blob: 7bb866d4aaee6e17be1be2337a3c65681e978f84 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080023#include "mirror/array.h"
24#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070025#include "x86_lir.h"
26
Brian Carlstrom7940e442013-07-12 13:46:57 -070027namespace art {
28
Brian Carlstrom7934ac22013-07-26 10:54:15 -070029// FIXME: restore "static" when usage uncovered
Brian Carlstrom7940e442013-07-12 13:46:57 -070030/*static*/ int core_regs[] = {
31 rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI
32#ifdef TARGET_REX_SUPPORT
33 r8, r9, r10, r11, r12, r13, r14, 15
34#endif
35};
36/*static*/ int ReservedRegs[] = {rX86_SP};
37/*static*/ int core_temps[] = {rAX, rCX, rDX, rBX};
38/*static*/ int FpRegs[] = {
39 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
40#ifdef TARGET_REX_SUPPORT
41 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
42#endif
43};
44/*static*/ int fp_temps[] = {
45 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
46#ifdef TARGET_REX_SUPPORT
47 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
48#endif
49};
50
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070051RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee86ec5202014-02-26 19:03:09 +000052 RegLocation res = X86_LOC_C_RETURN;
53 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -070054}
55
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070056RegLocation X86Mir2Lir::LocCReturnWide() {
Bill Buzbee86ec5202014-02-26 19:03:09 +000057 RegLocation res = X86_LOC_C_RETURN_WIDE;
58 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -070059}
60
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee86ec5202014-02-26 19:03:09 +000062 RegLocation res = X86_LOC_C_RETURN_FLOAT;
63 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -070064}
65
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070066RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee86ec5202014-02-26 19:03:09 +000067 RegLocation res = X86_LOC_C_RETURN_DOUBLE;
68 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -070069}
70
71// Return a target-dependent special register.
72int X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
73 int res = INVALID_REG;
74 switch (reg) {
75 case kSelf: res = rX86_SELF; break;
76 case kSuspend: res = rX86_SUSPEND; break;
77 case kLr: res = rX86_LR; break;
78 case kPc: res = rX86_PC; break;
79 case kSp: res = rX86_SP; break;
80 case kArg0: res = rX86_ARG0; break;
81 case kArg1: res = rX86_ARG1; break;
82 case kArg2: res = rX86_ARG2; break;
83 case kArg3: res = rX86_ARG3; break;
84 case kFArg0: res = rX86_FARG0; break;
85 case kFArg1: res = rX86_FARG1; break;
86 case kFArg2: res = rX86_FARG2; break;
87 case kFArg3: res = rX86_FARG3; break;
88 case kRet0: res = rX86_RET0; break;
89 case kRet1: res = rX86_RET1; break;
90 case kInvokeTgt: res = rX86_INVOKE_TGT; break;
Jeff Hao88474b42013-10-23 16:24:40 -070091 case kHiddenArg: res = rAX; break;
92 case kHiddenFpArg: res = fr0; break;
Brian Carlstrom7940e442013-07-12 13:46:57 -070093 case kCount: res = rX86_COUNT; break;
94 }
95 return res;
96}
97
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -080098int X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
99 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
100 // TODO: This is not 64-bit compliant and depends on new internal ABI.
101 switch (arg_num) {
102 case 0:
103 return rX86_ARG1;
104 case 1:
105 return rX86_ARG2;
106 case 2:
107 return rX86_ARG3;
108 default:
109 return INVALID_REG;
110 }
111}
112
Brian Carlstrom7940e442013-07-12 13:46:57 -0700113// Create a double from a pair of singles.
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700114int X86Mir2Lir::S2d(int low_reg, int high_reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700115 return X86_S2D(low_reg, high_reg);
116}
117
118// Return mask to strip off fp reg flags and bias.
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700119uint32_t X86Mir2Lir::FpRegMask() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700120 return X86_FP_REG_MASK;
121}
122
123// True if both regs single, both core or both double.
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700124bool X86Mir2Lir::SameRegType(int reg1, int reg2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700125 return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2));
126}
127
128/*
129 * Decode the register id.
130 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700131uint64_t X86Mir2Lir::GetRegMaskCommon(int reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700132 uint64_t seed;
133 int shift;
134 int reg_id;
135
136 reg_id = reg & 0xf;
137 /* Double registers in x86 are just a single FP register */
138 seed = 1;
139 /* FP register starts at bit position 16 */
140 shift = X86_FPREG(reg) ? kX86FPReg0 : 0;
141 /* Expand the double register id into single offset */
142 shift += reg_id;
143 return (seed << shift);
144}
145
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 /*
148 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
149 * able to clean up some of the x86/Arm_Mips differences
150 */
151 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
152 return 0ULL;
153}
154
buzbeeb48819d2013-09-14 16:15:25 -0700155void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700156 DCHECK_EQ(cu_->instruction_set, kX86);
buzbeeb48819d2013-09-14 16:15:25 -0700157 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700158
159 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700160 if (flags & REG_USE_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700161 lir->u.m.use_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163
164 if (flags & REG_DEF_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700165 lir->u.m.def_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700166 }
167
168 if (flags & REG_DEFA) {
buzbeeb48819d2013-09-14 16:15:25 -0700169 SetupRegMask(&lir->u.m.def_mask, rAX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170 }
171
172 if (flags & REG_DEFD) {
buzbeeb48819d2013-09-14 16:15:25 -0700173 SetupRegMask(&lir->u.m.def_mask, rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700174 }
175 if (flags & REG_USEA) {
buzbeeb48819d2013-09-14 16:15:25 -0700176 SetupRegMask(&lir->u.m.use_mask, rAX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700177 }
178
179 if (flags & REG_USEC) {
buzbeeb48819d2013-09-14 16:15:25 -0700180 SetupRegMask(&lir->u.m.use_mask, rCX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700181 }
182
183 if (flags & REG_USED) {
buzbeeb48819d2013-09-14 16:15:25 -0700184 SetupRegMask(&lir->u.m.use_mask, rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700185 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000186
187 if (flags & REG_USEB) {
188 SetupRegMask(&lir->u.m.use_mask, rBX);
189 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800190
191 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
192 if (lir->opcode == kX86RepneScasw) {
193 SetupRegMask(&lir->u.m.use_mask, rAX);
194 SetupRegMask(&lir->u.m.use_mask, rCX);
195 SetupRegMask(&lir->u.m.use_mask, rDI);
196 SetupRegMask(&lir->u.m.def_mask, rDI);
197 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700198}
199
200/* For dumping instructions */
201static const char* x86RegName[] = {
202 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
204};
205
206static const char* x86CondName[] = {
207 "O",
208 "NO",
209 "B/NAE/C",
210 "NB/AE/NC",
211 "Z/EQ",
212 "NZ/NE",
213 "BE/NA",
214 "NBE/A",
215 "S",
216 "NS",
217 "P/PE",
218 "NP/PO",
219 "L/NGE",
220 "NL/GE",
221 "LE/NG",
222 "NLE/G"
223};
224
225/*
226 * Interpret a format string and build a string no longer than size
227 * See format key in Assemble.cc.
