC_CP, true);
760
761 ath5k_hw_rfb_op(ah, rf_regs, 2,
762 AR5K_RF_MID_VC_CP, true);
763
764 ath5k_hw_rfb_op(ah, rf_regs, 2,
765 AR5K_RF_LOW_VC_CP, true);
766
767 ath5k_hw_rfb_op(ah, rf_regs, 2,
768 AR5K_RF_PUSH_UP, true);
769
770 /* Decrease power consumption on 5213+ BaseBand */
771 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
772 ath5k_hw_rfb_op(ah, rf_regs, 1,
773 AR5K_RF_PAD2GND, true);
774
775 ath5k_hw_rfb_op(ah, rf_regs, 1,
776 AR5K_RF_XB2_LVL, true);
777
778 ath5k_hw_rfb_op(ah, rf_regs, 1,
779 AR5K_RF_XB5_LVL, true);
780
781 ath5k_hw_rfb_op(ah, rf_regs, 1,
782 AR5K_RF_PWD_167, true);
783
784 ath5k_hw_rfb_op(ah, rf_regs, 1,
785 AR5K_RF_PWD_166, true);
786 }
787 }
788
789 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
790 AR5K_RF_GAIN_I, true);
791
792 /* TODO: Half/quarter channel support */
793
794 }
795
796 if (ah->ah_radio == AR5K_RF5413 &&
797 channel->hw_value & CHANNEL_2GHZ) {
798
799 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
800 true);
801
802 /* Set optimum value for early revisions (on pci-e chips) */
803 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
804 ah->ah_mac_srev < AR5K_SREV_AR5413)
805 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
806 AR5K_RF_PWD_ICLOBUF_2G, true);
807
808 }
809
810 /* Write RF banks on hw */
811 for (i = 0; i < ah->ah_rf_banks_size; i++) {
812 AR5K_REG_WAIT(i);
813 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
814 }
815
816 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200817}
818
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200819
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200820/**************************\
821 PHY/RF channel functions
822\**************************/
823
824/*
825 * Check if a channel is supported
826 */
827bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
828{
829 /* Check if the channel is in our supported range */
830 if (flags & CHANNEL_2GHZ) {
831 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
832 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
833 return true;
834 } else if (flags & CHANNEL_5GHZ)
835 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
836 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
837 return true;
838
839 return false;
840}
841
842/*
843 * Convertion needed for RF5110
844 */
845static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
846{
847 u32 athchan;
848
849 /*
850 * Convert IEEE channel/MHz to an internal channel value used
851 * by the AR5210 chipset. This has not been verified with
852 * newer chipsets like the AR5212A who have a completely
853 * different RF/PHY part.
854 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500855 athchan = (ath5k_hw_bitswap(
856 (ieee80211_frequency_to_channel(
857 channel->center_freq) - 24) / 2, 5)
858 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200859 return athchan;
860}
861
862/*
863 * Set channel on RF5110
864 */
865static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
866 struct ieee80211_channel *channel)
867{
868 u32 data;
869
870 /*
871 * Set the channel and wait
872 */
873 data = ath5k_hw_rf5110_chan2athchan(channel);
874 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
875 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
876 mdelay(1);
877
878 return 0;
879}
880
881/*
882 * Convertion needed for 5111
883 */
884static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
885 struct ath5k_athchan_2ghz *athchan)
886{
887 int channel;
888
889 /* Cast this value to catch negative channel numbers (>= -19) */
890 channel = (int)ieee;
891
892 /*
893 * Map 2GHz IEEE channel to 5GHz Atheros channel
894 */
895 if (channel <= 13) {
896 athchan->a2_athchan = 115 + channel;
897 athchan->a2_flags = 0x46;
898 } else if (channel == 14) {
899 athchan->a2_athchan = 124;
900 athchan->a2_flags = 0x44;
901 } else if (channel >= 15 && channel <= 26) {
902 athchan->a2_athchan = ((channel - 14) * 4) + 132;
903 athchan->a2_flags = 0x46;
904 } else
905 return -EINVAL;
906
907 return 0;
908}
909
910/*
911 * Set channel on 5111
912 */
913static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
914 struct ieee80211_channel *channel)
915{
916 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500917 unsigned int ath5k_channel =
918 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200919 u32 data0, data1, clock;
920 int ret;
921
922 /*
923 * Set the channel on the RF5111 radio
924 */
925 data0 = data1 = 0;
926
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500927 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200928 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500929 ret = ath5k_hw_rf5111_chan2athchan(
930 ieee80211_frequency_to_channel(channel->center_freq),
931 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200932 if (ret)
933 return ret;
934
935 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937 << 5) | (1 << 4);
938 }
939
940 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941 clock = 1;
942 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943 (clock << 1) | (1 << 10) | 1;
944 } else {
945 clock = 0;
946 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947 << 2) | (clock << 1) | (1 << 10) | 1;
948 }
949
950 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
951 AR5K_RF_BUFFER);
952 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
953 AR5K_RF_BUFFER_CONTROL_3);
954
955 return 0;
956}
957
958/*
959 * Set channel on 5112 and newer
960 */
961static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
962 struct ieee80211_channel *channel)
963{
964 u32 data, data0, data1, data2;
965 u16 c;
966
967 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500968 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200969
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200970 if (c < 4800) {
971 if (!((c - 2224) % 5)) {
972 data0 = ((2 * (c - 704)) - 3040) / 10;
973 data1 = 1;
974 } else if (!((c - 2192) % 5)) {
975 data0 = ((2 * (c - 672)) - 3040) / 10;
976 data1 = 0;
977 } else
978 return -EINVAL;
979
980 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -0400981 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200982 if (!(c % 20) && c >= 5120) {
983 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984 data2 = ath5k_hw_bitswap(3, 2);
985 } else if (!(c % 10)) {
986 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987 data2 = ath5k_hw_bitswap(2, 2);
988 } else if (!(c % 5)) {
989 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990 data2 = ath5k_hw_bitswap(1, 2);
991 } else
992 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300993 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -0400994 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300995 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200996 }
997
998 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999
1000 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1001 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1002
1003 return 0;
1004}
1005
1006/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001007 * Set the channel on the RF2425
1008 */
1009static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1010 struct ieee80211_channel *channel)
1011{
1012 u32 data, data0, data2;
1013 u16 c;
1014
1015 data = data0 = data2 = 0;
1016 c = channel->center_freq;
1017
1018 if (c < 4800) {
1019 data0 = ath5k_hw_bitswap((c - 2272), 8);
1020 data2 = 0;
1021 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001022 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001023 if (!(c % 20) && c < 5120)
1024 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025 else if (!(c % 10))
1026 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027 else if (!(c % 5))
1028 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029 else
1030 return -EINVAL;
1031 data2 = ath5k_hw_bitswap(1, 2);
1032 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001033 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001034 data2 = ath5k_hw_bitswap(0, 2);
1035 }
1036
1037 data = (data0 << 4) | data2 << 2 | 0x1001;
1038
1039 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1040 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1041
1042 return 0;
1043}
1044
1045/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001046 * Set a channel on the radio chip
1047 */
1048int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1049{
1050 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001051 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001052 * Check bounds supported by the PHY (we don't care about regultory
1053 * restrictions at this point). Note: hw_value already has the band
1054 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055 * of the band by that */
1056 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001057 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001058 "channel frequency (%u MHz) out of supported "
1059 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001060 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001061 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001062 }
1063
1064 /*
1065 * Set the channel and wait
1066 */
1067 switch (ah->ah_radio) {
1068 case AR5K_RF5110:
1069 ret = ath5k_hw_rf5110_channel(ah, channel);
1070 break;
1071 case AR5K_RF5111:
1072 ret = ath5k_hw_rf5111_channel(ah, channel);
1073 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001074 case AR5K_RF2425:
1075 ret = ath5k_hw_rf2425_channel(ah, channel);
1076 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001077 default:
1078 ret = ath5k_hw_rf5112_channel(ah, channel);
1079 break;
1080 }
1081
1082 if (ret)
1083 return ret;
1084
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001085 /* Set JAPAN setting for channel 14 */
1086 if (channel->center_freq == 2484) {
1087 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088 AR5K_PHY_CCKTXCTL_JAPAN);
1089 } else {
1090 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 AR5K_PHY_CCKTXCTL_WORLD);
1092 }
1093
Bob Copeland46026e82009-06-10 22:22:20 -04001094 ah->ah_current_channel = channel;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001095 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
Felix Fietkau9d119f32010-10-08 22:13:52 +02001096 ath5k_hw_set_clockrate(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001097
1098 return 0;
1099}
1100
1101/*****************\
1102 PHY calibration
1103\*****************/
1104
Bob Copelande5e26472009-10-14 14:16:30 -04001105static int sign_extend(int val, const int nbits)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001106{
Bob Copelande5e26472009-10-14 14:16:30 -04001107 int order = BIT(nbits-1);
1108 return (val ^ order) - order;
1109}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001110
Bob Copelande5e26472009-10-14 14:16:30 -04001111static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1112{
1113 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001114
Bob Copelande5e26472009-10-14 14:16:30 -04001115 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1116 return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1117}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001118
Bob Copelande5e26472009-10-14 14:16:30 -04001119void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1120{
1121 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001122
Bob Copelande5e26472009-10-14 14:16:30 -04001123 ah->ah_nfcal_hist.index = 0;
1124 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1125 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1126}
1127
1128static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1129{
1130 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1131 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1132 hist->nfval[hist->index] = noise_floor;
1133}
1134
1135static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1136{
1137 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1138 s16 tmp;
1139 int i, j;
1140
1141 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1142 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1143 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1144 if (sort[j] > sort[j-1]) {
1145 tmp = sort[j];
1146 sort[j] = sort[j-1];
1147 sort[j-1] = tmp;
1148 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001149 }
1150 }
Bob Copelande5e26472009-10-14 14:16:30 -04001151 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1152 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1153 "cal %d:%d\n", i, sort[i]);
1154 }
1155 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1156}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001157
Bob Copelande5e26472009-10-14 14:16:30 -04001158/*
1159 * When we tell the hardware to perform a noise floor calibration
1160 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1161 * sample-and-hold the minimum noise level seen at the antennas.
