Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 1 | /* |
Jenkins | 36ccc90 | 2020-02-21 11:10:48 +0000 | [diff] [blame] | 2 | * Copyright (c) 2017-2020 ARM Limited. |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | #include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h" |
| 25 | |
| 26 | #include "arm_compute/core/PixelValue.h" |
| 27 | #include "arm_compute/core/Size2D.h" |
| 28 | #include "arm_compute/core/Utils.h" |
| 29 | #include "arm_compute/core/Validate.h" |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 30 | #include "arm_compute/core/utils/misc/Cast.h" |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 31 | #include "arm_compute/core/utils/misc/ShapeCalculator.h" |
| 32 | #include "arm_compute/core/utils/quantization/AsymmHelpers.h" |
| 33 | #include "arm_compute/runtime/CL/CLScheduler.h" |
| 34 | |
| 35 | #include <cmath> |
| 36 | #include <memory> |
| 37 | #include <tuple> |
| 38 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 39 | namespace arm_compute |
| 40 | { |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 41 | using namespace arm_compute::misc::shape_calculator; |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 42 | using namespace arm_compute::utils::cast; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 43 | |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 44 | CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights() |
| 45 | : _weights_reshape_kernel() |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 46 | { |
| 47 | } |
| 48 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 49 | void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 50 | { |
| 51 | // Perform validation step |
| 52 | ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output); |
| 53 | ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(), |
| 54 | (biases != nullptr) ? biases->info() : nullptr, |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 55 | output->info(), |
| 56 | num_groups)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 57 | |
| 58 | const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type()); |
| 59 | const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr; |
| 60 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 61 | _weights_reshape_kernel.configure(weights, biases_to_use, output, num_groups); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 62 | |
| 63 | output->info()->set_quantization_info(weights->info()->quantization_info()); |
| 64 | } |
| 65 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 66 | Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 67 | { |
| 68 | ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights); |
Jenkins | 36ccc90 | 2020-02-21 11:10:48 +0000 | [diff] [blame] | 69 | ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::F16, DataType::F32); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 70 | ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); |
| 71 | |
| 72 | if(biases != nullptr) |
| 73 | { |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 74 | const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES); |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 75 | ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized(weights->data_type())); |
| 76 | |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 77 | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 78 | ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 79 | ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); |
| 80 | } |
| 81 | |
| 82 | if((output != nullptr) && (output->total_size() != 0)) |
| 83 | { |
| 84 | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 85 | CLWeightsReshapeKernel::validate(weights, biases, output, num_groups); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 86 | } |
| 87 | |
| 88 | return Status{}; |
| 89 | } |
| 90 | |
| 91 | void CLConvolutionLayerReshapeWeights::run() |
| 92 | { |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 93 | CLScheduler::get().enqueue(_weights_reshape_kernel); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 94 | } |
| 95 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 96 | CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager) |
| 97 | : _memory_group(memory_manager), _weights_manager(weights_manager), _reshape_weights(), _reshape_weights_managed(), _im2col_kernel(), _mm_gemm(memory_manager, weights_manager), |
| 98 | _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _skip_im2col(false), |
| 99 | _skip_col2im(false), _is_quantized(false), _fuse_activation(true), _is_prepared(false) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 100 | { |
| 101 | } |
| 102 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 103 | void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage, |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 104 | int gemm_3d_depth, const ActivationLayerInfo &act_info) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 105 | { |
