blob: 62f1f2c479b85f190b41056feb66b0dc256f825f [file] [log] [blame]
Jenkinsb9abeae2018-11-22 11:58:08 +00001///
Jenkins0e205f72019-11-28 16:53:35 +00002/// Copyright (c) 2017-2019 ARM Limited.
Jenkinsb9abeae2018-11-22 11:58:08 +00003///
4/// SPDX-License-Identifier: MIT
5///
6/// Permission is hereby granted, free of charge, to any person obtaining a copy
7/// of this software and associated documentation files (the "Software"), to
8/// deal in the Software without restriction, including without limitation the
9/// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10/// sell copies of the Software, and to permit persons to whom the Software is
11/// furnished to do so, subject to the following conditions:
12///
13/// The above copyright notice and this permission notice shall be included in all
14/// copies or substantial portions of the Software.
15///
16/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22/// SOFTWARE.
23///
Jenkinsc3f34a42018-03-02 12:38:09 +000024namespace arm_compute
25{
Anthony Barbierdbdab852017-06-23 15:42:00 +010026/** @mainpage Introduction
27
28@tableofcontents
29
30The Computer Vision and Machine Learning library is a set of functions optimised for both ARM CPUs and GPUs using SIMD technologies.
31
32Several builds of the library are available using various configurations:
33 - OS: Linux, Android or bare metal.
34 - Architecture: armv7a (32bit) or arm64-v8a (64bit)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000035 - Technology: NEON / OpenCL / GLES_COMPUTE / NEON and OpenCL and GLES_COMPUTE
Anthony Barbierdbdab852017-06-23 15:42:00 +010036 - Debug / Asserts / Release: Use a build with asserts enabled to debug your application and enable extra validation. Once you are sure your application works as expected you can switch to a release build of the library for maximum performance.
37
38@section S0_1_contact Contact / Support
39
40Please email developer@arm.com
41
42In order to facilitate the work of the support team please provide the build information of the library you are using. To get the version of the library you are using simply run:
43
44 $ strings android-armv7a-cl-asserts/libarm_compute.so | grep arm_compute_version
45 arm_compute_version=v16.12 Build options: {'embed_kernels': '1', 'opencl': '1', 'arch': 'armv7a', 'neon': '0', 'asserts': '1', 'debug': '0', 'os': 'android', 'Werror': '1'} Git hash=f51a545d4ea12a9059fe4e598a092f1fd06dc858
46
Anthony Barbier8140e1e2017-12-14 23:48:46 +000047@section S0_2_prebuilt_binaries Pre-built binaries
48
49For each release we provide some pre-built binaries of the library [here](https://github.com/ARM-software/ComputeLibrary/releases)
50
51These binaries have been built using the following toolchains:
Jenkinsb9abeae2018-11-22 11:58:08 +000052 - Linux armv7a: gcc-linaro-4.9-2016.02-x86_64_arm-linux-gnueabihf
Anthony Barbier8140e1e2017-12-14 23:48:46 +000053 - Linux arm64-v8a: gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu
Jenkins0e205f72019-11-28 16:53:35 +000054 - Android armv7a: clang++ / libc++ NDK r17c
55 - Android am64-v8a: clang++ / libc++ NDK r17c
Anthony Barbier8140e1e2017-12-14 23:48:46 +000056
57@warning Make sure to use a compatible toolchain to build your application or you will get some std::bad_alloc errors at runtime.
58
Anthony Barbierdbdab852017-06-23 15:42:00 +010059@section S1_file_organisation File organisation
60
61This archive contains:
62 - The arm_compute header and source files
63 - The latest Khronos OpenCL 1.2 C headers from the <a href="https://www.khronos.org/registry/cl/">Khronos OpenCL registry</a>
64 - The latest Khronos cl2.hpp from the <a href="https://www.khronos.org/registry/cl/">Khronos OpenCL registry</a> (API version 2.1 when this document was written)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000065 - The latest Khronos OpenGL ES 3.1 C headers from the <a href="https://www.khronos.org/registry/gles/">Khronos OpenGL ES registry</a>
66 - The latest Khronos EGL 1.5 C headers from the <a href="https://www.khronos.org/registry/gles/">Khronos EGL registry</a>
67 - The sources for a stub version of libOpenCL.so, libGLESv1_CM.so, libGLESv2.so and libEGL.so to help you build your application.
