blob: e01d2c75cadc906af2942088ebc84eb082ed2f7a [file] [log] [blame]
Anthony Barbier871448e2017-03-24 14:54:29 +00001/*
Jenkins4ba87db2019-05-23 17:11:51 +01002 * Copyright (c) 2017-2019 ARM Limited.
Anthony Barbier871448e2017-03-24 14:54:29 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLSoftmaxLayer.h"
25
Anthony Barbier8140e1e2017-12-14 23:48:46 +000026#include "arm_compute/core/CL/CLHelpers.h"
27#include "arm_compute/core/CL/ICLKernel.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000028#include "arm_compute/core/CL/kernels/CLSoftmaxLayerKernel.h"
29#include "arm_compute/core/Helpers.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000030#include "arm_compute/core/Types.h"
31#include "arm_compute/core/Utils.h"
Jenkinsb9abeae2018-11-22 11:58:08 +000032#include "arm_compute/core/utils/misc/ShapeCalculator.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000033#include "arm_compute/runtime/CL/CLScheduler.h"
34
Jenkinsb9abeae2018-11-22 11:58:08 +000035namespace arm_compute
36{
Jenkins0e205f72019-11-28 16:53:35 +000037template <bool IS_LOG>
38CLSoftmaxLayerGeneric<IS_LOG>::CLSoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
Jenkinsb9abeae2018-11-22 11:58:08 +000039 : _memory_group(std::move(memory_manager)), _max_shift_exp_sum_kernel(), _norm_kernel(), _flatten_kernel_ptr(), _reshape_kernel(), _max(), _sum(), _tmp(), _input_flattened(), _output_flattened(),
40 _needs_flattening(false)
Anthony Barbier871448e2017-03-24 14:54:29 +000041{
42}
43
Jenkins0e205f72019-11-28 16:53:35 +000044template <bool IS_LOG>
45void CLSoftmaxLayerGeneric<IS_LOG>::configure_reshape_input_kernel(const ICLTensor *input, const ICLTensor *output, size_t axis)
Jenkinsb9abeae2018-11-22 11:58:08 +000046{
47 // Flatten the input
48 const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input->info(), axis);
49
50 // Initialize the flat input
51 _input_flattened.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));
52
53 // If we need to flatten the input, we can use CLFlattenKernel or CLReshapeKernel
54 // If flattening on the third axes, we use CLFlattenKernel.
55 // In all other cases we have to use CLReshapeKernel
56 if(axis != 3)
57 {
58 auto reshape_kernel_ptr = support::cpp14::make_unique<CLReshapeLayerKernel>();
59 reshape_kernel_ptr->configure(input, &_input_flattened);
60 _flatten_kernel_ptr = std::move(reshape_kernel_ptr);
61 }
62 else
63 {
64 auto flatten_kernel_ptr = support::cpp14::make_unique<CLFlattenLayerKernel>();
65 flatten_kernel_ptr->configure(input, &_input_flattened);
66 _flatten_kernel_ptr = std::move(flatten_kernel_ptr);
67 }
68
69 // We need to init the output tensor here. Indeed, the reshape kernel expects
70 // both tensors to be already initialized
71 auto_init_if_empty(*output->info(), *input->info()->clone());
72}
73
Jenkins0e205f72019-11-28 16:53:35 +000074template <bool IS_LOG>
75void CLSoftmaxLayerGeneric<IS_LOG>::configure(const ICLTensor *input, ICLTensor *output, float beta, size_t axis)
Anthony Barbier871448e2017-03-24 14:54:29 +000076{
Anthony Barbier8140e1e2017-12-14 23:48:46 +000077 // Perform validation step
78 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
Jenkins0e205f72019-11-28 16:53:35 +000079 ARM_COMPUTE_ERROR_THROW_ON(CLSoftmaxLayerGeneric<IS_LOG>::validate(input->info(), output->info(), beta, axis));
Jenkinsb9abeae2018-11-22 11:58:08 +000080
81 // We don't need flattening only in the case the input is 2D and axis is 1
82 _needs_flattening = axis != 1;
83
84 // If we are dealing with a 4D tensor, we will:
85 // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor
86 // - Execute all the pipeline (reduction + normalization) on the flattened tensor
87 // - Reshape the flattened output into the real output
88 if(_needs_flattening)
89 {
90 // Add to the memory manager _input_flattened
91 _memory_group.manage(&_input_flattened);
92
93 // Cofigure _flatten_kernel and _input_flattened
94 configure_reshape_input_kernel(input, output, axis);
95 }
96
97 // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case)
98 // or it is the original input case (2D case)
99 const ICLTensor *input_2D = (_needs_flattening ? &_input_flattened : input);
Anthony Barbier871448e2017-03-24 14:54:29 +0000100
101 // Create intermediate tensors shapes
Jenkinsb9abeae2018-11-22 11:58:08 +0000102 TensorInfo input_info = input_2D->info()->clone()->reset_padding().set_is_resizable(true);
103 DataType tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::S32 : input_2D->info()->data_type();
104 TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000105 _tmp.allocator()->init(tensor_info_tmp);
Anthony Barbier871448e2017-03-24 14:54:29 +0000106
Jenkinsb9abeae2018-11-22 11:58:08 +0000107 TensorShape max_sum_shape = input_2D->info()->tensor_shape();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000108 max_sum_shape.set(0, 1);
109 _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
110 _sum.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type));
111
112 // Set GPU target to kernels
113 _max_shift_exp_sum_kernel.set_target(CLScheduler::get().target());
Anthony Barbier871448e2017-03-24 14:54:29 +0000114
Kaizen8938bd32017-09-28 14:38:23 +0100115 // Manage intermediate buffers
116 _memory_group.manage(&_tmp);