| 106 | ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights); |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 107 | ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), gemmlowp_output_stage, gemm_3d_depth, _skip_im2col, act_info)); |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 108 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 109 | const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped |
| 110 | false, // is_b_reshaped |
| 111 | true, // reshape_b_only_on_first_run |
| 112 | gemm_3d_depth, // depth_output_gemm3d |
| 113 | _skip_im2col, // reinterpret_input_as_3d |
| 114 | false, // retain_internal_weights |
| 115 | gemmlowp_output_stage, // gemmlowp_output_stage |
| 116 | false, // fp_mixed_precision |
| 117 | true, // broadcast_bias |
| 118 | act_info); // activation_info |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 119 | |
| 120 | if(_is_quantized) |
| 121 | { |
| 122 | // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() |
| 123 | // Extract and negate input and weights offset |
| 124 | const QuantizationInfo input_quantization_info = input->info()->quantization_info(); |
| 125 | const QuantizationInfo weights_quantization_info = weights->info()->quantization_info(); |
| 126 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 127 | input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset)); |
| 128 | weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 129 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 130 | _mm_gemmlowp.configure(input, weights, biases, output, gemm_info); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 131 | |
| 132 | // Revert back QuantizatioInfo as input and weights could be used in other convolution layers |
| 133 | input->info()->set_quantization_info(input_quantization_info); |
| 134 | weights->info()->set_quantization_info(weights_quantization_info); |
| 135 | } |
| 136 | else |
| 137 | { |
| 138 | // Configure matrix multiply function |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 139 | _mm_gemm.configure(input, weights, biases, output, 1.0f, 1.0f, gemm_info); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 140 | } |
| 141 | } |
| 142 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 143 | Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 144 | const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, bool skip_im2col, const ActivationLayerInfo &act_info) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 145 | { |
| 146 | const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); |
| 147 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 148 | const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped |
| 149 | false, // is_b_reshaped |
| 150 | true, // reshape_b_only_on_first_run |
| 151 | gemm_3d_depth, // depth_output_gemm3d |
| 152 | skip_im2col, // reinterpret_input_as_3d |
| 153 | false, // retain_internal_weights |
| 154 | gemmlowp_output_stage, // gemmlowp_output_stage |
| 155 | false, // fp_mixed_precision |
| 156 | true, // broadcast_bias |
| 157 | act_info); // activation_info |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 158 | |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 159 | if(is_quantized) |
| 160 | { |
| 161 | // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() |
| 162 | // Extract and negate input and weights offset |
| 163 | const QuantizationInfo input_quantization_info = input->quantization_info(); |
| 164 | const QuantizationInfo weights_quantization_info = weights->quantization_info(); |
| 165 | |
| 166 | std::unique_ptr<ITensorInfo> input_qa = input->clone(); |
| 167 | std::unique_ptr<ITensorInfo> weights_qa = weights->clone(); |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 168 | input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset)); |
| 169 | weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 170 | |
| 171 | // Perform validation step on GEMMLowp |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 172 | return CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, output, gemm_info); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 173 | } |
| 174 | else |
| 175 | { |
| 176 | // Perform validation step on Matrix multiply function |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 177 | return CLGEMM::validate(input, weights, biases, output, 1.0f, 1.0f, gemm_info); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 178 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 179 | } |
| 180 | |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 181 | void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 182 | const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 183 | { |
| 184 | ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); |
| 185 | |
| 186 | ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(), |
| 187 | weights->info(), |
| 188 | biases != nullptr ? biases->info() : nullptr, |
| 189 | output->info(), |
| 190 | conv_info, |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 191 | weights_info, |
| 192 | dilation, |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 193 | act_info, |
| 194 | num_groups)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 195 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 196 | const DataType data_type = input->info()->data_type(); |
