Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 1 | /* |
Divy Le Ray | 1d68e93 | 2007-01-30 19:44:35 -0800 | [diff] [blame] | 2 | * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved. |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the |
| 8 | * OpenIB.org BSD license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or |
| 11 | * without modification, are permitted provided that the following |
| 12 | * conditions are met: |
| 13 | * |
| 14 | * - Redistributions of source code must retain the above |
| 15 | * copyright notice, this list of conditions and the following |
| 16 | * disclaimer. |
| 17 | * |
| 18 | * - Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following |
| 20 | * disclaimer in the documentation and/or other materials |
| 21 | * provided with the distribution. |
| 22 | * |
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 30 | * SOFTWARE. |
| 31 | */ |
| 32 | #include <linux/skbuff.h> |
| 33 | #include <linux/netdevice.h> |
| 34 | #include <linux/if.h> |
| 35 | #include <linux/if_vlan.h> |
| 36 | #include <linux/jhash.h> |
| 37 | #include <net/neighbour.h> |
| 38 | #include "common.h" |
| 39 | #include "t3cdev.h" |
| 40 | #include "cxgb3_defs.h" |
| 41 | #include "l2t.h" |
| 42 | #include "t3_cpl.h" |
| 43 | #include "firmware_exports.h" |
| 44 | |
| 45 | #define VLAN_NONE 0xfff |
| 46 | |
| 47 | /* |
| 48 | * Module locking notes: There is a RW lock protecting the L2 table as a |
| 49 | * whole plus a spinlock per L2T entry. Entry lookups and allocations happen |
| 50 | * under the protection of the table lock, individual entry changes happen |
| 51 | * while holding that entry's spinlock. The table lock nests outside the |
| 52 | * entry locks. Allocations of new entries take the table lock as writers so |
| 53 | * no other lookups can happen while allocating new entries. Entry updates |
| 54 | * take the table lock as readers so multiple entries can be updated in |
| 55 | * parallel. An L2T entry can be dropped by decrementing its reference count |
| 56 | * and therefore can happen in parallel with entry allocation but no entry |
| 57 | * can change state or increment its ref count during allocation as both of |
| 58 | * these perform lookups. |
| 59 | */ |
| 60 | |
| 61 | static inline unsigned int vlan_prio(const struct l2t_entry *e) |
| 62 | { |
| 63 | return e->vlan >> 13; |
| 64 | } |
| 65 | |
| 66 | static inline unsigned int arp_hash(u32 key, int ifindex, |
| 67 | const struct l2t_data *d) |
| 68 | { |
| 69 | return jhash_2words(key, ifindex, 0) & (d->nentries - 1); |
| 70 | } |
| 71 | |
| 72 | static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n) |
| 73 | { |
| 74 | neigh_hold(n); |
| 75 | if (e->neigh) |
| 76 | neigh_release(e->neigh); |
| 77 | e->neigh = n; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * Set up an L2T entry and send any packets waiting in the arp queue. The |
| 82 | * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the |
| 83 | * entry locked. |
| 84 | */ |
| 85 | static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb, |
| 86 | struct l2t_entry *e) |
| 87 | { |
| 88 | struct cpl_l2t_write_req *req; |
| 89 | |
| 90 | if (!skb) { |
| 91 | skb = alloc_skb(sizeof(*req), GFP_ATOMIC); |
| 92 | if (!skb) |
| 93 | return -ENOMEM; |
| 94 | } |
| 95 | |
| 96 | req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); |
| 97 | req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); |
| 98 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx)); |
| 99 | req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) | |
| 100 | V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) | |
| 101 | V_L2T_W_PRIO(vlan_prio(e))); |
| 102 | memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); |
| 103 | memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); |
| 104 | skb->priority = CPL_PRIORITY_CONTROL; |
| 105 | cxgb3_ofld_send(dev, skb); |
| 106 | while (e->arpq_head) { |
| 107 | skb = e->arpq_head; |