1162 * This value is then stored in a ring buffer of recently measured
1163 * noise floor values so we have a moving window of the last few
1164 * samples.
1165 *
1166 * The median of the values in the history is then loaded into the
1167 * hardware for its own use for RSSI and CCA measurements.
1168 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001169void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001170{
1171 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1172 u32 val;
1173 s16 nf, threshold;
1174 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001175
Bob Copelande5e26472009-10-14 14:16:30 -04001176 /* keep last value if calibration hasn't completed */
1177 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1178 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1179 "NF did not complete in calibration window\n");
1180
1181 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001182 }
1183
Bob Copelande5e26472009-10-14 14:16:30 -04001184 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1185 case CHANNEL_A:
1186 case CHANNEL_T:
1187 case CHANNEL_XR:
1188 ee_mode = AR5K_EEPROM_MODE_11A;
1189 break;
1190 case CHANNEL_G:
1191 case CHANNEL_TG:
1192 ee_mode = AR5K_EEPROM_MODE_11G;
1193 break;
1194 default:
1195 case CHANNEL_B:
1196 ee_mode = AR5K_EEPROM_MODE_11B;
1197 break;
1198 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001199
Bob Copelande5e26472009-10-14 14:16:30 -04001200
1201 /* completed NF calibration, test threshold */
1202 nf = ath5k_hw_read_measured_noise_floor(ah);
1203 threshold = ee->ee_noise_floor_thr[ee_mode];
1204
1205 if (nf > threshold) {
1206 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1207 "noise floor failure detected; "
1208 "read %d, threshold %d\n",
1209 nf, threshold);
1210
1211 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1212 }
1213
1214 ath5k_hw_update_nfcal_hist(ah, nf);
1215 nf = ath5k_hw_get_median_noise_floor(ah);
1216
1217 /* load noise floor (in .5 dBm) so the hardware will use it */
1218 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1219 val |= (nf * 2) & AR5K_PHY_NF_M;
1220 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1221
1222 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1223 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1224
1225 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1226 0, false);
1227
1228 /*
1229 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1230 * so that we're not capped by the median we just loaded.
1231 * This will be used as the initial value for the next noise
1232 * floor calibration.
1233 */
1234 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1235 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1236 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1237 AR5K_PHY_AGCCTL_NF_EN |
1238 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1239 AR5K_PHY_AGCCTL_NF);
1240
1241 ah->ah_noise_floor = nf;
1242
1243 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1244 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001245}
1246
1247/*
1248 * Perform a PHY calibration on RF5110
1249 * -Fix BPSK/QAM Constellation (I/Q correction)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001250 */
1251static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1252 struct ieee80211_channel *channel)
1253{
1254 u32 phy_sig, phy_agc, phy_sat, beacon;
1255 int ret;
1256
1257 /*
1258 * Disable beacons and RX/TX queues, wait
1259 */
1260 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001261 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001262 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1263 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1264
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001265 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001266
1267 /*
1268 * Set the channel (with AGC turned off)
1269 */
1270 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1271 udelay(10);
1272 ret = ath5k_hw_channel(ah, channel);
1273
1274 /*
1275 * Activate PHY and wait
1276 */
1277 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1278 mdelay(1);
1279
1280 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1281
1282 if (ret)
1283 return ret;
1284
1285 /*
1286 * Calibrate the radio chip
1287 */
1288
1289 /* Remember normal state */
1290 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1291 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1292 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1293
1294 /* Update radio registers */
1295 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1296 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1297
1298 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1299 AR5K_PHY_AGCCOARSE_LO)) |
1300 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1301 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1302
1303 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1304 AR5K_PHY_ADCSAT_THR)) |
1305 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1306 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1307
1308 udelay(20);
1309
1310 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1311 udelay(10);
1312 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1313 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1314
1315 mdelay(1);
1316
1317 /*
1318 * Enable calibration and wait until completion
1319 */
1320 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1321
1322 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1323 AR5K_PHY_AGCCTL_CAL, 0, false);
1324
1325 /* Reset to normal state */
1326 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1327 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1328 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1329
1330 if (ret) {
1331 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001332 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001333 return ret;
1334 }
1335
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001336 /*
1337 * Re-enable RX/TX and beacons
1338 */
1339 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001340 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001341 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1342
1343 return 0;
1344}
1345
1346/*
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001347 * Perform I/Q calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001348 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001349static int
1350ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001351{
1352 u32 i_pwr, q_pwr;
1353 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001354 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001355
Joe Perchese9010e22008-03-07 14:21:16 -08001356 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001357 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001358 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001359
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001360 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001361 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001362 for (i = 0; i <= 10; i++) {
1363 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1364 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1365 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001366 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1367 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1368 if (i_pwr && q_pwr)
1369 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001370 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001371
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001372 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001373
1374 if (ah->ah_version == AR5K_AR5211)
1375 q_coffd = q_pwr >> 6;
1376 else
1377 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001378
Bruno Randolf86415d42010-03-09 16:56:05 +09001379 /* protect against divide by 0 and loss of sign bits */
1380 if (i_coffd == 0 || q_coffd < 2)
Fabio Rossi516c6e12010-09-08 22:37:41 +02001381 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001382
Bruno Randolf86415d42010-03-09 16:56:05 +09001383 i_coff = (-iq_corr) / i_coffd;
1384 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001385
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001386 if (ah->ah_version == AR5K_AR5211)
1387 q_coff = (i_pwr / q_coffd) - 64;
1388 else
1389 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001390 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001391
Bruno Randolf86415d42010-03-09 16:56:05 +09001392 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1393 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1394 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001395
Bruno Randolf86415d42010-03-09 16:56:05 +09001396 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1397 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1398 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1399 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001400
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001401 /* Re-enable calibration -if we don't we'll commit
1402 * the same values again and again */
1403 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1404 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1405 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1406
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001407 return 0;
1408}
1409
1410/*
1411 * Perform a PHY calibration
1412 */
1413int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1414 struct ieee80211_channel *channel)
1415{
1416 int ret;
1417
1418 if (ah->ah_radio == AR5K_RF5110)
1419 ret = ath5k_hw_rf5110_calibrate(ah, channel);
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001420 else {
1421 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1422 ath5k_hw_request_rfgain_probe(ah);
1423 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001424
1425 return ret;
1426}
1427
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001428/***************************\
1429* Spur mitigation functions *
1430\***************************/
1431
1432bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1433 struct ieee80211_channel *channel)
1434{
1435 u8 refclk_freq;
1436
1437 if ((ah->ah_radio == AR5K_RF5112) ||
1438 (ah->ah_radio == AR5K_RF5413) ||
1439 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1440 refclk_freq = 40;
1441 else
1442 refclk_freq = 32;
1443
1444 if ((channel->center_freq % refclk_freq != 0) &&
1445 ((channel->center_freq % refclk_freq < 10) ||
1446 (channel->center_freq % refclk_freq > 22)))
1447 return true;
1448 else
1449 return false;
1450}
1451
1452void
1453ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1454 struct ieee80211_channel *channel)
1455{
1456 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1457 u32 mag_mask[4] = {0, 0, 0, 0};
1458 u32 pilot_mask[2] = {0, 0};
1459 /* Note: fbin values are scaled up by 2 */
1460 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1461 s32 spur_delta_phase, spur_freq_sigma_delta;
1462 s32 spur_offset, num_symbols_x16;
1463 u8 num_symbol_offsets, i, freq_band;
1464
1465 /* Convert current frequency to fbin value (the same way channels
1466 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1467 * up by 2 so we can compare it later */
1468 if (channel->hw_value & CHANNEL_2GHZ) {
1469 chan_fbin = (channel->center_freq - 2300) * 10;
1470 freq_band = AR5K_EEPROM_BAND_2GHZ;
1471 } else {
