blob: cdbb8d8f2b8913bba26a7b2023529949caf758f1 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032using namespace arm_compute::graph_utils;
33
Anthony Barbier8140e1e2017-12-14 23:48:46 +000034/** Example demonstrating how to implement Googlenet's network using the Compute Library's graph API
35 *
36 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +000037 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +000038 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000039class GraphGooglenetExample : public Example
Anthony Barbier8140e1e2017-12-14 23:48:46 +000040{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041public:
Jenkins52ba29e2018-08-29 15:32:11 +000042 GraphGooglenetExample()
43 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "GoogleNet")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000044 {
Jenkins52ba29e2018-08-29 15:32:11 +000045 }
46 bool do_setup(int argc, char **argv) override
47 {
48 // Parse arguments
49 cmd_parser.parse(argc, argv);
50
51 // Consume common parameters
52 common_params = consume_common_graph_parameters(common_opts);
53
54 // Return when help menu is requested
55 if(common_params.help)
56 {
57 cmd_parser.print_help(argv[0]);
58 return false;
59 }
60
61 // Checks
62 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
63 ARM_COMPUTE_EXIT_ON_MSG(common_params.data_type == DataType::F16 && common_params.target == Target::NEON, "F16 NEON not supported for this graph");
64
65 // Print parameter values
66 std::cout << common_params << std::endl;
67
68 // Get trainable parameters data path
69 std::string data_path = common_params.data_path;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000070
Anthony Barbier06ea0482018-02-22 15:45:35 +000071 // Create a preprocessor object
72 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
73 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000074
Jenkins52ba29e2018-08-29 15:32:11 +000075 // Create input descriptor
76 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
77 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000078
Jenkins52ba29e2018-08-29 15:32:11 +000079 // Set weights trained layout
80 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000081
Jenkins52ba29e2018-08-29 15:32:11 +000082 graph << common_params.target
83 << common_params.fast_math_hint
84 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000085 << ConvolutionLayer(
86 7U, 7U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000087 get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000088 get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"),
89 PadStrideInfo(2, 2, 3, 3))
90 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
91 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
92 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000093 << ConvolutionLayer(
94 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000095 get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000096 get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"),
97 PadStrideInfo(1, 1, 0, 0))
98 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
99 << ConvolutionLayer(
100 3U, 3U, 192U,
Jenkins52ba29e2018-08-29 15:32:11 +0000101 get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000102 get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"),
103 PadStrideInfo(1, 1, 1, 1))
104 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
105 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
Jenkinsb3a371b2018-05-23 11:36:53 +0100106 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
Jenkins52ba29e2018-08-29 15:32:11 +0000107 graph << get_inception_node(data_path, "inception_3a", weights_layout, 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U);
108 graph << get_inception_node(data_path, "inception_3b", weights_layout, 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100109 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
Jenkins52ba29e2018-08-29 15:32:11 +0000110 graph << get_inception_node(data_path, "inception_4a", weights_layout, 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U);
111 graph << get_inception_node(data_path, "inception_4b", weights_layout, 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U);
112 graph << get_inception_node(data_path, "inception_4c", weights_layout, 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U);
113 graph << get_inception_node(data_path, "inception_4d", weights_layout, 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U);
114 graph << get_inception_node(data_path, "inception_4e", weights_layout, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100115 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
Jenkins52ba29e2018-08-29 15:32:11 +0000116 graph << get_inception_node(data_path, "inception_5a", weights_layout, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
117 graph << get_inception_node(data_path, "inception_5b", weights_layout, 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100118 graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 7, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000119 << FullyConnectedLayer(
