blob: 37b8c1d3e022b7ec0a643d3d6a4cc4545d466e4d [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:010
2 * A hypervisor allows multiple Operating Systems to run on a single machine.
3 * To quote David Wheeler: "Any problem in computer science can be solved with
4 * another layer of indirection."
Rusty Russell07ad1572007-07-19 01:49:22 -07005 *
Rusty Russellf938d2c2007-07-26 10:41:02 -07006 * We keep things simple in two ways. First, we start with a normal Linux
7 * kernel and insert a module (lg.ko) which allows us to run other Linux
8 * kernels the same way we'd run processes. We call the first kernel the Host,
9 * and the others the Guests. The program which sets up and configures Guests
10 * (such as the example in Documentation/lguest/lguest.c) is called the
11 * Launcher.
12 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050013 * Secondly, we only run specially modified Guests, not normal kernels: setting
14 * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
15 * how to be a Guest at boot time. This means that you can use the same kernel
16 * you boot normally (ie. as a Host) as a Guest.
Rusty Russellf938d2c2007-07-26 10:41:02 -070017 *
18 * These Guests know that they cannot do privileged operations, such as disable
19 * interrupts, and that they have to ask the Host to do such things explicitly.
20 * This file consists of all the replacements for such low-level native
21 * hardware operations: these special Guest versions call the Host.
22 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050023 * So how does the kernel know it's a Guest? We'll see that later, but let's
24 * just say that we end up here where we replace the native functions various
25 * "paravirt" structures with our Guest versions, then boot like normal. :*/
Rusty Russellf938d2c2007-07-26 10:41:02 -070026
27/*
Rusty Russell07ad1572007-07-19 01:49:22 -070028 * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * This program is distributed in the hope that it will be useful, but
36 * WITHOUT ANY WARRANTY; without even the implied warranty of
37 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
38 * NON INFRINGEMENT. See the GNU General Public License for more
39 * details.
40 *
41 * You should have received a copy of the GNU General Public License
42 * along with this program; if not, write to the Free Software
43 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45#include <linux/kernel.h>
46#include <linux/start_kernel.h>
47#include <linux/string.h>
48#include <linux/console.h>
49#include <linux/screen_info.h>
50#include <linux/irq.h>
51#include <linux/interrupt.h>
Rusty Russelld7e28ff2007-07-19 01:49:23 -070052#include <linux/clocksource.h>
53#include <linux/clockchips.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070054#include <linux/lguest.h>
55#include <linux/lguest_launcher.h>
Rusty Russell19f15372007-10-22 11:24:21 +100056#include <linux/virtio_console.h>
Jeff Garzik4cfe6c32007-10-25 14:15:09 +100057#include <linux/pm.h>
Ingo Molnar7b6aa332009-02-17 13:58:15 +010058#include <asm/apic.h>
Harvey Harrisoncbc34972008-02-13 13:14:35 -080059#include <asm/lguest.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070060#include <asm/paravirt.h>
61#include <asm/param.h>
62#include <asm/page.h>
63#include <asm/pgtable.h>
64#include <asm/desc.h>
65#include <asm/setup.h>
66#include <asm/e820.h>
67#include <asm/mce.h>
68#include <asm/io.h>
Jes Sorensen625efab2007-10-22 11:03:28 +100069#include <asm/i387.h>
Rusty Russell2cb78782009-06-03 14:52:24 +093070#include <asm/stackprotector.h>
Balaji Raoec04b132007-12-28 14:26:24 +053071#include <asm/reboot.h> /* for struct machine_ops */
Rusty Russell07ad1572007-07-19 01:49:22 -070072
Rusty Russellb2b47c22007-07-26 10:41:02 -070073/*G:010 Welcome to the Guest!
74 *
75 * The Guest in our tale is a simple creature: identical to the Host but
76 * behaving in simplified but equivalent ways. In particular, the Guest is the
77 * same kernel as the Host (or at least, built from the same source code). :*/
78
Rusty Russell07ad1572007-07-19 01:49:22 -070079struct lguest_data lguest_data = {
80 .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
81 .noirq_start = (u32)lguest_noirq_start,
82 .noirq_end = (u32)lguest_noirq_end,
Rusty Russell47436aa2007-10-22 11:03:36 +100083 .kernel_address = PAGE_OFFSET,
Rusty Russell07ad1572007-07-19 01:49:22 -070084 .blocked_interrupts = { 1 }, /* Block timer interrupts */
Rusty Russellc18acd72007-10-22 11:03:35 +100085 .syscall_vec = SYSCALL_VECTOR,
Rusty Russell07ad1572007-07-19 01:49:22 -070086};
Rusty Russell07ad1572007-07-19 01:49:22 -070087
Rusty Russell633872b2007-11-05 21:55:57 +110088/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
Rusty Russellb2b47c22007-07-26 10:41:02 -070089 * ring buffer of stored hypercalls which the Host will run though next time we
90 * do a normal hypercall. Each entry in the ring has 4 slots for the hypercall
91 * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
92 * and 255 once the Host has finished with it.
93 *
94 * If we come around to a slot which hasn't been finished, then the table is
95 * full and we just make the hypercall directly. This has the nice side
96 * effect of causing the Host to run all the stored calls in the ring buffer
97 * which empties it for next time! */
Adrian Bunk9b56fdb2007-11-02 16:43:10 +010098static void async_hcall(unsigned long call, unsigned long arg1,
99 unsigned long arg2, unsigned long arg3)
Rusty Russell07ad1572007-07-19 01:49:22 -0700100{
101 /* Note: This code assumes we're uniprocessor. */
102 static unsigned int next_call;
103 unsigned long flags;
104
Rusty Russellb2b47c22007-07-26 10:41:02 -0700105 /* Disable interrupts if not already disabled: we don't want an
106 * interrupt handler making a hypercall while we're already doing
107 * one! */
Rusty Russell07ad1572007-07-19 01:49:22 -0700108 local_irq_save(flags);
109 if (lguest_data.hcall_status[next_call] != 0xFF) {
110 /* Table full, so do normal hcall which will flush table. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200111 kvm_hypercall3(call, arg1, arg2, arg3);
Rusty Russell07ad1572007-07-19 01:49:22 -0700112 } else {
Jes Sorensenb410e7b2007-10-22 11:03:31 +1000113 lguest_data.hcalls[next_call].arg0 = call;
114 lguest_data.hcalls[next_call].arg1 = arg1;
115 lguest_data.hcalls[next_call].arg2 = arg2;
116 lguest_data.hcalls[next_call].arg3 = arg3;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700117 /* Arguments must all be written before we mark it to go */
Rusty Russell07ad1572007-07-19 01:49:22 -0700118 wmb();
119 lguest_data.hcall_status[next_call] = 0;
120 if (++next_call == LHCALL_RING_SIZE)
121 next_call = 0;
122 }
123 local_irq_restore(flags);
124}
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100125
Rusty Russell633872b2007-11-05 21:55:57 +1100126/*G:035 Notice the lazy_hcall() above, rather than hcall(). This is our first
127 * real optimization trick!
128 *
129 * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
130 * them as a batch when lazy_mode is eventually turned off. Because hypercalls
131 * are reasonably expensive, batching them up makes sense. For example, a
132 * large munmap might update dozens of page table entries: that code calls
133 * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
134 * lguest_leave_lazy_mode().