1472 chan_fbin = (channel->center_freq - 4900) * 10;
1473 freq_band = AR5K_EEPROM_BAND_5GHZ;
1474 }
1475
1476 /* Check if any spur_chan_fbin from EEPROM is
1477 * within our current channel's spur detection range */
1478 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1479 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1480 /* XXX: Half/Quarter channels ?*/
1481 if (channel->hw_value & CHANNEL_TURBO)
1482 spur_detection_window *= 2;
1483
1484 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1485 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1486
1487 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1488 * so it's zero if we got nothing from EEPROM */
1489 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1490 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1491 break;
1492 }
1493
1494 if ((chan_fbin - spur_detection_window <=
1495 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1496 (chan_fbin + spur_detection_window >=
1497 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1498 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1499 break;
1500 }
1501 }
1502
1503 /* We need to enable spur filter for this channel */
1504 if (spur_chan_fbin) {
1505 spur_offset = spur_chan_fbin - chan_fbin;
1506 /*
1507 * Calculate deltas:
1508 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1509 * spur_delta_phase -> spur_offset / chip_freq << 11
1510 * Note: Both values have 100KHz resolution
1511 */
1512 /* XXX: Half/Quarter rate channels ? */
1513 switch (channel->hw_value) {
1514 case CHANNEL_A:
1515 /* Both sample_freq and chip_freq are 40MHz */
1516 spur_delta_phase = (spur_offset << 17) / 25;
1517 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1518 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1519 break;
1520 case CHANNEL_G:
1521 /* sample_freq -> 40MHz chip_freq -> 44MHz
1522 * (for b compatibility) */
1523 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1524 spur_delta_phase = (spur_offset << 17) / 25;
1525 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1526 break;
1527 case CHANNEL_T:
1528 case CHANNEL_TG:
1529 /* Both sample_freq and chip_freq are 80MHz */
1530 spur_delta_phase = (spur_offset << 16) / 25;
1531 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1532 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1533 break;
1534 default:
1535 return;
1536 }
1537
1538 /* Calculate pilot and magnitude masks */
1539
1540 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1541 * and divide by symbol_width to find how many symbols we have
1542 * Note: number of symbols is scaled up by 16 */
1543 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1544
1545 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1546 if (!(num_symbols_x16 & 0xF))
1547 /* _X_ */
1548 num_symbol_offsets = 3;
1549 else
1550 /* _xx_ */
1551 num_symbol_offsets = 4;
1552
1553 for (i = 0; i < num_symbol_offsets; i++) {
1554
1555 /* Calculate pilot mask */
1556 s32 curr_sym_off =
1557 (num_symbols_x16 / 16) + i + 25;
1558
1559 /* Pilot magnitude mask seems to be a way to
1560 * declare the boundaries for our detection
1561 * window or something, it's 2 for the middle
1562 * value(s) where the symbol is expected to be
1563 * and 1 on the boundary values */
1564 u8 plt_mag_map =
1565 (i == 0 || i == (num_symbol_offsets - 1))
1566 ? 1 : 2;
1567
1568 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1569 if (curr_sym_off <= 25)
1570 pilot_mask[0] |= 1 << curr_sym_off;
1571 else if (curr_sym_off >= 27)
1572 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1573 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1574 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1575
1576 /* Calculate magnitude mask (for viterbi decoder) */
1577 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1578 mag_mask[0] |=
1579 plt_mag_map << (curr_sym_off + 1) * 2;
1580 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1581 mag_mask[1] |=
1582 plt_mag_map << (curr_sym_off - 15) * 2;
1583 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1584 mag_mask[2] |=
1585 plt_mag_map << (curr_sym_off - 31) * 2;
Bob Copeland53b1cf82010-08-24 21:37:14 -04001586 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001587 mag_mask[3] |=
1588 plt_mag_map << (curr_sym_off - 47) * 2;
1589
1590 }
1591
1592 /* Write settings on hw to enable spur filter */
1593 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1594 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1595 /* XXX: Self correlator also ? */
1596 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1597 AR5K_PHY_IQ_PILOT_MASK_EN |
1598 AR5K_PHY_IQ_CHAN_MASK_EN |
1599 AR5K_PHY_IQ_SPUR_FILT_EN);
1600
1601 /* Set delta phase and freq sigma delta */
1602 ath5k_hw_reg_write(ah,
1603 AR5K_REG_SM(spur_delta_phase,
1604 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1605 AR5K_REG_SM(spur_freq_sigma_delta,
1606 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1607 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1608 AR5K_PHY_TIMING_11);
1609
1610 /* Write pilot masks */
1611 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1612 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1613 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1614 pilot_mask[1]);
1615
1616 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1617 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1618 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1619 pilot_mask[1]);
1620
1621 /* Write magnitude masks */
1622 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1623 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1624 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1625 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1626 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1627 mag_mask[3]);
1628
1629 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1630 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1631 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1632 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1633 AR5K_PHY_BIN_MASK2_4_MASK_4,
1634 mag_mask[3]);
1635
1636 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1637 AR5K_PHY_IQ_SPUR_FILT_EN) {
1638 /* Clean up spur mitigation settings and disable fliter */
1639 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1640 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1641 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1642 AR5K_PHY_IQ_PILOT_MASK_EN |
1643 AR5K_PHY_IQ_CHAN_MASK_EN |
1644 AR5K_PHY_IQ_SPUR_FILT_EN);
1645 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1646
1647 /* Clear pilot masks */
1648 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1649 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1650 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1651 0);
1652
1653 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1654 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1655 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1656 0);
1657
1658 /* Clear magnitude masks */
1659 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1660 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1661 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1662 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1663 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1664 0);
1665
1666 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1667 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1668 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1669 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1670 AR5K_PHY_BIN_MASK2_4_MASK_4,
1671 0);
1672 }
1673}
1674
1675/********************\
1676 Misc PHY functions
1677\********************/
1678
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001679int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1680{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001681 /*Just a try M.F.*/
1682 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1683
1684 return 0;
1685}
1686
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001687/*
1688 * Get the PHY Chip revision
1689 */
1690u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1691{
1692 unsigned int i;
1693 u32 srev;
1694 u16 ret;
1695
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001696 /*
1697 * Set the radio chip access register
1698 */
1699 switch (chan) {
1700 case CHANNEL_2GHZ:
1701 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1702 break;
1703 case CHANNEL_5GHZ:
1704 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1705 break;
1706 default:
1707 return 0;
1708 }
1709
1710 mdelay(2);
1711
1712 /* ...wait until PHY is ready and read the selected radio revision */
1713 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1714
1715 for (i = 0; i < 8; i++)
1716 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1717
1718 if (ah->ah_version == AR5K_AR5210) {
1719 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1720 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1721 } else {
1722 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1723 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1724 ((srev & 0x0f) << 4), 8);
1725 }
1726
1727 /* Reset to the 5GHz mode */
1728 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1729
1730 return ret;
1731}
1732
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001733/*****************\
1734* Antenna control *
1735\*****************/
1736
Pavel Roskin626ede62010-02-18 20:28:02 -05001737static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001738ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001739{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001740 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001741 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001742}
1743
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001744/*
1745 * Enable/disable fast rx antenna diversity
1746 */
1747static void
1748ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1749{
1750 switch (ee_mode) {
1751 case AR5K_EEPROM_MODE_11G:
1752 /* XXX: This is set to
1753 * disabled on initvals !!! */
1754 case AR5K_EEPROM_MODE_11A:
1755 if (enable)
1756 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1757 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1758 else
1759 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1760 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1761 break;
1762 case AR5K_EEPROM_MODE_11B:
1763 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1764 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1765 break;
1766 default:
1767 return;
1768 }
1769
1770 if (enable) {
1771 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf6665b542010-06-28 11:01:48 +09001772 AR5K_PHY_RESTART_DIV_GC, 4);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001773
1774 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1775 AR5K_PHY_FAST_ANT_DIV_EN);
1776 } else {
1777 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf39d5b2c2010-06-07 13:11:25 +09001778 AR5K_PHY_RESTART_DIV_GC, 0);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001779
1780 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1781 AR5K_PHY_FAST_ANT_DIV_EN);
1782 }
1783}
1784
Bruno Randolf0ca74022010-06-07 13:11:30 +09001785void
1786ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1787{
1788 u8 ant0, ant1;
1789
1790 /*
1791 * In case a fixed antenna was set as default
1792 * use the same switch table twice.