Anthony Barbierdbdab852017-06-23 15:42:00 +010068 - An examples folder containing a few examples to compile and link against the library.
69 - A @ref utils folder containing headers with some boiler plate code used by the examples.
70 - This documentation.
71
72You should have the following file organisation:
73
74 .
75 ├── arm_compute --> All the arm_compute headers
Jenkins4ba87db2019-05-23 17:11:51 +010076 │ ├── graph.h --> Includes all the Graph headers at once.
Anthony Barbierdbdab852017-06-23 15:42:00 +010077 │   ├── core
78 │   │   ├── CL
Kaizen8938bd32017-09-28 14:38:23 +010079 │   │   │   ├── CLKernelLibrary.h --> Manages all the OpenCL kernels compilation and caching, provides accessors for the OpenCL Context.
Anthony Barbierdbdab852017-06-23 15:42:00 +010080 │   │   │   ├── CLKernels.h --> Includes all the OpenCL kernels at once
81 │   │   │   ├── CL specialisation of all the generic objects interfaces (ICLTensor, ICLImage, etc.)
82 │   │   │   ├── kernels --> Folder containing all the OpenCL kernels
83 │   │   │   │   └── CL*Kernel.h
84 │   │   │   └── OpenCL.h --> Wrapper to configure the Khronos OpenCL C++ header
85 │   │ ├── CPP
Kaizen8938bd32017-09-28 14:38:23 +010086 │   │   │   ├── CPPKernels.h --> Includes all the CPP kernels at once
Anthony Barbierdbdab852017-06-23 15:42:00 +010087 │   │ │   └── kernels --> Folder containing all the CPP kernels
Kaizen8938bd32017-09-28 14:38:23 +010088 │   │   │      └── CPP*Kernel.h
Anthony Barbier8140e1e2017-12-14 23:48:46 +000089 │   │   ├── GLES_COMPUTE
90 │   │   │   ├── GCKernelLibrary.h --> Manages all the GLES kernels compilation and caching, provides accessors for the GLES Context.
91 │   │   │   ├── GCKernels.h --> Includes all the GLES kernels at once
92 │   │   │   ├── GLES specialisation of all the generic objects interfaces (IGCTensor, IGCImage, etc.)
93 │   │   │   ├── kernels --> Folder containing all the GLES kernels
94 │   │   │   │   └── GC*Kernel.h
95 │   │   │   └── OpenGLES.h --> Wrapper to configure the Khronos EGL and OpenGL ES C header
Anthony Barbierdbdab852017-06-23 15:42:00 +010096 │   │   ├── NEON
97 │   │   │   ├── kernels --> Folder containing all the NEON kernels
Jenkinsb3a371b2018-05-23 11:36:53 +010098 │   │   │   │ ├── assembly --> headers for assembly optimised NEON kernels.
99 │   │   │   │ ├── convolution --> headers for convolution assembly optimised NEON kernels.
100 │   │   │   │   │   ├── common --> headers for code which is common to several convolution implementations.
101 │   │   │   │   │   ├── depthwise --> headers for Depthwise convolultion assembly implementation
102 │   │   │   │   │   └── winograd --> headers for Winograd convolution assembly implementation
103 │   │   │   │ ├── detail --> Common code for several intrinsics implementations.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100104 │   │   │   │   └── NE*Kernel.h
105 │   │   │   └── NEKernels.h --> Includes all the NEON kernels at once
106 │   │   ├── All common basic types (Types.h, Window, Coordinates, Iterator, etc.)
107 │   │   ├── All generic objects interfaces (ITensor, IImage, etc.)
108 │   │   └── Objects metadata classes (ImageInfo, TensorInfo, MultiImageInfo)
Kaizen8938bd32017-09-28 14:38:23 +0100109 │   ├── graph
Jenkinsb3a371b2018-05-23 11:36:53 +0100110 │   │   ├── algorithms
111 │   │   │   └── Generic algorithms used by the graph backend (e.g Order of traversal)
112 │   │   ├── backends --> The backend specific code
113 │   │   │   ├── CL --> OpenCL specific operations
114 │   │   │   ├── GLES --> OpenGLES Compute Shaders specific operations
115 │   │   │   └── NEON --> NEON specific operations
116 │   │   ├── detail
117 │   │   │   └── Collection of internal utilities.
118 │   │   ├── frontend
119 │   │   │   └── Code related to the stream frontend interface.
120 │   │   ├── mutators
121 │   │   │   └── Used to modify / optimise the Graph intermediate representation(Operator fusion, in place operations, etc.)