135 *
136 * So, when we're in lazy mode, we call async_hcall() to store the call for
Rusty Russella6bd8e12008-03-28 11:05:53 -0500137 * future processing: */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200138static void lazy_hcall1(unsigned long call,
139 unsigned long arg1)
140{
141 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
142 kvm_hypercall1(call, arg1);
143 else
144 async_hcall(call, arg1, 0, 0);
145}
146
147static void lazy_hcall2(unsigned long call,
148 unsigned long arg1,
149 unsigned long arg2)
150{
151 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
152 kvm_hypercall2(call, arg1, arg2);
153 else
154 async_hcall(call, arg1, arg2, 0);
155}
156
157static void lazy_hcall3(unsigned long call,
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100158 unsigned long arg1,
159 unsigned long arg2,
160 unsigned long arg3)
161{
162 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200163 kvm_hypercall3(call, arg1, arg2, arg3);
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100164 else
165 async_hcall(call, arg1, arg2, arg3);
166}
Rusty Russell633872b2007-11-05 21:55:57 +1100167
168/* When lazy mode is turned off reset the per-cpu lazy mode variable and then
Rusty Russella6bd8e12008-03-28 11:05:53 -0500169 * issue the do-nothing hypercall to flush any stored calls. */
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -0800170static void lguest_leave_lazy_mmu_mode(void)
Rusty Russell633872b2007-11-05 21:55:57 +1100171{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200172 kvm_hypercall0(LHCALL_FLUSH_ASYNC);
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -0800173 paravirt_leave_lazy_mmu();
174}
175
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800176static void lguest_end_context_switch(struct task_struct *next)
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -0800177{
Rusty Russell633872b2007-11-05 21:55:57 +1100178 kvm_hypercall0(LHCALL_FLUSH_ASYNC);
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800179 paravirt_end_context_switch(next);
Rusty Russell633872b2007-11-05 21:55:57 +1100180}
Rusty Russell07ad1572007-07-19 01:49:22 -0700181
Rusty Russellb2b47c22007-07-26 10:41:02 -0700182/*G:033
Rusty Russelle1e72962007-10-25 15:02:50 +1000183 * After that diversion we return to our first native-instruction
184 * replacements: four functions for interrupt control.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700185 *
186 * The simplest way of implementing these would be to have "turn interrupts
187 * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
188 * these are by far the most commonly called functions of those we override.
189 *
190 * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
191 * which the Guest can update with a single instruction. The Host knows to
Rusty Russella6bd8e12008-03-28 11:05:53 -0500192 * check there before it tries to deliver an interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700193 */
194
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100195/* save_flags() is expected to return the processor state (ie. "flags"). The
196 * flags word contains all kind of stuff, but in practice Linux only cares
Rusty Russellb2b47c22007-07-26 10:41:02 -0700197 * about the interrupt flag. Our "save_flags()" just returns that. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700198static unsigned long save_fl(void)
199{
200 return lguest_data.irq_enabled;
201}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800202PV_CALLEE_SAVE_REGS_THUNK(save_fl);
Rusty Russell07ad1572007-07-19 01:49:22 -0700203
Rusty Russelle1e72962007-10-25 15:02:50 +1000204/* restore_flags() just sets the flags back to the value given. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700205static void restore_fl(unsigned long flags)
206{
Rusty Russell07ad1572007-07-19 01:49:22 -0700207 lguest_data.irq_enabled = flags;
Rusty Russella32a8812009-06-12 22:27:02 -0600208 mb();
209 /* Null hcall forces interrupt delivery now, if irq_pending is
210 * set to X86_EFLAGS_IF (ie. an interrupt is pending, and flags
211 * enables interrupts. */
212 if (flags & lguest_data.irq_pending)
213 kvm_hypercall0(LHCALL_SEND_INTERRUPTS);
Rusty Russell07ad1572007-07-19 01:49:22 -0700214}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800215PV_CALLEE_SAVE_REGS_THUNK(restore_fl);
Rusty Russell07ad1572007-07-19 01:49:22 -0700216
Rusty Russellb2b47c22007-07-26 10:41:02 -0700217/* Interrupts go off... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700218static void irq_disable(void)
219{
220 lguest_data.irq_enabled = 0;
221}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800222PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
Rusty Russell07ad1572007-07-19 01:49:22 -0700223
Rusty Russellb2b47c22007-07-26 10:41:02 -0700224/* Interrupts go on... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700225static void irq_enable(void)
226{
Rusty Russell07ad1572007-07-19 01:49:22 -0700227 lguest_data.irq_enabled = X86_EFLAGS_IF;
Rusty Russella32a8812009-06-12 22:27:02 -0600228 mb();
229 /* Null hcall forces interrupt delivery now. */
230 if (lguest_data.irq_pending)
231 kvm_hypercall0(LHCALL_SEND_INTERRUPTS);
232
Rusty Russell07ad1572007-07-19 01:49:22 -0700233}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800234PV_CALLEE_SAVE_REGS_THUNK(irq_enable);
235
Rusty Russellf56a3842007-07-26 10:41:05 -0700236/*:*/
237/*M:003 Note that we don't check for outstanding interrupts when we re-enable
238 * them (or when we unmask an interrupt). This seems to work for the moment,
239 * since interrupts are rare and we'll just get the interrupt on the next timer
Rusty Russella6bd8e12008-03-28 11:05:53 -0500240 * tick, but now we can run with CONFIG_NO_HZ, we should revisit this. One way
Rusty Russellf56a3842007-07-26 10:41:05 -0700241 * would be to put the "irq_enabled" field in a page by itself, and have the
242 * Host write-protect it when an interrupt comes in when irqs are disabled.
Rusty Russella6bd8e12008-03-28 11:05:53 -0500243 * There will then be a page fault as soon as interrupts are re-enabled.
244 *
245 * A better method is to implement soft interrupt disable generally for x86:
246 * instead of disabling interrupts, we set a flag. If an interrupt does come
247 * in, we then disable them for real. This is uncommon, so we could simply use
248 * a hypercall for interrupt control and not worry about efficiency. :*/
Rusty Russell07ad1572007-07-19 01:49:22 -0700249
Rusty Russellb2b47c22007-07-26 10:41:02 -0700250/*G:034
251 * The Interrupt Descriptor Table (IDT).
252 *
253 * The IDT tells the processor what to do when an interrupt comes in. Each
254 * entry in the table is a 64-bit descriptor: this holds the privilege level,
255 * address of the handler, and... well, who cares? The Guest just asks the
256 * Host to make the change anyway, because the Host controls the real IDT.
257 */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100258static void lguest_write_idt_entry(gate_desc *dt,
259 int entrynum, const gate_desc *g)
Rusty Russell07ad1572007-07-19 01:49:22 -0700260{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500261 /* The gate_desc structure is 8 bytes long: we hand it to the Host in
262 * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
263 * around like this; typesafety wasn't a big concern in Linux's early
264 * years. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100265 u32 *desc = (u32 *)g;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700266 /* Keep the local copy up to date. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100267 native_write_idt_entry(dt, entrynum, g);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700268 /* Tell Host about this new entry. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200269 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700270}
271
Rusty Russellb2b47c22007-07-26 10:41:02 -0700272/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
273 * time it is written, so we can simply loop through all entries and tell the
274 * Host about them. */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100275static void lguest_load_idt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700276{
277 unsigned int i;
278 struct desc_struct *idt = (void *)desc->address;
279
280 for (i = 0; i < (desc->size+1)/8; i++)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200281 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700282}
283
Rusty Russellb2b47c22007-07-26 10:41:02 -0700284/*
285 * The Global Descriptor Table.
