blob: fea1d1ec434cc13b98cb83c6522c01dc41e48495 [file] [log] [blame]
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * Mips variants. It is included by:
20 *
21 * Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27/*
28 * Mark garbage collection card. Skip if the value we're storing is null.
29 */
30static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31{
32 int regCardBase = dvmCompilerAllocTemp(cUnit);
33 int regCardNo = dvmCompilerAllocTemp(cUnit);
34 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBeq, valReg, r_ZERO);
35 loadWordDisp(cUnit, rSELF, offsetof(Thread, cardTable),
36 regCardBase);
37 opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38 storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39 kUnsignedByte);
40 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
41 target->defMask = ENCODE_ALL;
42 branchOver->generic.target = (LIR *)target;
43 dvmCompilerFreeTemp(cUnit, regCardBase);
44 dvmCompilerFreeTemp(cUnit, regCardNo);
45}
46
47static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48 int srcSize, int tgtSize)
49{
50 /*
51 * Don't optimize the register usage since it calls out to template
52 * functions
53 */
54 RegLocation rlSrc;
55 RegLocation rlDest;
56 int srcReg = 0;
57 int srcRegHi = 0;
58 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
59
60 if (srcSize == kWord) {
61 srcReg = r_A0;
62 } else if (srcSize == kSingle) {
63#ifdef __mips_hard_float
64 srcReg = r_F12;
65#else
66 srcReg = r_A0;
67#endif
68 } else if (srcSize == kLong) {
69 srcReg = r_ARG0;
70 srcRegHi = r_ARG1;
71 } else if (srcSize == kDouble) {
72#ifdef __mips_hard_float
73 srcReg = r_FARG0;
74 srcRegHi = r_FARG1;
75#else
76 srcReg = r_ARG0;
77 srcRegHi = r_ARG1;
78#endif
79 }
80 else {
81 assert(0);
82 }
83
84 if (srcSize == kWord || srcSize == kSingle) {
85 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
86 loadValueDirectFixed(cUnit, rlSrc, srcReg);
87 } else {
88 rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
89 loadValueDirectWideFixed(cUnit, rlSrc, srcReg, srcRegHi);
90 }
91 LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
92 opReg(cUnit, kOpBlx, r_T9);
93 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
94 dvmCompilerClobberCallRegs(cUnit);
95 if (tgtSize == kWord || tgtSize == kSingle) {
96 RegLocation rlResult;
97 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
98#ifdef __mips_hard_float
99 if (tgtSize == kSingle)
100 rlResult = dvmCompilerGetReturnAlt(cUnit);
101 else
102 rlResult = dvmCompilerGetReturn(cUnit);
103#else
104 rlResult = dvmCompilerGetReturn(cUnit);
105#endif
106 storeValue(cUnit, rlDest, rlResult);
107 } else {
108 RegLocation rlResult;
109 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
110#ifdef __mips_hard_float
111 if (tgtSize == kDouble)
112 rlResult = dvmCompilerGetReturnWideAlt(cUnit);
113 else
114 rlResult = dvmCompilerGetReturnWide(cUnit);
115#else
116 rlResult = dvmCompilerGetReturnWide(cUnit);
117#endif
118 storeValueWide(cUnit, rlDest, rlResult);
119 }
120 return false;
121}
122
123
124static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
125 RegLocation rlDest, RegLocation rlSrc1,
126 RegLocation rlSrc2)
127{
128 RegLocation rlResult;
129 void* funct;
130
131 switch (mir->dalvikInsn.opcode) {
132 case OP_ADD_FLOAT_2ADDR:
133 case OP_ADD_FLOAT:
134 funct = (void*) __addsf3;
135 break;
136 case OP_SUB_FLOAT_2ADDR:
137 case OP_SUB_FLOAT:
138 funct = (void*) __subsf3;
139 break;
140 case OP_DIV_FLOAT_2ADDR:
141 case OP_DIV_FLOAT:
142 funct = (void*) __divsf3;
143 break;
144 case OP_MUL_FLOAT_2ADDR:
145 case OP_MUL_FLOAT:
146 funct = (void*) __mulsf3;
147 break;
148 case OP_REM_FLOAT_2ADDR:
149 case OP_REM_FLOAT:
150 funct = (void*) fmodf;
151 break;
152 case OP_NEG_FLOAT: {
153 genNegFloat(cUnit, rlDest, rlSrc1);
154 return false;
155 }
156 default:
157 return true;
158 }
159
160 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
161#ifdef __mips_hard_float
162 loadValueDirectFixed(cUnit, rlSrc1, r_F12);
163 loadValueDirectFixed(cUnit, rlSrc2, r_F14);
164#else
165 loadValueDirectFixed(cUnit, rlSrc1, r_A0);
166 loadValueDirectFixed(cUnit, rlSrc2, r_A1);
167#endif
168 LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
169 opReg(cUnit, kOpBlx, r_T9);
170 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
171 dvmCompilerClobberCallRegs(cUnit);
172#ifdef __mips_hard_float
173 rlResult = dvmCompilerGetReturnAlt(cUnit);
174#else
175 rlResult = dvmCompilerGetReturn(cUnit);
176#endif
177 storeValue(cUnit, rlDest, rlResult);
178 return false;
179}
180
181static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
182 RegLocation rlDest, RegLocation rlSrc1,
183 RegLocation rlSrc2)
184{
185 RegLocation rlResult;
186 void* funct;
187
188 switch (mir->dalvikInsn.opcode) {
189 case OP_ADD_DOUBLE_2ADDR:
190 case OP_ADD_DOUBLE:
191 funct = (void*) __adddf3;
192 break;
193 case OP_SUB_DOUBLE_2ADDR:
194 case OP_SUB_DOUBLE:
195 funct = (void*) __subdf3;
196 break;
197 case OP_DIV_DOUBLE_2ADDR:
198 case OP_DIV_DOUBLE:
199 funct = (void*) __divsf3;
200 break;
201 case OP_MUL_DOUBLE_2ADDR:
202 case OP_MUL_DOUBLE:
203 funct = (void*) __muldf3;
204 break;
205 case OP_REM_DOUBLE_2ADDR:
206 case OP_REM_DOUBLE:
207 funct = (void*) (double (*)(double, double)) fmod;
208 break;
209 case OP_NEG_DOUBLE: {
210 genNegDouble(cUnit, rlDest, rlSrc1);
211 return false;
212 }
213 default:
214 return true;
215 }
216 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
217 LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
218#ifdef __mips_hard_float
219 loadValueDirectWideFixed(cUnit, rlSrc1, r_F12, r_F13);
220 loadValueDirectWideFixed(cUnit, rlSrc2, r_F14, r_F15);
221#else
222 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
223 loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3);
224#endif
225 opReg(cUnit, kOpBlx, r_T9);
226 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
227 dvmCompilerClobberCallRegs(cUnit);
228#ifdef __mips_hard_float
229 rlResult = dvmCompilerGetReturnWideAlt(cUnit);
230#else
231 rlResult = dvmCompilerGetReturnWide(cUnit);
232#endif
233 storeValueWide(cUnit, rlDest, rlResult);
234#if defined(WITH_SELF_VERIFICATION)
235 cUnit->usesLinkRegister = true;
236#endif
237 return false;
238}
239
240static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
241{
242 Opcode opcode = mir->dalvikInsn.opcode;
243
244 switch (opcode) {
245 case OP_INT_TO_FLOAT:
246 return genConversionCall(cUnit, mir, (void*)__floatsisf, kWord, kSingle);
247 case OP_FLOAT_TO_INT:
248 return genConversionCall(cUnit, mir, (void*)__fixsfsi, kSingle, kWord);
249 case OP_DOUBLE_TO_FLOAT:
250 return genConversionCall(cUnit, mir, (void*)__truncdfsf2, kDouble, kSingle);
251 case OP_FLOAT_TO_DOUBLE:
252 return genConversionCall(cUnit, mir, (void*)__extendsfdf2, kSingle, kDouble);
253 case OP_INT_TO_DOUBLE:
254 return genConversionCall(cUnit, mir, (void*)__floatsidf, kWord, kDouble);
255 case OP_DOUBLE_TO_INT:
256 return genConversionCall(cUnit, mir, (void*)__fixdfsi, kDouble, kWord);
257 case OP_FLOAT_TO_LONG:
258 return genConversionCall(cUnit, mir, (void*)__fixsfdi, kSingle, kLong);
259 case OP_LONG_TO_FLOAT:
260 return genConversionCall(cUnit, mir, (void*)__floatdisf, kLong, kSingle);
261 case OP_DOUBLE_TO_LONG:
262 return genConversionCall(cUnit, mir, (void*)__fixdfdi, kDouble, kLong);
263 case OP_LONG_TO_DOUBLE:
264 return genConversionCall(cUnit, mir, (void*)__floatdidf, kLong, kDouble);
265 default:
266 return true;
267 }
268 return false;
269}
270
271#if defined(WITH_SELF_VERIFICATION)
272static void selfVerificationBranchInsert(LIR *currentLIR, Mipsopcode opcode,
273 int dest, int src1)
274{
275assert(0); /* MIPSTODO port selfVerificationBranchInsert() */
276 MipsLIR *insn = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
277 insn->opcode = opcode;
278 insn->operands[0] = dest;
279 insn->operands[1] = src1;
280 setupResourceMasks(insn);
281 dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
282}
283
284/*
285 * Example where r14 (LR) is preserved around a heap access under
286 * self-verification mode in Thumb2:
287 *
288 * D/dalvikvm( 1538): 0x59414c5e (0026): ldr r14, [r15pc, #220] <-hoisted
289 * D/dalvikvm( 1538): 0x59414c62 (002a): mla r4, r0, r8, r4
290 * D/dalvikvm( 1538): 0x59414c66 (002e): adds r3, r4, r3
291 * D/dalvikvm( 1538): 0x59414c6a (0032): push <r5, r14> ---+
292 * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1 0x5940f494 |
293 * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2 see above <-MEM_OP_DECODE
294 * D/dalvikvm( 1538): 0x59414c70 (0038): ldr r10, [r9, #0] |
295 * D/dalvikvm( 1538): 0x59414c74 (003c): pop <r5, r14> ---+
296 * D/dalvikvm( 1538): 0x59414c78 (0040): mov r11, r10
297 * D/dalvikvm( 1538): 0x59414c7a (0042): asr r12, r11, #31
298 * D/dalvikvm( 1538): 0x59414c7e (0046): movs r0, r2
299 * D/dalvikvm( 1538): 0x59414c80 (0048): movs r1, r3
300 * D/dalvikvm( 1538): 0x59414c82 (004a): str r2, [r5, #16]
301 * D/dalvikvm( 1538): 0x59414c84 (004c): mov r2, r11
302 * D/dalvikvm( 1538): 0x59414c86 (004e): str r3, [r5, #20]
303 * D/dalvikvm( 1538): 0x59414c88 (0050): mov r3, r12
304 * D/dalvikvm( 1538): 0x59414c8a (0052): str r11, [r5, #24]
305 * D/dalvikvm( 1538): 0x59414c8e (0056): str r12, [r5, #28]
306 * D/dalvikvm( 1538): 0x59414c92 (005a): blx r14 <-use of LR
307 *
308 */
309static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
310{
311assert(0); /* MIPSTODO port selfVerificationBranchInsertPass() */
312 MipsLIR *thisLIR;
313 Templateopcode opcode = TEMPLATE_MEM_OP_DECODE;
314
315 for (thisLIR = (MipsLIR *) cUnit->firstLIRInsn;
316 thisLIR != (MipsLIR *) cUnit->lastLIRInsn;
317 thisLIR = NEXT_LIR(thisLIR)) {
318 if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
319 /*
320 * Push r5(FP) and r14(LR) onto stack. We need to make sure that
321 * SP is 8-byte aligned, and we use r5 as a temp to restore LR
322 * for Thumb-only target since LR cannot be directly accessed in
323 * Thumb mode. Another reason to choose r5 here is it is the Dalvik
324 * frame pointer and cannot be the target of the emulated heap
325 * load.
326 */
327 if (cUnit->usesLinkRegister) {
328 genSelfVerificationPreBranch(cUnit, thisLIR);
329 }
330
331 /* Branch to mem op decode template */
332 selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
333 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
334 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
335 selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
336 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
337 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
338
339 /* Restore LR */
340 if (cUnit->usesLinkRegister) {
341 genSelfVerificationPostBranch(cUnit, thisLIR);
342 }
343 }
344 }
345}
346#endif
347
348/* Generate conditional branch instructions */
349static MipsLIR *genConditionalBranchMips(CompilationUnit *cUnit,
350 MipsOpCode opc, int rs, int rt,
351 MipsLIR *target)
352{
353 MipsLIR *branch = opCompareBranch(cUnit, opc, rs, rt);
354 branch->generic.target = (LIR *) target;
355 return branch;
356}
357
358/* Generate a unconditional branch to go to the interpreter */
359static inline MipsLIR *genTrap(CompilationUnit *cUnit, int dOffset,
360 MipsLIR *pcrLabel)
361{
362 MipsLIR *branch = opNone(cUnit, kOpUncondBr);
363 return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
364}
365
366/* Load a wide field from an object instance */
367static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
368{
369 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
370 RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
371 RegLocation rlResult;
372 rlObj = loadValue(cUnit, rlObj, kCoreReg);
373 int regPtr = dvmCompilerAllocTemp(cUnit);
374
375 assert(rlDest.wide);
376
377 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
378 NULL);/* null object? */
379 opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
380 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
381
382 HEAP_ACCESS_SHADOW(true);
383 loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
384 HEAP_ACCESS_SHADOW(false);
385
386 dvmCompilerFreeTemp(cUnit, regPtr);
387 storeValueWide(cUnit, rlDest, rlResult);
388}
389
390/* Store a wide field to an object instance */
391static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
392{
393 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
394 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
395 rlObj = loadValue(cUnit, rlObj, kCoreReg);
396 int regPtr;
397 rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
398 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
399 NULL);/* null object? */
400 regPtr = dvmCompilerAllocTemp(cUnit);
401 opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
402
403 HEAP_ACCESS_SHADOW(true);
404 storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
405 HEAP_ACCESS_SHADOW(false);
406
407 dvmCompilerFreeTemp(cUnit, regPtr);
408}
409
410/*
411 * Load a field from an object instance
412 *
413 */
414static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
415 int fieldOffset, bool isVolatile)
416{
417 RegLocation rlResult;
418 RegisterClass regClass = dvmCompilerRegClassBySize(size);
419 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
420 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
421 rlObj = loadValue(cUnit, rlObj, kCoreReg);
422 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
423 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
424 NULL);/* null object? */
425
426 HEAP_ACCESS_SHADOW(true);
427 loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
428 size, rlObj.sRegLow);
429 HEAP_ACCESS_SHADOW(false);
430 if (isVolatile) {
Elliott Hughes100dbe02012-07-17 16:31:30 -0700431 dvmCompilerGenMemBarrier(cUnit, 0);
Raghu Gandhama8b91c52012-05-02 14:27:16 -0700432 }
433
434 storeValue(cUnit, rlDest, rlResult);
435}
436
437/*
438 * Store a field to an object instance
439 *
440 */
441static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
442 int fieldOffset, bool isObject, bool isVolatile)
443{
444 RegisterClass regClass = dvmCompilerRegClassBySize(size);
445 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
446 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
447 rlObj = loadValue(cUnit, rlObj, kCoreReg);
448 rlSrc = loadValue(cUnit, rlSrc, regClass);
449 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
450 NULL);/* null object? */
451
452 if (isVolatile) {
Elliott Hughes100dbe02012-07-17 16:31:30 -0700453 dvmCompilerGenMemBarrier(cUnit, 0);
Raghu Gandhama8b91c52012-05-02 14:27:16 -0700454 }
455 HEAP_ACCESS_SHADOW(true);
456 storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
457 HEAP_ACCESS_SHADOW(false);
458 if (isVolatile) {
459 dvmCompilerGenMemBarrier(cUnit, 0);
460 }
461 if (isObject) {
462 /* NOTE: marking card based on object head */
463 markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
464 }
465}
466
467
468/*
469 * Generate array load
470 */
471static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
472 RegLocation rlArray, RegLocation rlIndex,
473 RegLocation rlDest, int scale)
474{
475 RegisterClass regClass = dvmCompilerRegClassBySize(size);
476 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
477 int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
478 RegLocation rlResult;
479 rlArray = loadValue(cUnit, rlArray, kCoreReg);
480 rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
481 int regPtr;
482
483 /* null object? */
484 MipsLIR * pcrLabel = NULL;
485
486 if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
487 pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
488 rlArray.lowReg, mir->offset, NULL);
489 }
490
491 regPtr = dvmCompilerAllocTemp(cUnit);
492
493 assert(IS_SIMM16(dataOffset));
494 if (scale) {
495 opRegRegImm(cUnit, kOpLsl, regPtr, rlIndex.lowReg, scale);
496 }
497
498 if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
499 int regLen = dvmCompilerAllocTemp(cUnit);
500 /* Get len */
501 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
502 genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
503 pcrLabel);
504 dvmCompilerFreeTemp(cUnit, regLen);
505 }
506
507 if (scale) {
508 opRegReg(cUnit, kOpAdd, regPtr, rlArray.lowReg);
509 } else {
510 opRegRegReg(cUnit, kOpAdd, regPtr, rlArray.lowReg, rlIndex.lowReg);
511 }
512
513 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
514 if ((size == kLong) || (size == kDouble)) {
515 HEAP_ACCESS_SHADOW(true);
516 loadBaseDispWide(cUnit, mir, regPtr, dataOffset, rlResult.lowReg,
517 rlResult.highReg, INVALID_SREG);
518 HEAP_ACCESS_SHADOW(false);
519 dvmCompilerFreeTemp(cUnit, regPtr);
520 storeValueWide(cUnit, rlDest, rlResult);
521 } else {
522 HEAP_ACCESS_SHADOW(true);
523 loadBaseDisp(cUnit, mir, regPtr, dataOffset, rlResult.lowReg,
524 size, INVALID_SREG);
525 HEAP_ACCESS_SHADOW(false);
526 dvmCompilerFreeTemp(cUnit, regPtr);
527 storeValue(cUnit, rlDest, rlResult);
528 }
529}
530
531/*
532 * Generate array store
533 *
534 */
535static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
536 RegLocation rlArray, RegLocation rlIndex,
537 RegLocation rlSrc, int scale)
538{
539 RegisterClass regClass = dvmCompilerRegClassBySize(size);
540 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
541 int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
542
543 int regPtr;
544 rlArray = loadValue(cUnit, rlArray, kCoreReg);
545 rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
546
547 if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
548 dvmCompilerClobber(cUnit, rlArray.lowReg);
549 regPtr = rlArray.lowReg;
550 } else {
551 regPtr = dvmCompilerAllocTemp(cUnit);
552 genRegCopy(cUnit, regPtr, rlArray.lowReg);
553 }
554
555 /* null object? */
556 MipsLIR * pcrLabel = NULL;
557
558 if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
559 pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
560 mir->offset, NULL);
561 }
562
563 assert(IS_SIMM16(dataOffset));
564 int tReg = dvmCompilerAllocTemp(cUnit);
565 if (scale) {
566 opRegRegImm(cUnit, kOpLsl, tReg, rlIndex.lowReg, scale);
567 }
568
569 if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
570 int regLen = dvmCompilerAllocTemp(cUnit);
571 //NOTE: max live temps(4) here.