Kaizen8938bd32017-09-28 14:38:23 +0100122 │   │   ├── nodes
123 │   │   │   └── The various nodes supported by the graph API
Jenkinsb3a371b2018-05-23 11:36:53 +0100124 │   │   ├── printers
125 │   │   │   └── Debug printers
Kaizen8938bd32017-09-28 14:38:23 +0100126 │   │   └── Graph objects ( INode, ITensorAccessor, Graph, etc.)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100127 │   └── runtime
128 │   ├── CL
129 │   │   ├── CL objects & allocators (CLArray, CLImage, CLTensor, etc.)
130 │   │   ├── functions --> Folder containing all the OpenCL functions
131 │   │   │   └── CL*.h
Kaizen8938bd32017-09-28 14:38:23 +0100132 │   │   ├── CLScheduler.h --> Interface to enqueue OpenCL kernels and get/set the OpenCL CommandQueue and ICLTuner.
Jenkinsb3a371b2018-05-23 11:36:53 +0100133 │   │   ├── CLFunctions.h --> Includes all the OpenCL functions at once
134 │   │   └── tuners
135 │   │      └── Local workgroup size tuners for specific architectures / GPUs
Anthony Barbierdbdab852017-06-23 15:42:00 +0100136 │   ├── CPP
Kaizen8938bd32017-09-28 14:38:23 +0100137 │      │   ├── CPPKernels.h --> Includes all the CPP functions at once.
Jenkinsb3a371b2018-05-23 11:36:53 +0100138 │   │   ├── CPPScheduler.h --> Basic pool of threads to execute CPP/NEON code on several cores in parallel
139 │   │   └── functions --> Folder containing all the CPP functions
140 │   │      └── CPP*.h
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000141 │   ├── GLES_COMPUTE
142 │   │   ├── GLES objects & allocators (GCArray, GCImage, GCTensor, etc.)
143 │   │   ├── functions --> Folder containing all the GLES functions
144 │   │   │   └── GC*.h
145 │   │   ├── GCScheduler.h --> Interface to enqueue GLES kernels and get/set the GLES CommandQueue.
146 │   │   └── GCFunctions.h --> Includes all the GLES functions at once
Anthony Barbierdbdab852017-06-23 15:42:00 +0100147 │   ├── NEON
148 │   │ ├── functions --> Folder containing all the NEON functions
149 │   │ │   └── NE*.h
150 │   │ └── NEFunctions.h --> Includes all the NEON functions at once
Kaizen8938bd32017-09-28 14:38:23 +0100151 │   ├── OMP
152 │   │   └── OMPScheduler.h --> OpenMP scheduler (Alternative to the CPPScheduler)
153 │ ├── Memory manager files (LifetimeManager, PoolManager, etc.)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100154 │   └── Basic implementations of the generic object interfaces (Array, Image, Tensor, etc.)
Jenkinsc3f34a42018-03-02 12:38:09 +0000155 ├── data -> Contains test images and reference data dumps used by validation tests
156 ├── docs -> Contains Doxyfile and Doxygen sources used to generate the HTML pages in the documentation folder.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100157 ├── documentation
158 │   ├── index.xhtml
159 │   └── ...
