blob: 6b5cd2dcd6d0d6e2855f88797a044b1bd91ada67 [file] [log] [blame]
Anthony Barbier871448e2017-03-24 14:54:29 +00001/*
Anthony Barbierf45d5a92018-01-24 16:23:15 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier871448e2017-03-24 14:54:29 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLGEMM.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
27#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
28#include "arm_compute/core/CL/kernels/CLGEMMMatrixAdditionKernel.h"
29#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
30#include "arm_compute/core/CL/kernels/CLGEMMTranspose1xWKernel.h"
31#include "arm_compute/core/Error.h"
32#include "arm_compute/core/Helpers.h"
33#include "arm_compute/core/TensorInfo.h"
34#include "arm_compute/core/Types.h"
35#include "arm_compute/core/Validate.h"
36#include "arm_compute/runtime/CL/CLScheduler.h"
37#include "arm_compute/runtime/ITensorAllocator.h"
38
39using namespace arm_compute;
40
Anthony Barbier06ea0482018-02-22 15:45:35 +000041namespace
42{
43inline bool is_interleaved_transposed(int m, int n, int k, DataType data_type, bool reshape_b_only_on_first_run, GPUTarget gpu_target)
44{
45 bool flag = true;
46
47 if(gpu_target == GPUTarget::BIFROST)
48 {
49 if(k > 256 && m > 4 && data_type == DataType::F32 && reshape_b_only_on_first_run)
50 {
51 const float scale = k < 1024 ? 2.0f : 2.5f;
52 flag = (scale * n) > ((1.66f * n) + 38.4f);
53 }
54 else
55 {
56 flag = false;
57 }
58 }
59
60 return flag;
61}
62
63Status validate_arguments(const ITensorInfo *a, const ITensorInfo *b, const ICLTensor *c, const ITensorInfo *output, const float alpha, const float beta, const GEMMInfo &gemm_info = GEMMInfo())
64{
65 ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
66
67 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
68 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output);
69 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
70 ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
71
72 if(c != nullptr)
73 {
74 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, c->info());
75 ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A");
76 ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix B");
77 ARM_COMPUTE_RETURN_ERROR_ON_MSG(c->info()->dimension(0) != output->dimension(0), "The C matrix must have the same number of rows as the output matrix");
78 ARM_COMPUTE_RETURN_ERROR_ON_MSG(c->info()->dimension(1) != output->dimension(1), "The C matrix must have the same number of columns as the output matrix");
79 }
80
81 ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
82
83 ARM_COMPUTE_UNUSED(alpha);
84 ARM_COMPUTE_UNUSED(beta);
85 return Status{};
86}
87} // namespace
88
Kaizen8938bd32017-09-28 14:38:23 +010089CLGEMM::CLGEMM(std::shared_ptr<IMemoryManager> memory_manager)
Anthony Barbierf45d5a92018-01-24 16:23:15 +000090 : _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _ma_kernel(), _tmp_a(), _tmp_b(), _is_interleaved_transposed(false), _run_addition(false),
91 _is_first_run(true), _reshape_b_only_on_first_run(false)
Anthony Barbier871448e2017-03-24 14:54:29 +000092{
93}
94
Anthony Barbierf45d5a92018-01-24 16:23:15 +000095void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, float alpha, float beta, const GEMMInfo &gemm_info)
Anthony Barbier871448e2017-03-24 14:54:29 +000096{
Anthony Barbier06ea0482018-02-22 15:45:35 +000097 ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
Anthony Barbier871448e2017-03-24 14:54:29 +000098
Anthony Barbier06ea0482018-02-22 15:45:35 +000099 // Perform validation step
100 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(a->info(), b->info(), c, output->info(), alpha, beta, gemm_info));
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000101
102 // Check if we need to reshape the matrix B only on the first run
103 _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
Kaizen8938bd32017-09-28 14:38:23 +0100104
105 const ICLTensor *matrix_a = a;