117 _memory_group.manage(&_max);
118 _memory_group.manage(&_sum);
119
Jenkins0e205f72019-11-28 16:53:35 +0000120 SoftmaxKernelInfo softmax_info;
Jenkins36ccc902020-02-21 11:10:48 +0000121 softmax_info.beta = beta;
122 softmax_info.is_log = IS_LOG;
123 softmax_info.input_data_type = input_2D->info()->data_type();
Jenkins0e205f72019-11-28 16:53:35 +0000124
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000125 // Configure kernels
Jenkins0e205f72019-11-28 16:53:35 +0000126 _max_shift_exp_sum_kernel.configure(input_2D, &_max, &_tmp, &_sum, softmax_info);
Jenkinsb9abeae2018-11-22 11:58:08 +0000127
128 if(_needs_flattening)
129 {
130 // Add to the memory manager _output_flattened
131 _memory_group.manage(&_output_flattened);
132
133 // The normalization kernel stores the result in a flat output tensor
Jenkins0e205f72019-11-28 16:53:35 +0000134 _norm_kernel.configure(&_tmp, &_sum, &_output_flattened, softmax_info);
Jenkinsb9abeae2018-11-22 11:58:08 +0000135
136 // Reshape the flat output into a the requested (4D) output
137 _reshape_kernel.configure(&_output_flattened, output);
138
139 // Allocate the intermediate flat tensors
140 _input_flattened.allocator()->allocate();
141 _output_flattened.allocator()->allocate();
142 }
143 else
144 {
145 // Softmax 2D case
Jenkins0e205f72019-11-28 16:53:35 +0000146 _norm_kernel.configure(&_tmp, &_sum, output, softmax_info);
Jenkinsb9abeae2018-11-22 11:58:08 +0000147 }
Anthony Barbier871448e2017-03-24 14:54:29 +0000148
149 // Allocate intermediate buffers
150 _tmp.allocator()->allocate();
151 _max.allocator()->allocate();
152 _sum.allocator()->allocate();
153}
154
Jenkins0e205f72019-11-28 16:53:35 +0000155template <bool IS_LOG>
156Status CLSoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, size_t axis)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000157{
158 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
Jenkinsb9abeae2018-11-22 11:58:08 +0000159 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
160 ARM_COMPUTE_UNUSED(beta);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000161
162 // Create intermediate tensor info
163 DataType tmp_data_type = is_data_type_quantized_asymmetric(input->data_type()) ? DataType::S32 : input->data_type();
Jenkins52ba29e2018-08-29 15:32:11 +0000164 TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000165
166 TensorShape max_sum_shape = input->tensor_shape();
167 max_sum_shape.set(0, 1);
Jenkins52ba29e2018-08-29 15:32:11 +0000168 TensorInfo tensor_info_max(input->clone()->set_tensor_shape(max_sum_shape).set_is_resizable(true));
169 TensorInfo tensor_info_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(QuantizationInfo()).set_is_resizable(true));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000170
Jenkinsb9abeae2018-11-22 11:58:08 +0000171 const bool needs_flattening = (axis != 1);
172
173 if(needs_flattening)
174 {
175 const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input, axis);
176 TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));
177
178 if(axis != 3)
179 {
180 ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayerKernel::validate(input, &tensor_info_flat));
181 }
182 else
183 {
184 ARM_COMPUTE_RETURN_ON_ERROR(CLFlattenLayerKernel::validate(input, &tensor_info_flat));
185 }
186 }
187
Jenkins36ccc902020-02-21 11:10:48 +0000188 SoftmaxKernelInfo softmax_info;
189 softmax_info.beta = beta;
190 softmax_info.is_log = IS_LOG;
191 softmax_info.input_data_type = input->data_type();
192
Anthony Barbier06ea0482018-02-22 15:45:35 +0000193 ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DMaxShiftExpSumKernel::validate(input, &tensor_info_max, &tensor_info_tmp, &tensor_info_sum));
Jenkins36ccc902020-02-21 11:10:48 +0000194 ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DNormKernel::validate(&tensor_info_tmp, &tensor_info_sum, output, softmax_info));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000195
Jenkinsb9abeae2018-11-22 11:58:08 +0000196 if(needs_flattening)
197 {
198 const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input);
199 TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));
200 }
201
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000202 return Status{};
203}
204
Jenkins0e205f72019-11-28 16:53:35 +0000205template <bool IS_LOG>
206void CLSoftmaxLayerGeneric<IS_LOG>::run()
Anthony Barbier871448e2017-03-24 14:54:29 +0000207{
Jenkins4ba87db2019-05-23 17:11:51 +0100208 MemoryGroupResourceScope scope_mg(_memory_group);
Kaizen8938bd32017-09-28 14:38:23 +0100209
Jenkinsb9abeae2018-11-22 11:58:08 +0000210 if(_needs_flattening)
211 {
212 CLScheduler::get().enqueue(*_flatten_kernel_ptr, false);
213 }
Kaizen8938bd32017-09-28 14:38:23 +0100214
Jenkinsb9abeae2018-11-22 11:58:08 +0000215 CLScheduler::get().enqueue(_max_shift_exp_sum_kernel, false);
216 CLScheduler::get().enqueue(_norm_kernel, !_needs_flattening);
217
218 if(_needs_flattening)
219 {
220 CLScheduler::get().enqueue(_reshape_kernel, true);
221 }
Anthony Barbier871448e2017-03-24 14:54:29 +0000222}
Jenkinsb9abeae2018-11-22 11:58:08 +0000223
Jenkins0e205f72019-11-28 16:53:35 +0000224template class CLSoftmaxLayerGeneric<false>;
225template class CLSoftmaxLayerGeneric<true>;
226
Jenkinsb9abeae2018-11-22 11:58:08 +0000227} // namespace arm_compute