| 108 | e->arpq_head = skb->next; |
| 109 | skb->next = NULL; |
| 110 | cxgb3_ofld_send(dev, skb); |
| 111 | } |
| 112 | e->arpq_tail = NULL; |
| 113 | e->state = L2T_STATE_VALID; |
| 114 | |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Add a packet to the an L2T entry's queue of packets awaiting resolution. |
| 120 | * Must be called with the entry's lock held. |
| 121 | */ |
| 122 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) |
| 123 | { |
| 124 | skb->next = NULL; |
| 125 | if (e->arpq_head) |
| 126 | e->arpq_tail->next = skb; |
| 127 | else |
| 128 | e->arpq_head = skb; |
| 129 | e->arpq_tail = skb; |
| 130 | } |
| 131 | |
| 132 | int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb, |
| 133 | struct l2t_entry *e) |
| 134 | { |
| 135 | again: |
| 136 | switch (e->state) { |
| 137 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ |
| 138 | neigh_event_send(e->neigh, NULL); |
| 139 | spin_lock_bh(&e->lock); |
| 140 | if (e->state == L2T_STATE_STALE) |
| 141 | e->state = L2T_STATE_VALID; |
| 142 | spin_unlock_bh(&e->lock); |
| 143 | case L2T_STATE_VALID: /* fast-path, send the packet on */ |
| 144 | return cxgb3_ofld_send(dev, skb); |
| 145 | case L2T_STATE_RESOLVING: |
| 146 | spin_lock_bh(&e->lock); |
| 147 | if (e->state != L2T_STATE_RESOLVING) { |
| 148 | /* ARP already completed */ |
| 149 | spin_unlock_bh(&e->lock); |
| 150 | goto again; |
| 151 | } |
| 152 | arpq_enqueue(e, skb); |
| 153 | spin_unlock_bh(&e->lock); |
| 154 | |
| 155 | /* |
| 156 | * Only the first packet added to the arpq should kick off |
| 157 | * resolution. However, because the alloc_skb below can fail, |
| 158 | * we allow each packet added to the arpq to retry resolution |
| 159 | * as a way of recovering from transient memory exhaustion. |
| 160 | * A better way would be to use a work request to retry L2T |
| 161 | * entries when there's no memory. |
| 162 | */ |
| 163 | if (!neigh_event_send(e->neigh, NULL)) { |
| 164 | skb = alloc_skb(sizeof(struct cpl_l2t_write_req), |
| 165 | GFP_ATOMIC); |
| 166 | if (!skb) |
| 167 | break; |
| 168 | |
| 169 | spin_lock_bh(&e->lock); |
| 170 | if (e->arpq_head) |
| 171 | setup_l2e_send_pending(dev, skb, e); |
| 172 | else /* we lost the race */ |
| 173 | __kfree_skb(skb); |
| 174 | spin_unlock_bh(&e->lock); |
| 175 | } |
| 176 | } |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | EXPORT_SYMBOL(t3_l2t_send_slow); |
| 181 | |
| 182 | void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e) |
| 183 | { |
| 184 | again: |
| 185 | switch (e->state) { |
| 186 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ |
| 187 | neigh_event_send(e->neigh, NULL); |
| 188 | spin_lock_bh(&e->lock); |
| 189 | if (e->state == L2T_STATE_STALE) { |
| 190 | e->state = L2T_STATE_VALID; |
| 191 | } |
| 192 | spin_unlock_bh(&e->lock); |
| 193 | return; |
| 194 | case L2T_STATE_VALID: /* fast-path, send the packet on */ |
| 195 | return; |
| 196 | case L2T_STATE_RESOLVING: |
| 197 | spin_lock_bh(&e->lock); |
| 198 | if (e->state != L2T_STATE_RESOLVING) { |
| 199 | /* ARP already completed */ |
| 200 | spin_unlock_bh(&e->lock); |
| 201 | goto again; |
| 202 | } |
| 203 | spin_unlock_bh(&e->lock); |
| 204 | |
| 205 | /* |
| 206 | * Only the first packet added to the arpq should kick off |
| 207 | * resolution. However, because the alloc_skb below can fail, |
| 208 | * we allow each packet added to the arpq to retry resolution |
| 209 | * as a way of recovering from transient memory exhaustion. |
| 210 | * A better way would be to use a work request to retry L2T |
| 211 | * entries when there's no memory. |
| 212 | */ |
| 213 | neigh_event_send(e->neigh, NULL); |
| 214 | } |
| 215 | return; |
| 216 | } |
| 217 | |
| 218 | EXPORT_SYMBOL(t3_l2t_send_event); |
| 219 | |
| 220 | /* |
| 221 | * Allocate a free L2T entry. Must be called with l2t_data.lock held. |
| 222 | */ |
| 223 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) |
| 224 | { |
| 225 | struct l2t_entry *end, *e, **p; |
| 226 | |