228 */
229std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
230 std::string buf;
231 size_t i = 0;
232 size_t fmt_len = strlen(fmt);
233 while (i < fmt_len) {
234 if (fmt[i] != '!') {
235 buf += fmt[i];
236 i++;
237 } else {
238 i++;
239 DCHECK_LT(i, fmt_len);
240 char operand_number_ch = fmt[i];
241 i++;
242 if (operand_number_ch == '!') {
243 buf += "!";
244 } else {
245 int operand_number = operand_number_ch - '0';
246 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
247 DCHECK_LT(i, fmt_len);
248 int operand = lir->operands[operand_number];
249 switch (fmt[i]) {
250 case 'c':
251 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
252 buf += x86CondName[operand];
253 break;
254 case 'd':
255 buf += StringPrintf("%d", operand);
256 break;
257 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700258 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700259 buf += StringPrintf("0x%08x", tab_rec->offset);
260 break;
261 }
262 case 'r':
263 if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) {
264 int fp_reg = operand & X86_FP_REG_MASK;
265 buf += StringPrintf("xmm%d", fp_reg);
266 } else {
267 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName));
268 buf += x86RegName[operand];
269 }
270 break;
271 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800272 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
273 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
274 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700275 break;
276 default:
277 buf += StringPrintf("DecodeError '%c'", fmt[i]);
278 break;
279 }
280 i++;
281 }
282 }
283 }
284 return buf;
285}
286
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700287void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700288 char buf[256];
289 buf[0] = 0;
290
291 if (mask == ENCODE_ALL) {
292 strcpy(buf, "all");
293 } else {
294 char num[8];
295 int i;
296
297 for (i = 0; i < kX86RegEnd; i++) {
298 if (mask & (1ULL << i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800299 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700300 strcat(buf, num);
301 }
302 }
303
304 if (mask & ENCODE_CCODE) {
305 strcat(buf, "cc ");
306 }
307 /* Memory bits */
308 if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800309 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
310 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
311 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700312 }
313 if (mask & ENCODE_LITERAL) {
314 strcat(buf, "lit ");
315 }
316
317 if (mask & ENCODE_HEAP_REF) {
318 strcat(buf, "heap ");
319 }
320 if (mask & ENCODE_MUST_NOT_ALIAS) {
321 strcat(buf, "noalias ");
322 }
323 }
324 if (buf[0]) {
325 LOG(INFO) << prefix << ": " << buf;
326 }
327}
328
329void X86Mir2Lir::AdjustSpillMask() {
330 // Adjustment for LR spilling, x86 has no LR so nothing to do here
331 core_spill_mask_ |= (1 << rRET);
332 num_core_spills_++;
333}
334
335/*
336 * Mark a callee-save fp register as promoted. Note that
337 * vpush/vpop uses contiguous register lists so we must
338 * include any holes in the mask. Associate holes with
339 * Dalvik register INVALID_VREG (0xFFFFU).