1793 */
1794 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1795 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1796 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1797 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1798 else {
1799 ant0 = AR5K_ANT_SWTABLE_A;
1800 ant1 = AR5K_ANT_SWTABLE_B;
1801 }
1802
1803 /* Set antenna idle switch table */
1804 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1805 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1806 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1807 AR5K_PHY_ANT_CTL_TXRX_EN));
1808
1809 /* Set antenna switch tables */
1810 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1811 AR5K_PHY_ANT_SWITCH_TABLE_0);
1812 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1813 AR5K_PHY_ANT_SWITCH_TABLE_1);
1814}
1815
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001816/*
1817 * Set antenna operating mode
1818 */
1819void
1820ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1821{
Bob Copeland46026e82009-06-10 22:22:20 -04001822 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001823 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1824 bool use_def_for_sg;
1825 u8 def_ant, tx_ant, ee_mode;
1826 u32 sta_id1 = 0;
1827
Bruno Randolf436c1092010-06-07 13:11:19 +09001828 /* if channel is not initialized yet we can't set the antennas
1829 * so just store the mode. it will be set on the next reset */
1830 if (channel == NULL) {
1831 ah->ah_ant_mode = ant_mode;
1832 return;
1833 }
1834
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001835 def_ant = ah->ah_def_ant;
1836
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001837 switch (channel->hw_value & CHANNEL_MODES) {
1838 case CHANNEL_A:
1839 case CHANNEL_T:
1840 case CHANNEL_XR:
1841 ee_mode = AR5K_EEPROM_MODE_11A;
1842 break;
1843 case CHANNEL_G:
1844 case CHANNEL_TG:
1845 ee_mode = AR5K_EEPROM_MODE_11G;
1846 break;
1847 case CHANNEL_B:
1848 ee_mode = AR5K_EEPROM_MODE_11B;
1849 break;
1850 default:
1851 ATH5K_ERR(ah->ah_sc,
1852 "invalid channel: %d\n", channel->center_freq);
1853 return;
1854 }
1855
1856 switch (ant_mode) {
1857 case AR5K_ANTMODE_DEFAULT:
1858 tx_ant = 0;
1859 use_def_for_tx = false;
1860 update_def_on_tx = false;
1861 use_def_for_rts = false;
1862 use_def_for_sg = false;
1863 fast_div = true;
1864 break;
1865 case AR5K_ANTMODE_FIXED_A:
1866 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001867 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001868 use_def_for_tx = true;
1869 update_def_on_tx = false;
1870 use_def_for_rts = true;
1871 use_def_for_sg = true;
1872 fast_div = false;
1873 break;
1874 case AR5K_ANTMODE_FIXED_B:
1875 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001876 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001877 use_def_for_tx = true;
1878 update_def_on_tx = false;
1879 use_def_for_rts = true;
1880 use_def_for_sg = true;
1881 fast_div = false;
1882 break;
1883 case AR5K_ANTMODE_SINGLE_AP:
1884 def_ant = 1; /* updated on tx */
1885 tx_ant = 0;
1886 use_def_for_tx = true;
1887 update_def_on_tx = true;
1888 use_def_for_rts = true;
1889 use_def_for_sg = true;
1890 fast_div = true;
1891 break;
1892 case AR5K_ANTMODE_SECTOR_AP:
1893 tx_ant = 1; /* variable */
1894 use_def_for_tx = false;
1895 update_def_on_tx = false;
1896 use_def_for_rts = true;
1897 use_def_for_sg = false;
1898 fast_div = false;
1899 break;
1900 case AR5K_ANTMODE_SECTOR_STA:
1901 tx_ant = 1; /* variable */
1902 use_def_for_tx = true;
1903 update_def_on_tx = false;
1904 use_def_for_rts = true;
1905 use_def_for_sg = false;
1906 fast_div = true;
1907 break;
1908 case AR5K_ANTMODE_DEBUG:
1909 def_ant = 1;
1910 tx_ant = 2;
1911 use_def_for_tx = false;
1912 update_def_on_tx = false;
1913 use_def_for_rts = false;
1914 use_def_for_sg = false;
1915 fast_div = false;
1916 break;
1917 default:
1918 return;
1919 }
1920
1921 ah->ah_tx_ant = tx_ant;
1922 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09001923 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001924
1925 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1926 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1927 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1928 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1929
1930 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1931
1932 if (sta_id1)
1933 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1934
Bruno Randolf0ca74022010-06-07 13:11:30 +09001935 ath5k_hw_set_antenna_switch(ah, ee_mode);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001936 /* Note: set diversity before default antenna
1937 * because it won't work correctly */
1938 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1939 ath5k_hw_set_def_antenna(ah, def_ant);
1940}
1941
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001942
1943/****************\
1944* TX power setup *
1945\****************/
1946
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001947/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001948 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001949 */
1950
1951/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001952 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001953 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001954static s16
1955ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1956 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001957{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001958 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001959
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001960 /* Avoid divide by zero and skip interpolation
1961 * if we have the same point */
1962 if ((x_left == x_right) || (y_left == y_right))
1963 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001964
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001965 /*
1966 * Since we use ints and not fps, we need to scale up in
1967 * order to get a sane ratio value (or else we 'll eg. get
1968 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1969 * to have some accuracy both for 0.5 and 0.25 steps.