160 ├── documentation.xhtml -> documentation/index.xhtml
161 ├── examples
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000162 │   ├── cl_*.cpp --> OpenCL examples
163 │   ├── gc_*.cpp --> GLES compute shaders examples
164 │   ├── graph_*.cpp --> Graph examples
165 │   ├── neoncl_*.cpp --> NEON / OpenCL interoperability examples
166 │   └── neon_*.cpp --> NEON examples
Anthony Barbierdbdab852017-06-23 15:42:00 +0100167 ├── include
Kaizen8938bd32017-09-28 14:38:23 +0100168 │   ├── CL
169 │   │ └── Khronos OpenCL C headers and C++ wrapper
170 │   ├── half --> FP16 library available from http://half.sourceforge.net
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000171 │   ├── libnpy --> Library to load / write npy buffers, available from https://github.com/llohse/libnpy
172 │  └── linux --> Headers only needed for Linux builds
173 │   └── Khronos EGL and OpenGLES headers
Anthony Barbierdbdab852017-06-23 15:42:00 +0100174 ├── opencl-1.2-stubs
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000175 │ └── opencl_stubs.c --> OpenCL stubs implementation
176 ├── opengles-3.1-stubs
177 │   ├── EGL.c --> EGL stubs implementation
178 │   └── GLESv2.c --> GLESv2 stubs implementation
Kaizen8938bd32017-09-28 14:38:23 +0100179 ├── scripts
180 │   ├── caffe_data_extractor.py --> Basic script to export weights from Caffe to npy files
181 │   └── tensorflow_data_extractor.py --> Basic script to export weights from Tensor Flow to npy files
Anthony Barbierdbdab852017-06-23 15:42:00 +0100182 ├── src
183 │   ├── core
184 │ │ └── ... (Same structure as headers)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000185 │   │ ├── CL
186 │   │ │ └── cl_kernels --> All the OpenCL kernels
187 │   │ └── GLES_COMPUTE
188 │   │ └── cs_shaders --> All the OpenGL ES Compute Shaders
Kaizen8938bd32017-09-28 14:38:23 +0100189 │   ├── graph
190 │ │ └── ... (Same structure as headers)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100191 │ └── runtime
192 │ └── ... (Same structure as headers)
Kaizen8938bd32017-09-28 14:38:23 +0100193 ├── support
194 │ └── Various headers to work around toolchains / platform issues.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100195 ├── tests
196 │   ├── All test related files shared between validation and benchmark
Jenkinsb3a371b2018-05-23 11:36:53 +0100197 │   ├── benchmark --> Sources for benchmarking
198 │ │ ├── Benchmark specific files
199 │   │ ├── fixtures
200 │ │ │ └── Backend agnostic fixtures to initialise and run the functions to test.
201 │ │ ├── CL --> OpenCL benchmarking tests
202 │ │ ├── GLES_COMPUTE --> GLES benchmarking tests
203 │ │ └── NEON --> NEON benchmarking tests
Kaizen8938bd32017-09-28 14:38:23 +0100204 │   ├── CL --> OpenCL accessors
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000205 │   ├── GLES_COMPUTE --> GLES accessors
Kaizen8938bd32017-09-28 14:38:23 +0100206 │   ├── NEON --> NEON accessors
Kaizen8938bd32017-09-28 14:38:23 +0100207 │   ├── datasets
208 │ │ └── Datasets for all the validation / benchmark tests, layer configurations for various networks, etc.
209 │   ├── framework
210 │ │ └── Boiler plate code for both validation and benchmark test suites (Command line parsers, instruments, output loggers, etc.)
Jenkinsb3a371b2018-05-23 11:36:53 +0100211 │   └── validation --> Sources for validation
212 │ ├── Validation specific files
213 │   ├── fixtures
214 │ │ └── Backend agnostic fixtures to initialise and run the functions to test.
215 │   ├── reference
216 │ │ └── Reference implementation used to validate the results of the various backends.
217 │ ├── CL --> OpenCL validation tests
218 │ ├── GLES_COMPUTE --> GLES validation tests
219 │ ├── CPP --> C++ reference implementations
220 │ └── NEON --> NEON validation tests
Anthony Barbierdbdab852017-06-23 15:42:00 +0100221 └── utils --> Boiler plate code used by examples
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000222 └── Various utilities to print types, load / store assets, etc.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100223
224@section S2_versions_changelog Release versions and changelog
225
226@subsection S2_1_versions Release versions
227
228All releases are numbered vYY.MM Where YY are the last two digits of the year, and MM the month number.
229If there is more than one release in a month then an extra sequential number is appended at the end:
230
231 v17.03 (First release of March 2017)
232 v17.03.1 (Second release of March 2017)
233 v17.04 (First release of April 2017)
234
235@note We're aiming at releasing one major public release with new features per quarter. All releases in between will only contain bug fixes.
236
237@subsection S2_2_changelog Changelog
238
Jenkins7f09cf72020-01-22 18:08:16 +0000239v19.11.1 Public maintenance release
240 - Fix offset calculation in NEReductionOperationKernel.
241 - Fix data layout in NEScaleKernel for nhwc.
242 - Retain configuration step data layout to avoid side-effects.
243 - Perform sqrt in double domain for L2 pooling.
244 - Fix output shape calculation for Reduce Mean
245 - Restrict cases where optimized NEPadLayer runs.
246
Jenkins0e205f72019-11-28 16:53:35 +0000247v19.11 Public major release
248 - Various bug fixes.
249 - Various optimisations.
250 - Updated recommended NDK version to r17c.