286 *
287 * The Intel architecture defines another table, called the Global Descriptor
288 * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
289 * instruction, and then several other instructions refer to entries in the
290 * table. There are three entries which the Switcher needs, so the Host simply
291 * controls the entire thing and the Guest asks it to make changes using the
292 * LOAD_GDT hypercall.
293 *
Rusty Russella489f0b2009-04-19 23:14:00 -0600294 * This is the exactly like the IDT code.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700295 */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100296static void lguest_load_gdt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700297{
Rusty Russella489f0b2009-04-19 23:14:00 -0600298 unsigned int i;
299 struct desc_struct *gdt = (void *)desc->address;
300
301 for (i = 0; i < (desc->size+1)/8; i++)
302 kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700303}
304
Rusty Russellb2b47c22007-07-26 10:41:02 -0700305/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
306 * then tell the Host to reload the entire thing. This operation is so rare
307 * that this naive implementation is reasonable. */
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100308static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
309 const void *desc, int type)
Rusty Russell07ad1572007-07-19 01:49:22 -0700310{
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100311 native_write_gdt_entry(dt, entrynum, desc, type);
Rusty Russella489f0b2009-04-19 23:14:00 -0600312 /* Tell Host about this new entry. */
313 kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, entrynum,
314 dt[entrynum].a, dt[entrynum].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700315}
316
Rusty Russellb2b47c22007-07-26 10:41:02 -0700317/* OK, I lied. There are three "thread local storage" GDT entries which change
318 * on every context switch (these three entries are how glibc implements
319 * __thread variables). So we have a hypercall specifically for this case. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700320static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
321{
Rusty Russell0d027c02007-08-09 20:57:13 +1000322 /* There's one problem which normal hardware doesn't have: the Host
323 * can't handle us removing entries we're currently using. So we clear
324 * the GS register here: if it's needed it'll be reloaded anyway. */
Tejun Heoccbeed32009-02-09 22:17:40 +0900325 lazy_load_gs(0);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200326 lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
Rusty Russell07ad1572007-07-19 01:49:22 -0700327}
328
Rusty Russellb2b47c22007-07-26 10:41:02 -0700329/*G:038 That's enough excitement for now, back to ploughing through each of
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700330 * the different pv_ops structures (we're about 1/3 of the way through).
Rusty Russellb2b47c22007-07-26 10:41:02 -0700331 *
332 * This is the Local Descriptor Table, another weird Intel thingy. Linux only
333 * uses this for some strange applications like Wine. We don't do anything
334 * here, so they'll get an informative and friendly Segmentation Fault. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700335static void lguest_set_ldt(const void *addr, unsigned entries)
336{
337}
338
Rusty Russellb2b47c22007-07-26 10:41:02 -0700339/* This loads a GDT entry into the "Task Register": that entry points to a
340 * structure called the Task State Segment. Some comments scattered though the
341 * kernel code indicate that this used for task switching in ages past, along
342 * with blood sacrifice and astrology.
343 *
344 * Now there's nothing interesting in here that we don't get told elsewhere.
345 * But the native version uses the "ltr" instruction, which makes the Host
346 * complain to the Guest about a Segmentation Fault and it'll oops. So we
347 * override the native version with a do-nothing version. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700348static void lguest_load_tr_desc(void)
349{
350}
351
Rusty Russellb2b47c22007-07-26 10:41:02 -0700352/* The "cpuid" instruction is a way of querying both the CPU identity
353 * (manufacturer, model, etc) and its features. It was introduced before the
Rusty Russella6bd8e12008-03-28 11:05:53 -0500354 * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
355 * As you might imagine, after a decade and a half this treatment, it is now a
356 * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700357 *
358 * This instruction even it has its own Wikipedia entry. The Wikipedia entry
359 * has been translated into 4 languages. I am not making this up!
360 *
361 * We could get funky here and identify ourselves as "GenuineLguest", but
362 * instead we just use the real "cpuid" instruction. Then I pretty much turned
363 * off feature bits until the Guest booted. (Don't say that: you'll damage
364 * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
365 * hardly future proof.) Noone's listening! They don't like you anyway,
366 * parenthetic weirdo!
367 *
368 * Replacing the cpuid so we can turn features off is great for the kernel, but
369 * anyone (including userspace) can just use the raw "cpuid" instruction and
370 * the Host won't even notice since it isn't privileged. So we try not to get
371 * too worked up about it. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100372static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
373 unsigned int *cx, unsigned int *dx)
Rusty Russell07ad1572007-07-19 01:49:22 -0700374{
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100375 int function = *ax;
Rusty Russell07ad1572007-07-19 01:49:22 -0700376
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100377 native_cpuid(ax, bx, cx, dx);
Rusty Russell07ad1572007-07-19 01:49:22 -0700378 switch (function) {
379 case 1: /* Basic feature request. */
380 /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100381 *cx &= 0x00002201;
Rusty Russell3fabc552008-03-11 09:35:56 -0500382 /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */
383 *dx &= 0x07808111;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700384 /* The Host can do a nice optimization if it knows that the
385 * kernel mappings (addresses above 0xC0000000 or whatever
386 * PAGE_OFFSET is set to) haven't changed. But Linux calls
387 * flush_tlb_user() for both user and kernel mappings unless
388 * the Page Global Enable (PGE) feature bit is set. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100389 *dx |= 0x00002000;
Rusty Russellcbd88c82009-03-09 10:06:22 -0600390 /* We also lie, and say we're family id 5. 6 or greater
391 * leads to a rdmsr in early_init_intel which we can't handle.
392 * Family ID is returned as bits 8-12 in ax. */
393 *ax &= 0xFFFFF0FF;
394 *ax |= 0x00000500;
Rusty Russell07ad1572007-07-19 01:49:22 -0700395 break;
396 case 0x80000000:
397 /* Futureproof this a little: if they ask how much extended
Rusty Russellb2b47c22007-07-26 10:41:02 -0700398 * processor information there is, limit it to known fields. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100399 if (*ax > 0x80000008)
400 *ax = 0x80000008;
Rusty Russell07ad1572007-07-19 01:49:22 -0700401 break;
402 }
403}
404
Rusty Russellb2b47c22007-07-26 10:41:02 -0700405/* Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
406 * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
407 * it. The Host needs to know when the Guest wants to change them, so we have
408 * a whole series of functions like read_cr0() and write_cr0().
409 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000410 * We start with cr0. cr0 allows you to turn on and off all kinds of basic
Rusty Russellb2b47c22007-07-26 10:41:02 -0700411 * features, but Linux only really cares about one: the horrifically-named Task
412 * Switched (TS) bit at bit 3 (ie. 8)
413 *
414 * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
415 * the floating point unit is used. Which allows us to restore FPU state
416 * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
417 * name like "FPUTRAP bit" be a little less cryptic?