572 /* Get len */
573 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
574 genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
575 pcrLabel);
576 dvmCompilerFreeTemp(cUnit, regLen);
577 }
578
579 if (scale) {
580 opRegReg(cUnit, kOpAdd, tReg, rlArray.lowReg);
581 } else {
582 opRegRegReg(cUnit, kOpAdd, tReg, rlArray.lowReg, rlIndex.lowReg);
583 }
584
585 /* at this point, tReg points to array, 2 live temps */
586 if ((size == kLong) || (size == kDouble)) {
587 rlSrc = loadValueWide(cUnit, rlSrc, regClass);
588 HEAP_ACCESS_SHADOW(true);
589 storeBaseDispWide(cUnit, tReg, dataOffset, rlSrc.lowReg, rlSrc.highReg)
590 HEAP_ACCESS_SHADOW(false);
591 dvmCompilerFreeTemp(cUnit, tReg);
592 dvmCompilerFreeTemp(cUnit, regPtr);
593 } else {
594 rlSrc = loadValue(cUnit, rlSrc, regClass);
595 HEAP_ACCESS_SHADOW(true);
596 storeBaseDisp(cUnit, tReg, dataOffset, rlSrc.lowReg, size);
597 dvmCompilerFreeTemp(cUnit, tReg);
598 HEAP_ACCESS_SHADOW(false);
599 }
600}
601
602/*
603 * Generate array object store
604 * Must use explicit register allocation here because of
605 * call-out to dvmCanPutArrayElement
606 */
607static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
608 RegLocation rlArray, RegLocation rlIndex,
609 RegLocation rlSrc, int scale)
610{
611 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
612 int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
613
614 int regLen = r_A0;
615 int regPtr = r_S0; /* Preserved across call */
616 int regArray = r_A1;
617 int regIndex = r_S4; /* Preserved across call */
618
619 dvmCompilerFlushAllRegs(cUnit);
620 // moved lock for r_S0 and r_S4 here from below since genBoundsCheck
621 // allocates a temporary that can result in clobbering either of them
622 dvmCompilerLockTemp(cUnit, regPtr); // r_S0
623 dvmCompilerLockTemp(cUnit, regIndex); // r_S4
624
625 loadValueDirectFixed(cUnit, rlArray, regArray);
626 loadValueDirectFixed(cUnit, rlIndex, regIndex);
627
628 /* null object? */
629 MipsLIR * pcrLabel = NULL;
630
631 if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
632 pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
633 mir->offset, NULL);
634 }
635
636 if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
637 /* Get len */
638 loadWordDisp(cUnit, regArray, lenOffset, regLen);
639 /* regPtr -> array data */
640 opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
641 genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
642 pcrLabel);
643 } else {
644 /* regPtr -> array data */
645 opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
646 }
647
648 /* Get object to store */
649 loadValueDirectFixed(cUnit, rlSrc, r_A0);
650 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmCanPutArrayElement);
651
652 /* Are we storing null? If so, avoid check */
653 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBeqz, r_A0, -1);
654
655 /* Make sure the types are compatible */
656 loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r_A1);
657 loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A0);
658 opReg(cUnit, kOpBlx, r_T9);
659 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
660 dvmCompilerClobberCallRegs(cUnit);
661
662 /*
663 * Using fixed registers here, and counting on r_S0 and r_S4 being
664 * preserved across the above call. Tell the register allocation
665 * utilities about the regs we are using directly
666 */
667 dvmCompilerLockTemp(cUnit, r_A0);
668 dvmCompilerLockTemp(cUnit, r_A1);
669
670 /* Bad? - roll back and re-execute if so */
671 genRegImmCheck(cUnit, kMipsCondEq, r_V0, 0, mir->offset, pcrLabel);
672
673 /* Resume here - must reload element & array, regPtr & index preserved */
674 loadValueDirectFixed(cUnit, rlSrc, r_A0);
675 loadValueDirectFixed(cUnit, rlArray, r_A1);
676
677 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
678 target->defMask = ENCODE_ALL;
679 branchOver->generic.target = (LIR *) target;
680
681 HEAP_ACCESS_SHADOW(true);
682 storeBaseIndexed(cUnit, regPtr, regIndex, r_A0,
683 scale, kWord);
684 HEAP_ACCESS_SHADOW(false);
685
686 dvmCompilerFreeTemp(cUnit, regPtr);
687 dvmCompilerFreeTemp(cUnit, regIndex);
688
689 /* NOTE: marking card here based on object head */
690 markCard(cUnit, r_A0, r_A1);
691}
692
693static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
694 RegLocation rlDest, RegLocation rlSrc1,
695 RegLocation rlShift)
696{
697 /*
698 * Don't mess with the regsiters here as there is a particular calling
699 * convention to the out-of-line handler.
700 */
701 RegLocation rlResult;
702
703 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
704 loadValueDirect(cUnit, rlShift, r_A2);
705 switch( mir->dalvikInsn.opcode) {
706 case OP_SHL_LONG:
707 case OP_SHL_LONG_2ADDR:
708 genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
709 break;
710 case OP_SHR_LONG:
711 case OP_SHR_LONG_2ADDR:
712 genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
713 break;
714 case OP_USHR_LONG:
715 case OP_USHR_LONG_2ADDR:
716 genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
717 break;
718 default:
719 return true;
720 }
721 rlResult = dvmCompilerGetReturnWide(cUnit);
722 storeValueWide(cUnit, rlDest, rlResult);
723 return false;
724}
725
726static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
727 RegLocation rlDest, RegLocation rlSrc1,
728 RegLocation rlSrc2)
729{
730 RegLocation rlResult;
731 OpKind firstOp = kOpBkpt;
732 OpKind secondOp = kOpBkpt;
733 bool callOut = false;
734 void *callTgt;
735
736 switch (mir->dalvikInsn.opcode) {
737 case OP_NOT_LONG:
738 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
739 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
740 opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
741 opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
742 storeValueWide(cUnit, rlDest, rlResult);
743 return false;
744 break;
745 case OP_ADD_LONG:
746 case OP_ADD_LONG_2ADDR:
747 firstOp = kOpAdd;
748 secondOp = kOpAdc;
749 break;
750 case OP_SUB_LONG:
751 case OP_SUB_LONG_2ADDR:
752 firstOp = kOpSub;
753 secondOp = kOpSbc;
754 break;
755 case OP_MUL_LONG:
756 case OP_MUL_LONG_2ADDR:
757 genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
758 return false;
759 case OP_DIV_LONG:
760 case OP_DIV_LONG_2ADDR:
761 callOut = true;
762 callTgt = (void*)__divdi3;
763 break;
764 case OP_REM_LONG:
765 case OP_REM_LONG_2ADDR:
766 callOut = true;
767 callTgt = (void*)__moddi3;
768 break;
769 case OP_AND_LONG_2ADDR:
770 case OP_AND_LONG:
771 firstOp = kOpAnd;
772 secondOp = kOpAnd;
773 break;
774 case OP_OR_LONG:
775 case OP_OR_LONG_2ADDR:
776 firstOp = kOpOr;
777 secondOp = kOpOr;
778 break;
779 case OP_XOR_LONG:
780 case OP_XOR_LONG_2ADDR:
781 firstOp = kOpXor;
782 secondOp = kOpXor;
783 break;
784 case OP_NEG_LONG: {
785 int tReg = dvmCompilerAllocTemp(cUnit);
786 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
787 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
788 newLIR3(cUnit, kMipsSubu, rlResult.lowReg, r_ZERO, rlSrc2.lowReg);
789 newLIR3(cUnit, kMipsSubu, tReg, r_ZERO, rlSrc2.highReg);
790 newLIR3(cUnit, kMipsSltu, rlResult.highReg, r_ZERO, rlResult.lowReg);
791 newLIR3(cUnit, kMipsSubu, rlResult.highReg, tReg, rlResult.highReg);
792 dvmCompilerFreeTemp(cUnit, tReg);
793 storeValueWide(cUnit, rlDest, rlResult);
794 return false;
795 break;
796 }
797 default:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -0700798 ALOGE("Invalid long arith op");
Raghu Gandhama8b91c52012-05-02 14:27:16 -0700799 dvmCompilerAbort(cUnit);
800 }
801 if (!callOut) {
802 genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
803 } else {
804 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
805 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
806 LOAD_FUNC_ADDR(cUnit, r_T9, (int) callTgt);
807 loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3);
808 opReg(cUnit, kOpBlx, r_T9);
809 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
810 dvmCompilerClobberCallRegs(cUnit);
811 rlResult = dvmCompilerGetReturnWide(cUnit);
812 storeValueWide(cUnit, rlDest, rlResult);
813#if defined(WITH_SELF_VERIFICATION)
814 cUnit->usesLinkRegister = true;
815#endif
816 }
817 return false;
818}
819
820static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
821 RegLocation rlDest, RegLocation rlSrc1,
822 RegLocation rlSrc2)
823{
824 OpKind op = kOpBkpt;
825 bool checkZero = false;
826 bool unary = false;
827 RegLocation rlResult;
828 bool shiftOp = false;
829 int isDivRem = false;
830 MipsOpCode opc;
831 int divReg;
832
833 switch (mir->dalvikInsn.opcode) {
834 case OP_NEG_INT:
835 op = kOpNeg;
836 unary = true;
837 break;
838 case OP_NOT_INT:
839 op = kOpMvn;
840 unary = true;
841 break;
842 case OP_ADD_INT:
843 case OP_ADD_INT_2ADDR:
844 op = kOpAdd;
845 break;
846 case OP_SUB_INT:
847 case OP_SUB_INT_2ADDR:
848 op = kOpSub;
849 break;
850 case OP_MUL_INT:
851 case OP_MUL_INT_2ADDR:
852 op = kOpMul;
853 break;
854 case OP_DIV_INT:
855 case OP_DIV_INT_2ADDR:
856 isDivRem = true;
857 checkZero = true;
858 opc = kMipsMflo;
859 divReg = r_LO;
860 break;
861 case OP_REM_INT:
862 case OP_REM_INT_2ADDR:
863 isDivRem = true;
864 checkZero = true;
865 opc = kMipsMfhi;
866 divReg = r_HI;
867 break;
868 case OP_AND_INT:
869 case OP_AND_INT_2ADDR:
870 op = kOpAnd;
871 break;
872 case OP_OR_INT:
873 case OP_OR_INT_2ADDR:
874 op = kOpOr;
875 break;
876 case OP_XOR_INT:
877 case OP_XOR_INT_2ADDR:
878 op = kOpXor;
879 break;
880 case OP_SHL_INT:
881 case OP_SHL_INT_2ADDR:
882 shiftOp = true;
883 op = kOpLsl;
884 break;
885 case OP_SHR_INT:
886 case OP_SHR_INT_2ADDR:
887 shiftOp = true;
888 op = kOpAsr;
889 break;
890 case OP_USHR_INT:
891 case OP_USHR_INT_2ADDR:
892 shiftOp = true;
893 op = kOpLsr;
894 break;
895 default:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -0700896 ALOGE("Invalid word arith op: %#x(%d)",
Raghu Gandhama8b91c52012-05-02 14:27:16 -0700897 mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
898 dvmCompilerAbort(cUnit);
899 }
900
901 rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
902 if (unary) {
903 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
904 opRegReg(cUnit, op, rlResult.lowReg,
905 rlSrc1.lowReg);
906 } else if (isDivRem) {
907 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
908 if (checkZero) {
909 genNullCheck(cUnit, rlSrc2.sRegLow, rlSrc2.lowReg, mir->offset, NULL);
910 }
911 newLIR4(cUnit, kMipsDiv, r_HI, r_LO, rlSrc1.lowReg, rlSrc2.lowReg);
912 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
913 newLIR2(cUnit, opc, rlResult.lowReg, divReg);
914 } else {
915 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
916 if (shiftOp) {
917 int tReg = dvmCompilerAllocTemp(cUnit);
918 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
919 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
920 opRegRegReg(cUnit, op, rlResult.lowReg,
921 rlSrc1.lowReg, tReg);
922 dvmCompilerFreeTemp(cUnit, tReg);
923 } else {
924 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
925 opRegRegReg(cUnit, op, rlResult.lowReg,
926 rlSrc1.lowReg, rlSrc2.lowReg);
927 }
928 }
929 storeValue(cUnit, rlDest, rlResult);
930
931 return false;
932}
933
934static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
935{
936 Opcode opcode = mir->dalvikInsn.opcode;
937 RegLocation rlDest;
938 RegLocation rlSrc1;
939 RegLocation rlSrc2;
940 /* Deduce sizes of operands */
941 if (mir->ssaRep->numUses == 2) {
942 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
943 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
944 } else if (mir->ssaRep->numUses == 3) {
945 rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
946 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
947 } else {
948 rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
949 rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
950 assert(mir->ssaRep->numUses == 4);
951 }
952 if (mir->ssaRep->numDefs == 1) {
953 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
954 } else {
955 assert(mir->ssaRep->numDefs == 2);
956 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
957 }
958
959 if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
960 return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
961 }
962 if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
963 return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
964 }
965 if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
966 return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
967 }
968 if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
969 return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
970 }
971 if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
972 return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
973 }
974 if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
975 return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
976 }
977 if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
978 return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
979 }
980 if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
981 return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
982 }
983 if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
984 return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
985 }
986 if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
987 return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
988 }
989 return true;
990}
991
992/* Generate unconditional branch instructions */
993static MipsLIR *genUnconditionalBranch(CompilationUnit *cUnit, MipsLIR *target)
994{
995 MipsLIR *branch = opNone(cUnit, kOpUncondBr);
996 branch->generic.target = (LIR *) target;
997 return branch;
998}
999
1000/* Perform the actual operation for OP_RETURN_* */
1001void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
1002{
1003 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1004 TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
1005#if defined(WITH_JIT_TUNING)
1006 gDvmJit.returnOp++;
1007#endif
1008 int dPC = (int) (cUnit->method->insns + mir->offset);
1009 /* Insert branch, but defer setting of target */
1010 MipsLIR *branch = genUnconditionalBranch(cUnit, NULL);
1011 /* Set up the place holder to reconstruct this Dalvik PC */
1012 MipsLIR *pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
1013 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
1014 pcrLabel->operands[0] = dPC;
1015 pcrLabel->operands[1] = mir->offset;
1016 /* Insert the place holder to the growable list */
1017 dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
1018 /* Branch to the PC reconstruction code */
1019 branch->generic.target = (LIR *) pcrLabel;
1020}
1021
1022static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
1023 DecodedInstruction *dInsn,
1024 MipsLIR **pcrLabel)
1025{
1026 unsigned int i;
1027 unsigned int regMask = 0;
1028 RegLocation rlArg;
1029 int numDone = 0;
1030
1031 /*
1032 * Load arguments to r_A0..r_T0. Note that these registers may contain
1033 * live values, so we clobber them immediately after loading to prevent
1034 * them from being used as sources for subsequent loads.
1035 */
1036 dvmCompilerLockAllTemps(cUnit);
1037 for (i = 0; i < dInsn->vA; i++) {
1038 regMask |= 1 << i;
1039 rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
1040 loadValueDirectFixed(cUnit, rlArg, i+r_A0); /* r_A0 thru r_T0 */
1041 }
1042 if (regMask) {
1043 /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
1044 opRegRegImm(cUnit, kOpSub, r_S4, rFP,
1045 sizeof(StackSaveArea) + (dInsn->vA << 2));
1046 /* generate null check */
1047 if (pcrLabel) {
1048 *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r_A0,
1049 mir->offset, NULL);
1050 }
1051 storeMultiple(cUnit, r_S4, regMask);
1052 }
1053}
1054
1055static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1056 DecodedInstruction *dInsn,
1057 MipsLIR **pcrLabel)
1058{
1059 int srcOffset = dInsn->vC << 2;
1060 int numArgs = dInsn->vA;
1061 int regMask;
1062
1063 /*
1064 * Note: here, all promoted registers will have been flushed
1065 * back to the Dalvik base locations, so register usage restrictins
1066 * are lifted. All parms loaded from original Dalvik register
1067 * region - even though some might conceivably have valid copies
1068 * cached in a preserved register.
1069 */
1070 dvmCompilerLockAllTemps(cUnit);
1071
1072 /*
1073 * r4PC : &rFP[vC]
1074 * r_S4: &newFP[0]
1075 */
1076 opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
1077 /* load [r_A0 up to r_A3)] */
1078 regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1079 /*
1080 * Protect the loadMultiple instruction from being reordered with other
1081 * Dalvik stack accesses.
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001082 */
1083 if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1084
1085 opRegRegImm(cUnit, kOpSub, r_S4, rFP,
1086 sizeof(StackSaveArea) + (numArgs << 2));
1087 /* generate null check */
1088 if (pcrLabel) {
1089 *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r_A0,
1090 mir->offset, NULL);
1091 }
1092
1093 /*
1094 * Handle remaining 4n arguments:
1095 * store previously loaded 4 values and load the next 4 values
1096 */
1097 if (numArgs >= 8) {
1098 MipsLIR *loopLabel = NULL;
1099 /*
1100 * r_A0 contains "this" and it will be used later, so push it to the stack
1101 * first. Pushing r_S1 (rFP) is just for stack alignment purposes.
1102 */
1103
1104 newLIR2(cUnit, kMipsMove, r_T0, r_A0);
1105 newLIR2(cUnit, kMipsMove, r_T1, r_S1);
1106
1107 /* No need to generate the loop structure if numArgs <= 11 */
1108 if (numArgs > 11) {
1109 loadConstant(cUnit, rFP, ((numArgs - 4) >> 2) << 2);
1110 loopLabel = newLIR0(cUnit, kMipsPseudoTargetLabel);
1111 loopLabel->defMask = ENCODE_ALL;
1112 }
1113 storeMultiple(cUnit, r_S4, regMask);
1114 /*
1115 * Protect the loadMultiple instruction from being reordered with other
1116 * Dalvik stack accesses.
1117 */
1118 loadMultiple(cUnit, r4PC, regMask);
1119 /* No need to generate the loop structure if numArgs <= 11 */
1120 if (numArgs > 11) {
1121 opRegImm(cUnit, kOpSub, rFP, 4);
1122 genConditionalBranchMips(cUnit, kMipsBne, rFP, r_ZERO, loopLabel);
1123 }
1124 }
1125
1126 /* Save the last batch of loaded values */
1127 if (numArgs != 0) storeMultiple(cUnit, r_S4, regMask);
1128
1129 /* Generate the loop epilogue - don't use r_A0 */
1130 if ((numArgs > 4) && (numArgs % 4)) {
1131 regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1132 /*
1133 * Protect the loadMultiple instruction from being reordered with other
1134 * Dalvik stack accesses.
1135 */
1136 loadMultiple(cUnit, r4PC, regMask);
1137 }
1138 if (numArgs >= 8) {
1139 newLIR2(cUnit, kMipsMove, r_A0, r_T0);
1140 newLIR2(cUnit, kMipsMove, r_S1, r_T1);
1141 }
1142
1143 /* Save the modulo 4 arguments */
1144 if ((numArgs > 4) && (numArgs % 4)) {
1145 storeMultiple(cUnit, r_S4, regMask);
1146 }
1147}
1148
1149/*
1150 * Generate code to setup the call stack then jump to the chaining cell if it
1151 * is not a native method.
1152 */
1153static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1154 BasicBlock *bb, MipsLIR *labelList,
1155 MipsLIR *pcrLabel,
1156 const Method *calleeMethod)
1157{
1158 /*
1159 * Note: all Dalvik register state should be flushed to
1160 * memory by the point, so register usage restrictions no
1161 * longer apply. All temp & preserved registers may be used.
1162 */
1163 dvmCompilerLockAllTemps(cUnit);
1164 MipsLIR *retChainingCell = &labelList[bb->fallThrough->id];
1165
1166 /* r_A1 = &retChainingCell */
1167 dvmCompilerLockTemp(cUnit, r_A1);
1168 MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1169 addrRetChain->generic.target = (LIR *) retChainingCell;
1170 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1171 addrRetChain->generic.target = (LIR *) retChainingCell;
1172
1173 /* r4PC = dalvikCallsite */
1174 loadConstant(cUnit, r4PC,
1175 (int) (cUnit->method->insns + mir->offset));
1176 /*
1177 * r_A0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1178 * r_A1 = &ChainingCell
1179 * r4PC = callsiteDPC
1180 */
1181 if (dvmIsNativeMethod(calleeMethod)) {
1182 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1183 TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1184 TEMPLATE_INVOKE_METHOD_NATIVE);
1185#if defined(WITH_JIT_TUNING)
1186 gDvmJit.invokeNative++;
1187#endif
1188 } else {
1189 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1190 TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1191 TEMPLATE_INVOKE_METHOD_CHAIN);
1192#if defined(WITH_JIT_TUNING)
1193 gDvmJit.invokeMonomorphic++;
1194#endif
1195 /* Branch to the chaining cell */
1196 genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1197 }
1198 /* Handle exceptions using the interpreter */
1199 genTrap(cUnit, mir->offset, pcrLabel);
1200}
1201
1202/*
1203 * Generate code to check the validity of a predicted chain and take actions
1204 * based on the result.
1205 *
1206 * 0x2f1304c4 : lui s0,0x2d22(11554) # s0 <- dalvikPC
1207 * 0x2f1304c8 : ori s0,s0,0x2d22848c(757236876)
1208 * 0x2f1304cc : lahi/lui a1,0x2f13(12051) # a1 <- &retChainingCell
1209 * 0x2f1304d0 : lalo/ori a1,a1,0x2f13055c(789775708)
1210 * 0x2f1304d4 : lahi/lui a2,0x2f13(12051) # a2 <- &predictedChainingCell
1211 * 0x2f1304d8 : lalo/ori a2,a2,0x2f13056c(789775724)
1212 * 0x2f1304dc : jal 0x2f12d1ec(789762540) # call TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1213 * 0x2f1304e0 : nop
1214 * 0x2f1304e4 : b 0x2f13056c (L0x11ec10) # off to the predicted chain
1215 * 0x2f1304e8 : nop
1216 * 0x2f1304ec : b 0x2f13054c (L0x11fc80) # punt to the interpreter
1217 * 0x2f1304f0 : lui a0,0x2d22(11554)
1218 * 0x2f1304f4 : lw a0,156(s4) # a0 <- this->class->vtable[methodIdx]
1219 * 0x2f1304f8 : bgtz a1,0x2f13051c (L0x11fa40) # if >0 don't rechain
1220 * 0x2f1304fc : nop
1221 * 0x2f130500 : lui t9,0x2aba(10938)
1222 * 0x2f130504 : ori t9,t9,0x2abae3f8(716891128)
1223 * 0x2f130508 : move a1,s2
1224 * 0x2f13050c : jalr ra,t9 # call dvmJitToPatchPredictedChain
1225 * 0x2f130510 : nop
1226 * 0x2f130514 : lw gp,84(sp)
1227 * 0x2f130518 : move a0,v0
1228 * 0x2f13051c : lahi/lui a1,0x2f13(12051) # a1 <- &retChainingCell
1229 * 0x2f130520 : lalo/ori a1,a1,0x2f13055c(789775708)
1230 * 0x2f130524 : jal 0x2f12d0c4(789762244) # call TEMPLATE_INVOKE_METHOD_NO_OPT
1231 * 0x2f130528 : nop
1232 */
1233static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1234 int methodIndex,
1235 MipsLIR *retChainingCell,
1236 MipsLIR *predChainingCell,
1237 MipsLIR *pcrLabel)
1238{
1239 /*
1240 * Note: all Dalvik register state should be flushed to
1241 * memory by the point, so register usage restrictions no
1242 * longer apply. Lock temps to prevent them from being
1243 * allocated by utility routines.