251 - Deprecated OpenCL kernels / functions:
252 - CLDepthwiseConvolutionLayerReshapeWeightsGenericKernel
253 - CLDepthwiseIm2ColKernel
254 - CLDepthwiseSeparableConvolutionLayer
255 - CLDepthwiseVectorToTensorKernel
256 - CLDirectConvolutionLayerOutputStageKernel
257 - Deprecated NEON kernels / functions:
258 - NEDepthwiseWeightsReshapeKernel
259 - NEDepthwiseIm2ColKernel
260 - NEDepthwiseSeparableConvolutionLayer
261 - NEDepthwiseVectorToTensorKernel
262 - NEDepthwiseConvolutionLayer3x3
263 - New OpenCL kernels / functions:
264 - @ref CLInstanceNormalizationLayerKernel / @ref CLInstanceNormalizationLayer
265 - @ref CLDepthwiseConvolutionLayerNativeKernel to replace the old generic depthwise convolution (see Deprecated
266 OpenCL kernels / functions)
267 - @ref CLLogSoftmaxLayer
268 - New NEON kernels / functions:
269 - @ref NEBoundingBoxTransformKernel / @ref NEBoundingBoxTransform
270 - @ref NEComputeAllAnchorsKernel / @ref NEComputeAllAnchors
271 - @ref NEDetectionPostProcessLayer
272 - @ref NEGenerateProposalsLayer
273 - @ref NEInstanceNormalizationLayerKernel / @ref NEInstanceNormalizationLayer
274 - @ref NELogSoftmaxLayer
275 - @ref NEROIAlignLayerKernel / @ref NEROIAlignLayer
276 - Added QASYMM8 support for:
277 - @ref CLGenerateProposalsLayer
278 - @ref CLROIAlignLayer
279 - @ref CPPBoxWithNonMaximaSuppressionLimit
280 - Added QASYMM16 support for:
281 - @ref CLBoundingBoxTransform
282 - Added FP16 support for:
283 - @ref CLGEMMMatrixMultiplyReshapedKernel
284 - Added new data type QASYMM8_PER_CHANNEL support for:
285 - @ref CLDequantizationLayer
286 - @ref NEDequantizationLayer
287 - Added new data type QSYMM8_PER_CHANNEL support for:
288 - @ref CLConvolutionLayer
289 - @ref NEConvolutionLayer
290 - @ref CLDepthwiseConvolutionLayer
291 - @ref NEDepthwiseConvolutionLayer
292 - Added FP16 mixed-precision support for:
293 - @ref CLGEMMMatrixMultiplyReshapedKernel
294 - @ref CLPoolingLayerKernel
295 - Added FP32 and FP16 ELU activation for:
296 - @ref CLActivationLayer
297 - @ref NEActivationLayer
298 - Added asymmetric padding support for:
299 - @ref CLDirectDeconvolutionLayer
300 - @ref CLGEMMDeconvolutionLayer
301 - @ref NEDeconvolutionLayer
302 - Added SYMMETRIC and REFLECT modes for @ref CLPadLayerKernel / @ref CLPadLayer.
303 - Replaced the calls to @ref NECopyKernel and @ref NEMemsetKernel with @ref NEPadLayer in @ref NEGenerateProposalsLayer.
304 - Replaced the calls to @ref CLCopyKernel and @ref CLMemsetKernel with @ref CLPadLayer in @ref CLGenerateProposalsLayer.
305 - Improved performance for CL Inception V3 - FP16.
306 - Improved accuracy for CL Inception V3 - FP16 by enabling FP32 accumulator (mixed-precision).
307 - Improved NEON performance by enabling fusing batch normalization with convolution and depth-wise convolution layer.
308 - Improved NEON performance for MobileNet-SSD by improving the output detection performance.
309 - Optimized @ref CLPadLayer.
310 - Optimized CL generic depthwise convolution layer by introducing @ref CLDepthwiseConvolutionLayerNativeKernel.
311 - Reduced memory consumption by implementing weights sharing.
312
Jenkins7f09cf72020-01-22 18:08:16 +0000313v19.08.1 Public maintenance release
314 - Fix offset calculation in NEReductionOperationKernel.
315 - Fix data layout in NEScaleKernel for nhwc.
316 - Retain configuration step data layout to avoid side-effects.
317 - Perform sqrt in double domain for L2 pooling.