1970 */
1971 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001972
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001973 /* Now scale down to be in range */
1974 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001975
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001976 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001977}
1978
1979/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001980 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1981 *
1982 * Since we have the top of the curve and we draw the line below
1983 * until we reach 1 (1 pcdac step) we need to know which point
1984 * (x value) that is so that we don't go below y axis and have negative
1985 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001986 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001987static s16
1988ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1989 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001990{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001991 s8 tmp;
1992 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02001993 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001994
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03001995 /* Some vendors write the same pcdac value twice !!! */
1996 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1997 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04001998
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02001999 if (pwrL[0] == pwrL[1])
2000 min_pwrL = pwrL[0];
2001 else {
2002 pwr_i = pwrL[0];
2003 do {
2004 pwr_i--;
2005 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2006 pwrL[0], pwrL[1],
2007 stepL[0], stepL[1]);
2008 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002009
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002010 min_pwrL = pwr_i;
2011 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002012
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002013 if (pwrR[0] == pwrR[1])
2014 min_pwrR = pwrR[0];
2015 else {
2016 pwr_i = pwrR[0];
2017 do {
2018 pwr_i--;
2019 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2020 pwrR[0], pwrR[1],
2021 stepR[0], stepR[1]);
2022 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002023
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002024 min_pwrR = pwr_i;
2025 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002026
2027 /* Keep the right boundary so that it works for both curves */
2028 return max(min_pwrL, min_pwrR);
2029}
2030
2031/*
2032 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2033 * Power to PCDAC curve.
2034 *
2035 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2036 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2037 * PCDAC/PDADC step for each curve is 64 but we can write more than
2038 * one curves on hw so we can go up to 128 (which is the max step we
2039 * can write on the final table).
2040 *
2041 * We write y values (PCDAC/PDADC steps) on hw.
2042 */
2043static void
2044ath5k_create_power_curve(s16 pmin, s16 pmax,
2045 const s16 *pwr, const u8 *vpd,
2046 u8 num_points,
2047 u8 *vpd_table, u8 type)
2048{
2049 u8 idx[2] = { 0, 1 };
2050 s16 pwr_i = 2*pmin;
2051 int i;
2052
2053 if (num_points < 2)
2054 return;
2055
2056 /* We want the whole line, so adjust boundaries
2057 * to cover the entire power range. Note that
2058 * power values are already 0.25dB so no need
2059 * to multiply pwr_i by 2 */
2060 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2061 pwr_i = pmin;
2062 pmin = 0;
2063 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002064 }
2065
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002066 /* Find surrounding turning points (TPs)
2067 * and interpolate between them */
2068 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2069 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2070
2071 /* We passed the right TP, move to the next set of TPs
2072 * if we pass the last TP, extrapolate above using the last
2073 * two TPs for ratio */
2074 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2075 idx[0]++;
2076 idx[1]++;
2077 }
2078
2079 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2080 pwr[idx[0]], pwr[idx[1]],
2081 vpd[idx[0]], vpd[idx[1]]);
2082
2083 /* Increase by 0.5dB
2084 * (0.25 dB units) */
2085 pwr_i += 2;
2086 }
2087}
2088
2089/*
2090 * Get the surrounding per-channel power calibration piers
2091 * for a given frequency so that we can interpolate between
2092 * them and come up with an apropriate dataset for our current
2093 * channel.
2094 */
2095static void
2096ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2097 struct ieee80211_channel *channel,
2098 struct ath5k_chan_pcal_info **pcinfo_l,
2099 struct ath5k_chan_pcal_info **pcinfo_r)
2100{
2101 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2102 struct ath5k_chan_pcal_info *pcinfo;
2103 u8 idx_l, idx_r;
2104 u8 mode, max, i;
2105 u32 target = channel->center_freq;
2106
2107 idx_l = 0;
2108 idx_r = 0;
2109
2110 if (!(channel->hw_value & CHANNEL_OFDM)) {
2111 pcinfo = ee->ee_pwr_cal_b;
2112 mode = AR5K_EEPROM_MODE_11B;
2113 } else if (channel->hw_value & CHANNEL_2GHZ) {
2114 pcinfo = ee->ee_pwr_cal_g;
2115 mode = AR5K_EEPROM_MODE_11G;
2116 } else {
2117 pcinfo = ee->ee_pwr_cal_a;
2118 mode = AR5K_EEPROM_MODE_11A;
2119 }
2120 max = ee->ee_n_piers[mode] - 1;
2121
2122 /* Frequency is below our calibrated
2123 * range. Use the lowest power curve
2124 * we have */
2125 if (target < pcinfo[0].freq) {
2126 idx_l = idx_r = 0;
2127 goto done;
2128 }
2129
2130 /* Frequency is above our calibrated
2131 * range. Use the highest power curve
2132 * we have */
2133 if (target > pcinfo[max].freq) {
2134 idx_l = idx_r = max;
2135 goto done;
2136 }
2137
2138 /* Frequency is inside our calibrated
2139 * channel range. Pick the surrounding
2140 * calibration piers so that we can
2141 * interpolate */
2142 for (i = 0; i <= max; i++) {
2143
2144 /* Frequency matches one of our calibration
2145 * piers, no need to interpolate, just use
2146 * that calibration pier */
2147 if (pcinfo[i].freq == target) {
2148 idx_l = idx_r = i;
2149 goto done;
2150 }
2151
2152 /* We found a calibration pier that's above
2153 * frequency, use this pier and the previous
2154 * one to interpolate */
2155 if (target < pcinfo[i].freq) {
2156 idx_r = i;
2157 idx_l = idx_r - 1;
2158 goto done;
2159 }
2160 }
2161
2162done:
2163 *pcinfo_l = &pcinfo[idx_l];
2164 *pcinfo_r = &pcinfo[idx_r];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002165}
2166
2167/*
2168 * Get the surrounding per-rate power calibration data
2169 * for a given frequency and interpolate between power
2170 * values to set max target power supported by hw for
2171 * each rate.
2172 */
2173static void
2174ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2175 struct ieee80211_channel *channel,
2176 struct ath5k_rate_pcal_info *rates)
2177{
2178 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2179 struct ath5k_rate_pcal_info *rpinfo;
2180 u8 idx_l, idx_r;
2181 u8 mode, max, i;
2182 u32 target = channel->center_freq;
2183
2184 idx_l = 0;
2185 idx_r = 0;
2186
2187 if (!(channel->hw_value & CHANNEL_OFDM)) {
2188 rpinfo = ee->ee_rate_tpwr_b;
2189 mode = AR5K_EEPROM_MODE_11B;
2190 } else if (channel->hw_value & CHANNEL_2GHZ) {
2191 rpinfo = ee->ee_rate_tpwr_g;
2192 mode = AR5K_EEPROM_MODE_11G;
2193 } else {
2194 rpinfo = ee->ee_rate_tpwr_a;
2195 mode = AR5K_EEPROM_MODE_11A;
2196 }
2197 max = ee->ee_rate_target_pwr_num[mode] - 1;
2198
2199 /* Get the surrounding calibration
2200 * piers - same as above */
2201 if (target < rpinfo[0].freq) {
2202 idx_l = idx_r = 0;
2203 goto done;
2204 }
2205
2206 if (target > rpinfo[max].freq) {
2207 idx_l = idx_r = max;
2208 goto done;
2209 }
2210
2211 for (i = 0; i <= max; i++) {
2212
2213 if (rpinfo[i].freq == target) {
2214 idx_l = idx_r = i;
2215 goto done;
2216 }
2217
2218 if (target < rpinfo[i].freq) {
2219 idx_r = i;
2220 idx_l = idx_r - 1;
2221 goto done;
2222 }
2223 }
2224
2225done:
2226 /* Now interpolate power value, based on the frequency */
2227 rates->freq = target;
2228
2229 rates->target_power_6to24 =
2230 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2231 rpinfo[idx_r].freq,
2232 rpinfo[idx_l].target_power_6to24,
2233 rpinfo[idx_r].target_power_6to24);
2234
2235 rates->target_power_36 =
2236 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2237 rpinfo[idx_r].freq,
2238 rpinfo[idx_l].target_power_36,
2239 rpinfo[idx_r].target_power_36);
2240
2241 rates->target_power_48 =
2242 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2243 rpinfo[idx_r].freq,
2244 rpinfo[idx_l].target_power_48,
2245 rpinfo[idx_r].target_power_48);
2246
2247 rates->target_power_54 =
2248 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2249 rpinfo[idx_r].freq,
2250 rpinfo[idx_l].target_power_54,
2251 rpinfo[idx_r].target_power_54);
2252}
2253
2254/*
2255 * Get the max edge power for this channel if
2256 * we have such data from EEPROM's Conformance Test
2257 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002258 */
2259static void
2260ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2261 struct ieee80211_channel *channel)
2262{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002263 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002264 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2265 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2266 u8 *ctl_val = ee->ee_ctl;
2267 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2268 s16 edge_pwr = 0;
2269 u8 rep_idx;
2270 u8 i, ctl_mode;
2271 u8 ctl_idx = 0xFF;
2272 u32 target = channel->center_freq;
2273
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002274 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002275
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002276 switch (channel->hw_value & CHANNEL_MODES) {
2277 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002278 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002279 break;
2280 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002281 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002282 break;
2283 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002284 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002285 break;
2286 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002287 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002288 break;
2289 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002290 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002291 break;
2292 case CHANNEL_XR:
2293 /* Fall through */
2294 default:
2295 return;
2296 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002297
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002298 for (i = 0; i < ee->ee_ctls; i++) {
2299 if (ctl_val[i] == ctl_mode) {
2300 ctl_idx = i;
2301 break;
2302 }
2303 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002304
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002305 /* If we have a CTL dataset available grab it and find the
2306 * edge power for our frequency */
2307 if (ctl_idx == 0xFF)
2308 return;
2309
2310 /* Edge powers are sorted by frequency from lower
2311 * to higher. Each CTL corresponds to 8 edge power
2312 * measurements. */
2313 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2314
2315 /* Don't do boundaries check because we
2316 * might have more that one bands defined
2317 * for this mode */
2318
2319 /* Get the edge power that's closer to our
2320 * frequency */
2321 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2322 rep_idx += i;
2323 if (target <= rep[rep_idx].freq)
2324 edge_pwr = (s16) rep[rep_idx].edge;
2325 }
2326
2327 if (edge_pwr)
2328 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2329}
2330
2331
2332/*
2333 * Power to PCDAC table functions
2334 */
2335
2336/*
2337 * Fill Power to PCDAC table on RF5111
2338 *
2339 * No further processing is needed for RF5111, the only thing we have to
2340 * do is fill the values below and above calibration range since eeprom data
2341 * may not cover the entire PCDAC table.
