blob: 87dac0261ee5ba2182d40b599daf57d2b00d8626 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_BIT_UTILS_H_
#define ART_RUNTIME_BASE_BIT_UTILS_H_
#include <limits>
#include <type_traits>
#include "base/logging.h"
#include "base/stl_util_identity.h"
namespace art {
// Like sizeof, but count how many bits a type takes. Pass type explicitly.
template <typename T>
constexpr size_t BitSizeOf() {
static_assert(std::is_integral<T>::value, "T must be integral");
using unsigned_type = typename std::make_unsigned<T>::type;
static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
return std::numeric_limits<unsigned_type>::digits;
}
// Like sizeof, but count how many bits a type takes. Infers type from parameter.
template <typename T>
constexpr size_t BitSizeOf(T /*x*/) {
return BitSizeOf<T>();
}
template<typename T>
constexpr int CLZ(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4]
"T too large, must be smaller than long long");
DCHECK_NE(x, 0u);
return (sizeof(T) == sizeof(uint32_t)) ? __builtin_clz(x) : __builtin_clzll(x);
}
// Similar to CLZ except that on zero input it returns bitwidth and supports signed integers.
template<typename T>
constexpr int JAVASTYLE_CLZ(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
using unsigned_type = typename std::make_unsigned<T>::type;
return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x));
}
template<typename T>
constexpr int CTZ(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
// It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check
// that T is an unsigned type.
static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4]
"T too large, must be smaller than long long");
DCHECK_NE(x, static_cast<T>(0));
return (sizeof(T) == sizeof(uint32_t)) ? __builtin_ctz(x) : __builtin_ctzll(x);
}
// Similar to CTZ except that on zero input it returns bitwidth and supports signed integers.
template<typename T>
constexpr int JAVASTYLE_CTZ(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
using unsigned_type = typename std::make_unsigned<T>::type;
return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x));
}
// Return the number of 1-bits in `x`.
template<typename T>
constexpr int POPCOUNT(T x) {
return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x);
}
// Swap bytes.
template<typename T>
constexpr T BSWAP(T x) {
if (sizeof(T) == sizeof(uint16_t)) {
return __builtin_bswap16(x);
} else if (sizeof(T) == sizeof(uint32_t)) {
return __builtin_bswap32(x);
} else {
return __builtin_bswap64(x);
}
}
// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
template <typename T>
constexpr ssize_t MostSignificantBit(T value) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
}
// Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
template <typename T>
constexpr ssize_t LeastSignificantBit(T value) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
return (value == 0) ? -1 : CTZ(value);
}
// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
template <typename T>
constexpr size_t MinimumBitsToStore(T value) {
return static_cast<size_t>(MostSignificantBit(value) + 1);
}
template <typename T>
constexpr T RoundUpToPowerOfTwo(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
// NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
}
// Return highest possible N - a power of two - such that val >= N.
template <typename T>
constexpr T TruncToPowerOfTwo(T val) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0;
}
template<typename T>
constexpr bool IsPowerOfTwo(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
// TODO: assert unsigned. There is currently many uses with signed values.
return (x & (x - 1)) == 0;
}
template<typename T>
constexpr int WhichPowerOf2(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
// TODO: assert unsigned. There is currently many uses with signed values.
DCHECK((x != 0) && IsPowerOfTwo(x));
return CTZ(x);
}
// For rounding integers.
// Note: Omit the `n` from T type deduction, deduce only from the `x` argument.
template<typename T>
constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED;
template<typename T>
constexpr T RoundDown(T x, typename Identity<T>::type n) {
DCHECK(IsPowerOfTwo(n));
return (x & -n);
}
template<typename T>
constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;
template<typename T>
constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
return RoundDown(x + n - 1, n);
}
// For aligning pointers.
template<typename T>
inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
template<typename T>
inline T* AlignDown(T* x, uintptr_t n) {
return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
}
template<typename T>
inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
template<typename T>
inline T* AlignUp(T* x, uintptr_t n) {
return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
}
template<int n, typename T>
constexpr bool IsAligned(T x) {
static_assert((n & (n - 1)) == 0, "n is not a power of two");
return (x & (n - 1)) == 0;
}
template<int n, typename T>
inline bool IsAligned(T* x) {
return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
}
template<typename T>
inline bool IsAlignedParam(T x, int n) {
return (x & (n - 1)) == 0;
}
template<typename T>
inline bool IsAlignedParam(T* x, int n) {
return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n);
}
#define CHECK_ALIGNED(value, alignment) \
CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
#define DCHECK_ALIGNED(value, alignment) \
DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
#define CHECK_ALIGNED_PARAM(value, alignment) \
CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
#define DCHECK_ALIGNED_PARAM(value, alignment) \
DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
inline uint16_t Low16Bits(uint32_t value) {
return static_cast<uint16_t>(value);
}
inline uint16_t High16Bits(uint32_t value) {
return static_cast<uint16_t>(value >> 16);
}
inline uint32_t Low32Bits(uint64_t value) {
return static_cast<uint32_t>(value);
}
inline uint32_t High32Bits(uint64_t value) {
return static_cast<uint32_t>(value >> 32);
}
// Check whether an N-bit two's-complement representation can hold value.