1244 */
1245 dvmCompilerLockAllTemps(cUnit);
1246
1247 /*
1248 * For verbose printing, store the method pointer in operands[1] first as
1249 * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1250 */
1251 predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1252
1253 /* "this" is already left in r_A0 by genProcessArgs* */
1254
1255 /* r4PC = dalvikCallsite */
1256 loadConstant(cUnit, r4PC,
1257 (int) (cUnit->method->insns + mir->offset));
1258
1259 /* r_A1 = &retChainingCell */
1260 MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1261 addrRetChain->generic.target = (LIR *) retChainingCell;
1262 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1263 addrRetChain->generic.target = (LIR *) retChainingCell;
1264
1265 /* r_A2 = &predictedChainingCell */
1266 MipsLIR *predictedChainingCell = newLIR2(cUnit, kMipsLahi, r_A2, 0);
1267 predictedChainingCell->generic.target = (LIR *) predChainingCell;
1268 predictedChainingCell = newLIR3(cUnit, kMipsLalo, r_A2, r_A2, 0);
1269 predictedChainingCell->generic.target = (LIR *) predChainingCell;
1270
1271 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1272 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1273 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1274
1275 /* return through ra - jump to the chaining cell */
1276 genUnconditionalBranch(cUnit, predChainingCell);
1277
1278 /*
1279 * null-check on "this" may have been eliminated, but we still need a PC-
1280 * reconstruction label for stack overflow bailout.
1281 */
1282 if (pcrLabel == NULL) {
1283 int dPC = (int) (cUnit->method->insns + mir->offset);
1284 pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
1285 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
1286 pcrLabel->operands[0] = dPC;
1287 pcrLabel->operands[1] = mir->offset;
1288 /* Insert the place holder to the growable list */
1289 dvmInsertGrowableList(&cUnit->pcReconstructionList,
1290 (intptr_t) pcrLabel);
1291 }
1292
1293 /* return through ra+8 - punt to the interpreter */
1294 genUnconditionalBranch(cUnit, pcrLabel);
1295
1296 /*
1297 * return through ra+16 - fully resolve the callee method.
1298 * r_A1 <- count
1299 * r_A2 <- &predictedChainCell
1300 * r_A3 <- this->class
1301 * r4 <- dPC
1302 * r_S4 <- this->class->vtable
1303 */
1304
1305 /* r_A0 <- calleeMethod */
1306 loadWordDisp(cUnit, r_S4, methodIndex * 4, r_A0);
1307
1308 /* Check if rechain limit is reached */
1309 MipsLIR *bypassRechaining = opCompareBranch(cUnit, kMipsBgtz, r_A1, -1);
1310
1311 LOAD_FUNC_ADDR(cUnit, r_T9, (int) dvmJitToPatchPredictedChain);
1312
1313 genRegCopy(cUnit, r_A1, rSELF);
1314
1315 /*
1316 * r_A0 = calleeMethod
1317 * r_A2 = &predictedChainingCell
1318 * r_A3 = class
1319 *
1320 * &returnChainingCell has been loaded into r_A1 but is not needed
1321 * when patching the chaining cell and will be clobbered upon
1322 * returning so it will be reconstructed again.
1323 */
1324 opReg(cUnit, kOpBlx, r_T9);
1325 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1326 newLIR2(cUnit, kMipsMove, r_A0, r_V0);
1327
1328 /* r_A1 = &retChainingCell */
1329 addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1330 addrRetChain->generic.target = (LIR *) retChainingCell;
1331 bypassRechaining->generic.target = (LIR *) addrRetChain;
1332 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1333 addrRetChain->generic.target = (LIR *) retChainingCell;
1334
1335 /*
1336 * r_A0 = calleeMethod,
1337 * r_A1 = &ChainingCell,
1338 * r4PC = callsiteDPC,
1339 */
1340 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1341 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1342 TEMPLATE_INVOKE_METHOD_NO_OPT);
1343#if defined(WITH_JIT_TUNING)
1344 gDvmJit.invokePolymorphic++;
1345#endif
1346 /* Handle exceptions using the interpreter */
1347 genTrap(cUnit, mir->offset, pcrLabel);
1348}
1349
1350/* "this" pointer is already in r0 */
1351static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1352 MIR *mir,
1353 void *calleeAddr,
1354 MipsLIR *retChainingCell)
1355{
1356 CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1357 dvmCompilerLockAllTemps(cUnit);
1358
1359 loadClassPointer(cUnit, r_A1, (int) callsiteInfo);
1360
1361 loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A2);
1362 /*
1363 * Set the misPredBranchOver target so that it will be generated when the
1364 * code for the non-optimized invoke is generated.
1365 */
1366 /* Branch to the slow path if classes are not equal */
1367 MipsLIR *classCheck = opCompareBranch(cUnit, kMipsBne, r_A1, r_A2);
1368
1369 /* a0 = the Dalvik PC of the callsite */
1370 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1371
1372 newLIR1(cUnit, kMipsJal, (int) calleeAddr);
1373 genUnconditionalBranch(cUnit, retChainingCell);
1374
1375 /* Target of slow path */
1376 MipsLIR *slowPathLabel = newLIR0(cUnit, kMipsPseudoTargetLabel);
1377
1378 slowPathLabel->defMask = ENCODE_ALL;
1379 classCheck->generic.target = (LIR *) slowPathLabel;
1380
1381 // FIXME
1382 cUnit->printMe = true;
1383}
1384
1385static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1386 MIR *mir,
1387 void *calleeAddr,
1388 MipsLIR *retChainingCell)
1389{
1390 /* a0 = the Dalvik PC of the callsite */
1391 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1392
1393 newLIR1(cUnit, kMipsJal, (int) calleeAddr);
1394 genUnconditionalBranch(cUnit, retChainingCell);
1395
1396 // FIXME
1397 cUnit->printMe = true;
1398}
1399
1400/* Geneate a branch to go back to the interpreter */
1401static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1402{
1403 /* a0 = dalvik pc */
1404 dvmCompilerFlushAllRegs(cUnit);
1405 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + offset));
1406#if 0 /* MIPSTODO tempoary workaround unaligned access on sigma hardware
1407 this can removed when we're not punting to genInterpSingleStep
1408 for opcodes that haven't been activated yet */
1409 loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A3);
1410#endif
1411 loadWordDisp(cUnit, rSELF, offsetof(Thread,
1412 jitToInterpEntries.dvmJitToInterpPunt), r_A1);
1413
1414 opReg(cUnit, kOpBlx, r_A1);
1415}
1416
1417/*
1418 * Attempt to single step one instruction using the interpreter and return
1419 * to the compiled code for the next Dalvik instruction
1420 */
1421static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1422{
1423 int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1424 int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1425
1426 // Single stepping is considered loop mode breaker
1427 if (cUnit->jitMode == kJitLoop) {
1428 cUnit->quitLoopMode = true;
1429 return;
1430 }
1431
1432 //If already optimized out, just ignore
1433 if (mir->dalvikInsn.opcode == OP_NOP)
1434 return;
1435
1436 //Ugly, but necessary. Flush all Dalvik regs so Interp can find them
1437 dvmCompilerFlushAllRegs(cUnit);
1438
1439 if ((mir->next == NULL) || (flags & flagsToCheck)) {
1440 genPuntToInterp(cUnit, mir->offset);
1441 return;
1442 }
1443 int entryAddr = offsetof(Thread,
1444 jitToInterpEntries.dvmJitToInterpSingleStep);
1445 loadWordDisp(cUnit, rSELF, entryAddr, r_A2);
1446 /* a0 = dalvik pc */
1447 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1448 /* a1 = dalvik pc of following instruction */
1449 loadConstant(cUnit, r_A1, (int) (cUnit->method->insns + mir->next->offset));
1450 opReg(cUnit, kOpBlx, r_A2);
1451}
1452
1453/*
1454 * To prevent a thread in a monitor wait from blocking the Jit from
1455 * resetting the code cache, heavyweight monitor lock will not
1456 * be allowed to return to an existing translation. Instead, we will
1457 * handle them by branching to a handler, which will in turn call the
1458 * runtime lock routine and then branch directly back to the
1459 * interpreter main loop. Given the high cost of the heavyweight
1460 * lock operation, this additional cost should be slight (especially when
1461 * considering that we expect the vast majority of lock operations to
1462 * use the fast-path thin lock bypass).
1463 */
1464static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1465{
1466 bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1467 genExportPC(cUnit, mir);
1468 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
1469 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1470 loadValueDirectFixed(cUnit, rlSrc, r_A1);
1471 genRegCopy(cUnit, r_A0, rSELF);
1472 genNullCheck(cUnit, rlSrc.sRegLow, r_A1, mir->offset, NULL);
1473 if (isEnter) {
1474 /* Get dPC of next insn */
1475 loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1476 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1477 genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1478 } else {
1479 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmUnlockObject);
1480 /* Do the call */
1481 opReg(cUnit, kOpBlx, r_T9);
1482 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1483 /* Did we throw? */
1484 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
1485 loadConstant(cUnit, r_A0,
1486 (int) (cUnit->method->insns + mir->offset +
1487 dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1488 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1489 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1490 target->defMask = ENCODE_ALL;
1491 branchOver->generic.target = (LIR *) target;
1492 dvmCompilerClobberCallRegs(cUnit);
1493 }
1494}
1495/*#endif*/
1496
1497/*
1498 * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1499 * punt to the interpreter.
1500 */
1501static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1502{
1503 int rTemp = dvmCompilerAllocTemp(cUnit);
1504 MipsLIR *ld;
1505 ld = loadBaseDisp(cUnit, NULL, rSELF,
1506 offsetof(Thread, interpBreak.ctl.breakFlags),
1507 rTemp, kUnsignedByte, INVALID_SREG);
1508 setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1509 genRegImmCheck(cUnit, kMipsCondNe, rTemp, 0, mir->offset, NULL);
1510}
1511
1512/*
1513 * The following are the first-level codegen routines that analyze the format
1514 * of each bytecode then either dispatch special purpose codegen routines
1515 * or produce corresponding Thumb instructions directly.
1516 */
1517
1518static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1519 BasicBlock *bb, MipsLIR *labelList)
1520{
1521 /* backward branch? */
1522 bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1523
1524 if (backwardBranch &&
1525 (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1526 genSuspendPoll(cUnit, mir);
1527 }
1528
1529 int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1530 /*
1531 * Things could be hoisted out of the taken block into the predecessor, so
1532 * make sure it is dominated by the predecessor.
1533 */
1534 if (numPredecessors == 1 && bb->taken->visited == false &&
1535 bb->taken->blockType == kDalvikByteCode) {
1536 cUnit->nextCodegenBlock = bb->taken;
1537 } else {
1538 /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1539 genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1540 }
1541 return false;
1542}
1543
1544static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1545{
1546 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1547 if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001548 ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001549 return true;
1550 }
1551 switch (dalvikOpcode) {
1552 case OP_RETURN_VOID_BARRIER:
Elliott Hughes100dbe02012-07-17 16:31:30 -07001553 dvmCompilerGenMemBarrier(cUnit, 0);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001554 // Intentional fallthrough
1555 case OP_RETURN_VOID:
1556 genReturnCommon(cUnit,mir);
1557 break;
1558 case OP_UNUSED_73:
1559 case OP_UNUSED_79:
1560 case OP_UNUSED_7A:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001561 case OP_UNUSED_FF:
1562 ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001563 return true;
1564 case OP_NOP:
1565 break;
1566 default:
1567 return true;
1568 }
1569 return false;
1570}
1571
1572static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1573{
1574 RegLocation rlDest;
1575 RegLocation rlResult;
1576 if (mir->ssaRep->numDefs == 2) {
1577 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1578 } else {
1579 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1580 }
1581
1582 switch (mir->dalvikInsn.opcode) {
1583 case OP_CONST:
1584 case OP_CONST_4: {
1585 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1586 loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1587 storeValue(cUnit, rlDest, rlResult);
1588 break;
1589 }
1590 case OP_CONST_WIDE_32: {
1591 //TUNING: single routine to load constant pair for support doubles
1592 //TUNING: load 0/-1 separately to avoid load dependency
1593 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1594 loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1595 opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1596 rlResult.lowReg, 31);
1597 storeValueWide(cUnit, rlDest, rlResult);
1598 break;
1599 }
1600 default:
1601 return true;
1602 }
1603 return false;
1604}
1605
1606static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1607{
1608 RegLocation rlDest;
1609 RegLocation rlResult;
1610 if (mir->ssaRep->numDefs == 2) {
1611 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1612 } else {
1613 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1614 }
1615 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1616
1617 switch (mir->dalvikInsn.opcode) {
1618 case OP_CONST_HIGH16: {
1619 loadConstantNoClobber(cUnit, rlResult.lowReg,
1620 mir->dalvikInsn.vB << 16);
1621 storeValue(cUnit, rlDest, rlResult);
1622 break;
1623 }
1624 case OP_CONST_WIDE_HIGH16: {
1625 loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1626 0, mir->dalvikInsn.vB << 16);
1627 storeValueWide(cUnit, rlDest, rlResult);
1628 break;
1629 }
1630 default:
1631 return true;
1632 }
1633 return false;
1634}
1635
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001636static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001637{
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001638 /* For OP_THROW_VERIFICATION_ERROR */
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001639 genInterpSingleStep(cUnit, mir);
1640 return false;
1641}
1642
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001643static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001644{
1645 RegLocation rlResult;
1646 RegLocation rlDest;
1647 RegLocation rlSrc;
1648
1649 switch (mir->dalvikInsn.opcode) {
1650 case OP_CONST_STRING_JUMBO:
1651 case OP_CONST_STRING: {
1652 void *strPtr = (void*)
1653 (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1654
1655 if (strPtr == NULL) {
1656 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001657 ALOGE("Unexpected null string");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001658 dvmAbort();
1659 }
1660
1661 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1662 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1663 loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1664 storeValue(cUnit, rlDest, rlResult);
1665 break;
1666 }
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001667 case OP_CONST_CLASS: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001668 void *classPtr = (void*)
1669 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1670
1671 if (classPtr == NULL) {
1672 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001673 ALOGE("Unexpected null class");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001674 dvmAbort();
1675 }
1676
1677 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1678 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1679 loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1680 storeValue(cUnit, rlDest, rlResult);
1681 break;
1682 }
1683 case OP_SGET:
1684 case OP_SGET_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001685 case OP_SGET_OBJECT:
1686 case OP_SGET_OBJECT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001687 case OP_SGET_BOOLEAN:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001688 case OP_SGET_CHAR:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001689 case OP_SGET_BYTE:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001690 case OP_SGET_SHORT: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001691 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1692 int tReg = dvmCompilerAllocTemp(cUnit);
1693 bool isVolatile;
1694 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1695 mir->meta.calleeMethod : cUnit->method;
1696 void *fieldPtr = (void*)
1697 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1698
1699 if (fieldPtr == NULL) {
1700 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001701 ALOGE("Unexpected null static field");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001702 dvmAbort();
1703 }
1704
1705 /*
1706 * On SMP systems, Dalvik opcodes found to be referencing
1707 * volatile fields are rewritten to their _VOLATILE variant.
1708 * However, this does not happen on non-SMP systems. The JIT
1709 * still needs to know about volatility to avoid unsafe
1710 * optimizations so we determine volatility based on either
1711 * the opcode or the field access flags.
1712 */
1713#if ANDROID_SMP != 0
1714 Opcode opcode = mir->dalvikInsn.opcode;
1715 isVolatile = (opcode == OP_SGET_VOLATILE) ||
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001716 (opcode == OP_SGET_OBJECT_VOLATILE);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001717 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1718#else
1719 isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1720#endif
1721
1722 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1723 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1724 loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
1725
1726 if (isVolatile) {
1727 dvmCompilerGenMemBarrier(cUnit, 0);
1728 }
1729 HEAP_ACCESS_SHADOW(true);
1730 loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1731 HEAP_ACCESS_SHADOW(false);
1732
1733 storeValue(cUnit, rlDest, rlResult);
1734 break;
1735 }
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001736 case OP_SGET_WIDE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001737 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1738 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1739 mir->meta.calleeMethod : cUnit->method;
1740 void *fieldPtr = (void*)
1741 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1742
1743 if (fieldPtr == NULL) {
1744 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001745 ALOGE("Unexpected null static field");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001746 dvmAbort();
1747 }
1748
1749 int tReg = dvmCompilerAllocTemp(cUnit);
1750 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1751 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1752 loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
1753
1754 HEAP_ACCESS_SHADOW(true);
1755 loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1756 HEAP_ACCESS_SHADOW(false);
1757
1758 storeValueWide(cUnit, rlDest, rlResult);
1759 break;
1760 }
1761 case OP_SPUT:
1762 case OP_SPUT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001763 case OP_SPUT_OBJECT:
1764 case OP_SPUT_OBJECT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001765 case OP_SPUT_BOOLEAN:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001766 case OP_SPUT_CHAR:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001767 case OP_SPUT_BYTE:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001768 case OP_SPUT_SHORT: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001769 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1770 int tReg = dvmCompilerAllocTemp(cUnit);
1771 int objHead = 0;
1772 bool isVolatile;
1773 bool isSputObject;
1774 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1775 mir->meta.calleeMethod : cUnit->method;
1776 void *fieldPtr = (void*)
1777 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1778 Opcode opcode = mir->dalvikInsn.opcode;
1779
1780 if (fieldPtr == NULL) {
1781 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001782 ALOGE("Unexpected null static field");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001783 dvmAbort();
1784 }
1785
1786#if ANDROID_SMP != 0
1787 isVolatile = (opcode == OP_SPUT_VOLATILE) ||
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001788 (opcode == OP_SPUT_OBJECT_VOLATILE);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001789 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1790#else
1791 isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1792#endif
1793
1794 isSputObject = (opcode == OP_SPUT_OBJECT) ||
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001795 (opcode == OP_SPUT_OBJECT_VOLATILE);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001796
1797 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1798 rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1799 loadConstant(cUnit, tReg, (int) fieldPtr);
1800 if (isSputObject) {
1801 objHead = dvmCompilerAllocTemp(cUnit);
1802 loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1803 }
1804 if (isVolatile) {
1805 dvmCompilerGenMemBarrier(cUnit, 0);
1806 }
1807 HEAP_ACCESS_SHADOW(true);
1808 storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1809 dvmCompilerFreeTemp(cUnit, tReg);
1810 HEAP_ACCESS_SHADOW(false);
1811 if (isVolatile) {
1812 dvmCompilerGenMemBarrier(cUnit, 0);
1813 }
1814 if (isSputObject) {
1815 /* NOTE: marking card based sfield->clazz */
1816 markCard(cUnit, rlSrc.lowReg, objHead);
1817 dvmCompilerFreeTemp(cUnit, objHead);
1818 }
1819
1820 break;
1821 }
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001822 case OP_SPUT_WIDE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001823 int tReg = dvmCompilerAllocTemp(cUnit);
1824 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1825 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1826 mir->meta.calleeMethod : cUnit->method;
1827 void *fieldPtr = (void*)
1828 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1829
1830 if (fieldPtr == NULL) {
1831 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001832 ALOGE("Unexpected null static field");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001833 dvmAbort();
1834 }
1835
1836 rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1837 rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1838 loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
1839
1840 HEAP_ACCESS_SHADOW(true);
1841 storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1842 HEAP_ACCESS_SHADOW(false);
1843 break;
1844 }
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001845 case OP_NEW_INSTANCE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001846 /*
1847 * Obey the calling convention and don't mess with the register
1848 * usage.
1849 */
1850 ClassObject *classPtr = (ClassObject *)
1851 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1852
1853 if (classPtr == NULL) {
1854 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001855 ALOGE("Unexpected null class");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001856 dvmAbort();
1857 }
1858
1859 /*
1860 * If it is going to throw, it should not make to the trace to begin
1861 * with. However, Alloc might throw, so we need to genExportPC()
1862 */
1863 assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1864 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
1865 genExportPC(cUnit, mir);
1866 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmAllocObject);
1867 loadConstant(cUnit, r_A0, (int) classPtr);
1868 loadConstant(cUnit, r_A1, ALLOC_DONT_TRACK);
1869 opReg(cUnit, kOpBlx, r_T9);
1870 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1871 dvmCompilerClobberCallRegs(cUnit);
1872 /* generate a branch over if allocation is successful */
1873 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
1874
1875 /*
1876 * OOM exception needs to be thrown here and cannot re-execute
1877 */
1878 loadConstant(cUnit, r_A0,
1879 (int) (cUnit->method->insns + mir->offset));
1880 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1881 /* noreturn */
1882
1883 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1884 target->defMask = ENCODE_ALL;
1885 branchOver->generic.target = (LIR *) target;
1886 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1887 rlResult = dvmCompilerGetReturn(cUnit);
1888 storeValue(cUnit, rlDest, rlResult);
1889 break;
1890 }
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07001891 case OP_CHECK_CAST: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001892 /*
1893 * Obey the calling convention and don't mess with the register
1894 * usage.