340 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700341void X86Mir2Lir::MarkPreservedSingle(int v_reg, int reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700342 UNIMPLEMENTED(WARNING) << "MarkPreservedSingle";
343#if 0
344 LOG(FATAL) << "No support yet for promoted FP regs";
345#endif
346}
347
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700348void X86Mir2Lir::FlushRegWide(int reg1, int reg2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700349 RegisterInfo* info1 = GetRegInfo(reg1);
350 RegisterInfo* info2 = GetRegInfo(reg2);
351 DCHECK(info1 && info2 && info1->pair && info2->pair &&
352 (info1->partner == info2->reg) &&
353 (info2->partner == info1->reg));
354 if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
355 if (!(info1->is_temp && info2->is_temp)) {
356 /* Should not happen. If it does, there's a problem in eval_loc */
357 LOG(FATAL) << "Long half-temp, half-promoted";
358 }
359
360 info1->dirty = false;
361 info2->dirty = false;
362 if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg))
363 info1 = info2;
364 int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
365 StoreBaseDispWide(rX86_SP, VRegOffset(v_reg), info1->reg, info1->partner);
366 }
367}
368
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700369void X86Mir2Lir::FlushReg(int reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700370 RegisterInfo* info = GetRegInfo(reg);
371 if (info->live && info->dirty) {
372 info->dirty = false;
373 int v_reg = mir_graph_->SRegToVReg(info->s_reg);
374 StoreBaseDisp(rX86_SP, VRegOffset(v_reg), reg, kWord);
375 }
376}
377
378/* Give access to the target-dependent FP register encoding to common code */
379bool X86Mir2Lir::IsFpReg(int reg) {
380 return X86_FPREG(reg);
381}
382
383/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000384void X86Mir2Lir::ClobberCallerSave() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700385 Clobber(rAX);
386 Clobber(rCX);
387 Clobber(rDX);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000388 Clobber(rBX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700389}
390
391RegLocation X86Mir2Lir::GetReturnWideAlt() {
392 RegLocation res = LocCReturnWide();
Bill Buzbee86ec5202014-02-26 19:03:09 +0000393 CHECK(res.low_reg == rAX);
394 CHECK(res.high_reg == rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700395 Clobber(rAX);
396 Clobber(rDX);
397 MarkInUse(rAX);
398 MarkInUse(rDX);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000399 MarkPair(res.low_reg, res.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700400 return res;
401}
402
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700403RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700404 RegLocation res = LocCReturn();
Bill Buzbee86ec5202014-02-26 19:03:09 +0000405 res.low_reg = rDX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700406 Clobber(rDX);
407 MarkInUse(rDX);
408 return res;
409}
410
Brian Carlstrom7940e442013-07-12 13:46:57 -0700411/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700412void X86Mir2Lir::LockCallTemps() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700413 LockTemp(rX86_ARG0);
414 LockTemp(rX86_ARG1);
415 LockTemp(rX86_ARG2);
416 LockTemp(rX86_ARG3);
417}
418
419/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700420void X86Mir2Lir::FreeCallTemps() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700421 FreeTemp(rX86_ARG0);
422 FreeTemp(rX86_ARG1);
423 FreeTemp(rX86_ARG2);
424 FreeTemp(rX86_ARG3);
425}
426
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700427void X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700428#if ANDROID_SMP != 0
429 // TODO: optimize fences
430 NewLIR0(kX86Mfence);
431#endif
432}
Bill Buzbee86ec5202014-02-26 19:03:09 +0000433/*
434 * Alloc a pair of core registers, or a double. Low reg in low byte,
435 * high reg in next byte.
436 */
437int X86Mir2Lir::AllocTypedTempPair(bool fp_hint,
438 int reg_class) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700439 int high_reg;
440 int low_reg;
Bill Buzbee86ec5202014-02-26 19:03:09 +0000441 int res = 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700442
443 if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
444 low_reg = AllocTempDouble();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000445 high_reg = low_reg; // only one allocated!
Bill Buzbee86ec5202014-02-26 19:03:09 +0000446 res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
447 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700448 }
Bill Buzbee86ec5202014-02-26 19:03:09 +0000449
Brian Carlstrom7940e442013-07-12 13:46:57 -0700450 low_reg = AllocTemp();
451 high_reg = AllocTemp();
Bill Buzbee86ec5202014-02-26 19:03:09 +0000452 res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
453 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700454}
455
456int X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
457 if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
458 return AllocTempFloat();
459 }
460 return AllocTemp();
461}
462
463void X86Mir2Lir::CompilerInitializeRegAlloc() {
464 int num_regs = sizeof(core_regs)/sizeof(*core_regs);
465 int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
466 int num_temps = sizeof(core_temps)/sizeof(*core_temps);
467 int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
468 int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -0700469 reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_),
470 ArenaAllocator::kAllocRegAlloc));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700471 reg_pool_->num_core_regs = num_regs;
472 reg_pool_->core_regs =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -0700473 static_cast<RegisterInfo*>(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs),
474 ArenaAllocator::kAllocRegAlloc));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700475 reg_pool_->num_fp_regs = num_fp_regs;
476 reg_pool_->FPRegs =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -0700477 static_cast<RegisterInfo *>(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs),
478 ArenaAllocator::kAllocRegAlloc));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700479 CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
480 CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
481 // Keep special registers from being allocated
482 for (int i = 0; i < num_reserved; i++) {
483 MarkInUse(ReservedRegs[i]);
484 }
485 // Mark temp regs - all others not in use can be used for promotion
486 for (int i = 0; i < num_temps; i++) {
487 MarkTemp(core_temps[i]);
488 }
489 for (int i = 0; i < num_fp_temps; i++) {
490 MarkTemp(fp_temps[i]);
491 }
492}
493
494void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700495 RegLocation rl_free) {
Bill Buzbee86ec5202014-02-26 19:03:09 +0000496 if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
497 (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700498 // No overlap, free both
Bill Buzbee86ec5202014-02-26 19:03:09 +0000499 FreeTemp(rl_free.low_reg);
500 FreeTemp(rl_free.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700501 }
502}
503
504void X86Mir2Lir::SpillCoreRegs() {
505 if (num_core_spills_ == 0) {
506 return;
507 }
508 // Spill mask not including fake return address register
509 uint32_t mask = core_spill_mask_ & ~(1 << rRET);
510 int offset = frame_size_ - (4 * num_core_spills_);
511 for (int reg = 0; mask; mask >>= 1, reg++) {
512 if (mask & 0x1) {
513 StoreWordDisp(rX86_SP, offset, reg);
514 offset += 4;
515 }
516 }
517}
518
519void X86Mir2Lir::UnSpillCoreRegs() {
520 if (num_core_spills_ == 0) {
521 return;
522 }
523 // Spill mask not including fake return address register
524 uint32_t mask = core_spill_mask_ & ~(1 << rRET);
525 int offset = frame_size_ - (4 * num_core_spills_);
526 for (int reg = 0; mask; mask >>= 1, reg++) {
527 if (mask & 0x1) {
528 LoadWordDisp(rX86_SP, offset, reg);
529 offset += 4;
530 }
531 }
532}
533
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700534bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700535 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
536}
537
538X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800539 : Mir2Lir(cu, mir_graph, arena),
540 method_address_insns_(arena, 100, kGrowableArrayMisc),
541 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800542 call_method_insns_(arena, 100, kGrowableArrayMisc),
543 stack_decrement_(nullptr), stack_increment_(nullptr) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800544 store_method_addr_used_ = false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700545 for (int i = 0; i < kX86Last; i++) {
546 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
547 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
548 << " is wrong: expecting " << i << ", seeing "
549 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
550 }
551 }
552}
553
554Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
555 ArenaAllocator* const arena) {
556 return new X86Mir2Lir(cu, mir_graph, arena);
557}
558
559// Not used in x86
Ian Rogers468532e2013-08-05 10:56:33 -0700560int X86Mir2Lir::LoadHelper(ThreadOffset offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700561 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
562 return INVALID_REG;
563}
564
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700565uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700566 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700567 return X86Mir2Lir::EncodingMap[opcode].flags;
568}
569
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700570const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700571 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700572 return X86Mir2Lir::EncodingMap[opcode].name;
573}
574
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700575const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700576 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700577 return X86Mir2Lir::EncodingMap[opcode].fmt;
578}
579
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000580/*
581 * Return an updated location record with current in-register status.