418 *
Rusty Russellad5173f2008-10-31 11:24:27 -0500419 * We store cr0 locally because the Host never changes it. The Guest sometimes
420 * wants to read it and we'd prefer not to bother the Host unnecessarily. */
421static unsigned long current_cr0;
Rusty Russell07ad1572007-07-19 01:49:22 -0700422static void lguest_write_cr0(unsigned long val)
423{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200424 lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
Rusty Russell07ad1572007-07-19 01:49:22 -0700425 current_cr0 = val;
426}
427
428static unsigned long lguest_read_cr0(void)
429{
430 return current_cr0;
431}
432
Rusty Russellb2b47c22007-07-26 10:41:02 -0700433/* Intel provided a special instruction to clear the TS bit for people too cool
434 * to use write_cr0() to do it. This "clts" instruction is faster, because all
435 * the vowels have been optimized out. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700436static void lguest_clts(void)
437{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200438 lazy_hcall1(LHCALL_TS, 0);
Rusty Russell25c47bb2007-10-25 14:09:53 +1000439 current_cr0 &= ~X86_CR0_TS;
Rusty Russell07ad1572007-07-19 01:49:22 -0700440}
441
Rusty Russelle1e72962007-10-25 15:02:50 +1000442/* cr2 is the virtual address of the last page fault, which the Guest only ever
Rusty Russellb2b47c22007-07-26 10:41:02 -0700443 * reads. The Host kindly writes this into our "struct lguest_data", so we
444 * just read it out of there. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700445static unsigned long lguest_read_cr2(void)
446{
447 return lguest_data.cr2;
448}
449
Rusty Russellad5173f2008-10-31 11:24:27 -0500450/* See lguest_set_pte() below. */
451static bool cr3_changed = false;
452
Rusty Russelle1e72962007-10-25 15:02:50 +1000453/* cr3 is the current toplevel pagetable page: the principle is the same as
Rusty Russellad5173f2008-10-31 11:24:27 -0500454 * cr0. Keep a local copy, and tell the Host when it changes. The only
455 * difference is that our local copy is in lguest_data because the Host needs
456 * to set it upon our initial hypercall. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700457static void lguest_write_cr3(unsigned long cr3)
458{
Rusty Russellad5173f2008-10-31 11:24:27 -0500459 lguest_data.pgdir = cr3;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200460 lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
Rusty Russellad5173f2008-10-31 11:24:27 -0500461 cr3_changed = true;
Rusty Russell07ad1572007-07-19 01:49:22 -0700462}
463
464static unsigned long lguest_read_cr3(void)
465{
Rusty Russellad5173f2008-10-31 11:24:27 -0500466 return lguest_data.pgdir;
Rusty Russell07ad1572007-07-19 01:49:22 -0700467}
468
Rusty Russelle1e72962007-10-25 15:02:50 +1000469/* cr4 is used to enable and disable PGE, but we don't care. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700470static unsigned long lguest_read_cr4(void)
471{
472 return 0;
473}
474
475static void lguest_write_cr4(unsigned long val)
476{
477}
478
Rusty Russellb2b47c22007-07-26 10:41:02 -0700479/*
480 * Page Table Handling.
481 *
482 * Now would be a good time to take a rest and grab a coffee or similarly
483 * relaxing stimulant. The easy parts are behind us, and the trek gradually
484 * winds uphill from here.
485 *
486 * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
487 * maps virtual addresses to physical addresses using "page tables". We could
488 * use one huge index of 1 million entries: each address is 4 bytes, so that's
489 * 1024 pages just to hold the page tables. But since most virtual addresses
Rusty Russelle1e72962007-10-25 15:02:50 +1000490 * are unused, we use a two level index which saves space. The cr3 register
Rusty Russellb2b47c22007-07-26 10:41:02 -0700491 * contains the physical address of the top level "page directory" page, which
492 * contains physical addresses of up to 1024 second-level pages. Each of these
493 * second level pages contains up to 1024 physical addresses of actual pages,
494 * or Page Table Entries (PTEs).
495 *
496 * Here's a diagram, where arrows indicate physical addresses:
497 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000498 * cr3 ---> +---------+
Rusty Russellb2b47c22007-07-26 10:41:02 -0700499 * | --------->+---------+
500 * | | | PADDR1 |
501 * Top-level | | PADDR2 |
502 * (PMD) page | | |
503 * | | Lower-level |
504 * | | (PTE) page |
505 * | | | |
506 * .... ....
507 *
508 * So to convert a virtual address to a physical address, we look up the top
509 * level, which points us to the second level, which gives us the physical
510 * address of that page. If the top level entry was not present, or the second
511 * level entry was not present, then the virtual address is invalid (we
512 * say "the page was not mapped").
513 *
514 * Put another way, a 32-bit virtual address is divided up like so:
515 *
516 * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
517 * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
518 * Index into top Index into second Offset within page
519 * page directory page pagetable page
520 *
521 * The kernel spends a lot of time changing both the top-level page directory
522 * and lower-level pagetable pages. The Guest doesn't know physical addresses,
523 * so while it maintains these page tables exactly like normal, it also needs
524 * to keep the Host informed whenever it makes a change: the Host will create
525 * the real page tables based on the Guests'.
526 */
527
528/* The Guest calls this to set a second-level entry (pte), ie. to map a page
529 * into a process' address space. We set the entry then tell the Host the
530 * toplevel and address this corresponds to. The Guest uses one pagetable per
531 * process, so we need to tell the Host which one we're changing (mm->pgd). */
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600532static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
533 pte_t *ptep)
534{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200535 lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600536}
537
Rusty Russell07ad1572007-07-19 01:49:22 -0700538static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
539 pte_t *ptep, pte_t pteval)
540{
541 *ptep = pteval;
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600542 lguest_pte_update(mm, addr, ptep);
Rusty Russell07ad1572007-07-19 01:49:22 -0700543}
544
Rusty Russellb2b47c22007-07-26 10:41:02 -0700545/* The Guest calls this to set a top-level entry. Again, we set the entry then
546 * tell the Host which top-level page we changed, and the index of the entry we
547 * changed. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700548static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
549{
550 *pmdp = pmdval;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200551 lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
552 (__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
Rusty Russell07ad1572007-07-19 01:49:22 -0700553}
554
Rusty Russellb2b47c22007-07-26 10:41:02 -0700555/* There are a couple of legacy places where the kernel sets a PTE, but we
556 * don't know the top level any more. This is useless for us, since we don't
557 * know which pagetable is changing or what address, so we just tell the Host
558 * to forget all of them. Fortunately, this is very rare.
559 *
560 * ... except in early boot when the kernel sets up the initial pagetables,
Rusty Russellad5173f2008-10-31 11:24:27 -0500561 * which makes booting astonishingly slow: 1.83 seconds! So we don't even tell
562 * the Host anything changed until we've done the first page table switch,
563 * which brings boot back to 0.25 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700564static void lguest_set_pte(pte_t *ptep, pte_t pteval)
565{
566 *ptep = pteval;
Rusty Russellad5173f2008-10-31 11:24:27 -0500567 if (cr3_changed)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200568 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700569}
570
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700571/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
Rusty Russellb2b47c22007-07-26 10:41:02 -0700572 * native page table operations. On native hardware you can set a new page
573 * table entry whenever you want, but if you want to remove one you have to do
574 * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
575 *
576 * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
577 * called when a valid entry is written, not when it's removed (ie. marked not
578 * present). Instead, this is where we come when the Guest wants to remove a
579 * page table entry: we tell the Host to set that entry to 0 (ie. the present
580 * bit is zero). */
Rusty Russell07ad1572007-07-19 01:49:22 -0700581static void lguest_flush_tlb_single(unsigned long addr)
582{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700583 /* Simply set it to zero: if it was not, it will fault back in. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200584 lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700585}
586
Rusty Russellb2b47c22007-07-26 10:41:02 -0700587/* This is what happens after the Guest has removed a large number of entries.