| 197 | const DataLayout data_layout = input->info()->data_layout(); |
| 198 | const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); |
| 199 | const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); |
| 200 | const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); |
| 201 | |
| 202 | const unsigned int kernel_width = weights->info()->dimension(idx_width); |
| 203 | const unsigned int kernel_height = weights->info()->dimension(idx_height); |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 204 | const unsigned int num_kernels = weights->info()->dimension(idx_kernels); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 205 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 206 | const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform(); |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 207 | const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform(); |
| 208 | |
| 209 | _is_prepared = weights_info.retain_internal_weights(); |
| 210 | _original_weights = weights; |
| 211 | _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); |
| 212 | _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); |
| 213 | _skip_col2im = data_layout == DataLayout::NHWC; |
| 214 | |
| 215 | // Only for quantize there are few cases where we cannot fuse the activation function in GEMM |
| 216 | _fuse_activation = true; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 217 | |
| 218 | // Set the GPU target for im2col and col2im |
| 219 | _im2col_kernel.set_target(CLScheduler::get().target()); |
| 220 | _col2im_kernel.set_target(CLScheduler::get().target()); |
| 221 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 222 | const ICLTensor *gemm_input_to_use = input; |
| 223 | ICLTensor *gemm_output_to_use = output; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 224 | |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 225 | // Get parameters from conv_info |
| 226 | unsigned int stride_x = 0; |
| 227 | unsigned int stride_y = 0; |
| 228 | std::tie(stride_x, stride_y) = conv_info.stride(); |
| 229 | |
| 230 | // Get convolved dimensions |
| 231 | unsigned int conv_w = 0; |
| 232 | unsigned int conv_h = 0; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 233 | std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(idx_width), |
| 234 | input->info()->dimension(idx_height), |
| 235 | kernel_width, |
| 236 | kernel_height, |
| 237 | conv_info, |
| 238 | dilation); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 239 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 240 | unsigned int mat_weights_cols = num_kernels / num_groups; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 241 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 242 | const ICLTensor *biases_to_use = biases; |
| 243 | bool append_bias = false; |
| 244 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 245 | ICLTensor *weights_to_use = &_weights_reshaped; |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 246 | if(num_groups != 1 && biases != nullptr) |
| 247 | { |
| 248 | // num_groups != 1 can only be for NCHW |
| 249 | // Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor |
| 250 | biases_to_use = nullptr; |
| 251 | append_bias = true; |
| 252 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 253 | if(_weights_manager && _weights_manager->are_weights_managed(weights)) |
| 254 | { |
| 255 | _reshape_weights_managed.configure(weights, biases, num_groups); |
| 256 | weights_to_use = utils::cast::polymorphic_downcast<ICLTensor *>(_weights_manager->acquire(weights, &_reshape_weights_managed)); |
| 257 | } |
| 258 | else |
| 259 | { |
| 260 | _reshape_weights.configure(weights, biases, &_weights_reshaped, num_groups); |
| 261 | } |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 262 | } |
| 263 | else |
| 264 | { |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 265 | if(_weights_manager && _weights_manager->are_weights_managed(weights)) |
| 266 | { |
| 267 | _reshape_weights_managed.configure(weights, nullptr, num_groups); |
| 268 | weights_to_use = utils::cast::polymorphic_downcast<ICLTensor *>(_weights_manager->acquire(weights, &_reshape_weights_managed)); |
| 269 | } |
| 270 | else |
| 271 | { |
| 272 | _reshape_weights.configure(weights, nullptr, &_weights_reshaped, num_groups); |
| 273 | } |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 274 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 275 | |
| 276 | // Create tensor to store im2col reshaped inputs |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 277 | if(!_skip_im2col) |
| 278 | { |
| 279 | _memory_group.manage(&_im2col_output); |
| 280 | |
| 281 | // Configure and tune im2col. im2col output shape is auto-initialized |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 282 | _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation, num_groups); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 283 | |
| 284 | // Set quantization info |
| 285 | _im2col_output.info()->set_quantization_info(input->info()->quantization_info()); |
| 286 | CLScheduler::get().tune_kernel_static(_im2col_kernel); |
| 287 | |
| 288 | // Update GEMM input |
| 289 | gemm_input_to_use = &_im2col_output; |