582 * If the value lives in live temps, reflect that fact. No code
583 * is generated. If the live value is part of an older pair,
584 * clobber both low and high.
585 */
586// TODO: Reunify with common code after 'pair mess' has been fixed
587RegLocation X86Mir2Lir::UpdateLocWide(RegLocation loc) {
588 DCHECK(loc.wide);
589 DCHECK(CheckCorePoolSanity());
590 if (loc.location != kLocPhysReg) {
591 DCHECK((loc.location == kLocDalvikFrame) ||
592 (loc.location == kLocCompilerTemp));
593 // Are the dalvik regs already live in physical registers?
594 RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
595
596 // Handle FP registers specially on x86.
597 if (info_lo && IsFpReg(info_lo->reg)) {
598 bool match = true;
599
600 // We can't match a FP register with a pair of Core registers.
601 match = match && (info_lo->pair == 0);
602
603 if (match) {
604 // We can reuse;update the register usage info.
Bill Buzbee86ec5202014-02-26 19:03:09 +0000605 loc.low_reg = info_lo->reg;
606 loc.high_reg = info_lo->reg; // Play nice with existing code.
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000607 loc.location = kLocPhysReg;
608 loc.vec_len = kVectorLength8;
Bill Buzbee86ec5202014-02-26 19:03:09 +0000609 DCHECK(IsFpReg(loc.low_reg));
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000610 return loc;
611 }
612 // We can't easily reuse; clobber and free any overlaps.
613 if (info_lo) {
614 Clobber(info_lo->reg);
615 FreeTemp(info_lo->reg);
616 if (info_lo->pair)
617 Clobber(info_lo->partner);
618 }
619 } else {
620 RegisterInfo* info_hi = AllocLive(GetSRegHi(loc.s_reg_low), kAnyReg);
621 bool match = true;
622 match = match && (info_lo != NULL);
623 match = match && (info_hi != NULL);
624 // Are they both core or both FP?
625 match = match && (IsFpReg(info_lo->reg) == IsFpReg(info_hi->reg));
626 // If a pair of floating point singles, are they properly aligned?
627 if (match && IsFpReg(info_lo->reg)) {
628 match &= ((info_lo->reg & 0x1) == 0);
629 match &= ((info_hi->reg - info_lo->reg) == 1);
630 }
631 // If previously used as a pair, it is the same pair?
632 if (match && (info_lo->pair || info_hi->pair)) {
633 match = (info_lo->pair == info_hi->pair);
634 match &= ((info_lo->reg == info_hi->partner) &&
635 (info_hi->reg == info_lo->partner));
636 }
637 if (match) {
638 // Can reuse - update the register usage info
Bill Buzbee86ec5202014-02-26 19:03:09 +0000639 loc.low_reg = info_lo->reg;
640 loc.high_reg = info_hi->reg;
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000641 loc.location = kLocPhysReg;
Bill Buzbee86ec5202014-02-26 19:03:09 +0000642 MarkPair(loc.low_reg, loc.high_reg);
643 DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000644 return loc;
645 }
646 // Can't easily reuse - clobber and free any overlaps
647 if (info_lo) {
648 Clobber(info_lo->reg);
649 FreeTemp(info_lo->reg);
650 if (info_lo->pair)
651 Clobber(info_lo->partner);
652 }
653 if (info_hi) {
654 Clobber(info_hi->reg);
655 FreeTemp(info_hi->reg);
656 if (info_hi->pair)
657 Clobber(info_hi->partner);
658 }
659 }
660 }
661 return loc;
662}
663
664// TODO: Reunify with common code after 'pair mess' has been fixed
665RegLocation X86Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) {
666 DCHECK(loc.wide);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000667 int32_t new_regs;
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000668 int32_t low_reg;
669 int32_t high_reg;
670
671 loc = UpdateLocWide(loc);
672
673 /* If it is already in a register, we can assume proper form. Is it the right reg class? */
674 if (loc.location == kLocPhysReg) {
Bill Buzbee86ec5202014-02-26 19:03:09 +0000675 DCHECK_EQ(IsFpReg(loc.low_reg), loc.IsVectorScalar());
676 if (!RegClassMatches(reg_class, loc.low_reg)) {
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000677 /* It is the wrong register class. Reallocate and copy. */
Bill Buzbee86ec5202014-02-26 19:03:09 +0000678 if (!IsFpReg(loc.low_reg)) {
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000679 // We want this in a FP reg, and it is in core registers.
680 DCHECK(reg_class != kCoreReg);
681 // Allocate this into any FP reg, and mark it with the right size.
682 low_reg = AllocTypedTemp(true, reg_class);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000683 OpVectorRegCopyWide(low_reg, loc.low_reg, loc.high_reg);
684 CopyRegInfo(low_reg, loc.low_reg);
685 Clobber(loc.low_reg);
686 Clobber(loc.high_reg);
687 loc.low_reg = low_reg;
688 loc.high_reg = low_reg; // Play nice with existing code.