588 * This tells the Host that any of the page table entries for userspace might
589 * have changed, ie. virtual addresses below PAGE_OFFSET. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700590static void lguest_flush_tlb_user(void)
591{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200592 lazy_hcall1(LHCALL_FLUSH_TLB, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700593}
594
Rusty Russellb2b47c22007-07-26 10:41:02 -0700595/* This is called when the kernel page tables have changed. That's not very
596 * common (unless the Guest is using highmem, which makes the Guest extremely
597 * slow), so it's worth separating this from the user flushing above. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700598static void lguest_flush_tlb_kernel(void)
599{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200600 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700601}
602
Rusty Russellb2b47c22007-07-26 10:41:02 -0700603/*
604 * The Unadvanced Programmable Interrupt Controller.
605 *
606 * This is an attempt to implement the simplest possible interrupt controller.
607 * I spent some time looking though routines like set_irq_chip_and_handler,
608 * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
609 * I *think* this is as simple as it gets.
610 *
611 * We can tell the Host what interrupts we want blocked ready for using the
612 * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
613 * simple as setting a bit. We don't actually "ack" interrupts as such, we
614 * just mask and unmask them. I wonder if we should be cleverer?
615 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700616static void disable_lguest_irq(unsigned int irq)
617{
618 set_bit(irq, lguest_data.blocked_interrupts);
619}
620
621static void enable_lguest_irq(unsigned int irq)
622{
623 clear_bit(irq, lguest_data.blocked_interrupts);
Rusty Russell07ad1572007-07-19 01:49:22 -0700624}
625
Rusty Russellb2b47c22007-07-26 10:41:02 -0700626/* This structure describes the lguest IRQ controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700627static struct irq_chip lguest_irq_controller = {
628 .name = "lguest",
629 .mask = disable_lguest_irq,
630 .mask_ack = disable_lguest_irq,
631 .unmask = enable_lguest_irq,
632};
633
Rusty Russellb2b47c22007-07-26 10:41:02 -0700634/* This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
635 * interrupt (except 128, which is used for system calls), and then tells the
636 * Linux infrastructure that each interrupt is controlled by our level-based
637 * lguest interrupt controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700638static void __init lguest_init_IRQ(void)
639{
640 unsigned int i;
641
Rusty Russell10283752009-06-12 22:26:59 -0600642 for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
Rusty Russell526e5ab2008-10-31 11:24:27 -0500643 /* Some systems map "vectors" to interrupts weirdly. Lguest has
644 * a straightforward 1 to 1 mapping, so force that here. */
Rusty Russell10283752009-06-12 22:26:59 -0600645 __get_cpu_var(vector_irq)[i] = i - FIRST_EXTERNAL_VECTOR;
646 if (i != SYSCALL_VECTOR)
647 set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700648 }
Rusty Russellb2b47c22007-07-26 10:41:02 -0700649 /* This call is required to set up for 4k stacks, where we have
650 * separate stacks for hard and soft interrupts. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700651 irq_ctx_init(smp_processor_id());
652}
653
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600654void lguest_setup_irq(unsigned int irq)
655{
Yinghai Lu85ac16d2009-04-27 18:00:38 -0700656 irq_to_desc_alloc_node(irq, 0);
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600657 set_irq_chip_and_handler_name(irq, &lguest_irq_controller,
658 handle_level_irq, "level");
659}
660
Rusty Russellb2b47c22007-07-26 10:41:02 -0700661/*
662 * Time.
663 *
664 * It would be far better for everyone if the Guest had its own clock, but
Rusty Russell6c8dca52007-07-27 13:42:52 +1000665 * until then the Host gives us the time on every interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700666 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700667static unsigned long lguest_get_wallclock(void)
668{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000669 return lguest_data.time.tv_sec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700670}
671
Rusty Russella6bd8e12008-03-28 11:05:53 -0500672/* The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
673 * what speed it runs at, or 0 if it's unusable as a reliable clock source.
674 * This matches what we want here: if we return 0 from this function, the x86
675 * TSC clock will give up and not register itself. */
Alok Katariae93ef942008-07-01 11:43:36 -0700676static unsigned long lguest_tsc_khz(void)
Rusty Russell3fabc552008-03-11 09:35:56 -0500677{
678 return lguest_data.tsc_khz;
679}
680
Rusty Russella6bd8e12008-03-28 11:05:53 -0500681/* If we can't use the TSC, the kernel falls back to our lower-priority
682 * "lguest_clock", where we read the time value given to us by the Host. */
Magnus Damm8e196082009-04-21 12:24:00 -0700683static cycle_t lguest_clock_read(struct clocksource *cs)
Rusty Russell07ad1572007-07-19 01:49:22 -0700684{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000685 unsigned long sec, nsec;
686
Rusty Russell3fabc552008-03-11 09:35:56 -0500687 /* Since the time is in two parts (seconds and nanoseconds), we risk
688 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
689 * and getting 99 and 0. As Linux tends to come apart under the stress
690 * of time travel, we must be careful: */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000691 do {
692 /* First we read the seconds part. */
693 sec = lguest_data.time.tv_sec;
694 /* This read memory barrier tells the compiler and the CPU that
695 * this can't be reordered: we have to complete the above
696 * before going on. */
697 rmb();
698 /* Now we read the nanoseconds part. */
699 nsec = lguest_data.time.tv_nsec;
700 /* Make sure we've done that. */
701 rmb();
702 /* Now if the seconds part has changed, try again. */
703 } while (unlikely(lguest_data.time.tv_sec != sec));
704
Rusty Russell3fabc552008-03-11 09:35:56 -0500705 /* Our lguest clock is in real nanoseconds. */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000706 return sec*1000000000ULL + nsec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700707}
708
Rusty Russell3fabc552008-03-11 09:35:56 -0500709/* This is the fallback clocksource: lower priority than the TSC clocksource. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700710static struct clocksource lguest_clock = {
711 .name = "lguest",
Rusty Russell3fabc552008-03-11 09:35:56 -0500712 .rating = 200,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700713 .read = lguest_clock_read,
Rusty Russell6c8dca52007-07-27 13:42:52 +1000714 .mask = CLOCKSOURCE_MASK(64),
Rusty Russell37250092007-08-09 20:52:35 +1000715 .mult = 1 << 22,
716 .shift = 22,
Tony Breeds05aa0262007-10-22 10:56:25 +1000717 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700718};
719
720/* We also need a "struct clock_event_device": Linux asks us to set it to go
721 * off some time in the future. Actually, James Morris figured all this out, I
722 * just applied the patch. */
723static int lguest_clockevent_set_next_event(unsigned long delta,
724 struct clock_event_device *evt)
725{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500726 /* FIXME: I don't think this can ever happen, but James tells me he had
727 * to put this code in. Maybe we should remove it now. Anyone? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700728 if (delta < LG_CLOCK_MIN_DELTA) {
729 if (printk_ratelimit())
730 printk(KERN_DEBUG "%s: small delta %lu ns\n",
Harvey Harrison77bf90e2008-03-03 11:37:23 -0800731 __func__, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700732 return -ETIME;
733 }
Rusty Russella6bd8e12008-03-28 11:05:53 -0500734
735 /* Please wake us this far in the future. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200736 kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700737 return 0;