1895 */
1896 ClassObject *classPtr =
1897 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1898 /*
1899 * Note: It is possible that classPtr is NULL at this point,
1900 * even though this instruction has been successfully interpreted.
1901 * If the previous interpretation had a null source, the
1902 * interpreter would not have bothered to resolve the clazz.
1903 * Bail out to the interpreter in this case, and log it
1904 * so that we can tell if it happens frequently.
1905 */
1906 if (classPtr == NULL) {
1907 BAIL_LOOP_COMPILATION();
1908 LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1909 genInterpSingleStep(cUnit, mir);
1910 return false;
1911 }
1912 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
1913 loadConstant(cUnit, r_A1, (int) classPtr );
1914 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1915 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1916 MipsLIR *branch1 = opCompareBranch(cUnit, kMipsBeqz, rlSrc.lowReg, -1);
1917 /*
1918 * rlSrc.lowReg now contains object->clazz. Note that
1919 * it could have been allocated r_A0, but we're okay so long
1920 * as we don't do anything desctructive until r_A0 is loaded
1921 * with clazz.
1922 */
1923 /* r_A0 now contains object->clazz */
1924 loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r_A0);
1925 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInstanceofNonTrivial);
1926 MipsLIR *branch2 = opCompareBranch(cUnit, kMipsBeq, r_A0, r_A1);
1927 opReg(cUnit, kOpBlx, r_T9);
1928 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1929 dvmCompilerClobberCallRegs(cUnit);
1930 /*
1931 * If null, check cast failed - punt to the interpreter. Because
1932 * interpreter will be the one throwing, we don't need to
1933 * genExportPC() here.
1934 */
1935 genRegCopy(cUnit, r_A0, r_V0);
1936 genZeroCheck(cUnit, r_V0, mir->offset, NULL);
1937 /* check cast passed - branch target here */
1938 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1939 target->defMask = ENCODE_ALL;
1940 branch1->generic.target = (LIR *)target;
1941 branch2->generic.target = (LIR *)target;
1942 break;
1943 }
1944 case OP_SGET_WIDE_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001945 case OP_SPUT_WIDE_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001946 genInterpSingleStep(cUnit, mir);
1947 break;
1948 default:
1949 return true;
1950 }
1951 return false;
1952}
1953
1954static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1955{
1956 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1957 RegLocation rlResult;
1958 switch (dalvikOpcode) {
1959 case OP_MOVE_EXCEPTION: {
1960 int exOffset = offsetof(Thread, exception);
1961 int resetReg = dvmCompilerAllocTemp(cUnit);
1962 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1963 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1964 loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg);
1965 loadConstant(cUnit, resetReg, 0);
1966 storeWordDisp(cUnit, rSELF, exOffset, resetReg);
1967 storeValue(cUnit, rlDest, rlResult);
1968 break;
1969 }
1970 case OP_MOVE_RESULT:
1971 case OP_MOVE_RESULT_OBJECT: {
1972 /* An inlined move result is effectively no-op */
1973 if (mir->OptimizationFlags & MIR_INLINED)
1974 break;
1975 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1976 RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
1977 rlSrc.fp = rlDest.fp;
1978 storeValue(cUnit, rlDest, rlSrc);
1979 break;
1980 }
1981 case OP_MOVE_RESULT_WIDE: {
1982 /* An inlined move result is effectively no-op */
1983 if (mir->OptimizationFlags & MIR_INLINED)
1984 break;
1985 RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1986 RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
1987 rlSrc.fp = rlDest.fp;
1988 storeValueWide(cUnit, rlDest, rlSrc);
1989 break;
1990 }
1991 case OP_RETURN_WIDE: {
1992 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1993 RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
1994 rlDest.fp = rlSrc.fp;
1995 storeValueWide(cUnit, rlDest, rlSrc);
1996 genReturnCommon(cUnit,mir);
1997 break;
1998 }
1999 case OP_RETURN:
2000 case OP_RETURN_OBJECT: {
2001 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2002 RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
2003 rlDest.fp = rlSrc.fp;
2004 storeValue(cUnit, rlDest, rlSrc);
2005 genReturnCommon(cUnit, mir);
2006 break;
2007 }
2008 case OP_MONITOR_EXIT:
2009 case OP_MONITOR_ENTER:
2010 genMonitor(cUnit, mir);
2011 break;
2012 case OP_THROW:
2013 genInterpSingleStep(cUnit, mir);
2014 break;
2015 default:
2016 return true;
2017 }
2018 return false;
2019}
2020
2021static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
2022{
2023 Opcode opcode = mir->dalvikInsn.opcode;
2024 RegLocation rlDest;
2025 RegLocation rlSrc;
2026 RegLocation rlResult;
2027
2028 if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
2029 return genArithOp( cUnit, mir );
2030 }
2031
2032 if (mir->ssaRep->numUses == 2)
2033 rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2034 else
2035 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2036 if (mir->ssaRep->numDefs == 2)
2037 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2038 else
2039 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2040
2041 switch (opcode) {
2042 case OP_DOUBLE_TO_INT:
2043 case OP_INT_TO_FLOAT:
2044 case OP_FLOAT_TO_INT:
2045 case OP_DOUBLE_TO_FLOAT:
2046 case OP_FLOAT_TO_DOUBLE:
2047 case OP_INT_TO_DOUBLE:
2048 case OP_FLOAT_TO_LONG:
2049 case OP_LONG_TO_FLOAT:
2050 case OP_DOUBLE_TO_LONG:
2051 case OP_LONG_TO_DOUBLE:
2052 return genConversion(cUnit, mir);
2053 case OP_NEG_INT:
2054 case OP_NOT_INT:
2055 return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2056 case OP_NEG_LONG:
2057 case OP_NOT_LONG:
2058 return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2059 case OP_NEG_FLOAT:
2060 return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2061 case OP_NEG_DOUBLE:
2062 return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2063 case OP_MOVE_WIDE:
2064 storeValueWide(cUnit, rlDest, rlSrc);
2065 break;
2066 case OP_INT_TO_LONG:
2067 rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2068 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2069 //TUNING: shouldn't loadValueDirect already check for phys reg?
2070 if (rlSrc.location == kLocPhysReg) {
2071 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2072 } else {
2073 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2074 }
2075 opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2076 rlResult.lowReg, 31);
2077 storeValueWide(cUnit, rlDest, rlResult);
2078 break;
2079 case OP_LONG_TO_INT:
2080 rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2081 rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2082 // Intentional fallthrough
2083 case OP_MOVE:
2084 case OP_MOVE_OBJECT:
2085 storeValue(cUnit, rlDest, rlSrc);
2086 break;
2087 case OP_INT_TO_BYTE:
2088 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2089 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2090 opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2091 storeValue(cUnit, rlDest, rlResult);
2092 break;
2093 case OP_INT_TO_SHORT:
2094 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2095 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2096 opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2097 storeValue(cUnit, rlDest, rlResult);
2098 break;
2099 case OP_INT_TO_CHAR:
2100 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2101 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2102 opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2103 storeValue(cUnit, rlDest, rlResult);
2104 break;
2105 case OP_ARRAY_LENGTH: {
2106 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2107 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2108 genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2109 mir->offset, NULL);
2110 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2111 loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2112 rlResult.lowReg);
2113 storeValue(cUnit, rlDest, rlResult);
2114 break;
2115 }
2116 default:
2117 return true;
2118 }
2119 return false;
2120}
2121
2122static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2123{
2124 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2125 RegLocation rlDest;
2126 RegLocation rlResult;
2127 int BBBB = mir->dalvikInsn.vB;
2128 if (dalvikOpcode == OP_CONST_WIDE_16) {
2129 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2130 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2131 loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2132 //TUNING: do high separately to avoid load dependency
2133 opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2134 storeValueWide(cUnit, rlDest, rlResult);
2135 } else if (dalvikOpcode == OP_CONST_16) {
2136 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2137 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2138 loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2139 storeValue(cUnit, rlDest, rlResult);
2140 } else
2141 return true;
2142 return false;
2143}
2144
2145/* Compare agaist zero */
2146static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2147 MipsLIR *labelList)
2148{
2149 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2150 MipsOpCode opc = kMipsNop;
2151 int rt = -1;
2152 /* backward branch? */
2153 bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2154
2155 if (backwardBranch &&
2156 (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2157 genSuspendPoll(cUnit, mir);
2158 }
2159
2160 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2161 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2162
2163 switch (dalvikOpcode) {
2164 case OP_IF_EQZ:
2165 opc = kMipsBeqz;
2166 break;
2167 case OP_IF_NEZ:
2168 opc = kMipsBne;
2169 rt = r_ZERO;
2170 break;
2171 case OP_IF_LTZ:
2172 opc = kMipsBltz;
2173 break;
2174 case OP_IF_GEZ:
2175 opc = kMipsBgez;
2176 break;
2177 case OP_IF_GTZ:
2178 opc = kMipsBgtz;
2179 break;
2180 case OP_IF_LEZ:
2181 opc = kMipsBlez;
2182 break;
2183 default:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002184 ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002185 dvmCompilerAbort(cUnit);
2186 }
2187 genConditionalBranchMips(cUnit, opc, rlSrc.lowReg, rt, &labelList[bb->taken->id]);
2188 /* This mostly likely will be optimized away in a later phase */
2189 genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2190 return false;
2191}
2192
2193static bool isPowerOfTwo(int x)
2194{
2195 return (x & (x - 1)) == 0;
2196}
2197
2198// Returns true if no more than two bits are set in 'x'.
2199static bool isPopCountLE2(unsigned int x)
2200{
2201 x &= x - 1;
2202 return (x & (x - 1)) == 0;
2203}
2204
2205// Returns the index of the lowest set bit in 'x'.
2206static int lowestSetBit(unsigned int x) {
2207 int bit_posn = 0;
2208 while ((x & 0xf) == 0) {
2209 bit_posn += 4;
2210 x >>= 4;
2211 }
2212 while ((x & 1) == 0) {
2213 bit_posn++;
2214 x >>= 1;
2215 }
2216 return bit_posn;
2217}
2218
2219// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2220// and store the result in 'rlDest'.
2221static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2222 RegLocation rlSrc, RegLocation rlDest, int lit)
2223{
2224 if (lit < 2 || !isPowerOfTwo(lit)) {
2225 return false;
2226 }
2227 int k = lowestSetBit(lit);
2228 if (k >= 30) {
2229 // Avoid special cases.
2230 return false;
2231 }
2232 bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2233 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2234 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2235 if (div) {
2236 int tReg = dvmCompilerAllocTemp(cUnit);
2237 if (lit == 2) {
2238 // Division by 2 is by far the most common division by constant.
2239 opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2240 opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2241 opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2242 } else {
2243 opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2244 opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2245 opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2246 opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2247 }
2248 } else {
2249 int cReg = dvmCompilerAllocTemp(cUnit);
2250 loadConstant(cUnit, cReg, lit - 1);
2251 int tReg1 = dvmCompilerAllocTemp(cUnit);
2252 int tReg2 = dvmCompilerAllocTemp(cUnit);
2253 if (lit == 2) {
2254 opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2255 opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2256 opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2257 opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2258 } else {
2259 opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2260 opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2261 opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2262 opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2263 opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2264 }
2265 }
2266 storeValue(cUnit, rlDest, rlResult);
2267 return true;
2268}
2269
2270// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2271// and store the result in 'rlDest'.
2272static bool handleEasyMultiply(CompilationUnit *cUnit,
2273 RegLocation rlSrc, RegLocation rlDest, int lit)
2274{
2275 // Can we simplify this multiplication?
2276 bool powerOfTwo = false;
2277 bool popCountLE2 = false;
2278 bool powerOfTwoMinusOne = false;
2279 if (lit < 2) {
2280 // Avoid special cases.
2281 return false;
2282 } else if (isPowerOfTwo(lit)) {
2283 powerOfTwo = true;
2284 } else if (isPopCountLE2(lit)) {
2285 popCountLE2 = true;
2286 } else if (isPowerOfTwo(lit + 1)) {
2287 powerOfTwoMinusOne = true;
2288 } else {
2289 return false;
2290 }
2291 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2292 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2293 if (powerOfTwo) {
2294 // Shift.
2295 opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2296 lowestSetBit(lit));
2297 } else if (popCountLE2) {
2298 // Shift and add and shift.
2299 int firstBit = lowestSetBit(lit);
2300 int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2301 genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2302 firstBit, secondBit);
2303 } else {
2304 // Reverse subtract: (src << (shift + 1)) - src.
2305 assert(powerOfTwoMinusOne);
2306 // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2307 int tReg = dvmCompilerAllocTemp(cUnit);
2308 opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2309 opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2310 }
2311 storeValue(cUnit, rlDest, rlResult);
2312 return true;
2313}
2314
2315static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2316{
2317 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2318 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2319 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2320 RegLocation rlResult;
2321 int lit = mir->dalvikInsn.vC;
2322 OpKind op = (OpKind)0; /* Make gcc happy */
2323 int shiftOp = false;
2324
2325 switch (dalvikOpcode) {
2326 case OP_RSUB_INT_LIT8:
2327 case OP_RSUB_INT: {
2328 int tReg;
2329 //TUNING: add support for use of Arm rsub op
2330 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2331 tReg = dvmCompilerAllocTemp(cUnit);
2332 loadConstant(cUnit, tReg, lit);
2333 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2334 opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2335 tReg, rlSrc.lowReg);
2336 storeValue(cUnit, rlDest, rlResult);
2337 return false;
2338 break;
2339 }
2340
2341 case OP_ADD_INT_LIT8:
2342 case OP_ADD_INT_LIT16:
2343 op = kOpAdd;
2344 break;
2345 case OP_MUL_INT_LIT8:
2346 case OP_MUL_INT_LIT16: {
2347 if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2348 return false;
2349 }
2350 op = kOpMul;
2351 break;
2352 }
2353 case OP_AND_INT_LIT8:
2354 case OP_AND_INT_LIT16:
2355 op = kOpAnd;
2356 break;
2357 case OP_OR_INT_LIT8:
2358 case OP_OR_INT_LIT16:
2359 op = kOpOr;
2360 break;
2361 case OP_XOR_INT_LIT8:
2362 case OP_XOR_INT_LIT16:
2363 op = kOpXor;
2364 break;
2365 case OP_SHL_INT_LIT8:
2366 lit &= 31;
2367 shiftOp = true;
2368 op = kOpLsl;
2369 break;
2370 case OP_SHR_INT_LIT8:
2371 lit &= 31;
2372 shiftOp = true;
2373 op = kOpAsr;
2374 break;
2375 case OP_USHR_INT_LIT8:
2376 lit &= 31;
2377 shiftOp = true;
2378 op = kOpLsr;
2379 break;
2380
2381 case OP_DIV_INT_LIT8:
2382 case OP_DIV_INT_LIT16:
2383 case OP_REM_INT_LIT8:
2384 case OP_REM_INT_LIT16: {
2385 if (lit == 0) {
2386 /* Let the interpreter deal with div by 0 */
2387 genInterpSingleStep(cUnit, mir);
2388 return false;
2389 }
2390 if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2391 return false;
2392 }
2393
2394 MipsOpCode opc;
2395 int divReg;
2396
2397 if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2398 (dalvikOpcode == OP_DIV_INT_LIT16)) {
2399 opc = kMipsMflo;
2400 divReg = r_LO;
2401 } else {
2402 opc = kMipsMfhi;
2403 divReg = r_HI;
2404 }
2405
2406 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2407 int tReg = dvmCompilerAllocTemp(cUnit);
2408 newLIR3(cUnit, kMipsAddiu, tReg, r_ZERO, lit);
2409 newLIR4(cUnit, kMipsDiv, r_HI, r_LO, rlSrc.lowReg, tReg);
2410 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2411 newLIR2(cUnit, opc, rlResult.lowReg, divReg);
2412 dvmCompilerFreeTemp(cUnit, tReg);
2413 storeValue(cUnit, rlDest, rlResult);
2414 return false;
2415 break;
2416 }
2417 default:
2418 return true;
2419 }
2420 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2421 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2422 // Avoid shifts by literal 0 - no support in Thumb. Change to copy
2423 if (shiftOp && (lit == 0)) {
2424 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2425 } else {
2426 opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2427 }
2428 storeValue(cUnit, rlDest, rlResult);
2429 return false;
2430}
2431
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002432static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002433{
2434 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2435 int fieldOffset = -1;
2436 bool isVolatile = false;
2437 switch (dalvikOpcode) {
2438 /*
2439 * Wide volatiles currently handled via single step.
2440 * Add them here if generating in-line code.
2441 * case OP_IGET_WIDE_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002442 * case OP_IPUT_WIDE_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002443 */
2444 case OP_IGET_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002445 case OP_IGET_OBJECT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002446 case OP_IPUT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002447 case OP_IPUT_OBJECT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002448#if ANDROID_SMP != 0
2449 isVolatile = true;
2450 // NOTE: intentional fallthrough
2451#endif
2452 case OP_IGET:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002453 case OP_IGET_WIDE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002454 case OP_IGET_OBJECT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002455 case OP_IGET_BOOLEAN:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002456 case OP_IGET_BYTE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002457 case OP_IGET_CHAR:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002458 case OP_IGET_SHORT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002459 case OP_IPUT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002460 case OP_IPUT_WIDE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002461 case OP_IPUT_OBJECT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002462 case OP_IPUT_BOOLEAN:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002463 case OP_IPUT_BYTE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002464 case OP_IPUT_CHAR:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002465 case OP_IPUT_SHORT: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002466 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2467 mir->meta.calleeMethod : cUnit->method;
2468 Field *fieldPtr =
2469 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2470
2471 if (fieldPtr == NULL) {
2472 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002473 ALOGE("Unexpected null instance field");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002474 dvmAbort();
2475 }
2476#if ANDROID_SMP != 0
2477 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2478#else
2479 isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2480#endif
2481 fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2482 break;
2483 }
2484 default:
2485 break;
2486 }
2487
2488 switch (dalvikOpcode) {
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002489 case OP_NEW_ARRAY: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002490#if 0 /* 080 triggers assert in Interp.c:1290 for out of memory exception.
2491 i think the assert is in error and should be disabled. With
2492 asserts disabled, 080 passes. */
2493genInterpSingleStep(cUnit, mir);
2494return false;
2495#endif
2496 // Generates a call - use explicit registers
2497 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2498 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2499 RegLocation rlResult;
2500 void *classPtr = (void*)
2501 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2502
2503 if (classPtr == NULL) {
2504 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002505 ALOGE("Unexpected null class");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002506 dvmAbort();
2507 }
2508
2509 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
2510 genExportPC(cUnit, mir);
2511 loadValueDirectFixed(cUnit, rlSrc, r_A1); /* Len */
2512 loadConstant(cUnit, r_A0, (int) classPtr );
2513 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmAllocArrayByClass);
2514 /*
2515 * "len < 0": bail to the interpreter to re-execute the
2516 * instruction
2517 */
2518 genRegImmCheck(cUnit, kMipsCondMi, r_A1, 0, mir->offset, NULL);
2519 loadConstant(cUnit, r_A2, ALLOC_DONT_TRACK);
2520 opReg(cUnit, kOpBlx, r_T9);
2521 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2522 dvmCompilerClobberCallRegs(cUnit);
2523 /* generate a branch over if allocation is successful */
2524 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
2525 /*
2526 * OOM exception needs to be thrown here and cannot re-execute
2527 */
2528 loadConstant(cUnit, r_A0,
2529 (int) (cUnit->method->insns + mir->offset));
2530 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2531 /* noreturn */
2532
2533 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
2534 target->defMask = ENCODE_ALL;
2535 branchOver->generic.target = (LIR *) target;
2536 rlResult = dvmCompilerGetReturn(cUnit);
2537 storeValue(cUnit, rlDest, rlResult);
2538 break;
2539 }
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002540 case OP_INSTANCE_OF: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002541 // May generate a call - use explicit registers
2542 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2543 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2544 RegLocation rlResult;
2545 ClassObject *classPtr =
2546 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2547 /*
2548 * Note: It is possible that classPtr is NULL at this point,
2549 * even though this instruction has been successfully interpreted.
2550 * If the previous interpretation had a null source, the
2551 * interpreter would not have bothered to resolve the clazz.
2552 * Bail out to the interpreter in this case, and log it
2553 * so that we can tell if it happens frequently.