2342 */
2343static void
2344ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2345 s16 *table_max)
2346{
2347 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2348 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2349 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2350 s16 min_pwr, max_pwr;
2351
2352 /* Get table boundaries */
2353 min_pwr = table_min[0];
2354 pcdac_0 = pcdac_tmp[0];
2355
2356 max_pwr = table_max[0];
2357 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2358
2359 /* Extrapolate below minimum using pcdac_0 */
2360 pcdac_i = 0;
2361 for (i = 0; i < min_pwr; i++)
2362 pcdac_out[pcdac_i++] = pcdac_0;
2363
2364 /* Copy values from pcdac_tmp */
2365 pwr_idx = min_pwr;
2366 for (i = 0 ; pwr_idx <= max_pwr &&
2367 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2368 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2369 pwr_idx++;
2370 }
2371
2372 /* Extrapolate above maximum */
2373 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2374 pcdac_out[pcdac_i++] = pcdac_n;
2375
2376}
2377
2378/*
2379 * Combine available XPD Curves and fill Linear Power to PCDAC table
2380 * on RF5112
2381 *
2382 * RFX112 can have up to 2 curves (one for low txpower range and one for
2383 * higher txpower range). We need to put them both on pcdac_out and place
2384 * them in the correct location. In case we only have one curve available
2385 * just fit it on pcdac_out (it's supposed to cover the entire range of
2386 * available pwr levels since it's always the higher power curve). Extrapolate
2387 * below and above final table if needed.
2388 */
2389static void
2390ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2391 s16 *table_max, u8 pdcurves)
2392{
2393 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2394 u8 *pcdac_low_pwr;
2395 u8 *pcdac_high_pwr;
2396 u8 *pcdac_tmp;
2397 u8 pwr;
2398 s16 max_pwr_idx;
2399 s16 min_pwr_idx;
2400 s16 mid_pwr_idx = 0;
2401 /* Edge flag turs on the 7nth bit on the PCDAC
2402 * to delcare the higher power curve (force values
2403 * to be greater than 64). If we only have one curve
2404 * we don't need to set this, if we have 2 curves and
2405 * fill the table backwards this can also be used to
2406 * switch from higher power curve to lower power curve */
2407 u8 edge_flag;
2408 int i;
2409
2410 /* When we have only one curve available
2411 * that's the higher power curve. If we have
2412 * two curves the first is the high power curve
2413 * and the next is the low power curve. */
2414 if (pdcurves > 1) {
2415 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2416 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2417 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2418 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2419
2420 /* If table size goes beyond 31.5dB, keep the
2421 * upper 31.5dB range when setting tx power.
2422 * Note: 126 = 31.5 dB in quarter dB steps */
2423 if (table_max[0] - table_min[1] > 126)
2424 min_pwr_idx = table_max[0] - 126;
2425 else
2426 min_pwr_idx = table_min[1];
2427
2428 /* Since we fill table backwards
2429 * start from high power curve */
2430 pcdac_tmp = pcdac_high_pwr;
2431
2432 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002433 } else {
2434 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2435 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2436 min_pwr_idx = table_min[0];
2437 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2438 pcdac_tmp = pcdac_high_pwr;
2439 edge_flag = 0;
2440 }
2441
2442 /* This is used when setting tx power*/
2443 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2444
2445 /* Fill Power to PCDAC table backwards */
2446 pwr = max_pwr_idx;
2447 for (i = 63; i >= 0; i--) {
2448 /* Entering lower power range, reset
2449 * edge flag and set pcdac_tmp to lower
2450 * power curve.*/
2451 if (edge_flag == 0x40 &&
2452 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2453 edge_flag = 0x00;
2454 pcdac_tmp = pcdac_low_pwr;
2455 pwr = mid_pwr_idx/2;
2456 }
2457
2458 /* Don't go below 1, extrapolate below if we have
2459 * already swithced to the lower power curve -or
2460 * we only have one curve and edge_flag is zero
2461 * anyway */
2462 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2463 while (i >= 0) {
2464 pcdac_out[i] = pcdac_out[i + 1];
2465 i--;
2466 }
2467 break;
2468 }
2469
2470 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2471
2472 /* Extrapolate above if pcdac is greater than
2473 * 126 -this can happen because we OR pcdac_out
2474 * value with edge_flag on high power curve */
2475 if (pcdac_out[i] > 126)
2476 pcdac_out[i] = 126;
2477
2478 /* Decrease by a 0.5dB step */
2479 pwr--;
2480 }
2481}
2482
2483/* Write PCDAC values on hw */
2484static void
2485ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2486{
2487 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2488 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002489
2490 /*
2491 * Write TX power values
2492 */
2493 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2494 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002495 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2496 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002497 AR5K_PHY_PCDAC_TXPOWER(i));
2498 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002499}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002500
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002501
2502/*
2503 * Power to PDADC table functions
2504 */
2505
2506/*
2507 * Set the gain boundaries and create final Power to PDADC table
2508 *
2509 * We can have up to 4 pd curves, we need to do a simmilar process
2510 * as we do for RF5112. This time we don't have an edge_flag but we
2511 * set the gain boundaries on a separate register.
2512 */
2513static void
2514ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2515 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2516{
2517 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2518 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2519 u8 *pdadc_tmp;
2520 s16 pdadc_0;
2521 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2522 u8 pd_gain_overlap;
2523
2524 /* Note: Register value is initialized on initvals
2525 * there is no feedback from hw.