738}
739
740static void lguest_clockevent_set_mode(enum clock_event_mode mode,
741 struct clock_event_device *evt)
742{
743 switch (mode) {
744 case CLOCK_EVT_MODE_UNUSED:
745 case CLOCK_EVT_MODE_SHUTDOWN:
746 /* A 0 argument shuts the clock down. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200747 kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700748 break;
749 case CLOCK_EVT_MODE_ONESHOT:
750 /* This is what we expect. */
751 break;
752 case CLOCK_EVT_MODE_PERIODIC:
753 BUG();
Thomas Gleixner18de5bc2007-07-21 04:37:34 -0700754 case CLOCK_EVT_MODE_RESUME:
755 break;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700756 }
757}
758
759/* This describes our primitive timer chip. */
760static struct clock_event_device lguest_clockevent = {
761 .name = "lguest",
762 .features = CLOCK_EVT_FEAT_ONESHOT,
763 .set_next_event = lguest_clockevent_set_next_event,
764 .set_mode = lguest_clockevent_set_mode,
765 .rating = INT_MAX,
766 .mult = 1,
767 .shift = 0,
768 .min_delta_ns = LG_CLOCK_MIN_DELTA,
769 .max_delta_ns = LG_CLOCK_MAX_DELTA,
770};
771
772/* This is the Guest timer interrupt handler (hardware interrupt 0). We just
773 * call the clockevent infrastructure and it does whatever needs doing. */
774static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
775{
776 unsigned long flags;
777
778 /* Don't interrupt us while this is running. */
779 local_irq_save(flags);
780 lguest_clockevent.event_handler(&lguest_clockevent);
781 local_irq_restore(flags);
782}
783
Rusty Russellb2b47c22007-07-26 10:41:02 -0700784/* At some point in the boot process, we get asked to set up our timing
785 * infrastructure. The kernel doesn't expect timer interrupts before this, but
786 * we cleverly initialized the "blocked_interrupts" field of "struct
787 * lguest_data" so that timer interrupts were blocked until now. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700788static void lguest_time_init(void)
789{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700790 /* Set up the timer interrupt (0) to go to our simple timer routine */
Rusty Russell07ad1572007-07-19 01:49:22 -0700791 set_irq_handler(0, lguest_time_irq);
Rusty Russell07ad1572007-07-19 01:49:22 -0700792
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700793 clocksource_register(&lguest_clock);
794
Rusty Russellb2b47c22007-07-26 10:41:02 -0700795 /* We can't set cpumask in the initializer: damn C limitations! Set it
796 * here and register our timer device. */
Rusty Russell320ab2b2008-12-13 21:20:26 +1030797 lguest_clockevent.cpumask = cpumask_of(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700798 clockevents_register_device(&lguest_clockevent);
799
Rusty Russellb2b47c22007-07-26 10:41:02 -0700800 /* Finally, we unblock the timer interrupt. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700801 enable_lguest_irq(0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700802}
803
Rusty Russellb2b47c22007-07-26 10:41:02 -0700804/*
805 * Miscellaneous bits and pieces.
806 *
807 * Here is an oddball collection of functions which the Guest needs for things
808 * to work. They're pretty simple.
809 */
810
Rusty Russelle1e72962007-10-25 15:02:50 +1000811/* The Guest needs to tell the Host what stack it expects traps to use. For
Rusty Russellb2b47c22007-07-26 10:41:02 -0700812 * native hardware, this is part of the Task State Segment mentioned above in
813 * lguest_load_tr_desc(), but to help hypervisors there's this special call.
814 *
815 * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
816 * segment), the privilege level (we're privilege level 1, the Host is 0 and
817 * will not tolerate us trying to use that), the stack pointer, and the number
818 * of pages in the stack. */
H. Peter Anvinfaca6222008-01-30 13:31:02 +0100819static void lguest_load_sp0(struct tss_struct *tss,
Rusty Russella6bd8e12008-03-28 11:05:53 -0500820 struct thread_struct *thread)
Rusty Russell07ad1572007-07-19 01:49:22 -0700821{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200822 lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
823 THREAD_SIZE / PAGE_SIZE);
Rusty Russell07ad1572007-07-19 01:49:22 -0700824}
825
Rusty Russellb2b47c22007-07-26 10:41:02 -0700826/* Let's just say, I wouldn't do debugging under a Guest. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700827static void lguest_set_debugreg(int regno, unsigned long value)
828{
829 /* FIXME: Implement */
830}
831
Rusty Russellb2b47c22007-07-26 10:41:02 -0700832/* There are times when the kernel wants to make sure that no memory writes are
833 * caught in the cache (that they've all reached real hardware devices). This
834 * doesn't matter for the Guest which has virtual hardware.
835 *
836 * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
837 * (clflush) instruction is available and the kernel uses that. Otherwise, it
838 * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
839 * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
840 * ignore clflush, but replace wbinvd.
841 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700842static void lguest_wbinvd(void)
843{
844}
845
Rusty Russellb2b47c22007-07-26 10:41:02 -0700846/* If the Guest expects to have an Advanced Programmable Interrupt Controller,
847 * we play dumb by ignoring writes and returning 0 for reads. So it's no
848 * longer Programmable nor Controlling anything, and I don't think 8 lines of
849 * code qualifies for Advanced. It will also never interrupt anything. It
850 * does, however, allow us to get through the Linux boot code. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700851#ifdef CONFIG_X86_LOCAL_APIC
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700852static void lguest_apic_write(u32 reg, u32 v)
Rusty Russell07ad1572007-07-19 01:49:22 -0700853{
854}
855
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700856static u32 lguest_apic_read(u32 reg)
Rusty Russell07ad1572007-07-19 01:49:22 -0700857{
858 return 0;
859}
Suresh Siddha511d9d32008-07-14 09:49:14 -0700860
861static u64 lguest_apic_icr_read(void)
862{
863 return 0;
864}
865
866static void lguest_apic_icr_write(u32 low, u32 id)
867{
868 /* Warn to see if there's any stray references */
869 WARN_ON(1);
870}
871
872static void lguest_apic_wait_icr_idle(void)
873{
874 return;
875}
876
877static u32 lguest_apic_safe_wait_icr_idle(void)
878{
879 return 0;
880}
881
Yinghai Luc1eeb2d2009-02-16 23:02:14 -0800882static void set_lguest_basic_apic_ops(void)
883{
884 apic->read = lguest_apic_read;
885 apic->write = lguest_apic_write;
886 apic->icr_read = lguest_apic_icr_read;
887 apic->icr_write = lguest_apic_icr_write;
888 apic->wait_icr_idle = lguest_apic_wait_icr_idle;
889 apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
Suresh Siddha511d9d32008-07-14 09:49:14 -0700890};
Rusty Russell07ad1572007-07-19 01:49:22 -0700891#endif
892
Rusty Russellb2b47c22007-07-26 10:41:02 -0700893/* STOP! Until an interrupt comes in. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700894static void lguest_safe_halt(void)
895{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200896 kvm_hypercall0(LHCALL_HALT);
Rusty Russell07ad1572007-07-19 01:49:22 -0700897}
898
Rusty Russella6bd8e12008-03-28 11:05:53 -0500899/* The SHUTDOWN hypercall takes a string to describe what's happening, and
900 * an argument which says whether this to restart (reboot) the Guest or not.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700901 *
902 * Note that the Host always prefers that the Guest speak in physical addresses
903 * rather than virtual addresses, so we use __pa() here. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700904static void lguest_power_off(void)
905{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200906 kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
907 LGUEST_SHUTDOWN_POWEROFF);
Rusty Russell07ad1572007-07-19 01:49:22 -0700908}
909
Rusty Russellb2b47c22007-07-26 10:41:02 -0700910/*
911 * Panicing.
912 *
913 * Don't. But if you did, this is what happens.