2554 */
2555 if (classPtr == NULL) {
2556 BAIL_LOOP_COMPILATION();
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002557 ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002558 genInterpSingleStep(cUnit, mir);
2559 break;
2560 }
2561 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
2562 loadValueDirectFixed(cUnit, rlSrc, r_V0); /* Ref */
2563 loadConstant(cUnit, r_A2, (int) classPtr );
2564 /* When taken r_V0 has NULL which can be used for store directly */
2565 MipsLIR *branch1 = opCompareBranch(cUnit, kMipsBeqz, r_V0, -1);
2566 /* r_A1 now contains object->clazz */
2567 loadWordDisp(cUnit, r_V0, offsetof(Object, clazz), r_A1);
2568 /* r_A1 now contains object->clazz */
2569 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInstanceofNonTrivial);
2570 loadConstant(cUnit, r_V0, 1); /* Assume true */
2571 MipsLIR *branch2 = opCompareBranch(cUnit, kMipsBeq, r_A1, r_A2);
2572 genRegCopy(cUnit, r_A0, r_A1);
2573 genRegCopy(cUnit, r_A1, r_A2);
2574 opReg(cUnit, kOpBlx, r_T9);
2575 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2576 dvmCompilerClobberCallRegs(cUnit);
2577 /* branch target here */
2578 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
2579 target->defMask = ENCODE_ALL;
2580 rlResult = dvmCompilerGetReturn(cUnit);
2581 storeValue(cUnit, rlDest, rlResult);
2582 branch1->generic.target = (LIR *)target;
2583 branch2->generic.target = (LIR *)target;
2584 break;
2585 }
2586 case OP_IGET_WIDE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002587 genIGetWide(cUnit, mir, fieldOffset);
2588 break;
2589 case OP_IGET_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002590 case OP_IGET_OBJECT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002591 case OP_IGET:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002592 case OP_IGET_OBJECT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002593 case OP_IGET_BOOLEAN:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002594 case OP_IGET_BYTE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002595 case OP_IGET_CHAR:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002596 case OP_IGET_SHORT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002597 genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2598 break;
2599 case OP_IPUT_WIDE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002600 genIPutWide(cUnit, mir, fieldOffset);
2601 break;
2602 case OP_IPUT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002603 case OP_IPUT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002604 case OP_IPUT_BOOLEAN:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002605 case OP_IPUT_BYTE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002606 case OP_IPUT_CHAR:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002607 case OP_IPUT_SHORT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002608 genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2609 break;
2610 case OP_IPUT_OBJECT_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002611 case OP_IPUT_OBJECT:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002612 genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2613 break;
2614 case OP_IGET_WIDE_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002615 case OP_IPUT_WIDE_VOLATILE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002616 genInterpSingleStep(cUnit, mir);
2617 break;
2618 default:
2619 return true;
2620 }
2621 return false;
2622}
2623
2624static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2625{
2626 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2627 int fieldOffset = mir->dalvikInsn.vC;
2628 switch (dalvikOpcode) {
2629 case OP_IGET_QUICK:
2630 case OP_IGET_OBJECT_QUICK:
2631 genIGet(cUnit, mir, kWord, fieldOffset, false);
2632 break;
2633 case OP_IPUT_QUICK:
2634 genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2635 break;
2636 case OP_IPUT_OBJECT_QUICK:
2637 genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2638 break;
2639 case OP_IGET_WIDE_QUICK:
2640 genIGetWide(cUnit, mir, fieldOffset);
2641 break;
2642 case OP_IPUT_WIDE_QUICK:
2643 genIPutWide(cUnit, mir, fieldOffset);
2644 break;
2645 default:
2646 return true;
2647 }
2648 return false;
2649
2650}
2651
2652/* Compare against zero */
2653static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2654 MipsLIR *labelList)
2655{
2656 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2657 MipsConditionCode cond;
2658 MipsOpCode opc = kMipsNop;
2659 MipsLIR * test = NULL;
2660 /* backward branch? */
2661 bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2662
2663 if (backwardBranch &&
2664 (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2665 genSuspendPoll(cUnit, mir);
2666 }
2667
2668 RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2669 RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2670 rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2671 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2672 int reg1 = rlSrc1.lowReg;
2673 int reg2 = rlSrc2.lowReg;
2674 int tReg;
2675
2676 switch (dalvikOpcode) {
2677 case OP_IF_EQ:
2678 opc = kMipsBeq;
2679 break;
2680 case OP_IF_NE:
2681 opc = kMipsBne;
2682 break;
2683 case OP_IF_LT:
2684 opc = kMipsBne;
2685 tReg = dvmCompilerAllocTemp(cUnit);
2686 test = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
2687 reg1 = tReg;
2688 reg2 = r_ZERO;
2689 break;
2690 case OP_IF_LE:
2691 opc = kMipsBeqz;
2692 tReg = dvmCompilerAllocTemp(cUnit);
2693 test = newLIR3(cUnit, kMipsSlt, tReg, reg2, reg1);
2694 reg1 = tReg;
2695 reg2 = -1;
2696 break;
2697 case OP_IF_GT:
2698 opc = kMipsBne;
2699 tReg = dvmCompilerAllocTemp(cUnit);
2700 test = newLIR3(cUnit, kMipsSlt, tReg, reg2, reg1);
2701 reg1 = tReg;
2702 reg2 = r_ZERO;
2703 break;
2704 case OP_IF_GE:
2705 opc = kMipsBeqz;
2706 tReg = dvmCompilerAllocTemp(cUnit);
2707 test = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
2708 reg1 = tReg;
2709 reg2 = -1;
2710 break;
2711 default:
2712 cond = (MipsConditionCode)0;
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07002713 ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002714 dvmCompilerAbort(cUnit);
2715 }
2716
2717 genConditionalBranchMips(cUnit, opc, reg1, reg2, &labelList[bb->taken->id]);
2718 /* This mostly likely will be optimized away in a later phase */
2719 genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2720 return false;
2721}
2722
2723static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2724{
2725 Opcode opcode = mir->dalvikInsn.opcode;
2726
2727 switch (opcode) {
2728 case OP_MOVE_16:
2729 case OP_MOVE_OBJECT_16:
2730 case OP_MOVE_FROM16:
2731 case OP_MOVE_OBJECT_FROM16: {
2732 storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2733 dvmCompilerGetSrc(cUnit, mir, 0));
2734 break;
2735 }
2736 case OP_MOVE_WIDE_16:
2737 case OP_MOVE_WIDE_FROM16: {
2738 storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2739 dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2740 break;
2741 }
2742 default:
2743 return true;
2744 }
2745 return false;
2746}
2747
2748static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2749{
2750 Opcode opcode = mir->dalvikInsn.opcode;
2751 RegLocation rlSrc1;
2752 RegLocation rlSrc2;
2753 RegLocation rlDest;
2754
2755 if ((opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2756 return genArithOp( cUnit, mir );
2757 }
2758
2759 /* APUTs have 3 sources and no targets */
2760 if (mir->ssaRep->numDefs == 0) {
2761 if (mir->ssaRep->numUses == 3) {
2762 rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2763 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2764 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2765 } else {
2766 assert(mir->ssaRep->numUses == 4);
2767 rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2768 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2769 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2770 }
2771 } else {
2772 /* Two sources and 1 dest. Deduce the operand sizes */
2773 if (mir->ssaRep->numUses == 4) {
2774 rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2775 rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2776 } else {
2777 assert(mir->ssaRep->numUses == 2);
2778 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2779 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2780 }
2781 if (mir->ssaRep->numDefs == 2) {
2782 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2783 } else {
2784 assert(mir->ssaRep->numDefs == 1);
2785 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2786 }
2787 }
2788
2789 switch (opcode) {
2790 case OP_CMPL_FLOAT:
2791 case OP_CMPG_FLOAT:
2792 case OP_CMPL_DOUBLE:
2793 case OP_CMPG_DOUBLE:
2794 return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2795 case OP_CMP_LONG:
2796 genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2797 break;
2798 case OP_AGET_WIDE:
2799 genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2800 break;
2801 case OP_AGET:
2802 case OP_AGET_OBJECT:
2803 genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2804 break;
2805 case OP_AGET_BOOLEAN:
2806 genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2807 break;
2808 case OP_AGET_BYTE:
2809 genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2810 break;
2811 case OP_AGET_CHAR:
2812 genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2813 break;
2814 case OP_AGET_SHORT:
2815 genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2816 break;
2817 case OP_APUT_WIDE:
2818 genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2819 break;
2820 case OP_APUT:
2821 genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2822 break;
2823 case OP_APUT_OBJECT:
2824 genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2825 break;
2826 case OP_APUT_SHORT:
2827 case OP_APUT_CHAR:
2828 genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2829 break;
2830 case OP_APUT_BYTE:
2831 case OP_APUT_BOOLEAN:
2832 genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2833 break;
2834 default:
2835 return true;
2836 }
2837 return false;
2838}
2839
2840/*
2841 * Find the matching case.
2842 *
2843 * return values:
2844 * r_RESULT0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2845 * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2846 * r_RESULT1 (high 32-bit): the branch offset of the matching case (only for indexes
2847 * above MAX_CHAINED_SWITCH_CASES).
2848 *
2849 * Instructions around the call are:
2850 *
2851 * jalr &findPackedSwitchIndex
2852 * nop
2853 * lw gp, 84(sp) |
2854 * addu | 20 bytes for these 5 instructions
2855 * move | (NOTE: if this sequence is shortened or lengthened, then
2856 * jr | the 20 byte offset added below in 3 places must be changed
2857 * nop | accordingly.)
2858 * chaining cell for case 0 [16 bytes]
2859 * chaining cell for case 1 [16 bytes]
2860 * :
2861 * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [16 bytes]
2862 * chaining cell for case default [16 bytes]
2863 * noChain exit
2864 */
Elliott Hughes100dbe02012-07-17 16:31:30 -07002865static u8 findPackedSwitchIndex(const u2* switchData, int testVal)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002866{
2867 int size;
2868 int firstKey;
2869 const int *entries;
2870 int index;
2871 int jumpIndex;
Elliott Hughes100dbe02012-07-17 16:31:30 -07002872 uintptr_t caseDPCOffset = 0;
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002873
2874 /*
2875 * Packed switch data format:
2876 * ushort ident = 0x0100 magic value
2877 * ushort size number of entries in the table
2878 * int first_key first (and lowest) switch case value
2879 * int targets[size] branch targets, relative to switch opcode
2880 *
2881 * Total size is (4+size*2) 16-bit code units.
2882 */
2883 size = switchData[1];
2884 assert(size > 0);
2885
2886 firstKey = switchData[2];
2887 firstKey |= switchData[3] << 16;
2888
2889
2890 /* The entries are guaranteed to be aligned on a 32-bit boundary;
2891 * we can treat them as a native int array.
2892 */
2893 entries = (const int*) &switchData[4];
2894 assert(((u4)entries & 0x3) == 0);
2895
2896 index = testVal - firstKey;
2897
2898 /* Jump to the default cell */
2899 if (index < 0 || index >= size) {
2900 jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2901 /* Jump to the non-chaining exit point */
2902 } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2903 jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2904#ifdef HAVE_LITTLE_ENDIAN
2905 caseDPCOffset = entries[index];
2906#else
2907 caseDPCOffset = (unsigned int)entries[index] >> 16 | entries[index] << 16;
2908#endif
2909 /* Jump to the inline chaining cell */
2910 } else {
2911 jumpIndex = index;
2912 }
2913
Elliott Hughes100dbe02012-07-17 16:31:30 -07002914 return (((u8) caseDPCOffset) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002915}
2916
2917/* See comments for findPackedSwitchIndex */
Elliott Hughes100dbe02012-07-17 16:31:30 -07002918static u8 findSparseSwitchIndex(const u2* switchData, int testVal)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002919{
2920 int size;
2921 const int *keys;
2922 const int *entries;
2923 /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2924 int i;
2925
2926 /*
2927 * Sparse switch data format:
2928 * ushort ident = 0x0200 magic value
2929 * ushort size number of entries in the table; > 0
2930 * int keys[size] keys, sorted low-to-high; 32-bit aligned
2931 * int targets[size] branch targets, relative to switch opcode
2932 *
2933 * Total size is (2+size*4) 16-bit code units.
2934 */
2935
2936 size = switchData[1];
2937 assert(size > 0);
2938
2939 /* The keys are guaranteed to be aligned on a 32-bit boundary;
2940 * we can treat them as a native int array.
2941 */
2942 keys = (const int*) &switchData[2];
2943 assert(((u4)keys & 0x3) == 0);
2944
2945 /* The entries are guaranteed to be aligned on a 32-bit boundary;
2946 * we can treat them as a native int array.
2947 */
2948 entries = keys + size;
2949 assert(((u4)entries & 0x3) == 0);
2950
2951 /*
2952 * Run through the list of keys, which are guaranteed to
2953 * be sorted low-to-high.
2954 *
2955 * Most tables have 3-4 entries. Few have more than 10. A binary
2956 * search here is probably not useful.
2957 */
2958 for (i = 0; i < size; i++) {
2959#ifdef HAVE_LITTLE_ENDIAN
2960 int k = keys[i];
2961 if (k == testVal) {
2962 /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2963 int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2964 i : MAX_CHAINED_SWITCH_CASES + 1;
Elliott Hughes100dbe02012-07-17 16:31:30 -07002965 return (((u8) entries[i]) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002966#else
2967 int k = (unsigned int)keys[i] >> 16 | keys[i] << 16;
2968 if (k == testVal) {
2969 /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2970 int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2971 i : MAX_CHAINED_SWITCH_CASES + 1;
2972 int temp = (unsigned int)entries[i] >> 16 | entries[i] << 16;
Elliott Hughes100dbe02012-07-17 16:31:30 -07002973 return (((u8) temp) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002974#endif
2975 } else if (k > testVal) {
2976 break;
2977 }
2978 }
2979 return MIN(size, MAX_CHAINED_SWITCH_CASES) * CHAIN_CELL_NORMAL_SIZE + 20;
2980}
2981
2982static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
2983{
2984 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2985 switch (dalvikOpcode) {
2986 case OP_FILL_ARRAY_DATA: {
2987 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2988 // Making a call - use explicit registers
2989 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
2990 genExportPC(cUnit, mir);
2991 loadValueDirectFixed(cUnit, rlSrc, r_A0);
2992 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInterpHandleFillArrayData);
2993 loadConstant(cUnit, r_A1,
2994 (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2995 opReg(cUnit, kOpBlx, r_T9);
2996 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2997 dvmCompilerClobberCallRegs(cUnit);
2998 /* generate a branch over if successful */
2999 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3000 loadConstant(cUnit, r_A0,
3001 (int) (cUnit->method->insns + mir->offset));
3002 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3003 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3004 target->defMask = ENCODE_ALL;
3005 branchOver->generic.target = (LIR *) target;
3006 break;
3007 }
3008 /*
3009 * Compute the goto target of up to
3010 * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
3011 * See the comment before findPackedSwitchIndex for the code layout.
3012 */
3013 case OP_PACKED_SWITCH:
3014 case OP_SPARSE_SWITCH: {
3015 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3016 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
3017 loadValueDirectFixed(cUnit, rlSrc, r_A1);
3018 dvmCompilerLockAllTemps(cUnit);
3019
3020 if (dalvikOpcode == OP_PACKED_SWITCH) {
3021 LOAD_FUNC_ADDR(cUnit, r_T9, (int)findPackedSwitchIndex);
3022 } else {
3023 LOAD_FUNC_ADDR(cUnit, r_T9, (int)findSparseSwitchIndex);
3024 }
3025 /* r_A0 <- Addr of the switch data */
3026 loadConstant(cUnit, r_A0,
3027 (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
3028 opReg(cUnit, kOpBlx, r_T9);
3029 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3030 dvmCompilerClobberCallRegs(cUnit);
3031 /* pc <- computed goto target using value in RA */
3032 newLIR3(cUnit, kMipsAddu, r_A0, r_RA, r_RESULT0);
3033 newLIR2(cUnit, kMipsMove, r_A1, r_RESULT1);
3034 newLIR1(cUnit, kMipsJr, r_A0);
3035 newLIR0(cUnit, kMipsNop); /* for maintaining 20 byte offset */
3036 break;
3037 }
3038 default:
3039 return true;
3040 }
3041 return false;
3042}
3043
3044/*
3045 * See the example of predicted inlining listed before the
3046 * genValidationForPredictedInline function. The function here takes care the
3047 * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
3048 */
3049static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
3050 BasicBlock *bb,
3051 MipsLIR *labelList)
3052{
3053 BasicBlock *fallThrough = bb->fallThrough;
3054
3055 /* Bypass the move-result block if there is one */
3056 if (fallThrough->firstMIRInsn) {
3057 assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
3058 fallThrough = fallThrough->fallThrough;
3059 }
3060 /* Generate a branch over if the predicted inlining is correct */
3061 genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
3062
3063 /* Reset the register state */
3064 dvmCompilerResetRegPool(cUnit);
3065 dvmCompilerClobberAllRegs(cUnit);
3066 dvmCompilerResetNullCheck(cUnit);
3067
3068 /* Target for the slow invoke path */
3069 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3070 target->defMask = ENCODE_ALL;
3071 /* Hook up the target to the verification branch */
3072 mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
3073}
3074
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003075static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003076 BasicBlock *bb, MipsLIR *labelList)
3077{
3078 MipsLIR *retChainingCell = NULL;
3079 MipsLIR *pcrLabel = NULL;
3080
3081 /* An invoke with the MIR_INLINED is effectively a no-op */
3082 if (mir->OptimizationFlags & MIR_INLINED)
3083 return false;
3084
3085 if (bb->fallThrough != NULL)
3086 retChainingCell = &labelList[bb->fallThrough->id];
3087
3088 DecodedInstruction *dInsn = &mir->dalvikInsn;
3089 switch (mir->dalvikInsn.opcode) {
3090 /*
3091 * calleeMethod = this->clazz->vtable[
3092 * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
3093 * ]
3094 */
3095 case OP_INVOKE_VIRTUAL:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003096 case OP_INVOKE_VIRTUAL_RANGE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003097 MipsLIR *predChainingCell = &labelList[bb->taken->id];
3098 int methodIndex =
3099 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3100 methodIndex;
3101
3102 /*
3103 * If the invoke has non-null misPredBranchOver, we need to generate
3104 * the non-inlined version of the invoke here to handle the
3105 * mispredicted case.