| 290 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 291 | |
| 292 | // Create GEMM output tensor |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 293 | if(!_skip_col2im) |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 294 | { |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 295 | TensorShape shape_gemm; |
| 296 | |
| 297 | // If we cannot skip col2im it means we run im2col as well |
| 298 | shape_gemm = _im2col_output.info()->tensor_shape(); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 299 | shape_gemm.set(0, mat_weights_cols); |
| 300 | shape_gemm.set(1, conv_w * conv_h); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 301 | |
Jenkins | 4ba87db | 2019-05-23 17:11:51 +0100 | [diff] [blame] | 302 | // TODO(COMPMID-2078): input->clone() doesn't work with subtensors for grouped convolutions. |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 303 | TensorInfo info_gemm(shape_gemm, 1, data_type); |
| 304 | info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout()); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 305 | _gemm_output.allocator()->init(info_gemm); |
| 306 | _memory_group.manage(&_gemm_output); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 307 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 308 | // Update GEMM output |
| 309 | gemm_output_to_use = &_gemm_output; |
| 310 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 311 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 312 | GEMMLowpOutputStageInfo gemmlowp_output_stage; |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 313 | gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; |
| 314 | gemmlowp_output_stage.gemmlowp_offset = 0; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 315 | |
| 316 | // Configure output stage for quantized case |
| 317 | if(_is_quantized) |
| 318 | { |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 319 | const auto output_quant_info = (output->info()->total_size() == 0) ? iq_info : oq_info; |
| 320 | const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type()); |
| 321 | const unsigned int num_filters = (is_quantized_per_channel) ? num_kernels : 1; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 322 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 323 | gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel; |
| 324 | |
| 325 | gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters); |
| 326 | gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters); |
| 327 | quantization::compute_quantized_multipliers_and_shifts(input->info(), |
| 328 | weights->info(), |
| 329 | output->info(), |
| 330 | idx_kernels, |
| 331 | gemmlowp_output_stage.gemmlowp_multipliers.data(), |
| 332 | gemmlowp_output_stage.gemmlowp_shifts.data()); |
| 333 | gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0]; |
| 334 | gemmlowp_output_stage.gemmlowp_shift = gemmlowp_output_stage.gemmlowp_shifts[0]; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 335 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 336 | int min_activation = 0; |
| 337 | int max_activation = 0; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 338 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 339 | const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, |
| 340 | ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, |
| 341 | ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU |
| 342 | }; |
| 343 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 344 | if(act_info.enabled()) |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 345 | { |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 346 | if(supported_acts.count(act_info.activation()) != 0) |
| 347 | { |
Jenkins | 36ccc90 | 2020-02-21 11:10:48 +0000 | [diff] [blame] | 348 | std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, output_quant_info); |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 349 | } |
| 350 | else |
| 351 | { |
| 352 | _fuse_activation = false; |
| 353 | } |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 354 | } |
| 355 | |
| 356 | // Set the GEMMLowp output stage info |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 357 | gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset; |
| 358 | gemmlowp_output_stage.gemmlowp_min_bound = min_activation; |
| 359 | gemmlowp_output_stage.gemmlowp_max_bound = max_activation; |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 360 | } |
| 361 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 362 | // Configure and tune GEMM |
| 363 | // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix |
| 364 | const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0; |
| 365 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 366 | configure_mm(gemm_input_to_use, weights_to_use, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, act_info); |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 367 | |
| 368 | if(!_skip_im2col) |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 369 | { |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 370 | _im2col_output.allocator()->allocate(); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 371 | } |