106 const ICLTensor *matrix_b = b;
107
Anthony Barbier06ea0482018-02-22 15:45:35 +0000108 // Get the GPU target
109 const GPUTarget gpu_target = CLScheduler::get().target();
110
111 // Set the target for the kernels
112 _interleave_kernel.set_target(gpu_target);
113 _mm_kernel.set_target(gpu_target);
114
115 // Arguments used by GEMMReshapeInfo
116 // If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
117 // in order to know how the matrices have been reshaped
118 const int m = a->info()->dimension(1);
119 const int n = b->info()->dimension(0);
120 const int k = a->info()->dimension(0);
121 int mult_transpose1xW_width = 1;
122 int mult_interleave4x4_height = 1;
123
124 if(gpu_target == GPUTarget::BIFROST)
125 {
126 mult_transpose1xW_width = 4;
127 mult_interleave4x4_height = 2;
128 }
129
130 // Check if we need to reshape the matrix A and matrix B
131 _is_interleaved_transposed = is_interleaved_transposed(m, n, k, a->info()->data_type(), _reshape_b_only_on_first_run, gpu_target);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000132
Kaizen8938bd32017-09-28 14:38:23 +0100133 if(_is_interleaved_transposed)
Anthony Barbier871448e2017-03-24 14:54:29 +0000134 {
Kaizen8938bd32017-09-28 14:38:23 +0100135 matrix_a = &_tmp_a;
136 matrix_b = &_tmp_b;
Anthony Barbier871448e2017-03-24 14:54:29 +0000137
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000138 // Manage intermediate buffers
139 _memory_group.manage(&_tmp_a);
140 _memory_group.manage(&_tmp_b);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000141
142 // _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel
143
144 // Configure interleave kernel
145 _interleave_kernel.configure(a, &_tmp_a, mult_interleave4x4_height);
146
147 // Configure transpose kernel
148 _transpose_kernel.configure(b, &_tmp_b, mult_transpose1xW_width);
Kaizen8938bd32017-09-28 14:38:23 +0100149 }
Anthony Barbier871448e2017-03-24 14:54:29 +0000150
Anthony Barbier06ea0482018-02-22 15:45:35 +0000151 _mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height));
Kaizen8938bd32017-09-28 14:38:23 +0100152
153 if(_is_interleaved_transposed)
154 {
Anthony Barbier871448e2017-03-24 14:54:29 +0000155 // Allocate intermediate tensors
156 _tmp_a.allocator()->allocate();
157 _tmp_b.allocator()->allocate();
158 }
Anthony Barbier871448e2017-03-24 14:54:29 +0000159
160 // Configure matrix addition kernel
161 if(beta != 0 && c != nullptr)
162 {
163 _ma_kernel.configure(c, output, beta);
164 _run_addition = true;
165 }
166}
167
Anthony Barbier06ea0482018-02-22 15:45:35 +0000168Status CLGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ICLTensor *c, const ITensorInfo *output, const float alpha, const float beta, const GEMMInfo &gemm_info)
169{
170 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(a, b, c, output, alpha, beta, gemm_info));
171 return Status{};
172}
173
Anthony Barbier871448e2017-03-24 14:54:29 +0000174void CLGEMM::run()
175{
Kaizen8938bd32017-09-28 14:38:23 +0100176 _memory_group.acquire();
177
178 if(_is_interleaved_transposed)
Anthony Barbier871448e2017-03-24 14:54:29 +0000179 {
180 // Run interleave kernel
181 CLScheduler::get().enqueue(_interleave_kernel, false);
182
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000183 if(_is_first_run)
184 {
185 // Run transpose kernel
186 CLScheduler::get().enqueue(_transpose_kernel, false);
187
188 _is_first_run = false;
189 }
190 else if(!_reshape_b_only_on_first_run)
191 {
192 // Run transpose kernel
193 CLScheduler::get().enqueue(_transpose_kernel, false);
194 }
Anthony Barbier871448e2017-03-24 14:54:29 +0000195 }
196
197 // Run matrix multiply kernel
198 CLScheduler::get().enqueue(_mm_kernel, !_run_addition);
199
200 // Run matrix addition kernel
201 if(_run_addition)
202 {
203 CLScheduler::get().enqueue(_ma_kernel);
204 }
Kaizen8938bd32017-09-28 14:38:23 +0100205
206 _memory_group.release();
Anthony Barbier871448e2017-03-24 14:54:29 +0000207}