3106 */
3107 if (mir->meta.callsiteInfo->misPredBranchOver) {
3108 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3109 }
3110
3111 if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3112 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3113 else
3114 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3115
3116 genInvokeVirtualCommon(cUnit, mir, methodIndex,
3117 retChainingCell,
3118 predChainingCell,
3119 pcrLabel);
3120 break;
3121 }
3122 /*
3123 * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3124 * ->pResMethods[BBBB]->methodIndex]
3125 */
3126 case OP_INVOKE_SUPER:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003127 case OP_INVOKE_SUPER_RANGE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003128 /* Grab the method ptr directly from what the interpreter sees */
3129 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3130 assert(calleeMethod == cUnit->method->clazz->super->vtable[
3131 cUnit->method->clazz->pDvmDex->
3132 pResMethods[dInsn->vB]->methodIndex]);
3133
3134 if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3135 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3136 else
3137 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3138
3139 if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3140 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3141 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3142 assert(calleeAddr);
3143 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3144 retChainingCell);
3145 } else {
3146 /* r_A0 = calleeMethod */
3147 loadConstant(cUnit, r_A0, (int) calleeMethod);
3148
3149 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3150 calleeMethod);
3151 }
3152 break;
3153 }
3154 /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3155 case OP_INVOKE_DIRECT:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003156 case OP_INVOKE_DIRECT_RANGE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003157 /* Grab the method ptr directly from what the interpreter sees */
3158 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3159 assert(calleeMethod ==
3160 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3161
3162 if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3163 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3164 else
3165 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3166
3167 /* r_A0 = calleeMethod */
3168 loadConstant(cUnit, r_A0, (int) calleeMethod);
3169
3170 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3171 calleeMethod);
3172 break;
3173 }
3174 /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3175 case OP_INVOKE_STATIC:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003176 case OP_INVOKE_STATIC_RANGE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003177 /* Grab the method ptr directly from what the interpreter sees */
3178 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3179 assert(calleeMethod ==
3180 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3181
3182 if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3183 genProcessArgsNoRange(cUnit, mir, dInsn,
3184 NULL /* no null check */);
3185 else
3186 genProcessArgsRange(cUnit, mir, dInsn,
3187 NULL /* no null check */);
3188
3189 if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3190 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3191 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3192 assert(calleeAddr);
3193 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3194 retChainingCell);
3195 } else {
3196 /* r_A0 = calleeMethod */
3197 loadConstant(cUnit, r_A0, (int) calleeMethod);
3198
3199 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3200 calleeMethod);
3201 }
3202 break;
3203 }
3204
3205 /*
3206 * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3207 * BBBB, method, method->clazz->pDvmDex)
3208 *
3209 * The following is an example of generated code for
3210 * "invoke-interface v0"
3211 *
3212 * -------- dalvik offset: 0x000f @ invoke-interface (PI) v2
3213 * 0x2f140c54 : lw a0,8(s1) # genProcessArgsNoRange
3214 * 0x2f140c58 : addiu s4,s1,0xffffffe8(-24)
3215 * 0x2f140c5c : beqz a0,0x2f140d5c (L0x11f864)
3216 * 0x2f140c60 : pref 1,0(s4)
3217 * -------- BARRIER
3218 * 0x2f140c64 : sw a0,0(s4)
3219 * 0x2f140c68 : addiu s4,s4,0x0004(4)
3220 * -------- BARRIER
3221 * 0x2f140c6c : lui s0,0x2d23(11555) # dalvikPC
3222 * 0x2f140c70 : ori s0,s0,0x2d2365a6(757294502)
3223 * 0x2f140c74 : lahi/lui a1,0x2f14(12052) # a1 <- &retChainingCell
3224 * 0x2f140c78 : lalo/ori a1,a1,0x2f140d38(789843256)
3225 * 0x2f140c7c : lahi/lui a2,0x2f14(12052) # a2 <- &predictedChainingCell
3226 * 0x2f140c80 : lalo/ori a2,a2,0x2f140d80(789843328)
3227 * 0x2f140c84 : jal 0x2f1311ec(789778924) # call TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
3228 * 0x2f140c88 : nop
3229 * 0x2f140c8c : b 0x2f140d80 (L0x11efc0) # off to the predicted chain
3230 * 0x2f140c90 : nop
3231 * 0x2f140c94 : b 0x2f140d60 (L0x12457c) # punt to the interpreter
3232 * 0x2f140c98 : lui a0,0x2d23(11555)
3233 * 0x2f140c9c : move s5,a1 # prepare for dvmFindInterfaceMethodInCache
3234 * 0x2f140ca0 : move s6,a2
3235 * 0x2f140ca4 : move s7,a3
3236 * 0x2f140ca8 : move a0,a3
3237 * 0x2f140cac : ori a1,zero,0x2b42(11074)
3238 * 0x2f140cb0 : lui a2,0x2c92(11410)
3239 * 0x2f140cb4 : ori a2,a2,0x2c92adf8(747810296)
3240 * 0x2f140cb8 : lui a3,0x0009(9)
3241 * 0x2f140cbc : ori a3,a3,0x924b8(599224)
3242 * 0x2f140cc0 : lui t9,0x2ab2(10930)
3243 * 0x2f140cc4 : ori t9,t9,0x2ab2a48c(716350604)
3244 * 0x2f140cc8 : jalr ra,t9 # call dvmFindInterfaceMethodInCache
3245 * 0x2f140ccc : nop
3246 * 0x2f140cd0 : lw gp,84(sp)
3247 * 0x2f140cd4 : move a0,v0
3248 * 0x2f140cd8 : bne v0,zero,0x2f140cf0 (L0x120064)
3249 * 0x2f140cdc : nop
3250 * 0x2f140ce0 : lui a0,0x2d23(11555) # a0 <- dalvikPC
3251 * 0x2f140ce4 : ori a0,a0,0x2d2365a6(757294502)
3252 * 0x2f140ce8 : jal 0x2f131720(789780256) # call TEMPLATE_THROW_EXCEPTION_COMMON
3253 * 0x2f140cec : nop
3254 * 0x2f140cf0 : move a1,s5 # a1 <- &retChainingCell
3255 * 0x2f140cf4 : bgtz s5,0x2f140d20 (L0x120324) # >0? don't rechain
3256 * 0x2f140cf8 : nop
3257 * 0x2f140cfc : lui t9,0x2aba(10938) # prepare for dvmJitToPatchPredictedChain
3258 * 0x2f140d00 : ori t9,t9,0x2abae3c4(716891076)
3259 * 0x2f140d04 : move a1,s2
3260 * 0x2f140d08 : move a2,s6
3261 * 0x2f140d0c : move a3,s7
3262 * 0x2f140d10 : jalr ra,t9 # call dvmJitToPatchPredictedChain
3263 * 0x2f140d14 : nop
3264 * 0x2f140d18 : lw gp,84(sp)
3265 * 0x2f140d1c : move a0,v0
3266 * 0x2f140d20 : lahi/lui a1,0x2f14(12052)
3267 * 0x2f140d24 : lalo/ori a1,a1,0x2f140d38(789843256) # a1 <- &retChainingCell
3268 * 0x2f140d28 : jal 0x2f1310c4(789778628) # call TEMPLATE_INVOKE_METHOD_NO_OPT
3269 * 0x2f140d2c : nop
3270 * 0x2f140d30 : b 0x2f140d60 (L0x12457c)
3271 * 0x2f140d34 : lui a0,0x2d23(11555)
3272 * 0x2f140d38 : .align4
3273 * -------- dalvik offset: 0x0012 @ move-result (PI) v1, (#0), (#0)
3274 * 0x2f140d38 : lw a2,16(s2)
3275 * 0x2f140d3c : sw a2,4(s1)
3276 * 0x2f140d40 : b 0x2f140d74 (L0x1246fc)
3277 * 0x2f140d44 : lw a0,116(s2)
3278 * 0x2f140d48 : undefined
3279 * -------- reconstruct dalvik PC : 0x2d2365a6 @ +0x000f
3280 * 0x2f140d4c : lui a0,0x2d23(11555)
3281 * 0x2f140d50 : ori a0,a0,0x2d2365a6(757294502)
3282 * 0x2f140d54 : b 0x2f140d68 (L0x12463c)
3283 * 0x2f140d58 : lw a1,108(s2)
3284 * -------- reconstruct dalvik PC : 0x2d2365a6 @ +0x000f
3285 * 0x2f140d5c : lui a0,0x2d23(11555)
3286 * 0x2f140d60 : ori a0,a0,0x2d2365a6(757294502)
3287 * Exception_Handling:
3288 * 0x2f140d64 : lw a1,108(s2)
3289 * 0x2f140d68 : jalr ra,a1
3290 * 0x2f140d6c : nop
3291 * 0x2f140d70 : .align4
3292 * -------- chaining cell (hot): 0x0013
3293 * 0x2f140d70 : lw a0,116(s2)
3294 * 0x2f140d74 : jalr ra,a0
3295 * 0x2f140d78 : nop
3296 * 0x2f140d7c : data 0x2d2365ae(757294510)
3297 * 0x2f140d80 : .align4
3298 * -------- chaining cell (predicted): N/A
3299 * 0x2f140d80 : data 0xe7fe(59390)
3300 * 0x2f140d84 : data 0x0000(0)
3301 * 0x2f140d88 : data 0x0000(0)
3302 * 0x2f140d8c : data 0x0000(0)
3303 * 0x2f140d90 : data 0x0000(0)
3304 * -------- end of chaining cells (0x0190)
3305 */
3306 case OP_INVOKE_INTERFACE:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003307 case OP_INVOKE_INTERFACE_RANGE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003308 MipsLIR *predChainingCell = &labelList[bb->taken->id];
3309
3310 /*
3311 * If the invoke has non-null misPredBranchOver, we need to generate
3312 * the non-inlined version of the invoke here to handle the
3313 * mispredicted case.
3314 */
3315 if (mir->meta.callsiteInfo->misPredBranchOver) {
3316 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3317 }
3318
3319 if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3320 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3321 else
3322 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3323
3324 /* "this" is already left in r_A0 by genProcessArgs* */
3325
3326 /* r4PC = dalvikCallsite */
3327 loadConstant(cUnit, r4PC,
3328 (int) (cUnit->method->insns + mir->offset));
3329
3330 /* r_A1 = &retChainingCell */
3331 MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
3332 addrRetChain->generic.target = (LIR *) retChainingCell;
3333 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
3334 addrRetChain->generic.target = (LIR *) retChainingCell;
3335
3336
3337 /* r_A2 = &predictedChainingCell */
3338 MipsLIR *predictedChainingCell = newLIR2(cUnit, kMipsLahi, r_A2, 0);
3339 predictedChainingCell->generic.target = (LIR *) predChainingCell;
3340 predictedChainingCell = newLIR3(cUnit, kMipsLalo, r_A2, r_A2, 0);
3341 predictedChainingCell->generic.target = (LIR *) predChainingCell;
3342
3343 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3344 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3345 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3346
3347 /* return through ra - jump to the chaining cell */
3348 genUnconditionalBranch(cUnit, predChainingCell);
3349
3350 /*
3351 * null-check on "this" may have been eliminated, but we still need
3352 * a PC-reconstruction label for stack overflow bailout.
3353 */
3354 if (pcrLabel == NULL) {
3355 int dPC = (int) (cUnit->method->insns + mir->offset);
3356 pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
3357 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
3358 pcrLabel->operands[0] = dPC;
3359 pcrLabel->operands[1] = mir->offset;
3360 /* Insert the place holder to the growable list */
3361 dvmInsertGrowableList(&cUnit->pcReconstructionList,
3362 (intptr_t) pcrLabel);
3363 }
3364
3365 /* return through ra+8 - punt to the interpreter */
3366 genUnconditionalBranch(cUnit, pcrLabel);
3367
3368 /*
3369 * return through ra+16 - fully resolve the callee method.
3370 * r_A1 <- count
3371 * r_A2 <- &predictedChainCell
3372 * r_A3 <- this->class
3373 * r4 <- dPC
3374 * r_S4 <- this->class->vtable
3375 */
3376
3377 /* Save count, &predictedChainCell, and class to high regs first */
3378 genRegCopy(cUnit, r_S5, r_A1);
3379 genRegCopy(cUnit, r_S6, r_A2);
3380 genRegCopy(cUnit, r_S7, r_A3);
3381
3382 /* r_A0 now contains this->clazz */
3383 genRegCopy(cUnit, r_A0, r_A3);
3384
3385 /* r_A1 = BBBB */
3386 loadConstant(cUnit, r_A1, dInsn->vB);
3387
3388 /* r_A2 = method (caller) */
3389 loadConstant(cUnit, r_A2, (int) cUnit->method);
3390
3391 /* r_A3 = pDvmDex */
3392 loadConstant(cUnit, r_A3, (int) cUnit->method->clazz->pDvmDex);
3393
3394 LOAD_FUNC_ADDR(cUnit, r_T9,
3395 (intptr_t) dvmFindInterfaceMethodInCache);
3396 opReg(cUnit, kOpBlx, r_T9);
3397 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3398 /* r_V0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3399 genRegCopy(cUnit, r_A0, r_V0);
3400
3401 dvmCompilerClobberCallRegs(cUnit);
3402 /* generate a branch over if the interface method is resolved */
3403 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3404 /*
3405 * calleeMethod == NULL -> throw
3406 */
3407 loadConstant(cUnit, r_A0,
3408 (int) (cUnit->method->insns + mir->offset));
3409 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3410 /* noreturn */
3411
3412 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3413 target->defMask = ENCODE_ALL;
3414 branchOver->generic.target = (LIR *) target;
3415
3416 genRegCopy(cUnit, r_A1, r_S5);
3417
3418 /* Check if rechain limit is reached */
3419 MipsLIR *bypassRechaining = opCompareBranch(cUnit, kMipsBgtz, r_S5, -1);
3420
3421 LOAD_FUNC_ADDR(cUnit, r_T9, (int) dvmJitToPatchPredictedChain);
3422
3423 genRegCopy(cUnit, r_A1, rSELF);
3424 genRegCopy(cUnit, r_A2, r_S6);
3425 genRegCopy(cUnit, r_A3, r_S7);
3426
3427 /*
3428 * r_A0 = calleeMethod
3429 * r_A2 = &predictedChainingCell
3430 * r_A3 = class
3431 *
3432 * &returnChainingCell has been loaded into r_A1 but is not needed
3433 * when patching the chaining cell and will be clobbered upon
3434 * returning so it will be reconstructed again.
3435 */
3436 opReg(cUnit, kOpBlx, r_T9);
3437 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3438 genRegCopy(cUnit, r_A0, r_V0);
3439
3440 /* r_A1 = &retChainingCell */
3441 addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
3442 addrRetChain->generic.target = (LIR *) retChainingCell;
3443 bypassRechaining->generic.target = (LIR *) addrRetChain;
3444 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
3445 addrRetChain->generic.target = (LIR *) retChainingCell;
3446
3447
3448 /*
3449 * r_A0 = this, r_A1 = calleeMethod,
3450 * r_A1 = &ChainingCell,
3451 * r4PC = callsiteDPC,
3452 */
3453 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3454 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3455 TEMPLATE_INVOKE_METHOD_NO_OPT);
3456
3457#if defined(WITH_JIT_TUNING)
3458 gDvmJit.invokePolymorphic++;
3459#endif
3460 /* Handle exceptions using the interpreter */
3461 genTrap(cUnit, mir->offset, pcrLabel);
3462 break;
3463 }
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003464 case OP_INVOKE_OBJECT_INIT_RANGE:
3465 case OP_FILLED_NEW_ARRAY:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07003466 case OP_FILLED_NEW_ARRAY_RANGE: {
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003467 /* Just let the interpreter deal with these */
3468 genInterpSingleStep(cUnit, mir);
3469 break;
3470 }
3471 default:
3472 return true;
3473 }
3474 return false;
3475}
3476
3477static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3478 BasicBlock *bb, MipsLIR *labelList)
3479{
3480 MipsLIR *pcrLabel = NULL;
3481
3482 /* An invoke with the MIR_INLINED is effectively a no-op */
3483 if (mir->OptimizationFlags & MIR_INLINED)
3484 return false;
3485
3486 DecodedInstruction *dInsn = &mir->dalvikInsn;
3487 switch (mir->dalvikInsn.opcode) {
3488 /* calleeMethod = this->clazz->vtable[BBBB] */
3489 case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3490 case OP_INVOKE_VIRTUAL_QUICK: {
3491 int methodIndex = dInsn->vB;
3492 MipsLIR *retChainingCell = &labelList[bb->fallThrough->id];
3493 MipsLIR *predChainingCell = &labelList[bb->taken->id];
3494
3495 /*
3496 * If the invoke has non-null misPredBranchOver, we need to generate
3497 * the non-inlined version of the invoke here to handle the
3498 * mispredicted case.
3499 */
3500 if (mir->meta.callsiteInfo->misPredBranchOver) {
3501 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3502 }
3503
3504 if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3505 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3506 else
3507 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3508
3509 if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3510 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3511 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3512 assert(calleeAddr);
3513 genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3514 retChainingCell);
3515 }
3516
3517 genInvokeVirtualCommon(cUnit, mir, methodIndex,
3518 retChainingCell,
3519 predChainingCell,
3520 pcrLabel);
3521 break;
3522 }
3523 /* calleeMethod = method->clazz->super->vtable[BBBB] */
3524 case OP_INVOKE_SUPER_QUICK:
3525 case OP_INVOKE_SUPER_QUICK_RANGE: {
3526 /* Grab the method ptr directly from what the interpreter sees */
3527 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3528 assert(calleeMethod ==
3529 cUnit->method->clazz->super->vtable[dInsn->vB]);
3530
3531 if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3532 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3533 else
3534 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3535
3536 /* r_A0 = calleeMethod */
3537 loadConstant(cUnit, r_A0, (int) calleeMethod);
3538
3539 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3540 calleeMethod);
3541 break;
3542 }
3543 default:
3544 return true;
3545 }
3546 return false;
3547}
3548
3549/*
3550 * This operation is complex enough that we'll do it partly inline
3551 * and partly with a handler. NOTE: the handler uses hardcoded
3552 * values for string object offsets and must be revisitied if the
3553 * layout changes.
3554 */
3555static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3556{
3557#if defined(USE_GLOBAL_STRING_DEFS)
3558 return handleExecuteInlineC(cUnit, mir);
3559#else
3560 MipsLIR *rollback;
3561 RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3562 RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3563
3564 loadValueDirectFixed(cUnit, rlThis, r_A0);
3565 loadValueDirectFixed(cUnit, rlComp, r_A1);
3566 /* Test objects for NULL */
3567 rollback = genNullCheck(cUnit, rlThis.sRegLow, r_A0, mir->offset, NULL);
3568 genNullCheck(cUnit, rlComp.sRegLow, r_A1, mir->offset, rollback);
3569 /*
3570 * TUNING: we could check for object pointer equality before invoking
3571 * handler. Unclear whether the gain would be worth the added code size
3572 * expansion.
3573 */
3574 genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3575 storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3576 dvmCompilerGetReturn(cUnit));
3577 return false;
3578#endif
3579}
3580
3581static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3582{
3583#if defined(USE_GLOBAL_STRING_DEFS)
3584 return handleExecuteInlineC(cUnit, mir);
3585#else
3586 RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3587 RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3588
3589 loadValueDirectFixed(cUnit, rlThis, r_A0);
3590 loadValueDirectFixed(cUnit, rlChar, r_A1);
3591
3592 RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3593 loadValueDirectFixed(cUnit, rlStart, r_A2);
3594
3595 /* Test objects for NULL */
3596 genNullCheck(cUnit, rlThis.sRegLow, r_A0, mir->offset, NULL);
3597 genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3598 storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3599 dvmCompilerGetReturn(cUnit));
3600 return false;
3601#endif
3602}
3603
3604// Generates an inlined String.isEmpty or String.length.
3605static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3606 bool isEmpty)
3607{
3608 // dst = src.length();
3609 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3610 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3611 rlObj = loadValue(cUnit, rlObj, kCoreReg);
3612 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3613 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3614 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3615 rlResult.lowReg);
3616 if (isEmpty) {
3617 // dst = (dst == 0);
3618 int tReg = dvmCompilerAllocTemp(cUnit);
3619 newLIR3(cUnit, kMipsSltu, tReg, r_ZERO, rlResult.lowReg);
3620 opRegRegImm(cUnit, kOpXor, rlResult.lowReg, tReg, 1);
3621 }
3622 storeValue(cUnit, rlDest, rlResult);
3623 return false;
3624}
3625
3626static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3627{
3628 return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3629}
3630
3631static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3632{
3633 return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3634}
3635
3636static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3637{
3638 int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3639 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3640 RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3641 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3642 RegLocation rlResult;
3643 rlObj = loadValue(cUnit, rlObj, kCoreReg);
3644 rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3645 int regMax = dvmCompilerAllocTemp(cUnit);
3646 int regOff = dvmCompilerAllocTemp(cUnit);
3647 int regPtr = dvmCompilerAllocTemp(cUnit);
3648 MipsLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3649 mir->offset, NULL);
3650 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3651 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3652 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3653 genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3654 dvmCompilerFreeTemp(cUnit, regMax);
3655 opRegImm(cUnit, kOpAdd, regPtr, contents);
3656 opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3657 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3658 loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3659 storeValue(cUnit, rlDest, rlResult);
3660 return false;
3661}
3662
3663static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3664{
3665 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3666 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3667 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3668 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3669 int signReg = dvmCompilerAllocTemp(cUnit);
3670 /*
3671 * abs(x) = y<=x>>31, (x+y)^y.
3672 * Thumb2's IT block also yields 3 instructions, but imposes
3673 * scheduling constraints.
3674 */
3675 opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3676 opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3677 opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3678 storeValue(cUnit, rlDest, rlResult);
3679 return false;
3680}
3681
3682static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3683{
3684 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3685 RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3686 rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3687 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3688 int signReg = dvmCompilerAllocTemp(cUnit);
3689 int tReg = dvmCompilerAllocTemp(cUnit);
3690 /*
3691 * abs(x) = y<=x>>31, (x+y)^y.
3692 * Thumb2 IT block allows slightly shorter sequence,
3693 * but introduces a scheduling barrier. Stick with this
3694 * mechanism for now.
3695 */
3696 opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3697 opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3698 newLIR3(cUnit, kMipsSltu, tReg, rlResult.lowReg, signReg);
3699 opRegRegReg(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, signReg);
3700 opRegRegReg(cUnit, kOpAdd, rlResult.highReg, rlResult.highReg, tReg);
3701 opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3702 opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3703 dvmCompilerFreeTemp(cUnit, signReg);
3704 dvmCompilerFreeTemp(cUnit, tReg);
3705 storeValueWide(cUnit, rlDest, rlResult);
3706 return false;
3707}
3708
3709static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3710{
3711 // Just move from source to destination...
3712 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3713 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3714 storeValue(cUnit, rlDest, rlSrc);
3715 return false;
3716}
3717
3718static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3719{
3720 // Just move from source to destination...
3721 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3722 RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3723 storeValueWide(cUnit, rlDest, rlSrc);
3724 return false;
3725}
3726/*
3727 * JITs a call to a C function.
3728 * TODO: use this for faster native method invocation for simple native
3729 * methods (http://b/3069458).
3730 */
3731static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3732{
3733 DecodedInstruction *dInsn = &mir->dalvikInsn;
3734 int operation = dInsn->vB;
3735 unsigned int i;
3736 const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3737 uintptr_t fn = (int) inLineTable[operation].func;
3738 if (fn == 0) {
3739 dvmCompilerAbort(cUnit);
3740 }
3741 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
3742 dvmCompilerClobberCallRegs(cUnit);
3743 dvmCompilerClobber(cUnit, r4PC);
3744 dvmCompilerClobber(cUnit, rINST);
3745 int offset = offsetof(Thread, interpSave.retval);
3746 opRegRegImm(cUnit, kOpAdd, r4PC, rSELF, offset);
3747 newLIR3(cUnit, kMipsSw, r4PC, 16, r_SP); /* sp has plenty of space */
3748 genExportPC(cUnit, mir);
3749 assert(dInsn->vA <= 4);
3750 for (i=0; i < dInsn->vA; i++) {
3751 loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i+r_A0);
3752 }
3753 LOAD_FUNC_ADDR(cUnit, r_T9, fn);
3754 opReg(cUnit, kOpBlx, r_T9);
3755 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3756 /* NULL? */
3757 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3758 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
3759 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3760 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3761 target->defMask = ENCODE_ALL;
3762 branchOver->generic.target = (LIR *) target;
3763 return false;
3764}
3765
3766/*
3767 * NOTE: Handles both range and non-range versions (arguments
3768 * have already been normalized by this point).