2526 * XXX: What about pd_gain_overlap from EEPROM ? */
2527 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2528 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2529
2530 /* Create final PDADC table */
2531 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2532 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2533
2534 if (pdg == pdcurves - 1)
2535 /* 2 dB boundary stretch for last
2536 * (higher power) curve */
2537 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2538 else
2539 /* Set gain boundary in the middle
2540 * between this curve and the next one */
2541 gain_boundaries[pdg] =
2542 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2543
2544 /* Sanity check in case our 2 db stretch got out of
2545 * range. */
2546 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2547 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2548
2549 /* For the first curve (lower power)
2550 * start from 0 dB */
2551 if (pdg == 0)
2552 pdadc_0 = 0;
2553 else
2554 /* For the other curves use the gain overlap */
2555 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2556 pd_gain_overlap;
2557
2558 /* Force each power step to be at least 0.5 dB */
2559 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2560 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2561 else
2562 pwr_step = 1;
2563
2564 /* If pdadc_0 is negative, we need to extrapolate
2565 * below this pdgain by a number of pwr_steps */
2566 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2567 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2568 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2569 pdadc_0++;
2570 }
2571
2572 /* Set last pwr level, using gain boundaries */
2573 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2574 /* Limit it to be inside pwr range */
2575 table_size = pwr_max[pdg] - pwr_min[pdg];
2576 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2577
2578 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002579 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002580 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2581
2582 /* Need to extrapolate above this pdgain? */
2583 if (pdadc_n <= max_idx)
2584 continue;
2585
2586 /* Force each power step to be at least 0.5 dB */
2587 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2588 pwr_step = pdadc_tmp[table_size - 1] -
2589 pdadc_tmp[table_size - 2];
2590 else
2591 pwr_step = 1;
2592
2593 /* Extrapolate above */
2594 while ((pdadc_0 < (s16) pdadc_n) &&
2595 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2596 s16 tmp = pdadc_tmp[table_size - 1] +
2597 (pdadc_0 - max_idx) * pwr_step;
2598 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2599 pdadc_0++;
2600 }
2601 }
2602
2603 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2604 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2605 pdg++;
2606 }
2607
2608 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2609 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2610 pdadc_i++;
2611 }
2612
2613 /* Set gain boundaries */
2614 ath5k_hw_reg_write(ah,
2615 AR5K_REG_SM(pd_gain_overlap,
2616 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2617 AR5K_REG_SM(gain_boundaries[0],
2618 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2619 AR5K_REG_SM(gain_boundaries[1],
2620 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2621 AR5K_REG_SM(gain_boundaries[2],
2622 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2623 AR5K_REG_SM(gain_boundaries[3],
2624 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2625 AR5K_PHY_TPC_RG5);
2626
2627 /* Used for setting rate power table */
2628 ah->ah_txpower.txp_min_idx = pwr_min[0];
2629
2630}
2631
2632/* Write PDADC values on hw */
2633static void
2634ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2635 u8 pdcurves, u8 *pdg_to_idx)
2636{
2637 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2638 u32 reg;
2639 u8 i;
2640
2641 /* Select the right pdgain curves */
2642
2643 /* Clear current settings */
2644 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2645 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2646 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2647 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2648 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2649
2650 /*
2651 * Use pd_gains curve from eeprom
2652 *
2653 * This overrides the default setting from initvals
2654 * in case some vendors (e.g. Zcomax) don't use the default
2655 * curves. If we don't honor their settings we 'll get a
2656 * 5dB (1 * gain overlap ?) drop.
2657 */
2658 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2659
2660 switch (pdcurves) {
2661 case 3:
2662 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2663 /* Fall through */
2664 case 2:
2665 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2666 /* Fall through */
2667 case 1:
2668 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2669 break;
2670 }
2671 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2672
2673 /*
2674 * Write TX power values
2675 */
2676 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2677 ath5k_hw_reg_write(ah,
2678 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2679 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2680 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2681 ((pdadc_out[4*i + 3] & 0xff) << 24),
2682 AR5K_PHY_PDADC_TXPOWER(i));
2683 }
2684}
2685
2686
2687/*
2688 * Common code for PCDAC/PDADC tables
2689 */
2690
2691/*
2692 * This is the main function that uses all of the above
2693 * to set PCDAC/PDADC table on hw for the current channel.
2694 * This table is used for tx power calibration on the basband,
2695 * without it we get weird tx power levels and in some cases
2696 * distorted spectral mask
2697 */
2698static int
2699ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2700 struct ieee80211_channel *channel,
2701 u8 ee_mode, u8 type)
2702{
2703 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2704 struct ath5k_chan_pcal_info *pcinfo_L;
2705 struct ath5k_chan_pcal_info *pcinfo_R;
2706 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2707 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2708 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2709 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2710 u8 *tmpL;
2711 u8 *tmpR;
2712 u32 target = channel->center_freq;
2713 int pdg, i;
2714
2715 /* Get surounding freq piers for this channel */
2716 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2717 &pcinfo_L,
2718 &pcinfo_R);
2719
2720 /* Loop over pd gain curves on
2721 * surounding freq piers by index */
2722 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2723
2724 /* Fill curves in reverse order
2725 * from lower power (max gain)
2726 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002727 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002728 u8 idx = pdg_curve_to_idx[pdg];
2729
2730 /* Grab the needed curves by index */
2731 pdg_L = &pcinfo_L->pd_curves[idx];
2732 pdg_R = &pcinfo_R->pd_curves[idx];
2733
2734 /* Initialize the temp tables */
2735 tmpL = ah->ah_txpower.tmpL[pdg];
2736 tmpR = ah->ah_txpower.tmpR[pdg];
2737
2738 /* Set curve's x boundaries and create
2739 * curves so that they cover the same
2740 * range (if we don't do that one table
2741 * will have values on some range and the
2742 * other one won't have any so interpolation
2743 * will fail) */
2744 table_min[pdg] = min(pdg_L->pd_pwr[0],
2745 pdg_R->pd_pwr[0]) / 2;
2746
2747 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2748 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2749
2750 /* Now create the curves on surrounding channels
2751 * and interpolate if needed to get the final
2752 * curve for this gain on this channel */
2753 switch (type) {
2754 case AR5K_PWRTABLE_LINEAR_PCDAC:
2755 /* Override min/max so that we don't loose
2756 * accuracy (don't divide by 2) */
2757 table_min[pdg] = min(pdg_L->pd_pwr[0],
2758 pdg_R->pd_pwr[0]);
2759
2760 table_max[pdg] =
2761 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2762 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2763
2764 /* Override minimum so that we don't get
2765 * out of bounds while extrapolating
2766 * below. Don't do this when we have 2
2767 * curves and we are on the high power curve
2768 * because table_min is ok in this case */
2769 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2770
2771 table_min[pdg] =
2772 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2773 pdg_R->pd_step,
2774 pdg_L->pd_pwr,
2775 pdg_R->pd_pwr);
2776
2777 /* Don't go too low because we will
2778 * miss the upper part of the curve.
2779 * Note: 126 = 31.5dB (max power supported)
2780 * in 0.25dB units */
2781 if (table_max[pdg] - table_min[pdg] > 126)
2782 table_min[pdg] = table_max[pdg] - 126;
2783 }
2784
2785 /* Fall through */
2786 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2787 case AR5K_PWRTABLE_PWR_TO_PDADC:
2788
2789 ath5k_create_power_curve(table_min[pdg],
2790 table_max[pdg],
2791 pdg_L->pd_pwr,
2792 pdg_L->pd_step,
2793 pdg_L->pd_points, tmpL, type);
2794
2795 /* We are in a calibration
2796 * pier, no need to interpolate
2797 * between freq piers */
2798 if (pcinfo_L == pcinfo_R)
2799 continue;
2800
2801 ath5k_create_power_curve(table_min[pdg],
2802 table_max[pdg],
2803 pdg_R->pd_pwr,
2804 pdg_R->pd_step,
2805 pdg_R->pd_points, tmpR, type);
2806 break;
2807 default:
2808 return -EINVAL;
2809 }
2810
2811 /* Interpolate between curves
2812 * of surounding freq piers to
2813 * get the final curve for this
2814 * pd gain. Re-use tmpL for interpolation
2815 * output */
2816 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2817 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2818 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2819 (s16) pcinfo_L->freq,
2820 (s16) pcinfo_R->freq,
2821 (s16) tmpL[i],
2822 (s16) tmpR[i]);
2823 }
2824 }
2825
2826 /* Now we have a set of curves for this
2827 * channel on tmpL (x range is table_max - table_min
2828 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002829 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002830 * So for RF5112 it's from higher power to lower power
2831 * and for RF2413 it's from lower power to higher power.