914 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700915static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
916{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200917 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700918 /* The hcall won't return, but to keep gcc happy, we're "done". */
Rusty Russell07ad1572007-07-19 01:49:22 -0700919 return NOTIFY_DONE;
920}
921
922static struct notifier_block paniced = {
923 .notifier_call = lguest_panic
924};
925
Rusty Russellb2b47c22007-07-26 10:41:02 -0700926/* Setting up memory is fairly easy. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700927static __init char *lguest_memory_setup(void)
928{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500929 /* We do this here and not earlier because lockcheck used to barf if we
930 * did it before start_kernel(). I think we fixed that, so it'd be
931 * nice to move it back to lguest_init. Patch welcome... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700932 atomic_notifier_chain_register(&panic_notifier_list, &paniced);
933
Rusty Russellb2b47c22007-07-26 10:41:02 -0700934 /* The Linux bootloader header contains an "e820" memory map: the
935 * Launcher populated the first entry with our memory limit. */
Yinghai Lud0be6bd2008-06-15 18:58:51 -0700936 e820_add_region(boot_params.e820_map[0].addr,
H. Peter Anvin30c82642007-10-15 17:13:22 -0700937 boot_params.e820_map[0].size,
938 boot_params.e820_map[0].type);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700939
940 /* This string is for the boot messages. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700941 return "LGUEST";
942}
943
Rusty Russelle1e72962007-10-25 15:02:50 +1000944/* We will eventually use the virtio console device to produce console output,
945 * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
946 * console output. */
Rusty Russell19f15372007-10-22 11:24:21 +1000947static __init int early_put_chars(u32 vtermno, const char *buf, int count)
948{
949 char scratch[17];
950 unsigned int len = count;
951
Rusty Russelle1e72962007-10-25 15:02:50 +1000952 /* We use a nul-terminated string, so we have to make a copy. Icky,
953 * huh? */
Rusty Russell19f15372007-10-22 11:24:21 +1000954 if (len > sizeof(scratch) - 1)
955 len = sizeof(scratch) - 1;
956 scratch[len] = '\0';
957 memcpy(scratch, buf, len);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200958 kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
Rusty Russell19f15372007-10-22 11:24:21 +1000959
960 /* This routine returns the number of bytes actually written. */
961 return len;
962}
963
Rusty Russella6bd8e12008-03-28 11:05:53 -0500964/* Rebooting also tells the Host we're finished, but the RESTART flag tells the
965 * Launcher to reboot us. */
966static void lguest_restart(char *reason)
967{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200968 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
Rusty Russella6bd8e12008-03-28 11:05:53 -0500969}
970
Rusty Russellb2b47c22007-07-26 10:41:02 -0700971/*G:050
972 * Patching (Powerfully Placating Performance Pedants)
973 *
Rusty Russella6bd8e12008-03-28 11:05:53 -0500974 * We have already seen that pv_ops structures let us replace simple native
975 * instructions with calls to the appropriate back end all throughout the
976 * kernel. This allows the same kernel to run as a Guest and as a native
Rusty Russellb2b47c22007-07-26 10:41:02 -0700977 * kernel, but it's slow because of all the indirect branches.
978 *
979 * Remember that David Wheeler quote about "Any problem in computer science can
980 * be solved with another layer of indirection"? The rest of that quote is
981 * "... But that usually will create another problem." This is the first of
982 * those problems.
983 *
984 * Our current solution is to allow the paravirt back end to optionally patch
985 * over the indirect calls to replace them with something more efficient. We
Rusty Russella32a8812009-06-12 22:27:02 -0600986 * patch two of the simplest of the most commonly called functions: disable
987 * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
988 * into: the Guest versions of these operations are small enough that we can
989 * fit comfortably.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700990 *
991 * First we need assembly templates of each of the patchable Guest operations,
Atsushi SAKAI72410af2009-01-16 20:39:14 +0900992 * and these are in i386_head.S. */
Rusty Russellb2b47c22007-07-26 10:41:02 -0700993
994/*G:060 We construct a table from the assembler templates: */
Rusty Russell07ad1572007-07-19 01:49:22 -0700995static const struct lguest_insns
996{
997 const char *start, *end;
998} lguest_insns[] = {
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700999 [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001000 [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
Rusty Russell07ad1572007-07-19 01:49:22 -07001001};
Rusty Russellb2b47c22007-07-26 10:41:02 -07001002
1003/* Now our patch routine is fairly simple (based on the native one in
1004 * paravirt.c). If we have a replacement, we copy it in and return how much of
1005 * the available space we used. */
Andi Kleenab144f52007-08-10 22:31:03 +02001006static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
1007 unsigned long addr, unsigned len)
Rusty Russell07ad1572007-07-19 01:49:22 -07001008{
1009 unsigned int insn_len;
1010
Rusty Russellb2b47c22007-07-26 10:41:02 -07001011 /* Don't do anything special if we don't have a replacement */
Rusty Russell07ad1572007-07-19 01:49:22 -07001012 if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
Andi Kleenab144f52007-08-10 22:31:03 +02001013 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001014
1015 insn_len = lguest_insns[type].end - lguest_insns[type].start;
1016
Rusty Russellb2b47c22007-07-26 10:41:02 -07001017 /* Similarly if we can't fit replacement (shouldn't happen, but let's
1018 * be thorough). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001019 if (len < insn_len)
Andi Kleenab144f52007-08-10 22:31:03 +02001020 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001021
Rusty Russellb2b47c22007-07-26 10:41:02 -07001022 /* Copy in our instructions. */
Andi Kleenab144f52007-08-10 22:31:03 +02001023 memcpy(ibuf, lguest_insns[type].start, insn_len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001024 return insn_len;
1025}
1026
Rusty Russella6bd8e12008-03-28 11:05:53 -05001027/*G:030 Once we get to lguest_init(), we know we're a Guest. The various
1028 * pv_ops structures in the kernel provide points for (almost) every routine we
1029 * have to override to avoid privileged instructions. */
Rusty Russell814a0e52007-10-22 11:29:44 +10001030__init void lguest_init(void)
Rusty Russell07ad1572007-07-19 01:49:22 -07001031{
Rusty Russellb2b47c22007-07-26 10:41:02 -07001032 /* We're under lguest, paravirt is enabled, and we're running at
1033 * privilege level 1, not 0 as normal. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001034 pv_info.name = "lguest";
1035 pv_info.paravirt_enabled = 1;
1036 pv_info.kernel_rpl = 1;
Rusty Russell07ad1572007-07-19 01:49:22 -07001037
Rusty Russellb2b47c22007-07-26 10:41:02 -07001038 /* We set up all the lguest overrides for sensitive operations. These
1039 * are detailed with the operations themselves. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001040
1041 /* interrupt-related operations */
1042 pv_irq_ops.init_IRQ = lguest_init_IRQ;
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -08001043 pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
1044 pv_irq_ops.restore_fl = PV_CALLEE_SAVE(restore_fl);
1045 pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
1046 pv_irq_ops.irq_enable = PV_CALLEE_SAVE(irq_enable);