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000689 loc.vec_len = kVectorLength8;
690 } else {
691 // The value is in a FP register, and we want it in a pair of core registers.
692 DCHECK_EQ(reg_class, kCoreReg);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000693 DCHECK_EQ(loc.low_reg, loc.high_reg);
694 new_regs = AllocTypedTempPair(false, kCoreReg); // Force to core registers.
695 low_reg = new_regs & 0xff;
696 high_reg = (new_regs >> 8) & 0xff;
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000697 DCHECK_NE(low_reg, high_reg);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000698 OpRegCopyWide(low_reg, high_reg, loc.low_reg, loc.high_reg);
699 CopyRegInfo(low_reg, loc.low_reg);
700 CopyRegInfo(high_reg, loc.high_reg);
701 Clobber(loc.low_reg);
702 Clobber(loc.high_reg);
703 loc.low_reg = low_reg;
704 loc.high_reg = high_reg;
705 MarkPair(loc.low_reg, loc.high_reg);
706 DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000707 }
708 }
709 return loc;
710 }
711
712 DCHECK_NE(loc.s_reg_low, INVALID_SREG);
Mark Mendelle02d48f2014-01-15 11:19:23 -0800713 DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
714
Bill Buzbee86ec5202014-02-26 19:03:09 +0000715 new_regs = AllocTypedTempPair(loc.fp, reg_class);
716 loc.low_reg = new_regs & 0xff;
717 loc.high_reg = (new_regs >> 8) & 0xff;
Mark Mendelle02d48f2014-01-15 11:19:23 -0800718
Bill Buzbee86ec5202014-02-26 19:03:09 +0000719 if (loc.low_reg == loc.high_reg) {
720 DCHECK(IsFpReg(loc.low_reg));
Mark Mendelle02d48f2014-01-15 11:19:23 -0800721 loc.vec_len = kVectorLength8;
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000722 } else {
Bill Buzbee86ec5202014-02-26 19:03:09 +0000723 MarkPair(loc.low_reg, loc.high_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -0800724 }
725 if (update) {
726 loc.location = kLocPhysReg;
Bill Buzbee86ec5202014-02-26 19:03:09 +0000727 MarkLive(loc.low_reg, loc.s_reg_low);
728 if (loc.low_reg != loc.high_reg) {
729 MarkLive(loc.high_reg, GetSRegHi(loc.s_reg_low));
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000730 }
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000731 }
732 return loc;
733}
734
735// TODO: Reunify with common code after 'pair mess' has been fixed
736RegLocation X86Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) {
737 int new_reg;
738
739 if (loc.wide)
740 return EvalLocWide(loc, reg_class, update);
741
742 loc = UpdateLoc(loc);
743
744 if (loc.location == kLocPhysReg) {
Bill Buzbee86ec5202014-02-26 19:03:09 +0000745 if (!RegClassMatches(reg_class, loc.low_reg)) {
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000746 /* Wrong register class. Realloc, copy and transfer ownership. */
747 new_reg = AllocTypedTemp(loc.fp, reg_class);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000748 OpRegCopy(new_reg, loc.low_reg);
749 CopyRegInfo(new_reg, loc.low_reg);
750 Clobber(loc.low_reg);
751 loc.low_reg = new_reg;
752 if (IsFpReg(loc.low_reg) && reg_class != kCoreReg)
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000753 loc.vec_len = kVectorLength4;
754 }
755 return loc;
756 }
757
758 DCHECK_NE(loc.s_reg_low, INVALID_SREG);
759
Bill Buzbee86ec5202014-02-26 19:03:09 +0000760 new_reg = AllocTypedTemp(loc.fp, reg_class);
761 loc.low_reg = new_reg;
762 if (IsFpReg(loc.low_reg) && reg_class != kCoreReg)
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000763 loc.vec_len = kVectorLength4;
764
765 if (update) {
766 loc.location = kLocPhysReg;
Bill Buzbee86ec5202014-02-26 19:03:09 +0000767 MarkLive(loc.low_reg, loc.s_reg_low);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000768 }
769 return loc;
770}
771
772int X86Mir2Lir::AllocTempDouble() {
773 // We really don't need a pair of registers.
774 return AllocTempFloat();
775}
776
777// TODO: Reunify with common code after 'pair mess' has been fixed
778void X86Mir2Lir::ResetDefLocWide(RegLocation rl) {
779 DCHECK(rl.wide);
Bill Buzbee86ec5202014-02-26 19:03:09 +0000780 RegisterInfo* p_low = IsTemp(rl.low_reg);
781 if (IsFpReg(rl.low_reg)) {
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000782 // We are using only the low register.
783 if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
784 NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
785 }
Bill Buzbee86ec5202014-02-26 19:03:09 +0000786 ResetDef(rl.low_reg);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000787 } else {
Bill Buzbee86ec5202014-02-26 19:03:09 +0000788 RegisterInfo* p_high = IsTemp(rl.high_reg);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000789 if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
790 DCHECK(p_low->pair);
791 NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
792 }
793 if (p_high && !(cu_->disable_opt & (1 << kSuppressLoads))) {
794 DCHECK(p_high->pair);
795 }
Bill Buzbee86ec5202014-02-26 19:03:09 +0000796 ResetDef(rl.low_reg);
797 ResetDef(rl.high_reg);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000798 }
799}
800
801void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
802 // Can we do this directly to memory?