template <typename T>
inline bool IsInt(size_t N, T value) {
if (N == BitSizeOf<T>()) {
return true;
} else {
CHECK_LT(0u, N);
CHECK_LT(N, BitSizeOf<T>());
T limit = static_cast<T>(1) << (N - 1u);
return (-limit <= value) && (value < limit);
}
}
template <typename T>
constexpr T GetIntLimit(size_t bits) {
DCHECK_NE(bits, 0u);
DCHECK_LT(bits, BitSizeOf<T>());
return static_cast<T>(1) << (bits - 1);
}
template <size_t kBits, typename T>
constexpr bool IsInt(T value) {
static_assert(kBits > 0, "kBits cannot be zero.");
static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
static_assert(std::is_signed<T>::value, "Needs a signed type.");
// Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
// trivially true.
return (kBits == BitSizeOf<T>()) ?
true :
(-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
}
template <size_t kBits, typename T>
constexpr bool IsUint(T value) {
static_assert(kBits > 0, "kBits cannot be zero.");
static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
static_assert(std::is_integral<T>::value, "Needs an integral type.");
// Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
// trivially true.
// NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
// use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
using unsigned_type = typename std::make_unsigned<T>::type;
return (0 <= value) &&
(kBits == BitSizeOf<T>() ||
(static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u));
}
template <size_t kBits, typename T>
constexpr bool IsAbsoluteUint(T value) {
static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
static_assert(std::is_integral<T>::value, "Needs an integral type.");
using unsigned_type = typename std::make_unsigned<T>::type;
return (kBits == BitSizeOf<T>())
? true
: IsUint<kBits>(value < 0
? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow.
: static_cast<unsigned_type>(value));
}
// Generate maximum/minimum values for signed/unsigned n-bit integers
template <typename T>
constexpr T MaxInt(size_t bits) {
DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed.";
DCHECK_LE(bits, BitSizeOf<T>());
using unsigned_type = typename std::make_unsigned<T>::type;
return bits == BitSizeOf<T>()
? std::numeric_limits<T>::max()
: std::is_signed<T>::value
? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1)))
: static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1);
}
template <typename T>
constexpr T MinInt(size_t bits) {
DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed.";
DCHECK_LE(bits, BitSizeOf<T>());
return bits == BitSizeOf<T>()
? std::numeric_limits<T>::min()
: std::is_signed<T>::value
? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits))
: static_cast<T>(0);
}
// Returns value with bit set in lowest one-bit position or 0 if 0. (java.lang.X.lowestOneBit).
template <typename kind>
inline static kind LowestOneBitValue(kind opnd) {
// Hacker's Delight, Section 2-1
return opnd & -opnd;
}
// Returns value with bit set in hightest one-bit position or 0 if 0. (java.lang.X.highestOneBit).
template <typename T>
inline static T HighestOneBitValue(T opnd) {
using unsigned_type = typename std::make_unsigned<T>::type;
T res;
if (opnd == 0) {
res = 0;
} else {
int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1);
res = static_cast<T>(UINT64_C(1) << bit_position);
}
return res;
}
// Rotate bits.
template <typename T, bool left>
inline static T Rot(T opnd, int distance) {
int mask = BitSizeOf<T>() - 1;
int unsigned_right_shift = left ? (-distance & mask) : (distance & mask);
int signed_left_shift = left ? (distance & mask) : (-distance & mask);
using unsigned_type = typename std::make_unsigned<T>::type;
return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift);
}
// TUNING: use rbit for arm/arm64
inline static uint32_t ReverseBits32(uint32_t opnd) {
// Hacker's Delight 7-1
opnd = ((opnd >> 1) & 0x55555555) | ((opnd & 0x55555555) << 1);
opnd = ((opnd >> 2) & 0x33333333) | ((opnd & 0x33333333) << 2);
opnd = ((opnd >> 4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) << 4);
opnd = ((opnd >> 8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) << 8);
opnd = ((opnd >> 16)) | ((opnd) << 16);
return opnd;
}
// TUNING: use rbit for arm/arm64
inline static uint64_t ReverseBits64(uint64_t opnd) {
// Hacker's Delight 7-1
opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L);
opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L);
opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL);
opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL);
opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48);
return opnd;
}
} // namespace art
#endif // ART_RUNTIME_BASE_BIT_UTILS_H_