| 372 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 373 | if(!_skip_col2im) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 374 | { |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 375 | // Configure and tune Col2Im |
| 376 | _col2im_kernel.configure(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups); |
| 377 | CLScheduler::get().tune_kernel_static(_col2im_kernel); |
| 378 | } |
| 379 | |
| 380 | if(!_skip_col2im) |
| 381 | { |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 382 | _gemm_output.allocator()->allocate(); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 383 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 384 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 385 | ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h), |
| 386 | "Output shape does not match the expected one"); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 387 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 388 | if(!_fuse_activation) |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 389 | { |
| 390 | _activationlayer_function.configure(output, nullptr, act_info); |
| 391 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 392 | |
| 393 | ARM_COMPUTE_UNUSED(weights_info); |
| 394 | } |
| 395 | |
| 396 | Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 397 | const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups) |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 398 | { |
| 399 | ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); |
| 400 | ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!"); |
Jenkins | 36ccc90 | 2020-02-21 11:10:48 +0000 | [diff] [blame] | 401 | ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 402 | const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->data_type()); |
| 403 | |
| 404 | if(is_quantized_per_channel) |
| 405 | { |
| 406 | ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() != DataType::QASYMM8, "Input data type not compatible with Weights"); |
| 407 | } |
| 408 | else |
| 409 | { |
| 410 | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); |
| 411 | } |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 412 | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights); |
| 413 | ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported"); |
| 414 | ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_type() == DataType::QASYMM8), "Grouping (num_groups != 1) is not supported with QASYMM8"); |
| 415 | ARM_COMPUTE_RETURN_ERROR_ON(((input->dimension(2) / weights->dimension(2)) != num_groups) && (input->data_layout() == DataLayout::NCHW)); |
| 416 | |
| 417 | const DataLayout data_layout = input->data_layout(); |
| 418 | const DataType data_type = input->data_type(); |
| 419 | const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); |
| 420 | const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); |
| 421 | const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); |
| 422 | const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); |
| 423 | |
| 424 | const unsigned int kernel_width = weights->dimension(idx_width); |
| 425 | const unsigned int kernel_height = weights->dimension(idx_height); |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 426 | const unsigned int num_kernels = weights->dimension(idx_kernels); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 427 | |
Jenkins | 4ba87db | 2019-05-23 17:11:51 +0100 | [diff] [blame] | 428 | TensorInfo im2col_reshaped_info{}; |
| 429 | TensorInfo info_gemm{}; |
| 430 | TensorInfo weights_reshaped_info{}; |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 431 | const ITensorInfo *gemm_input_to_use = input; |
| 432 | const ITensorInfo *gemm_output_to_use = output; |
| 433 | const ITensorInfo *weights_to_use = weights; |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 434 | const bool is_quantized = is_data_type_quantized_asymmetric(data_type); |
| 435 | const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); |
| 436 | const bool skip_col2im = data_layout == DataLayout::NHWC; |
| 437 | bool fuse_activation = true; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 438 | |
| 439 | ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * num_groups) != input->dimension(idx_channel)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 440 | ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); |
| 441 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 442 | // Validate biases |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 443 | if(biases != nullptr) |
| 444 | { |
| 445 | if(is_quantized) |
| 446 | { |
| 447 | ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); |
| 448 | } |
| 449 | else |
| 450 | { |
| 451 | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); |
| 452 | } |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 453 | ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 454 | ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); |
| 455 | } |
| 456 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 457 | if(act_info.enabled()) |
| 458 | { |
| 459 | ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a()); |