| 227 | if (!atomic_read(&d->nfree)) |
| 228 | return NULL; |
| 229 | |
| 230 | /* there's definitely a free entry */ |
| 231 | for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e) |
| 232 | if (atomic_read(&e->refcnt) == 0) |
| 233 | goto found; |
| 234 | |
| 235 | for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ; |
| 236 | found: |
| 237 | d->rover = e + 1; |
| 238 | atomic_dec(&d->nfree); |
| 239 | |
| 240 | /* |
| 241 | * The entry we found may be an inactive entry that is |
| 242 | * presently in the hash table. We need to remove it. |
| 243 | */ |
| 244 | if (e->state != L2T_STATE_UNUSED) { |
| 245 | int hash = arp_hash(e->addr, e->ifindex, d); |
| 246 | |
| 247 | for (p = &d->l2tab[hash].first; *p; p = &(*p)->next) |
| 248 | if (*p == e) { |
| 249 | *p = e->next; |
| 250 | break; |
| 251 | } |
| 252 | e->state = L2T_STATE_UNUSED; |
| 253 | } |
| 254 | return e; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Called when an L2T entry has no more users. The entry is left in the hash |
| 259 | * table since it is likely to be reused but we also bump nfree to indicate |
| 260 | * that the entry can be reallocated for a different neighbor. We also drop |
| 261 | * the existing neighbor reference in case the neighbor is going away and is |
| 262 | * waiting on our reference. |
| 263 | * |
| 264 | * Because entries can be reallocated to other neighbors once their ref count |
| 265 | * drops to 0 we need to take the entry's lock to avoid races with a new |
| 266 | * incarnation. |
| 267 | */ |
| 268 | void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e) |
| 269 | { |
| 270 | spin_lock_bh(&e->lock); |
| 271 | if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ |
| 272 | if (e->neigh) { |
| 273 | neigh_release(e->neigh); |
| 274 | e->neigh = NULL; |
| 275 | } |
| 276 | } |
| 277 | spin_unlock_bh(&e->lock); |
| 278 | atomic_inc(&d->nfree); |
| 279 | } |
| 280 | |
| 281 | EXPORT_SYMBOL(t3_l2e_free); |
| 282 | |
| 283 | /* |
| 284 | * Update an L2T entry that was previously used for the same next hop as neigh. |
| 285 | * Must be called with softirqs disabled. |
| 286 | */ |
| 287 | static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) |
| 288 | { |
| 289 | unsigned int nud_state; |
| 290 | |
| 291 | spin_lock(&e->lock); /* avoid race with t3_l2t_free */ |
| 292 | |
| 293 | if (neigh != e->neigh) |
| 294 | neigh_replace(e, neigh); |
| 295 | nud_state = neigh->nud_state; |
| 296 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || |
| 297 | !(nud_state & NUD_VALID)) |
| 298 | e->state = L2T_STATE_RESOLVING; |
| 299 | else if (nud_state & NUD_CONNECTED) |
| 300 | e->state = L2T_STATE_VALID; |
| 301 | else |
| 302 | e->state = L2T_STATE_STALE; |
| 303 | spin_unlock(&e->lock); |
| 304 | } |
| 305 | |
| 306 | struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh, |
| 307 | struct net_device *dev) |
| 308 | { |
| 309 | struct l2t_entry *e; |
| 310 | struct l2t_data *d = L2DATA(cdev); |
| 311 | u32 addr = *(u32 *) neigh->primary_key; |
| 312 | int ifidx = neigh->dev->ifindex; |
| 313 | int hash = arp_hash(addr, ifidx, d); |
| 314 | struct port_info *p = netdev_priv(dev); |
| 315 | int smt_idx = p->port_id; |
| 316 | |
| 317 | write_lock_bh(&d->lock); |
| 318 | for (e = d->l2tab[hash].first; e; e = e->next) |
| 319 | if (e->addr == addr && e->ifindex == ifidx && |
| 320 | e->smt_idx == smt_idx) { |
| 321 | l2t_hold(d, e); |
| 322 | if (atomic_read(&e->refcnt) == 1) |
| 323 | reuse_entry(e, neigh); |
| 324 | goto done; |
| 325 | } |
| 326 | |
| 327 | /* Need to allocate a new entry */ |
| 328 | e = alloc_l2e(d); |
| 329 | if (e) { |
| 330 | spin_lock(&e->lock); /* avoid race with t3_l2t_free */ |
| 331 | e->next = d->l2tab[hash].first; |
| 332 | d->l2tab[hash].first = e; |
| 333 | e->state = L2T_STATE_RESOLVING; |
| 334 | e->addr = addr; |
| 335 | e->ifindex = ifidx; |
| 336 | e->smt_idx = smt_idx; |
| 337 | atomic_set(&e->refcnt, 1); |
| 338 | neigh_replace(e, neigh); |