803 rl_dest = UpdateLocWide(rl_dest);
804 if ((rl_dest.location == kLocDalvikFrame) ||
805 (rl_dest.location == kLocCompilerTemp)) {
806 int32_t val_lo = Low32Bits(value);
807 int32_t val_hi = High32Bits(value);
808 int rBase = TargetReg(kSp);
809 int displacement = SRegOffset(rl_dest.s_reg_low);
810
811 LIR * store = NewLIR3(kX86Mov32MI, rBase, displacement + LOWORD_OFFSET, val_lo);
812 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
813 false /* is_load */, true /* is64bit */);
814 store = NewLIR3(kX86Mov32MI, rBase, displacement + HIWORD_OFFSET, val_hi);
815 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
816 false /* is_load */, true /* is64bit */);
817 return;
818 }
819
820 // Just use the standard code to do the generation.
821 Mir2Lir::GenConstWide(rl_dest, value);
822}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800823
824// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
825void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
826 LOG(INFO) << "location: " << loc.location << ','
827 << (loc.wide ? " w" : " ")
828 << (loc.defined ? " D" : " ")
829 << (loc.is_const ? " c" : " ")
830 << (loc.fp ? " F" : " ")
831 << (loc.core ? " C" : " ")
832 << (loc.ref ? " r" : " ")
833 << (loc.high_word ? " h" : " ")
834 << (loc.home ? " H" : " ")
835 << " vec_len: " << loc.vec_len
Bill Buzbee86ec5202014-02-26 19:03:09 +0000836 << ", low: " << static_cast<int>(loc.low_reg)
837 << ", high: " << static_cast<int>(loc.high_reg)
Mark Mendelle02d48f2014-01-15 11:19:23 -0800838 << ", s_reg: " << loc.s_reg_low
839 << ", orig: " << loc.orig_sreg;
840}
841
Mark Mendell67c39c42014-01-31 17:28:00 -0800842void X86Mir2Lir::Materialize() {
843 // A good place to put the analysis before starting.
844 AnalyzeMIR();
845
846 // Now continue with regular code generation.
847 Mir2Lir::Materialize();
848}
849
Mark Mendell55d0eac2014-02-06 11:02:52 -0800850void X86Mir2Lir::LoadMethodAddress(int dex_method_index, InvokeType type,
851 SpecialTargetRegister symbolic_reg) {
852 /*
853 * For x86, just generate a 32 bit move immediate instruction, that will be filled
854 * in at 'link time'. For now, put a unique value based on target to ensure that
855 * code deduplication works.
856 */
857 const DexFile::MethodId& id = cu_->dex_file->GetMethodId(dex_method_index);
858 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
859
860 // Generate the move instruction with the unique pointer and save index and type.
861 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
862 static_cast<int>(ptr), dex_method_index, type);
863 AppendLIR(move);
864 method_address_insns_.Insert(move);
865}
866
867void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
868 /*
869 * For x86, just generate a 32 bit move immediate instruction, that will be filled
870 * in at 'link time'. For now, put a unique value based on target to ensure that
871 * code deduplication works.
872 */
873 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
874 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
875
876 // Generate the move instruction with the unique pointer and save index and type.
877 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
878 static_cast<int>(ptr), type_idx);
879 AppendLIR(move);
880 class_type_address_insns_.Insert(move);
881}
882
883LIR *X86Mir2Lir::CallWithLinkerFixup(int dex_method_index, InvokeType type) {
884 /*
885 * For x86, just generate a 32 bit call relative instruction, that will be filled
886 * in at 'link time'. For now, put a unique value based on target to ensure that
887 * code deduplication works.
888 */
889 const DexFile::MethodId& id = cu_->dex_file->GetMethodId(dex_method_index);
890 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
891
892 // Generate the call instruction with the unique pointer and save index and type.
893 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(ptr), dex_method_index,
894 type);
895 AppendLIR(call);
896 call_method_insns_.Insert(call);
897 return call;
898}
899
900void X86Mir2Lir::InstallLiteralPools() {
901 // These are handled differently for x86.
902 DCHECK(code_literal_list_ == nullptr);
903 DCHECK(method_literal_list_ == nullptr);
904 DCHECK(class_literal_list_ == nullptr);
905
906 // Handle the fixups for methods.
907 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
908 LIR* p = method_address_insns_.Get(i);
909 DCHECK_EQ(p->opcode, kX86Mov32RI);
910 uint32_t target = p->operands[2];
911
912 // The offset to patch is the last 4 bytes of the instruction.
913 int patch_offset = p->offset + p->flags.size - 4;
914 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
915 cu_->method_idx, cu_->invoke_type,
916 target, static_cast<InvokeType>(p->operands[3]),
917 patch_offset);
918 }
919
920 // Handle the fixups for class types.
921 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
922 LIR* p = class_type_address_insns_.Get(i);
923 DCHECK_EQ(p->opcode, kX86Mov32RI);
924 uint32_t target = p->operands[2];
925
926 // The offset to patch is the last 4 bytes of the instruction.
927 int patch_offset = p->offset + p->flags.size - 4;
928 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
929 cu_->method_idx, target, patch_offset);
930 }
931
932 // And now the PC-relative calls to methods.
933 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
934 LIR* p = call_method_insns_.Get(i);
935 DCHECK_EQ(p->opcode, kX86CallI);
936 uint32_t target = p->operands[1];
937
938 // The offset to patch is the last 4 bytes of the instruction.
939 int patch_offset = p->offset + p->flags.size - 4;
940 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
941 cu_->method_idx, cu_->invoke_type, target,
942 static_cast<InvokeType>(p->operands[2]),
943 patch_offset, -4 /* offset */);
944 }
945
946 // And do the normal processing.
947 Mir2Lir::InstallLiteralPools();
948}
949
Mark Mendell4028a6c2014-02-19 20:06:20 -0800950/*
951 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
952 * otherwise bails to standard library code.
953 */
954bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
955 ClobberCallerSave();
956 LockCallTemps(); // Using fixed registers
957
958 // EAX: 16 bit character being searched.
959 // ECX: count: number of words to be searched.
960 // EDI: String being searched.
961 // EDX: temporary during execution.