| 460 | } |
| 461 | |
| 462 | // Get convolved dimensions |
| 463 | unsigned int conv_w = 0; |
| 464 | unsigned int conv_h = 0; |
| 465 | |
| 466 | std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(idx_width), |
| 467 | input->dimension(idx_height), |
| 468 | kernel_width, |
| 469 | kernel_height, |
| 470 | conv_info, |
| 471 | dilation); |
| 472 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 473 | unsigned int mat_weights_cols = num_kernels / num_groups; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 474 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 475 | const ITensorInfo *biases_to_use = biases; |
| 476 | bool append_bias = false; |
| 477 | |
| 478 | if(num_groups != 1 && biases != nullptr) |
| 479 | { |
| 480 | // num_groups != 1 can only be for NCHW |
| 481 | // Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor |
| 482 | biases_to_use = nullptr; |
| 483 | append_bias = true; |
| 484 | |
| 485 | ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayerReshapeWeights::validate(weights, biases, nullptr, num_groups)); |
| 486 | weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, true, num_groups), 1, data_type); |
| 487 | } |
| 488 | else |
| 489 | { |
| 490 | ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayerReshapeWeights::validate(weights, nullptr, nullptr, num_groups)); |
| 491 | weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, false, num_groups), 1, data_type); |
| 492 | } |
| 493 | |
| 494 | weights_to_use = &weights_reshaped_info; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 495 | |
| 496 | if(!skip_im2col) |
| 497 | { |
| 498 | const Size2D kernel_dims(kernel_width, kernel_height); |
| 499 | |
| 500 | // Output tensor auto initialization if not yet initialized |
| 501 | TensorShape expected_output_shape = compute_im2col_conv_shape(input, kernel_dims, conv_info, append_bias, dilation, num_groups == 1, num_groups); |
| 502 | |
| 503 | auto_init_if_empty(im2col_reshaped_info, input->clone()->set_tensor_shape(expected_output_shape)); |
| 504 | |
| 505 | ARM_COMPUTE_RETURN_ON_ERROR(CLIm2ColKernel::validate(input, &im2col_reshaped_info, kernel_dims, conv_info, append_bias, dilation, num_groups)); |
| 506 | gemm_input_to_use = &im2col_reshaped_info; |
| 507 | } |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 508 | |
| 509 | // Create GEMM output tensor |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 510 | if(!skip_col2im) |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 511 | { |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 512 | TensorShape shape_gemm; |
| 513 | |
| 514 | shape_gemm = gemm_input_to_use->tensor_shape(); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 515 | shape_gemm.set(0, mat_weights_cols); |
| 516 | shape_gemm.set(1, conv_w * conv_h); |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 517 | |
| 518 | info_gemm = TensorInfo(shape_gemm, 1, data_type); |
| 519 | info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout()); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 520 | gemm_output_to_use = &info_gemm; |
| 521 | } |
| 522 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 523 | GEMMLowpOutputStageInfo gemmlowp_output_stage; |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 524 | gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; |
| 525 | gemmlowp_output_stage.gemmlowp_offset = 0; |
| 526 | gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 527 | |
| 528 | if(is_quantized) |
| 529 | { |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 530 | const UniformQuantizationInfo iq_info = input->quantization_info().uniform(); |
| 531 | const UniformQuantizationInfo oq_info = output->quantization_info().uniform(); |
| 532 | const auto output_quant_info = (output->total_size() == 0) ? iq_info : oq_info; |
| 533 | const unsigned int num_filters = (is_quantized_per_channel) ? num_kernels : 1; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 534 | |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 535 | gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters); |
| 536 | gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters); |
| 537 | quantization::compute_quantized_multipliers_and_shifts(input, |
| 538 | weights, |
| 539 | output, |
| 540 | idx_kernels, |
| 541 | gemmlowp_output_stage.gemmlowp_multipliers.data(), |
| 542 | gemmlowp_output_stage.gemmlowp_shifts.data()); |
| 543 | gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0]; |
| 544 | gemmlowp_output_stage.gemmlowp_shift = gemmlowp_output_stage.gemmlowp_shifts[0]; |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 545 | |
| 546 | int min_activation = 0; |
| 547 | int max_activation = 0; |
| 548 | |
| 549 | const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, |
| 550 | ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, |
| 551 | ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU |
| 552 | }; |
| 553 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 554 | if(act_info.enabled()) |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 555 | { |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 556 | if(supported_acts.count(act_info.activation()) != 0) |