| 339 | if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) |
Patrick McHardy | 9dfebcc | 2008-01-21 00:26:07 -0800 | [diff] [blame] | 340 | e->vlan = vlan_dev_info(neigh->dev)->vlan_id; |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 341 | else |
| 342 | e->vlan = VLAN_NONE; |
| 343 | spin_unlock(&e->lock); |
| 344 | } |
| 345 | done: |
| 346 | write_unlock_bh(&d->lock); |
| 347 | return e; |
| 348 | } |
| 349 | |
| 350 | EXPORT_SYMBOL(t3_l2t_get); |
| 351 | |
| 352 | /* |
| 353 | * Called when address resolution fails for an L2T entry to handle packets |
| 354 | * on the arpq head. If a packet specifies a failure handler it is invoked, |
| 355 | * otherwise the packets is sent to the offload device. |
| 356 | * |
| 357 | * XXX: maybe we should abandon the latter behavior and just require a failure |
| 358 | * handler. |
| 359 | */ |
| 360 | static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff *arpq) |
| 361 | { |
| 362 | while (arpq) { |
| 363 | struct sk_buff *skb = arpq; |
| 364 | struct l2t_skb_cb *cb = L2T_SKB_CB(skb); |
| 365 | |
| 366 | arpq = skb->next; |
| 367 | skb->next = NULL; |
| 368 | if (cb->arp_failure_handler) |
| 369 | cb->arp_failure_handler(dev, skb); |
| 370 | else |
| 371 | cxgb3_ofld_send(dev, skb); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Called when the host's ARP layer makes a change to some entry that is |
| 377 | * loaded into the HW L2 table. |
| 378 | */ |
| 379 | void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh) |
| 380 | { |
| 381 | struct l2t_entry *e; |
| 382 | struct sk_buff *arpq = NULL; |
| 383 | struct l2t_data *d = L2DATA(dev); |
| 384 | u32 addr = *(u32 *) neigh->primary_key; |
| 385 | int ifidx = neigh->dev->ifindex; |
| 386 | int hash = arp_hash(addr, ifidx, d); |
| 387 | |
| 388 | read_lock_bh(&d->lock); |
| 389 | for (e = d->l2tab[hash].first; e; e = e->next) |
| 390 | if (e->addr == addr && e->ifindex == ifidx) { |
| 391 | spin_lock(&e->lock); |
| 392 | goto found; |
| 393 | } |
| 394 | read_unlock_bh(&d->lock); |
| 395 | return; |
| 396 | |
| 397 | found: |
| 398 | read_unlock(&d->lock); |
| 399 | if (atomic_read(&e->refcnt)) { |
| 400 | if (neigh != e->neigh) |
| 401 | neigh_replace(e, neigh); |
| 402 | |
| 403 | if (e->state == L2T_STATE_RESOLVING) { |
| 404 | if (neigh->nud_state & NUD_FAILED) { |
| 405 | arpq = e->arpq_head; |
| 406 | e->arpq_head = e->arpq_tail = NULL; |
Steve Wise | 4eb61e0 | 2008-02-06 12:05:19 -0600 | [diff] [blame] | 407 | } else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE)) |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 408 | setup_l2e_send_pending(dev, NULL, e); |
| 409 | } else { |
YOSHIFUJI Hideaki | 8082c37 | 2008-03-04 14:55:03 +0900 | [diff] [blame] | 410 | e->state = neigh->nud_state & NUD_CONNECTED ? |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 411 | L2T_STATE_VALID : L2T_STATE_STALE; |
| 412 | if (memcmp(e->dmac, neigh->ha, 6)) |
| 413 | setup_l2e_send_pending(dev, NULL, e); |
| 414 | } |
| 415 | } |
| 416 | spin_unlock_bh(&e->lock); |
| 417 | |
| 418 | if (arpq) |
| 419 | handle_failed_resolution(dev, arpq); |
| 420 | } |
| 421 | |
| 422 | struct l2t_data *t3_init_l2t(unsigned int l2t_capacity) |
| 423 | { |
| 424 | struct l2t_data *d; |
| 425 | int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry); |
| 426 | |
| 427 | d = cxgb_alloc_mem(size); |
| 428 | if (!d) |
| 429 | return NULL; |
| 430 | |
| 431 | d->nentries = l2t_capacity; |
| 432 | d->rover = &d->l2tab[1]; /* entry 0 is not used */ |
| 433 | atomic_set(&d->nfree, l2t_capacity - 1); |
| 434 | rwlock_init(&d->lock); |
| 435 | |
| 436 | for (i = 0; i < l2t_capacity; ++i) { |
| 437 | d->l2tab[i].idx = i; |
| 438 | d->l2tab[i].state = L2T_STATE_UNUSED; |
| 439 | spin_lock_init(&d->l2tab[i].lock); |
| 440 | atomic_set(&d->l2tab[i].refcnt, 0); |
| 441 | } |
| 442 | return d; |
| 443 | } |
| 444 | |
| 445 | void t3_free_l2t(struct l2t_data *d) |
| 446 | { |
| 447 | cxgb_free_mem(d); |
| 448 | } |
| 449 | |