962 // EBX: temporary during execution.
963
964 RegLocation rl_obj = info->args[0];
965 RegLocation rl_char = info->args[1];
966 RegLocation rl_start = info->args[2];
967
968 uint32_t char_value =
969 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
970
971 if (char_value > 0xFFFF) {
972 // We have to punt to the real String.indexOf.
973 return false;
974 }
975
976 // Okay, we are commited to inlining this.
977 RegLocation rl_return = GetReturn(false);
978 RegLocation rl_dest = InlineTarget(info);
979
980 // Is the string non-NULL?
981 LoadValueDirectFixed(rl_obj, rDX);
982 GenNullCheck(rl_obj.s_reg_low, rDX, info->opt_flags);
983
984 // Record that we have inlined & null checked the object.
985 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
986
987 // Does the character fit in 16 bits?
988 LIR* launch_pad = nullptr;
989 if (rl_char.is_const) {
990 // We need the value in EAX.
991 LoadConstantNoClobber(rAX, char_value);
992 } else {
993 // Character is not a constant; compare at runtime.
994 LoadValueDirectFixed(rl_char, rAX);
995 launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
996 intrinsic_launchpads_.Insert(launch_pad);
997 OpCmpImmBranch(kCondGt, rAX, 0xFFFF, launch_pad);
998 }
999
1000 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001001 // Location of reference to data array within the String object.
1002 int value_offset = mirror::String::ValueOffset().Int32Value();
1003 // Location of count within the String object.
1004 int count_offset = mirror::String::CountOffset().Int32Value();
1005 // Starting offset within data array.
1006 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1007 // Start of char data with array_.
1008 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001009
1010 // Character is in EAX.
1011 // Object pointer is in EDX.
1012
1013 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1014 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1015 NewLIR1(kX86Push32R, rDI);
1016
1017 // Compute the number of words to search in to rCX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001018 LoadWordDisp(rDX, count_offset, rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001019 LIR *length_compare = nullptr;
1020 int start_value = 0;
1021 if (zero_based) {
1022 // We have to handle an empty string. Use special instruction JECXZ.
1023 length_compare = NewLIR0(kX86Jecxz8);
1024 } else {
1025 // We have to offset by the start index.
1026 if (rl_start.is_const) {
1027 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1028 start_value = std::max(start_value, 0);
1029
1030 // Is the start > count?
1031 length_compare = OpCmpImmBranch(kCondLe, rCX, start_value, nullptr);
1032
1033 if (start_value != 0) {
1034 OpRegImm(kOpSub, rCX, start_value);
1035 }
1036 } else {
1037 // Runtime start index.
1038 rl_start = UpdateLoc(rl_start);
1039 if (rl_start.location == kLocPhysReg) {
Bill Buzbee86ec5202014-02-26 19:03:09 +00001040 length_compare = OpCmpBranch(kCondLe, rCX, rl_start.low_reg, nullptr);
1041 OpRegReg(kOpSub, rCX, rl_start.low_reg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001042 } else {
1043 // Compare to memory to avoid a register load. Handle pushed EDI.
1044 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1045 OpRegMem(kOpCmp, rDX, rX86_SP, displacement);
1046 length_compare = NewLIR2(kX86Jcc8, 0, kX86CondLe);
1047 OpRegMem(kOpSub, rCX, rX86_SP, displacement);
1048 }
1049 }
1050 }
1051 DCHECK(length_compare != nullptr);
1052
1053 // ECX now contains the count in words to be searched.
1054
1055 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001056 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1057 LoadWordDisp(rDX, value_offset, rDI);
1058 LoadWordDisp(rDX, offset_offset, rBX);
1059 OpLea(rBX, rDI, rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001060
1061 // Now compute into EDI where the search will start.
1062 if (zero_based || rl_start.is_const) {
1063 if (start_value == 0) {
1064 OpRegCopy(rDI, rBX);
1065 } else {
1066 NewLIR3(kX86Lea32RM, rDI, rBX, 2 * start_value);
1067 }
1068 } else {
1069 if (rl_start.location == kLocPhysReg) {
Bill Buzbee86ec5202014-02-26 19:03:09 +00001070 if (rl_start.low_reg == rDI) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001071 // We have a slight problem here. We are already using RDI!
1072 // Grab the value from the stack.
1073 LoadWordDisp(rX86_SP, 0, rDX);
1074 OpLea(rDI, rBX, rDX, 1, 0);
1075 } else {
Bill Buzbee86ec5202014-02-26 19:03:09 +00001076 OpLea(rDI, rBX, rl_start.low_reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001077 }
1078 } else {
1079 OpRegCopy(rDI, rBX);
1080 // Load the start index from stack, remembering that we pushed EDI.
1081 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1082 LoadWordDisp(rX86_SP, displacement, rDX);
1083 OpLea(rDI, rBX, rDX, 1, 0);
1084 }
1085 }
1086
1087 // EDI now contains the start of the string to be searched.
1088 // We are all prepared to do the search for the character.
1089 NewLIR0(kX86RepneScasw);
1090
1091 // Did we find a match?
1092 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1093
1094 // yes, we matched. Compute the index of the result.
1095 // index = ((curr_ptr - orig_ptr) / 2) - 1.
1096 OpRegReg(kOpSub, rDI, rBX);
1097 OpRegImm(kOpAsr, rDI, 1);
Bill Buzbee86ec5202014-02-26 19:03:09 +00001098 NewLIR3(kX86Lea32RM, rl_return.low_reg, rDI, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001099 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1100
1101 // Failed to match; return -1.
1102 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1103 length_compare->target = not_found;
1104 failed_branch->target = not_found;
Bill Buzbee86ec5202014-02-26 19:03:09 +00001105 LoadConstantNoClobber(rl_return.low_reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001106
1107 // And join up at the end.