3769 */
3770static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3771{
3772 DecodedInstruction *dInsn = &mir->dalvikInsn;
3773 assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3774 dInsn->opcode == OP_EXECUTE_INLINE);
3775 switch (dInsn->vB) {
3776 case INLINE_EMPTYINLINEMETHOD:
3777 return false; /* Nop */
3778
3779 /* These ones we potentially JIT inline. */
Elliott Hughes6986bcf2012-09-14 11:54:57 -07003780
3781 case INLINE_STRING_CHARAT:
3782 return genInlinedStringCharAt(cUnit, mir);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003783 case INLINE_STRING_LENGTH:
3784 return genInlinedStringLength(cUnit, mir);
3785 case INLINE_STRING_IS_EMPTY:
3786 return genInlinedStringIsEmpty(cUnit, mir);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003787 case INLINE_STRING_COMPARETO:
3788 return genInlinedCompareTo(cUnit, mir);
3789 case INLINE_STRING_FASTINDEXOF_II:
3790 return genInlinedFastIndexOf(cUnit, mir);
Elliott Hughes6986bcf2012-09-14 11:54:57 -07003791
3792 case INLINE_MATH_ABS_INT:
3793 case INLINE_STRICT_MATH_ABS_INT:
3794 return genInlinedAbsInt(cUnit, mir);
3795 case INLINE_MATH_ABS_LONG:
3796 case INLINE_STRICT_MATH_ABS_LONG:
3797 return genInlinedAbsLong(cUnit, mir);
3798 case INLINE_MATH_MIN_INT:
3799 case INLINE_STRICT_MATH_MIN_INT:
3800 return genInlinedMinMaxInt(cUnit, mir, true);
3801 case INLINE_MATH_MAX_INT:
3802 case INLINE_STRICT_MATH_MAX_INT:
3803 return genInlinedMinMaxInt(cUnit, mir, false);
3804 case INLINE_MATH_SQRT:
3805 case INLINE_STRICT_MATH_SQRT:
3806 return genInlineSqrt(cUnit, mir);
3807 case INLINE_MATH_ABS_FLOAT:
3808 case INLINE_STRICT_MATH_ABS_FLOAT:
3809 return genInlinedAbsFloat(cUnit, mir);
3810 case INLINE_MATH_ABS_DOUBLE:
3811 case INLINE_STRICT_MATH_ABS_DOUBLE:
3812 return genInlinedAbsDouble(cUnit, mir);
3813
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003814 case INLINE_FLOAT_TO_RAW_INT_BITS:
3815 case INLINE_INT_BITS_TO_FLOAT:
3816 return genInlinedIntFloatConversion(cUnit, mir);
3817 case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3818 case INLINE_LONG_BITS_TO_DOUBLE:
3819 return genInlinedLongDoubleConversion(cUnit, mir);
3820
3821 /*
3822 * These ones we just JIT a call to a C function for.
3823 * TODO: special-case these in the other "invoke" call paths.
3824 */
3825 case INLINE_STRING_EQUALS:
3826 case INLINE_MATH_COS:
3827 case INLINE_MATH_SIN:
3828 case INLINE_FLOAT_TO_INT_BITS:
3829 case INLINE_DOUBLE_TO_LONG_BITS:
3830 return handleExecuteInlineC(cUnit, mir);
3831 }
3832 dvmCompilerAbort(cUnit);
3833 return false; // Not reachable; keeps compiler happy.
3834}
3835
3836static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3837{
3838 //TUNING: We're using core regs here - not optimal when target is a double
3839 RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3840 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3841 loadConstantNoClobber(cUnit, rlResult.lowReg,
3842 mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3843 loadConstantNoClobber(cUnit, rlResult.highReg,
3844 (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3845 storeValueWide(cUnit, rlDest, rlResult);
3846 return false;
3847}
3848
3849/*
3850 * The following are special processing routines that handle transfer of
3851 * controls between compiled code and the interpreter. Certain VM states like
3852 * Dalvik PC and special-purpose registers are reconstructed here.
3853 */
3854
3855/* Chaining cell for code that may need warmup. */
3856static void handleNormalChainingCell(CompilationUnit *cUnit,
3857 unsigned int offset)
3858{
3859 newLIR3(cUnit, kMipsLw, r_A0,
3860 offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal),
3861 rSELF);
3862 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3863 addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3864}
3865
3866/*
3867 * Chaining cell for instructions that immediately following already translated
3868 * code.
3869 */
3870static void handleHotChainingCell(CompilationUnit *cUnit,
3871 unsigned int offset)
3872{
3873 newLIR3(cUnit, kMipsLw, r_A0,
3874 offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect),
3875 rSELF);
3876 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3877 addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3878}
3879
3880/* Chaining cell for branches that branch back into the same basic block */
3881static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3882 unsigned int offset)
3883{
3884 /*
3885 * Use raw instruction constructors to guarantee that the generated
3886 * instructions fit the predefined cell size.
3887 */
3888#if defined(WITH_SELF_VERIFICATION)
3889 newLIR3(cUnit, kMipsLw, r_A0,
3890 offsetof(Thread, jitToInterpEntries.dvmJitToInterpBackwardBranch),
3891 rSELF);
3892#else
3893 newLIR3(cUnit, kMipsLw, r_A0,
3894 offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal),
3895 rSELF);
3896#endif
3897 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3898 addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3899}
3900
3901/* Chaining cell for monomorphic method invocations. */
3902static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3903 const Method *callee)
3904{
3905 newLIR3(cUnit, kMipsLw, r_A0,
3906 offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect),
3907 rSELF);
3908 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3909 addWordData(cUnit, NULL, (int) (callee->insns));
3910}
3911
3912/* Chaining cell for monomorphic method invocations. */
3913static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3914{
3915 /* Should not be executed in the initial state */
3916 addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3917 /* branch delay slot nop */
3918 addWordData(cUnit, NULL, PREDICTED_CHAIN_DELAY_SLOT_INIT);
3919 /* To be filled: class */
3920 addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3921 /* To be filled: method */
3922 addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3923 /*
3924 * Rechain count. The initial value of 0 here will trigger chaining upon
3925 * the first invocation of this callsite.
3926 */
3927 addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3928}
3929
3930/* Load the Dalvik PC into a0 and jump to the specified target */
3931static void handlePCReconstruction(CompilationUnit *cUnit,
3932 MipsLIR *targetLabel)
3933{
3934 MipsLIR **pcrLabel =
3935 (MipsLIR **) cUnit->pcReconstructionList.elemList;
3936 int numElems = cUnit->pcReconstructionList.numUsed;
3937 int i;
3938
3939 /*
3940 * We should never reach here through fall-through code, so insert
3941 * a bomb to signal troubles immediately.
3942 */
3943 if (numElems) {
3944 newLIR0(cUnit, kMipsUndefined);
3945 }
3946
3947 for (i = 0; i < numElems; i++) {
3948 dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
3949 /* a0 = dalvik PC */
3950 loadConstant(cUnit, r_A0, pcrLabel[i]->operands[0]);
3951 genUnconditionalBranch(cUnit, targetLabel);
3952 }
3953}
3954
3955static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
3956 "kMirOpPhi",
3957 "kMirOpNullNRangeUpCheck",
3958 "kMirOpNullNRangeDownCheck",
3959 "kMirOpLowerBound",
3960 "kMirOpPunt",
3961 "kMirOpCheckInlinePrediction",
3962};
3963
3964/*
3965 * vA = arrayReg;
3966 * vB = idxReg;
3967 * vC = endConditionReg;
3968 * arg[0] = maxC
3969 * arg[1] = minC
3970 * arg[2] = loopBranchConditionCode
3971 */
3972static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
3973{
3974 /*
3975 * NOTE: these synthesized blocks don't have ssa names assigned
3976 * for Dalvik registers. However, because they dominate the following
3977 * blocks we can simply use the Dalvik name w/ subscript 0 as the
3978 * ssa name.
3979 */
3980 DecodedInstruction *dInsn = &mir->dalvikInsn;
3981 const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3982 const int maxC = dInsn->arg[0];
3983 int regLength;
3984 RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3985 RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
3986
3987 /* regArray <- arrayRef */
3988 rlArray = loadValue(cUnit, rlArray, kCoreReg);
3989 rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
3990 genRegImmCheck(cUnit, kMipsCondEq, rlArray.lowReg, 0, 0,
3991 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
3992
3993 /* regLength <- len(arrayRef) */
3994 regLength = dvmCompilerAllocTemp(cUnit);
3995 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3996
3997 int delta = maxC;
3998 /*
3999 * If the loop end condition is ">=" instead of ">", then the largest value
4000 * of the index is "endCondition - 1".
4001 */
4002 if (dInsn->arg[2] == OP_IF_GE) {
4003 delta--;
4004 }
4005
4006 if (delta) {
4007 int tReg = dvmCompilerAllocTemp(cUnit);
4008 opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
4009 rlIdxEnd.lowReg = tReg;
4010 dvmCompilerFreeTemp(cUnit, tReg);
4011 }
4012 /* Punt if "regIdxEnd < len(Array)" is false */
4013 genRegRegCheck(cUnit, kMipsCondGe, rlIdxEnd.lowReg, regLength, 0,
4014 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4015}
4016
4017/*
4018 * vA = arrayReg;
4019 * vB = idxReg;
4020 * vC = endConditionReg;
4021 * arg[0] = maxC
4022 * arg[1] = minC
4023 * arg[2] = loopBranchConditionCode
4024 */
4025static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
4026{
4027 DecodedInstruction *dInsn = &mir->dalvikInsn;
4028 const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
4029 const int regLength = dvmCompilerAllocTemp(cUnit);
4030 const int maxC = dInsn->arg[0];
4031 RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
4032 RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
4033
4034 /* regArray <- arrayRef */
4035 rlArray = loadValue(cUnit, rlArray, kCoreReg);
4036 rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
4037 genRegImmCheck(cUnit, kMipsCondEq, rlArray.lowReg, 0, 0,
4038 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4039
4040 /* regLength <- len(arrayRef) */
4041 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
4042
4043 if (maxC) {
4044 int tReg = dvmCompilerAllocTemp(cUnit);
4045 opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
4046 rlIdxInit.lowReg = tReg;
4047 dvmCompilerFreeTemp(cUnit, tReg);
4048 }
4049
4050 /* Punt if "regIdxInit < len(Array)" is false */
4051 genRegRegCheck(cUnit, kMipsCondGe, rlIdxInit.lowReg, regLength, 0,
4052 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4053}
4054
4055/*
4056 * vA = idxReg;
4057 * vB = minC;
4058 */
4059static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
4060{
4061 DecodedInstruction *dInsn = &mir->dalvikInsn;
4062 const int minC = dInsn->vB;
4063 RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
4064
4065 /* regIdx <- initial index value */
4066 rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
4067
4068 /* Punt if "regIdxInit + minC >= 0" is false */
4069 genRegImmCheck(cUnit, kMipsCondLt, rlIdx.lowReg, -minC, 0,
4070 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4071}
4072
4073/*
4074 * vC = this
4075 *
4076 * A predicted inlining target looks like the following, where instructions
4077 * between 0x2f130d24 and 0x2f130d40 are checking if the predicted class
4078 * matches "this", and the verificaion code is generated by this routine.
4079 *
4080 * (C) means the instruction is inlined from the callee, and (PI) means the
4081 * instruction is the predicted inlined invoke, whose corresponding
4082 * instructions are still generated to handle the mispredicted case.
4083 *
4084 * D/dalvikvm( 2377): -------- kMirOpCheckInlinePrediction
4085 * D/dalvikvm( 2377): 0x2f130d24 (0020): lw v0,16(s1)
4086 * D/dalvikvm( 2377): 0x2f130d28 (0024): lui v1,0x0011(17)
4087 * D/dalvikvm( 2377): 0x2f130d2c (0028): ori v1,v1,0x11e418(1172504)
4088 * D/dalvikvm( 2377): 0x2f130d30 (002c): beqz v0,0x2f130df0 (L0x11f1f0)
4089 * D/dalvikvm( 2377): 0x2f130d34 (0030): pref 0,0(v0)
4090 * D/dalvikvm( 2377): 0x2f130d38 (0034): lw a0,0(v0)
4091 * D/dalvikvm( 2377): 0x2f130d3c (0038): bne v1,a0,0x2f130d54 (L0x11f518)
4092 * D/dalvikvm( 2377): 0x2f130d40 (003c): pref 0,8(v0)
4093 * D/dalvikvm( 2377): -------- dalvik offset: 0x000a @ +iget-object-quick (C) v3, v4, (#8)
4094 * D/dalvikvm( 2377): 0x2f130d44 (0040): lw a1,8(v0)
4095 * D/dalvikvm( 2377): -------- dalvik offset: 0x000a @ +invoke-virtual-quick (PI) v4
4096 * D/dalvikvm( 2377): 0x2f130d48 (0044): sw a1,12(s1)
4097 * D/dalvikvm( 2377): 0x2f130d4c (0048): b 0x2f130e18 (L0x120150)
4098 * D/dalvikvm( 2377): 0x2f130d50 (004c): lw a0,116(s2)
4099 * D/dalvikvm( 2377): L0x11f518:
4100 * D/dalvikvm( 2377): 0x2f130d54 (0050): lw a0,16(s1)
4101 * D/dalvikvm( 2377): 0x2f130d58 (0054): addiu s4,s1,0xffffffe8(-24)
4102 * D/dalvikvm( 2377): 0x2f130d5c (0058): beqz a0,0x2f130e00 (L0x11f618)
4103 * D/dalvikvm( 2377): 0x2f130d60 (005c): pref 1,0(s4)
4104 * D/dalvikvm( 2377): -------- BARRIER
4105 * D/dalvikvm( 2377): 0x2f130d64 (0060): sw a0,0(s4)
4106 * D/dalvikvm( 2377): 0x2f130d68 (0064): addiu s4,s4,0x0004(4)
4107 * D/dalvikvm( 2377): -------- BARRIER
4108 * D/dalvikvm( 2377): 0x2f130d6c (0068): lui s0,0x2d22(11554)
4109 * D/dalvikvm( 2377): 0x2f130d70 (006c): ori s0,s0,0x2d228464(757236836)
4110 * D/dalvikvm( 2377): 0x2f130d74 (0070): lahi/lui a1,0x2f13(12051)
4111 * D/dalvikvm( 2377): 0x2f130d78 (0074): lalo/ori a1,a1,0x2f130ddc(789777884)
4112 * D/dalvikvm( 2377): 0x2f130d7c (0078): lahi/lui a2,0x2f13(12051)
4113 * D/dalvikvm( 2377): 0x2f130d80 (007c): lalo/ori a2,a2,0x2f130e24(789777956)
4114 * D/dalvikvm( 2377): 0x2f130d84 (0080): jal 0x2f12d1ec(789762540)
4115 * D/dalvikvm( 2377): 0x2f130d88 (0084): nop
4116 * D/dalvikvm( 2377): 0x2f130d8c (0088): b 0x2f130e24 (L0x11ed6c)
4117 * D/dalvikvm( 2377): 0x2f130d90 (008c): nop
4118 * D/dalvikvm( 2377): 0x2f130d94 (0090): b 0x2f130e04 (L0x11ffd0)
4119 * D/dalvikvm( 2377): 0x2f130d98 (0094): lui a0,0x2d22(11554)
4120 * D/dalvikvm( 2377): 0x2f130d9c (0098): lw a0,44(s4)
4121 * D/dalvikvm( 2377): 0x2f130da0 (009c): bgtz a1,0x2f130dc4 (L0x11fb98)
4122 * D/dalvikvm( 2377): 0x2f130da4 (00a0): nop
4123 * D/dalvikvm( 2377): 0x2f130da8 (00a4): lui t9,0x2aba(10938)
4124 * D/dalvikvm( 2377): 0x2f130dac (00a8): ori t9,t9,0x2abae3f8(716891128)
4125 * D/dalvikvm( 2377): 0x2f130db0 (00ac): move a1,s2
4126 * D/dalvikvm( 2377): 0x2f130db4 (00b0): jalr ra,t9
4127 * D/dalvikvm( 2377): 0x2f130db8 (00b4): nop
4128 * D/dalvikvm( 2377): 0x2f130dbc (00b8): lw gp,84(sp)
4129 * D/dalvikvm( 2377): 0x2f130dc0 (00bc): move a0,v0
4130 * D/dalvikvm( 2377): 0x2f130dc4 (00c0): lahi/lui a1,0x2f13(12051)
4131 * D/dalvikvm( 2377): 0x2f130dc8 (00c4): lalo/ori a1,a1,0x2f130ddc(789777884)
4132 * D/dalvikvm( 2377): 0x2f130dcc (00c8): jal 0x2f12d0c4(789762244)
4133 * D/dalvikvm( 2377): 0x2f130dd0 (00cc): nop
4134 * D/dalvikvm( 2377): 0x2f130dd4 (00d0): b 0x2f130e04 (L0x11ffd0)
4135 * D/dalvikvm( 2377): 0x2f130dd8 (00d4): lui a0,0x2d22(11554)
4136 * D/dalvikvm( 2377): 0x2f130ddc (00d8): .align4
4137 * D/dalvikvm( 2377): L0x11ed2c:
4138 * D/dalvikvm( 2377): -------- dalvik offset: 0x000d @ move-result-object (PI) v3, (#0), (#0)
4139 * D/dalvikvm( 2377): 0x2f130ddc (00d8): lw a2,16(s2)
4140 * D/dalvikvm( 2377): 0x2f130de0 (00dc): sw a2,12(s1)
4141 * D/dalvikvm( 2377): 0x2f130de4 (00e0): b 0x2f130e18 (L0x120150)
4142 * D/dalvikvm( 2377): 0x2f130de8 (00e4): lw a0,116(s2)
4143 * D/dalvikvm( 2377): 0x2f130dec (00e8): undefined
4144 * D/dalvikvm( 2377): L0x11f1f0:
4145 * D/dalvikvm( 2377): -------- reconstruct dalvik PC : 0x2d228464 @ +0x000a
4146 * D/dalvikvm( 2377): 0x2f130df0 (00ec): lui a0,0x2d22(11554)
4147 * D/dalvikvm( 2377): 0x2f130df4 (00f0): ori a0,a0,0x2d228464(757236836)
4148 * D/dalvikvm( 2377): 0x2f130df8 (00f4): b 0x2f130e0c (L0x120090)
4149 * D/dalvikvm( 2377): 0x2f130dfc (00f8): lw a1,108(s2)
4150 * D/dalvikvm( 2377): L0x11f618:
4151 * D/dalvikvm( 2377): -------- reconstruct dalvik PC : 0x2d228464 @ +0x000a
4152 * D/dalvikvm( 2377): 0x2f130e00 (00fc): lui a0,0x2d22(11554)
4153 * D/dalvikvm( 2377): 0x2f130e04 (0100): ori a0,a0,0x2d228464(757236836)
4154 * D/dalvikvm( 2377): Exception_Handling:
4155 * D/dalvikvm( 2377): 0x2f130e08 (0104): lw a1,108(s2)
4156 * D/dalvikvm( 2377): 0x2f130e0c (0108): jalr ra,a1
4157 * D/dalvikvm( 2377): 0x2f130e10 (010c): nop
4158 * D/dalvikvm( 2377): 0x2f130e14 (0110): .align4
4159 * D/dalvikvm( 2377): L0x11edac:
4160 * D/dalvikvm( 2377): -------- chaining cell (hot): 0x000e
4161 * D/dalvikvm( 2377): 0x2f130e14 (0110): lw a0,116(s2)
4162 * D/dalvikvm( 2377): 0x2f130e18 (0114): jalr ra,a0
4163 * D/dalvikvm( 2377): 0x2f130e1c (0118): nop
4164 * D/dalvikvm( 2377): 0x2f130e20 (011c): data 0x2d22846c(757236844)
4165 * D/dalvikvm( 2377): 0x2f130e24 (0120): .align4
4166 * D/dalvikvm( 2377): L0x11ed6c:
4167 * D/dalvikvm( 2377): -------- chaining cell (predicted)
4168 * D/dalvikvm( 2377): 0x2f130e24 (0120): data 0xe7fe(59390)
4169 * D/dalvikvm( 2377): 0x2f130e28 (0124): data 0x0000(0)
4170 * D/dalvikvm( 2377): 0x2f130e2c (0128): data 0x0000(0)
4171 * D/dalvikvm( 2377): 0x2f130e30 (012c): data 0x0000(0)
4172 * D/dalvikvm( 2377): 0x2f130e34 (0130): data 0x0000(0)
4173 */
4174static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4175{
4176 CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4177 RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4178
4179 rlThis = loadValue(cUnit, rlThis, kCoreReg);
4180 int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4181 loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4182 genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4183 NULL);/* null object? */
4184 int regActualClass = dvmCompilerAllocTemp(cUnit);
4185 loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4186// opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4187 /*
4188 * Set the misPredBranchOver target so that it will be generated when the
4189 * code for the non-optimized invoke is generated.