120 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000121 get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000122 get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy"))
123 << SoftmaxLayer()
Jenkins52ba29e2018-08-29 15:32:11 +0000124 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000125
Jenkinsb3a371b2018-05-23 11:36:53 +0100126 // Finalize graph
127 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000128 config.num_threads = common_params.threads;
129 config.use_tuner = common_params.enable_tuner;
130 config.tuner_file = common_params.tuner_file;
131
132 graph.finalize(common_params.target, config);
133
134 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000135 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000136 void do_run() override
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000137 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000138 // Run graph
139 graph.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000140 }
141
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000142private:
Jenkins52ba29e2018-08-29 15:32:11 +0000143 CommandLineParser cmd_parser;
144 CommonGraphOptions common_opts;
145 CommonGraphParams common_params;
146 Stream graph;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000147
Jenkins52ba29e2018-08-29 15:32:11 +0000148 BranchLayer get_inception_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000149 unsigned int a_filt,
150 std::tuple<unsigned int, unsigned int> b_filters,
151 std::tuple<unsigned int, unsigned int> c_filters,
152 unsigned int d_filt)
153 {
154 std::string total_path = "/cnn_data/googlenet_model/" + param_path + "/" + param_path + "_";
Jenkinsb3a371b2018-05-23 11:36:53 +0100155 SubStream i_a(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000156 i_a << ConvolutionLayer(
157 1U, 1U, a_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000158 get_weights_accessor(data_path, total_path + "1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000159 get_weights_accessor(data_path, total_path + "1x1_b.npy"),
160 PadStrideInfo(1, 1, 0, 0))
161 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000162
Jenkinsb3a371b2018-05-23 11:36:53 +0100163 SubStream i_b(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000164 i_b << ConvolutionLayer(
165 1U, 1U, std::get<0>(b_filters),
Jenkins52ba29e2018-08-29 15:32:11 +0000166 get_weights_accessor(data_path, total_path + "3x3_reduce_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000167 get_weights_accessor(data_path, total_path + "3x3_reduce_b.npy"),
168 PadStrideInfo(1, 1, 0, 0))
169 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
170 << ConvolutionLayer(
171 3U, 3U, std::get<1>(b_filters),
Jenkins52ba29e2018-08-29 15:32:11 +0000172 get_weights_accessor(data_path, total_path + "3x3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000173 get_weights_accessor(data_path, total_path + "3x3_b.npy"),
174 PadStrideInfo(1, 1, 1, 1))
175 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
176
Jenkinsb3a371b2018-05-23 11:36:53 +0100177 SubStream i_c(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000178 i_c << ConvolutionLayer(
179 1U, 1U, std::get<0>(c_filters),
Jenkins52ba29e2018-08-29 15:32:11 +0000180 get_weights_accessor(data_path, total_path + "5x5_reduce_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000181 get_weights_accessor(data_path, total_path + "5x5_reduce_b.npy"),
182 PadStrideInfo(1, 1, 0, 0))
183 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
184 << ConvolutionLayer(
185 5U, 5U, std::get<1>(c_filters),
Jenkins52ba29e2018-08-29 15:32:11 +0000186 get_weights_accessor(data_path, total_path + "5x5_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000187 get_weights_accessor(data_path, total_path + "5x5_b.npy"),
188 PadStrideInfo(1, 1, 2, 2))
189 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
190
Jenkinsb3a371b2018-05-23 11:36:53 +0100191 SubStream i_d(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000192 i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL)))
193 << ConvolutionLayer(
194 1U, 1U, d_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000195 get_weights_accessor(data_path, total_path + "pool_proj_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000196 get_weights_accessor(data_path, total_path + "pool_proj_b.npy"),
197 PadStrideInfo(1, 1, 0, 0))
198 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
199
200 return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
201 }
202};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000203
204/** Main program for Googlenet
205 *
Jenkins52ba29e2018-08-29 15:32:11 +0000206 * @note To list all the possible arguments execute the binary appended with the --help option
207 *
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000208 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000209 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000210 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000211int main(int argc, char **argv)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000212{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000213 return arm_compute::utils::run_example<GraphGooglenetExample>(argc, argv);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000214}