1108 all_done->target = NewLIR0(kPseudoTargetLabel);
1109 // Restore EDI from the stack.
1110 NewLIR1(kX86Pop32R, rDI);
1111
1112 // Out of line code returns here.
1113 if (launch_pad != nullptr) {
1114 LIR *return_point = NewLIR0(kPseudoTargetLabel);
1115 launch_pad->operands[2] = WrapPointer(return_point);
1116 }
1117
1118 StoreValue(rl_dest, rl_return);
1119 return true;
1120}
1121
Mark Mendellae9fd932014-02-10 16:14:35 -08001122/*
1123 * @brief Enter a 32 bit quantity into the FDE buffer
1124 * @param buf FDE buffer.
1125 * @param data Data value.
1126 */
1127static void PushWord(std::vector<uint8_t>&buf, int data) {
1128 buf.push_back(data & 0xff);
1129 buf.push_back((data >> 8) & 0xff);
1130 buf.push_back((data >> 16) & 0xff);
1131 buf.push_back((data >> 24) & 0xff);
1132}
1133
1134/*
1135 * @brief Enter an 'advance LOC' into the FDE buffer
1136 * @param buf FDE buffer.
1137 * @param increment Amount by which to increase the current location.
1138 */
1139static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1140 if (increment < 64) {
1141 // Encoding in opcode.
1142 buf.push_back(0x1 << 6 | increment);
1143 } else if (increment < 256) {
1144 // Single byte delta.
1145 buf.push_back(0x02);
1146 buf.push_back(increment);
1147 } else if (increment < 256 * 256) {
1148 // Two byte delta.
1149 buf.push_back(0x03);
1150 buf.push_back(increment & 0xff);
1151 buf.push_back((increment >> 8) & 0xff);
1152 } else {
1153 // Four byte delta.
1154 buf.push_back(0x04);
1155 PushWord(buf, increment);
1156 }
1157}
1158
1159
1160std::vector<uint8_t>* X86CFIInitialization() {
1161 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1162}
1163
1164std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1165 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1166
1167 // Length of the CIE (except for this field).
1168 PushWord(*cfi_info, 16);
1169
1170 // CIE id.
1171 PushWord(*cfi_info, 0xFFFFFFFFU);
1172
1173 // Version: 3.
1174 cfi_info->push_back(0x03);
1175
1176 // Augmentation: empty string.
1177 cfi_info->push_back(0x0);
1178
1179 // Code alignment: 1.
1180 cfi_info->push_back(0x01);
1181
1182 // Data alignment: -4.
1183 cfi_info->push_back(0x7C);
1184
1185 // Return address register (R8).
1186 cfi_info->push_back(0x08);
1187
1188 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1189 cfi_info->push_back(0x0C);
1190 cfi_info->push_back(0x04);
1191 cfi_info->push_back(0x04);
1192
1193 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1194 cfi_info->push_back(0x2 << 6 | 0x08);
1195 cfi_info->push_back(0x01);
1196
1197 // And 2 Noops to align to 4 byte boundary.
1198 cfi_info->push_back(0x0);
1199 cfi_info->push_back(0x0);
1200
1201 DCHECK_EQ(cfi_info->size() & 3, 0U);
1202 return cfi_info;
1203}
1204
1205static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1206 uint8_t buffer[12];
1207 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1208 for (uint8_t *p = buffer; p < ptr; p++) {
1209 buf.push_back(*p);
1210 }
1211}
1212
1213std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1214 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1215
1216 // Generate the FDE for the method.
1217 DCHECK_NE(data_offset_, 0U);
1218
1219 // Length (will be filled in later in this routine).
1220 PushWord(*cfi_info, 0);
1221
1222 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1223 // one CIE for the whole debug_frame section.
1224 PushWord(*cfi_info, 0);
1225
1226 // 'initial_location' (filled in by linker).
1227 PushWord(*cfi_info, 0);
1228
1229 // 'address_range' (number of bytes in the method).
1230 PushWord(*cfi_info, data_offset_);
1231
1232 // The instructions in the FDE.
1233 if (stack_decrement_ != nullptr) {
1234 // Advance LOC to just past the stack decrement.
1235 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1236 AdvanceLoc(*cfi_info, pc);
1237
1238 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1239 cfi_info->push_back(0x0e);
1240 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1241
1242 // We continue with that stack until the epilogue.
1243 if (stack_increment_ != nullptr) {
1244 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1245 AdvanceLoc(*cfi_info, new_pc - pc);
1246
1247 // We probably have code snippets after the epilogue, so save the
1248 // current state: DW_CFA_remember_state.
1249 cfi_info->push_back(0x0a);
1250
1251 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1252 // PC on the stack now.
1253 cfi_info->push_back(0x0e);
1254 EncodeUnsignedLeb128(*cfi_info, 4);
1255
1256 // Everything after that is the same as before the epilogue.
1257 // Stack bump was followed by RET instruction.
1258 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1259 if (post_ret_insn != nullptr) {
1260 pc = new_pc;
1261 new_pc = post_ret_insn->offset;
1262 AdvanceLoc(*cfi_info, new_pc - pc);
1263 // Restore the state: DW_CFA_restore_state.
1264 cfi_info->push_back(0x0b);
1265 }
1266 }
1267 }
1268
1269 // Padding to a multiple of 4
1270 while ((cfi_info->size() & 3) != 0) {
1271 // DW_CFA_nop is encoded as 0.
1272 cfi_info->push_back(0);
1273 }
1274
1275 // Set the length of the FDE inside the generated bytes.
1276 uint32_t length = cfi_info->size() - 4;
1277 (*cfi_info)[0] = length;
1278 (*cfi_info)[1] = length >> 8;
1279 (*cfi_info)[2] = length >> 16;
1280 (*cfi_info)[3] = length >> 24;
1281 return cfi_info;
1282}
1283
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001284} // namespace art