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001047 pv_irq_ops.safe_halt = lguest_safe_halt;
1048
1049 /* init-time operations */
1050 pv_init_ops.memory_setup = lguest_memory_setup;
1051 pv_init_ops.patch = lguest_patch;
1052
1053 /* Intercepts of various cpu instructions */
1054 pv_cpu_ops.load_gdt = lguest_load_gdt;
1055 pv_cpu_ops.cpuid = lguest_cpuid;
1056 pv_cpu_ops.load_idt = lguest_load_idt;
1057 pv_cpu_ops.iret = lguest_iret;
H. Peter Anvinfaca6222008-01-30 13:31:02 +01001058 pv_cpu_ops.load_sp0 = lguest_load_sp0;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001059 pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
1060 pv_cpu_ops.set_ldt = lguest_set_ldt;
1061 pv_cpu_ops.load_tls = lguest_load_tls;
1062 pv_cpu_ops.set_debugreg = lguest_set_debugreg;
1063 pv_cpu_ops.clts = lguest_clts;
1064 pv_cpu_ops.read_cr0 = lguest_read_cr0;
1065 pv_cpu_ops.write_cr0 = lguest_write_cr0;
1066 pv_cpu_ops.read_cr4 = lguest_read_cr4;
1067 pv_cpu_ops.write_cr4 = lguest_write_cr4;
1068 pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
1069 pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
1070 pv_cpu_ops.wbinvd = lguest_wbinvd;
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -08001071 pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
1072 pv_cpu_ops.end_context_switch = lguest_end_context_switch;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001073
1074 /* pagetable management */
1075 pv_mmu_ops.write_cr3 = lguest_write_cr3;
1076 pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
1077 pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
1078 pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
1079 pv_mmu_ops.set_pte = lguest_set_pte;
1080 pv_mmu_ops.set_pte_at = lguest_set_pte_at;
1081 pv_mmu_ops.set_pmd = lguest_set_pmd;
1082 pv_mmu_ops.read_cr2 = lguest_read_cr2;
1083 pv_mmu_ops.read_cr3 = lguest_read_cr3;
Jeremy Fitzhardinge8965c1c2007-10-16 11:51:29 -07001084 pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -08001085 pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
Rusty Russellb7ff99e2009-03-30 21:55:23 -06001086 pv_mmu_ops.pte_update = lguest_pte_update;
1087 pv_mmu_ops.pte_update_defer = lguest_pte_update;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001088
Rusty Russell07ad1572007-07-19 01:49:22 -07001089#ifdef CONFIG_X86_LOCAL_APIC
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001090 /* apic read/write intercepts */
Yinghai Luc1eeb2d2009-02-16 23:02:14 -08001091 set_lguest_basic_apic_ops();
Rusty Russell07ad1572007-07-19 01:49:22 -07001092#endif
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001093
1094 /* time operations */
1095 pv_time_ops.get_wallclock = lguest_get_wallclock;
1096 pv_time_ops.time_init = lguest_time_init;
Alok Katariae93ef942008-07-01 11:43:36 -07001097 pv_time_ops.get_tsc_khz = lguest_tsc_khz;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001098
Rusty Russellb2b47c22007-07-26 10:41:02 -07001099 /* Now is a good time to look at the implementations of these functions
1100 * before returning to the rest of lguest_init(). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001101
Rusty Russellb2b47c22007-07-26 10:41:02 -07001102 /*G:070 Now we've seen all the paravirt_ops, we return to
1103 * lguest_init() where the rest of the fairly chaotic boot setup
Rusty Russell47436aa2007-10-22 11:03:36 +10001104 * occurs. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001105
Rusty Russell2cb78782009-06-03 14:52:24 +09301106 /* The stack protector is a weird thing where gcc places a canary
1107 * value on the stack and then checks it on return. This file is
1108 * compiled with -fno-stack-protector it, so we got this far without
1109 * problems. The value of the canary is kept at offset 20 from the
1110 * %gs register, so we need to set that up before calling C functions
1111 * in other files. */
1112 setup_stack_canary_segment(0);
1113 /* We could just call load_stack_canary_segment(), but we might as
1114 * call switch_to_new_gdt() which loads the whole table and sets up
1115 * the per-cpu segment descriptor register %fs as well. */
1116 switch_to_new_gdt(0);
1117
Rusty Russell5d006d82008-07-29 09:58:29 -05001118 /* As described in head_32.S, we map the first 128M of memory. */
1119 max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
1120
Rusty Russella6bd8e12008-03-28 11:05:53 -05001121 /* The Host<->Guest Switcher lives at the top of our address space, and
1122 * the Host told us how big it is when we made LGUEST_INIT hypercall:
1123 * it put the answer in lguest_data.reserve_mem */
Rusty Russell07ad1572007-07-19 01:49:22 -07001124 reserve_top_address(lguest_data.reserve_mem);
1125
Rusty Russellb2b47c22007-07-26 10:41:02 -07001126 /* If we don't initialize the lock dependency checker now, it crashes
1127 * paravirt_disable_iospace. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001128 lockdep_init();
1129
Rusty Russellb2b47c22007-07-26 10:41:02 -07001130 /* The IDE code spends about 3 seconds probing for disks: if we reserve
1131 * all the I/O ports up front it can't get them and so doesn't probe.
1132 * Other device drivers are similar (but less severe). This cuts the
1133 * kernel boot time on my machine from 4.1 seconds to 0.45 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001134 paravirt_disable_iospace();
1135
Rusty Russellb2b47c22007-07-26 10:41:02 -07001136 /* This is messy CPU setup stuff which the native boot code does before
1137 * start_kernel, so we have to do, too: */
Rusty Russell07ad1572007-07-19 01:49:22 -07001138 cpu_detect(&new_cpu_data);
1139 /* head.S usually sets up the first capability word, so do it here. */
1140 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1141
1142 /* Math is always hard! */
1143 new_cpu_data.hard_math = 1;
1144
Rusty Russella6bd8e12008-03-28 11:05:53 -05001145 /* We don't have features. We have puppies! Puppies! */
Rusty Russell07ad1572007-07-19 01:49:22 -07001146#ifdef CONFIG_X86_MCE
1147 mce_disabled = 1;
1148#endif
Rusty Russell07ad1572007-07-19 01:49:22 -07001149#ifdef CONFIG_ACPI
1150 acpi_disabled = 1;
1151 acpi_ht = 0;
1152#endif
1153
Atsushi SAKAI72410af2009-01-16 20:39:14 +09001154 /* We set the preferred console to "hvc". This is the "hypervisor
Rusty Russellb2b47c22007-07-26 10:41:02 -07001155 * virtual console" driver written by the PowerPC people, which we also
1156 * adapted for lguest's use. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001157 add_preferred_console("hvc", 0, NULL);
1158
Rusty Russell19f15372007-10-22 11:24:21 +10001159 /* Register our very early console. */
1160 virtio_cons_early_init(early_put_chars);
1161
Rusty Russellb2b47c22007-07-26 10:41:02 -07001162 /* Last of all, we set the power management poweroff hook to point to
Rusty Russella6bd8e12008-03-28 11:05:53 -05001163 * the Guest routine to power off, and the reboot hook to our restart
1164 * routine. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001165 pm_power_off = lguest_power_off;
Balaji Raoec04b132007-12-28 14:26:24 +05301166 machine_ops.restart = lguest_restart;
Rusty Russella6bd8e12008-03-28 11:05:53 -05001167
Yinghai Luf0d43102008-05-29 12:56:36 -07001168 /* Now we're set up, call i386_start_kernel() in head32.c and we proceed
Rusty Russellb2b47c22007-07-26 10:41:02 -07001169 * to boot as normal. It never returns. */
Yinghai Luf0d43102008-05-29 12:56:36 -07001170 i386_start_kernel();
Rusty Russell07ad1572007-07-19 01:49:22 -07001171}
Rusty Russellb2b47c22007-07-26 10:41:02 -07001172/*
1173 * This marks the end of stage II of our journey, The Guest.
1174 *
Rusty Russelle1e72962007-10-25 15:02:50 +10001175 * It is now time for us to explore the layer of virtual drivers and complete
1176 * our understanding of the Guest in "make Drivers".
Rusty Russellb2b47c22007-07-26 10:41:02 -07001177 */