4190 */
4191 callsiteInfo->misPredBranchOver = (LIR *) opCompareBranch(cUnit, kMipsBne, regPredictedClass, regActualClass);
4192}
4193
4194/* Extended MIR instructions like PHI */
4195static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4196{
4197 int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4198 char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4199 false);
4200 strcpy(msg, extendedMIROpNames[opOffset]);
4201 newLIR1(cUnit, kMipsPseudoExtended, (int) msg);
4202
4203 switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4204 case kMirOpPhi: {
4205 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4206 newLIR1(cUnit, kMipsPseudoSSARep, (int) ssaString);
4207 break;
4208 }
4209 case kMirOpNullNRangeUpCheck: {
4210 genHoistedChecksForCountUpLoop(cUnit, mir);
4211 break;
4212 }
4213 case kMirOpNullNRangeDownCheck: {
4214 genHoistedChecksForCountDownLoop(cUnit, mir);
4215 break;
4216 }
4217 case kMirOpLowerBound: {
4218 genHoistedLowerBoundCheck(cUnit, mir);
4219 break;
4220 }
4221 case kMirOpPunt: {
4222 genUnconditionalBranch(cUnit,
4223 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4224 break;
4225 }
4226 case kMirOpCheckInlinePrediction: {
4227 genValidationForPredictedInline(cUnit, mir);
4228 break;
4229 }
4230 default:
4231 break;
4232 }
4233}
4234
4235/*
4236 * Create a PC-reconstruction cell for the starting offset of this trace.
4237 * Since the PCR cell is placed near the end of the compiled code which is
4238 * usually out of range for a conditional branch, we put two branches (one
4239 * branch over to the loop body and one layover branch to the actual PCR) at the
4240 * end of the entry block.
4241 */
4242static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4243 MipsLIR *bodyLabel)
4244{
4245 /* Set up the place holder to reconstruct this Dalvik PC */
4246 MipsLIR *pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4247 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
4248 pcrLabel->operands[0] =
4249 (int) (cUnit->method->insns + entry->startOffset);
4250 pcrLabel->operands[1] = entry->startOffset;
4251 /* Insert the place holder to the growable list */
4252 dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4253
4254 /*
4255 * Next, create two branches - one branch over to the loop body and the
4256 * other branch to the PCR cell to punt.
4257 */
4258 MipsLIR *branchToBody = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4259 branchToBody->opcode = kMipsB;
4260 branchToBody->generic.target = (LIR *) bodyLabel;
4261 setupResourceMasks(branchToBody);
4262 cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4263
4264 MipsLIR *branchToPCR = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4265 branchToPCR->opcode = kMipsB;
4266 branchToPCR->generic.target = (LIR *) pcrLabel;
4267 setupResourceMasks(branchToPCR);
4268 cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4269}
4270
4271#if defined(WITH_SELF_VERIFICATION)
4272static bool selfVerificationPuntOps(MIR *mir)
4273{
4274assert(0); /* MIPSTODO port selfVerificationPuntOps() */
4275 DecodedInstruction *decInsn = &mir->dalvikInsn;
4276
4277 /*
4278 * All opcodes that can throw exceptions and use the
4279 * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4280 * under self-verification mode.
4281 */
4282 switch (decInsn->opcode) {
4283 case OP_MONITOR_ENTER:
4284 case OP_MONITOR_EXIT:
4285 case OP_NEW_INSTANCE:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004286 case OP_NEW_ARRAY:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004287 case OP_CHECK_CAST:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004288 case OP_MOVE_EXCEPTION:
4289 case OP_FILL_ARRAY_DATA:
4290 case OP_EXECUTE_INLINE:
4291 case OP_EXECUTE_INLINE_RANGE:
4292 return true;
4293 default:
4294 return false;
4295 }
4296}
4297#endif
4298
4299void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4300{
4301 /* Used to hold the labels of each block */
4302 MipsLIR *labelList =
4303 (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR) * cUnit->numBlocks, true);
4304 MipsLIR *headLIR = NULL;
4305 GrowableList chainingListByType[kChainingCellGap];
4306 int i;
4307
4308 /*
4309 * Initialize various types chaining lists.
4310 */
4311 for (i = 0; i < kChainingCellGap; i++) {
4312 dvmInitGrowableList(&chainingListByType[i], 2);
4313 }
4314
4315 /* Clear the visited flag for each block */
4316 dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4317 kAllNodes, false /* isIterative */);
4318
4319 GrowableListIterator iterator;
4320 dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4321
4322 /* Traces start with a profiling entry point. Generate it here */
4323 cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4324
4325 /* Handle the content in each basic block */
4326 for (i = 0; ; i++) {
4327 MIR *mir;
4328 BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4329 if (bb == NULL) break;
4330 if (bb->visited == true) continue;
4331
4332 labelList[i].operands[0] = bb->startOffset;
4333
4334 if (bb->blockType >= kChainingCellGap) {
4335 if (bb->isFallThroughFromInvoke == true) {
4336 /* Align this block first since it is a return chaining cell */
4337 newLIR0(cUnit, kMipsPseudoPseudoAlign4);
4338 }
4339 /*
4340 * Append the label pseudo LIR first. Chaining cells will be handled
4341 * separately afterwards.
4342 */
4343 dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4344 }
4345
4346 if (bb->blockType == kEntryBlock) {
4347 labelList[i].opcode = kMipsPseudoEntryBlock;
4348 if (bb->firstMIRInsn == NULL) {
4349 continue;
4350 } else {
4351 setupLoopEntryBlock(cUnit, bb,
4352 &labelList[bb->fallThrough->id]);
4353 }
4354 } else if (bb->blockType == kExitBlock) {
4355 labelList[i].opcode = kMipsPseudoExitBlock;
4356 goto gen_fallthrough;
4357 } else if (bb->blockType == kDalvikByteCode) {
4358 if (bb->hidden == true) continue;
4359 labelList[i].opcode = kMipsPseudoNormalBlockLabel;
4360 /* Reset the register state */
4361 dvmCompilerResetRegPool(cUnit);
4362 dvmCompilerClobberAllRegs(cUnit);
4363 dvmCompilerResetNullCheck(cUnit);
4364 } else {
4365 switch (bb->blockType) {
4366 case kChainingCellNormal:
4367 labelList[i].opcode = kMipsPseudoChainingCellNormal;
4368 /* handle the codegen later */
4369 dvmInsertGrowableList(
4370 &chainingListByType[kChainingCellNormal], i);
4371 break;
4372 case kChainingCellInvokeSingleton:
4373 labelList[i].opcode =
4374 kMipsPseudoChainingCellInvokeSingleton;
4375 labelList[i].operands[0] =
4376 (int) bb->containingMethod;
4377 /* handle the codegen later */
4378 dvmInsertGrowableList(
4379 &chainingListByType[kChainingCellInvokeSingleton], i);
4380 break;
4381 case kChainingCellInvokePredicted:
4382 labelList[i].opcode =
4383 kMipsPseudoChainingCellInvokePredicted;
4384 /*
4385 * Move the cached method pointer from operand 1 to 0.
4386 * Operand 0 was clobbered earlier in this routine to store
4387 * the block starting offset, which is not applicable to
4388 * predicted chaining cell.
4389 */
4390 labelList[i].operands[0] = labelList[i].operands[1];
4391 /* handle the codegen later */
4392 dvmInsertGrowableList(
4393 &chainingListByType[kChainingCellInvokePredicted], i);
4394 break;
4395 case kChainingCellHot:
4396 labelList[i].opcode =
4397 kMipsPseudoChainingCellHot;
4398 /* handle the codegen later */
4399 dvmInsertGrowableList(
4400 &chainingListByType[kChainingCellHot], i);
4401 break;
4402 case kPCReconstruction:
4403 /* Make sure exception handling block is next */
4404 labelList[i].opcode =
4405 kMipsPseudoPCReconstructionBlockLabel;
4406 handlePCReconstruction(cUnit,
4407 &labelList[cUnit->puntBlock->id]);
4408 break;
4409 case kExceptionHandling:
4410 labelList[i].opcode = kMipsPseudoEHBlockLabel;
4411 if (cUnit->pcReconstructionList.numUsed) {
4412 loadWordDisp(cUnit, rSELF, offsetof(Thread,
4413 jitToInterpEntries.dvmJitToInterpPunt),
4414 r_A1);
4415 opReg(cUnit, kOpBlx, r_A1);
4416 }
4417 break;
4418 case kChainingCellBackwardBranch:
4419 labelList[i].opcode =
4420 kMipsPseudoChainingCellBackwardBranch;
4421 /* handle the codegen later */
4422 dvmInsertGrowableList(
4423 &chainingListByType[kChainingCellBackwardBranch],
4424 i);
4425 break;
4426 default:
4427 break;
4428 }
4429 continue;
4430 }
4431
4432 /*
4433 * Try to build a longer optimization unit. Currently if the previous
4434 * block ends with a goto, we continue adding instructions and don't
4435 * reset the register allocation pool.
4436 */
4437 for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4438 bb = nextBB;
4439 bb->visited = true;
4440 cUnit->nextCodegenBlock = NULL;
4441
4442 for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4443
4444 dvmCompilerResetRegPool(cUnit);
4445 if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4446 dvmCompilerClobberAllRegs(cUnit);
4447 }
4448
4449 if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4450 dvmCompilerResetDefTracking(cUnit);
4451 }
4452
4453 if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4454 handleExtendedMIR(cUnit, mir);
4455 continue;
4456 }
4457
4458 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4459 InstructionFormat dalvikFormat =
4460 dexGetFormatFromOpcode(dalvikOpcode);
4461 const char *note;
4462 if (mir->OptimizationFlags & MIR_INLINED) {
4463 note = " (I)";
4464 } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4465 note = " (PI)";
4466 } else if (mir->OptimizationFlags & MIR_CALLEE) {
4467 note = " (C)";
4468 } else {
4469 note = NULL;
4470 }
4471
4472 MipsLIR *boundaryLIR =
4473 newLIR2(cUnit, kMipsPseudoDalvikByteCodeBoundary,
4474 mir->offset,
4475 (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn,
4476 note));
4477 if (mir->ssaRep) {
4478 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4479 newLIR1(cUnit, kMipsPseudoSSARep, (int) ssaString);
4480 }
4481
4482 /* Remember the first LIR for this block */
4483 if (headLIR == NULL) {
4484 headLIR = boundaryLIR;
4485 /* Set the first boundaryLIR as a scheduling barrier */
4486 headLIR->defMask = ENCODE_ALL;
4487 }
4488
4489 bool notHandled;
4490 /*
4491 * Debugging: screen the opcode first to see if it is in the
4492 * do[-not]-compile list
4493 */
4494 bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4495#if defined(WITH_SELF_VERIFICATION)
4496 if (singleStepMe == false) {
4497 singleStepMe = selfVerificationPuntOps(mir);
4498 }
4499#endif
4500 if (singleStepMe || cUnit->allSingleStep) {
4501 notHandled = false;
4502 genInterpSingleStep(cUnit, mir);
4503 } else {
4504 opcodeCoverage[dalvikOpcode]++;
4505 switch (dalvikFormat) {
4506 case kFmt10t:
4507 case kFmt20t:
4508 case kFmt30t:
4509 notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4510 mir, bb, labelList);
4511 break;
4512 case kFmt10x:
4513 notHandled = handleFmt10x(cUnit, mir);
4514 break;
4515 case kFmt11n:
4516 case kFmt31i:
4517 notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4518 break;
4519 case kFmt11x:
4520 notHandled = handleFmt11x(cUnit, mir);
4521 break;
4522 case kFmt12x:
4523 notHandled = handleFmt12x(cUnit, mir);
4524 break;
4525 case kFmt20bc:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004526 notHandled = handleFmt20bc(cUnit, mir);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004527 break;
4528 case kFmt21c:
4529 case kFmt31c:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004530 notHandled = handleFmt21c_Fmt31c(cUnit, mir);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004531 break;
4532 case kFmt21h:
4533 notHandled = handleFmt21h(cUnit, mir);
4534 break;
4535 case kFmt21s:
4536 notHandled = handleFmt21s(cUnit, mir);
4537 break;
4538 case kFmt21t:
4539 notHandled = handleFmt21t(cUnit, mir, bb,
4540 labelList);
4541 break;
4542 case kFmt22b:
4543 case kFmt22s:
4544 notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4545 break;
4546 case kFmt22c:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004547 notHandled = handleFmt22c(cUnit, mir);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004548 break;
4549 case kFmt22cs:
4550 notHandled = handleFmt22cs(cUnit, mir);
4551 break;
4552 case kFmt22t:
4553 notHandled = handleFmt22t(cUnit, mir, bb,
4554 labelList);
4555 break;
4556 case kFmt22x:
4557 case kFmt32x:
4558 notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4559 break;
4560 case kFmt23x:
4561 notHandled = handleFmt23x(cUnit, mir);
4562 break;
4563 case kFmt31t:
4564 notHandled = handleFmt31t(cUnit, mir);
4565 break;
4566 case kFmt3rc:
4567 case kFmt35c:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004568 notHandled = handleFmt35c_3rc(cUnit, mir, bb,
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004569 labelList);
4570 break;
4571 case kFmt3rms:
4572 case kFmt35ms:
4573 notHandled = handleFmt35ms_3rms(cUnit, mir,bb,
4574 labelList);
4575 break;
4576 case kFmt35mi:
4577 case kFmt3rmi:
4578 notHandled = handleExecuteInline(cUnit, mir);
4579 break;
4580 case kFmt51l:
4581 notHandled = handleFmt51l(cUnit, mir);
4582 break;
4583 default:
4584 notHandled = true;
4585 break;
4586 }
4587 }
4588 if (notHandled) {
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004589 ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004590 mir->offset,
4591 dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4592 dalvikFormat);
4593 dvmCompilerAbort(cUnit);
4594 break;
4595 }
4596 }
4597 }
4598
4599 if (bb->blockType == kEntryBlock) {
4600 dvmCompilerAppendLIR(cUnit,
4601 (LIR *) cUnit->loopAnalysis->branchToBody);
4602 dvmCompilerAppendLIR(cUnit,
4603 (LIR *) cUnit->loopAnalysis->branchToPCR);
4604 }
4605
4606 if (headLIR) {
4607 /*
4608 * Eliminate redundant loads/stores and delay stores into later
4609 * slots
4610 */
4611 dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4612 cUnit->lastLIRInsn);
4613 /* Reset headLIR which is also the optimization boundary */
4614 headLIR = NULL;
4615 }
4616
4617gen_fallthrough:
4618 /*
4619 * Check if the block is terminated due to trace length constraint -
4620 * insert an unconditional branch to the chaining cell.
4621 */
4622 if (bb->needFallThroughBranch) {
4623 genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4624 }
4625 }
4626
4627 /* Handle the chaining cells in predefined order */
4628 for (i = 0; i < kChainingCellGap; i++) {
4629 size_t j;
4630 int *blockIdList = (int *) chainingListByType[i].elemList;
4631
4632 cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4633
4634 /* No chaining cells of this type */
4635 if (cUnit->numChainingCells[i] == 0)
4636 continue;
4637
4638 /* Record the first LIR for a new type of chaining cell */
4639 cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4640
4641 for (j = 0; j < chainingListByType[i].numUsed; j++) {
4642 int blockId = blockIdList[j];
4643 BasicBlock *chainingBlock =
4644 (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4645 blockId);
4646
4647 /* Align this chaining cell first */
4648 newLIR0(cUnit, kMipsPseudoPseudoAlign4);
4649
4650 /* Insert the pseudo chaining instruction */
4651 dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4652
4653
4654 switch (chainingBlock->blockType) {
4655 case kChainingCellNormal:
4656 handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4657 break;
4658 case kChainingCellInvokeSingleton:
4659 handleInvokeSingletonChainingCell(cUnit,
4660 chainingBlock->containingMethod);
4661 break;
4662 case kChainingCellInvokePredicted:
4663 handleInvokePredictedChainingCell(cUnit);
4664 break;
4665 case kChainingCellHot:
4666 handleHotChainingCell(cUnit, chainingBlock->startOffset);
4667 break;
4668 case kChainingCellBackwardBranch:
4669 handleBackwardBranchChainingCell(cUnit,
4670 chainingBlock->startOffset);
4671 break;
4672 default:
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004673 ALOGE("Bad blocktype %d", chainingBlock->blockType);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004674 dvmCompilerAbort(cUnit);
4675 }
4676 }
4677 }
4678
4679 /* Mark the bottom of chaining cells */
4680 cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kMipsChainingCellBottom);
4681
4682 /*
4683 * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4684 * of all chaining cells for the overflow cases.
4685 */
4686 if (cUnit->switchOverflowPad) {
4687 loadConstant(cUnit, r_A0, (int) cUnit->switchOverflowPad);
4688 loadWordDisp(cUnit, rSELF, offsetof(Thread,
4689 jitToInterpEntries.dvmJitToInterpNoChain), r_A2);
4690 opRegReg(cUnit, kOpAdd, r_A1, r_A1);
4691 opRegRegReg(cUnit, kOpAdd, r4PC, r_A0, r_A1);
4692#if defined(WITH_JIT_TUNING)
4693 loadConstant(cUnit, r_A0, kSwitchOverflow);
4694#endif
4695 opReg(cUnit, kOpBlx, r_A2);
4696 }
4697
4698 dvmCompilerApplyGlobalOptimizations(cUnit);
4699
4700#if defined(WITH_SELF_VERIFICATION)
4701 selfVerificationBranchInsertPass(cUnit);
4702#endif
4703}
4704
4705/*
4706 * Accept the work and start compiling. Returns true if compilation
4707 * is attempted.
4708 */
4709bool dvmCompilerDoWork(CompilerWorkOrder *work)
4710{
4711 JitTraceDescription *desc;
4712 bool isCompile;
4713 bool success = true;
4714
4715 if (gDvmJit.codeCacheFull) {
4716 return false;
4717 }
4718
4719 switch (work->kind) {
4720 case kWorkOrderTrace:
4721 isCompile = true;
4722 /* Start compilation with maximally allowed trace length */
4723 desc = (JitTraceDescription *)work->info;
4724 success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4725 work->bailPtr, 0 /* no hints */);
4726 break;
4727 case kWorkOrderTraceDebug: {
4728 bool oldPrintMe = gDvmJit.printMe;
4729 gDvmJit.printMe = true;
4730 isCompile = true;
4731 /* Start compilation with maximally allowed trace length */
4732 desc = (JitTraceDescription *)work->info;
4733 success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4734 work->bailPtr, 0 /* no hints */);
4735 gDvmJit.printMe = oldPrintMe;
4736 break;
4737 }
4738 case kWorkOrderProfileMode:
4739 dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4740 isCompile = false;
4741 break;
4742 default:
4743 isCompile = false;
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004744 ALOGE("Jit: unknown work order type");
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004745 assert(0); // Bail if debug build, discard otherwise
4746 }
4747 if (!success)
4748 work->result.codeAddress = NULL;
4749 return isCompile;
4750}
4751
4752/* Architectural-specific debugging helpers go here */
4753void dvmCompilerArchDump(void)
4754{
4755 /* Print compiled opcode in this VM instance */
4756 int i, start, streak;
4757 char buf[1024];
4758
4759 streak = i = 0;
4760 buf[0] = 0;
4761 while (opcodeCoverage[i] == 0 && i < 256) {
4762 i++;
4763 }
4764 if (i == 256) {
4765 return;
4766 }
4767 for (start = i++, streak = 1; i < 256; i++) {
4768 if (opcodeCoverage[i]) {
4769 streak++;
4770 } else {
4771 if (streak == 1) {
4772 sprintf(buf+strlen(buf), "%x,", start);
4773 } else {
4774 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4775 }
4776 streak = 0;
4777 while (opcodeCoverage[i] == 0 && i < 256) {
4778 i++;
4779 }
4780 if (i < 256) {
4781 streak = 1;
4782 start = i;
4783 }
4784 }
4785 }
4786 if (streak) {
4787 if (streak == 1) {
4788 sprintf(buf+strlen(buf), "%x", start);
4789 } else {
4790 sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4791 }
4792 }
4793 if (strlen(buf)) {
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004794 ALOGD("dalvik.vm.jit.op = %s", buf);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004795 }
4796}
4797
4798/* Common initialization routine for an architecture family */
4799bool dvmCompilerArchInit()
4800{
4801 int i;
4802
4803 for (i = 0; i < kMipsLast; i++) {
4804 if (EncodingMap[i].opcode != i) {
Raghu Gandhamfc3b0c42012-07-30 14:46:12 -07004805 ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
Raghu Gandhama8b91c52012-05-02 14:27:16 -07004806 EncodingMap[i].name, i, EncodingMap[i].opcode);
4807 dvmAbort(); // OK to dvmAbort - build error
4808 }
4809 }
4810
4811 return dvmCompilerArchVariantInit();
4812}
4813
4814void *dvmCompilerGetInterpretTemplate()
4815{
4816 return (void*) ((int)gDvmJit.codeCache +
4817 templateEntryOffsets[TEMPLATE_INTERPRET]);
4818}
4819
4820JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4821{
4822 return DALVIK_JIT_MIPS;
4823}
4824
4825/* Needed by the Assembler */
4826void dvmCompilerSetupResourceMasks(MipsLIR *lir)
4827{
4828 setupResourceMasks(lir);
4829}
4830
4831/* Needed by the ld/st optmizatons */
4832MipsLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4833{
4834 return genRegCopyNoInsert(cUnit, rDest, rSrc);
4835}
4836
4837/* Needed by the register allocator */
4838MipsLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4839{
4840 return genRegCopy(cUnit, rDest, rSrc);
4841}
4842
4843/* Needed by the register allocator */
4844void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4845 int srcLo, int srcHi)
4846{
4847 genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4848}
4849
4850void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4851 int displacement, int rSrc, OpSize size)
4852{
4853 storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4854}
4855
4856void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4857 int displacement, int rSrcLo, int rSrcHi)
4858{
4859 storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4860}