2832 * For RF5111 we only have one curve. */
2833
2834 /* Fill min and max power levels for this
2835 * channel by interpolating the values on
2836 * surounding channels to complete the dataset */
2837 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2838 (s16) pcinfo_L->freq,
2839 (s16) pcinfo_R->freq,
2840 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2841
2842 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2843 (s16) pcinfo_L->freq,
2844 (s16) pcinfo_R->freq,
2845 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2846
2847 /* We are ready to go, fill PCDAC/PDADC
2848 * table and write settings on hardware */
2849 switch (type) {
2850 case AR5K_PWRTABLE_LINEAR_PCDAC:
2851 /* For RF5112 we can have one or two curves
2852 * and each curve covers a certain power lvl
2853 * range so we need to do some more processing */
2854 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2855 ee->ee_pd_gains[ee_mode]);
2856
2857 /* Set txp.offset so that we can
2858 * match max power value with max
2859 * table index */
2860 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2861
2862 /* Write settings on hw */
2863 ath5k_setup_pcdac_table(ah);
2864 break;
2865 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2866 /* We are done for RF5111 since it has only
2867 * one curve, just fit the curve on the table */
2868 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2869
2870 /* No rate powertable adjustment for RF5111 */
2871 ah->ah_txpower.txp_min_idx = 0;
2872 ah->ah_txpower.txp_offset = 0;
2873
2874 /* Write settings on hw */
2875 ath5k_setup_pcdac_table(ah);
2876 break;
2877 case AR5K_PWRTABLE_PWR_TO_PDADC:
2878 /* Set PDADC boundaries and fill
2879 * final PDADC table */
2880 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2881 ee->ee_pd_gains[ee_mode]);
2882
2883 /* Write settings on hw */
2884 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2885
2886 /* Set txp.offset, note that table_min
2887 * can be negative */
2888 ah->ah_txpower.txp_offset = table_min[0];
2889 break;
2890 default:
2891 return -EINVAL;
2892 }
2893
2894 return 0;
2895}
2896
2897
2898/*
2899 * Per-rate tx power setting
2900 *
2901 * This is the code that sets the desired tx power (below
2902 * maximum) on hw for each rate (we also have TPC that sets
2903 * power per packet). We do that by providing an index on the
2904 * PCDAC/PDADC table we set up.
2905 */
2906
2907/*
2908 * Set rate power table
2909 *
2910 * For now we only limit txpower based on maximum tx power
2911 * supported by hw (what's inside rate_info). We need to limit
2912 * this even more, based on regulatory domain etc.
2913 *
2914 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2915 * and is indexed as follows:
2916 * rates[0] - rates[7] -> OFDM rates
2917 * rates[8] - rates[14] -> CCK rates
2918 * rates[15] -> XR rates (they all have the same power)
2919 */
2920static void
2921ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2922 struct ath5k_rate_pcal_info *rate_info,
2923 u8 ee_mode)
2924{
2925 unsigned int i;
2926 u16 *rates;
2927
2928 /* max_pwr is power level we got from driver/user in 0.5dB
2929 * units, switch to 0.25dB units so we can compare */
2930 max_pwr *= 2;
2931 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2932
2933 /* apply rate limits */
2934 rates = ah->ah_txpower.txp_rates_power_table;
2935
2936 /* OFDM rates 6 to 24Mb/s */
2937 for (i = 0; i < 5; i++)
2938 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2939
2940 /* Rest OFDM rates */
2941 rates[5] = min(rates[0], rate_info->target_power_36);
2942 rates[6] = min(rates[0], rate_info->target_power_48);
2943 rates[7] = min(rates[0], rate_info->target_power_54);
2944
2945 /* CCK rates */
2946 /* 1L */
2947 rates[8] = min(rates[0], rate_info->target_power_6to24);
2948 /* 2L */
2949 rates[9] = min(rates[0], rate_info->target_power_36);
2950 /* 2S */
2951 rates[10] = min(rates[0], rate_info->target_power_36);
2952 /* 5L */
2953 rates[11] = min(rates[0], rate_info->target_power_48);
2954 /* 5S */
2955 rates[12] = min(rates[0], rate_info->target_power_48);
2956 /* 11L */
2957 rates[13] = min(rates[0], rate_info->target_power_54);
2958 /* 11S */
2959 rates[14] = min(rates[0], rate_info->target_power_54);
2960
2961 /* XR rates */
2962 rates[15] = min(rates[0], rate_info->target_power_6to24);
2963
2964 /* CCK rates have different peak to average ratio
2965 * so we have to tweak their power so that gainf
2966 * correction works ok. For this we use OFDM to
2967 * CCK delta from eeprom */
2968 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2969 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2970 for (i = 8; i <= 15; i++)
2971 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2972
Nick Kossifidisa0823812009-04-30 15:55:44 -04002973 /* Now that we have all rates setup use table offset to
2974 * match the power range set by user with the power indices
2975 * on PCDAC/PDADC table */
2976 for (i = 0; i < 16; i++) {
2977 rates[i] += ah->ah_txpower.txp_offset;
2978 /* Don't get out of bounds */
2979 if (rates[i] > 63)
2980 rates[i] = 63;
2981 }
2982
2983 /* Min/max in 0.25dB units */
2984 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2985 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002986 ah->ah_txpower.txp_ofdm = rates[7];
2987}
2988
2989
2990/*
Bob Copeland8801df82010-08-21 16:39:02 -04002991 * Set transmission power
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002992 */
2993int
2994ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2995 u8 ee_mode, u8 txpower)
2996{
2997 struct ath5k_rate_pcal_info rate_info;
2998 u8 type;
2999 int ret;
3000
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003001 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3002 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3003 return -EINVAL;
3004 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003005
3006 /* Reset TX power values */
3007 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3008 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3009 ah->ah_txpower.txp_min_pwr = 0;
3010 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3011
3012 /* Initialize TX power table */
3013 switch (ah->ah_radio) {
3014 case AR5K_RF5111:
3015 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3016 break;
3017 case AR5K_RF5112:
3018 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3019 break;
3020 case AR5K_RF2413:
3021 case AR5K_RF5413:
3022 case AR5K_RF2316:
3023 case AR5K_RF2317:
3024 case AR5K_RF2425:
3025 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3026 break;
3027 default:
3028 return -EINVAL;
3029 }
3030
3031 /* FIXME: Only on channel/mode change */
3032 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3033 if (ret)
3034 return ret;
3035
3036 /* Limit max power if we have a CTL available */
3037 ath5k_get_max_ctl_power(ah, channel);
3038
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003039 /* FIXME: Antenna reduction stuff */
3040
3041 /* FIXME: Limit power on turbo modes */
3042
3043 /* FIXME: TPC scale reduction */
3044
3045 /* Get surounding channels for per-rate power table
3046 * calibration */
3047 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3048
3049 /* Setup rate power table */
3050 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3051
3052 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003053 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3054 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3055 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3056
3057 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3058 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3059 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3060
3061 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3062 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3063 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3064
3065 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3066 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3067 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3068
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003069 /* FIXME: TPC support */
3070 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003071 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3072 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003073
3074 ath5k_hw_reg_write(ah,
3075 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3076 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3077 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3078 AR5K_TPC);
3079 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003080 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3081 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003082 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003083
3084 return 0;
3085}
3086
Nick Kossifidisa0823812009-04-30 15:55:44 -04003087int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003088{
3089 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003090 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003091 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003092
Nick Kossifidisa0823812009-04-30 15:55:44 -04003093 switch (channel->hw_value & CHANNEL_MODES) {
3094 case CHANNEL_A:
3095 case CHANNEL_T:
3096 case CHANNEL_XR:
3097 ee_mode = AR5K_EEPROM_MODE_11A;
3098 break;
3099 case CHANNEL_G:
3100 case CHANNEL_TG:
3101 ee_mode = AR5K_EEPROM_MODE_11G;
3102 break;
3103 case CHANNEL_B:
3104 ee_mode = AR5K_EEPROM_MODE_11B;
3105 break;
3106 default:
3107 ATH5K_ERR(ah->ah_sc,
3108 "invalid channel: %d\n", channel->center_freq);
3109 return -EINVAL;
3110 }
3111
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003112 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003113 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003114
Nick Kossifidisa0823812009-04-30 15:55:44 -04003115 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003116}