| 557 | { |
Jenkins | 36ccc90 | 2020-02-21 11:10:48 +0000 | [diff] [blame] | 558 | std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, output_quant_info); |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 559 | } |
| 560 | else |
| 561 | { |
| 562 | fuse_activation = false; |
| 563 | } |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 564 | } |
| 565 | |
| 566 | // Set the GEMMLowp output stage info |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 567 | gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset; |
| 568 | gemmlowp_output_stage.gemmlowp_min_bound = min_activation; |
| 569 | gemmlowp_output_stage.gemmlowp_max_bound = max_activation; |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 570 | } |
| 571 | |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 572 | // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix |
| 573 | const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0; |
| 574 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 575 | ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, skip_im2col, act_info)); |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 576 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 577 | // Validate Col2Im |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 578 | if(!skip_col2im) |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 579 | { |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 580 | ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups)); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 581 | } |
| 582 | |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 583 | //Validate Activation Layer |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 584 | if(!fuse_activation) |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 585 | { |
| 586 | ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info)); |
| 587 | } |
| 588 | |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 589 | return Status{}; |
| 590 | } |
| 591 | |
| 592 | void CLGEMMConvolutionLayer::run() |
| 593 | { |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 594 | prepare(); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 595 | |
Jenkins | 4ba87db | 2019-05-23 17:11:51 +0100 | [diff] [blame] | 596 | MemoryGroupResourceScope scope_mg(_memory_group); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 597 | |
| 598 | // Run im2col |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 599 | if(!_skip_im2col) |
| 600 | { |
| 601 | CLScheduler::get().enqueue(_im2col_kernel); |
| 602 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 603 | |
| 604 | // Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions |
| 605 | if(_is_quantized) |
| 606 | { |
| 607 | // Run gemmlowp |
| 608 | _mm_gemmlowp.run(); |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 609 | } |
| 610 | else |
| 611 | { |
| 612 | // Run gemm |
| 613 | _mm_gemm.run(); |
| 614 | } |
| 615 | |
| 616 | // Reshape output matrix |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 617 | if(!_skip_col2im) |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 618 | { |
Jenkins | b9abeae | 2018-11-22 11:58:08 +0000 | [diff] [blame] | 619 | CLScheduler::get().enqueue(_col2im_kernel, false); |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 620 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 621 | |
Jenkins | 975dfe1 | 2019-09-02 11:47:54 +0100 | [diff] [blame] | 622 | //Run Activation Layer if we cannot fuse in GEMM |
| 623 | if(!_fuse_activation) |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 624 | { |
| 625 | _activationlayer_function.run(); |
| 626 | } |
Anthony Barbier | 06ea048 | 2018-02-22 15:45:35 +0000 | [diff] [blame] | 627 | } |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 628 | |
| 629 | void CLGEMMConvolutionLayer::prepare() |
| 630 | { |
| 631 | if(!_is_prepared) |
| 632 | { |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 633 | ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 634 | if(_weights_manager && _weights_manager->are_weights_managed(_original_weights)) |
| 635 | { |
| 636 | _weights_manager->run(_original_weights, &_reshape_weights_managed); |
| 637 | } |
| 638 | else |
| 639 | { |
| 640 | // Run weights reshaping and mark original weights tensor as unused |
| 641 | _weights_reshaped.allocator()->allocate(); |
| 642 | _reshape_weights.run(); |
| 643 | _original_weights->mark_as_unused(); |
| 644 | } |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 645 | |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 646 | // Prepare GEMM |
| 647 | _is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare(); |
| 648 | if(!_weights_reshaped.is_used()) |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 649 | { |
Jenkins | 52ba29e | 2018-08-29 15:32:11 +0000 | [diff] [blame] | 650 | _weights_reshaped.allocator()->free(); |
Jenkins | b3a371b | 2018-05-23 11:36:53 +0100 | [diff] [blame] | 651 | } |
| 652 | |
| 653 | CLScheduler::get().queue().finish(); |
| 654 | _is_prepared = true; |
| 655 | } |
| 656 | } |
Jenkins | 0e205f7 | 2019-11-28 16:53:35 +0000 | [diff] [blame] | 657 | } // namespace arm_compute |