318 - Fix output shape calculation for Reduce Mean
319 - Fix broadcast CLPixelwiseMultiplication with 5D tensors
320
Jenkins975dfe12019-09-02 11:47:54 +0100321v19.08 Public major release
322 - Various bug fixes.
323 - Various optimisations.
324 - Deprecated NEON functions
325 - NEDepthConcatenateLayer
326 - NEWidthConcatenateLayer
327 - Deprecated OpenCL kernels / functions
328 - CLDepthConcatenateLayer
329 - CLGEMMInterleave4x4Kernel / CLGEMMInterleave4x4
330 - CLGEMMTranspose1xWKernel / CLGEMMTranspose1xW
331 - CLWidthConcatenateLayer
332 - New NEON kernels / functions:
333 - @ref NEAbsLayer
334 - @ref NECast
335 - @ref NEElementwisePower
336 - @ref NELogLayer
337 - @ref NELSTMLayerQuantized
338 - @ref NENegLayer
339 - @ref NEPReluLayer
340 - @ref NESinLayer
341 - @ref NEBatchConcatenateLayerKernel
342 - @ref NEDepthToSpaceLayerKernel / @ref NEDepthToSpaceLayer
343 - @ref NEDepthwiseConvolutionLayerNativeKernel
344 - @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
345 - @ref NEMeanStdDevNormalizationKernel / @ref NEMeanStdDevNormalizationLayer
346 - @ref NESpaceToDepthLayerKernel / @ref NESpaceToDepthLayer
347 - New OpenCL kernels / functions:
348 - @ref CLAbsLayer
349 - @ref CLElementwisePower
350 - @ref CLLogLayer
351 - @ref CLLSTMLayerQuantized
352 - @ref CLNegLayer
353 - @ref CLPReluLayer
354 - @ref CLSinLayer
355 - @ref CLBatchConcatenateLayerKernel
356 - @ref CLDepthToSpaceLayerKernel / @ref CLDepthToSpaceLayer
357 - @ref CLGEMMLowpMatrixMultiplyNativeKernel
358 - @ref CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
359 - @ref CLGEMMMatrixMultiplyNativeKernel
360 - @ref CLMeanStdDevNormalizationKernel / @ref CLMeanStdDevNormalizationLayer
361 - @ref CLSpaceToDepthLayerKernel / @ref CLSpaceToDepthLayer
362 - New examples:
363 - neon_opticalflow
364 - cl_cache
365 - neon_permute
366 - Added support for FP16 in @ref NEDeconvolutionLayer
367 - Added support for FP16 in @ref CLDeconvolutionLayer
368 - Added support for REDUCE_MIN and REDUCE_MAX in @ref ReductionOperation
369 - Enable the fusion of batch normalization with convolution and depthwise convolution layer for FP32 in the graph API (OpenCL only)
370 - Added support for fusing activation function and broadcast addition with the matrix multiplication for FP32 (OpenCL only)
371 - Re-factored the depthwise convolution layer kernel on NEON for generic cases
372 - Added an optimized depthwise convolution layer kernel for 5x5 filters (NEON only)
373 - Added support to enable OpenCL kernel cache. Added example showing how to load the prebuilt OpenCL kernels from a binary cache file
374 - Altered @ref QuantizationInfo interface to support per-channel quantization.
Jenkins0e205f72019-11-28 16:53:35 +0000375 - The @ref CLDepthwiseConvolutionLayer3x3 will be included by @ref CLDepthwiseConvolutionLayer to accommodate for future optimizations.
376 - The @ref NEDepthwiseConvolutionLayerOptimized will be included by @ref NEDepthwiseConvolutionLayer to accommodate for future optimizations.
Jenkins975dfe12019-09-02 11:47:54 +0100377 - Removed inner_border_right and inner_border_top parameters from @ref CLDeconvolutionLayer interface
378 - Removed inner_border_right and inner_border_top parameters from @ref NEDeconvolutionLayer interface
379 - Optimized the NEON assembly kernel for GEMMLowp. The new implementation fuses the output stage and quantization with the matrix multiplication kernel
380
Jenkins4ba87db2019-05-23 17:11:51 +0100381v19.05 Public major release
382 - Various bug fixes.
383 - Various optimisations.
384 - New Neon kernels / functions:
385 - @ref NEBatchToSpaceLayerKernel / @ref NEBatchToSpaceLayer
386 - @ref NEComplexPixelWiseMultiplicationKernel / @ref NEComplexPixelWiseMultiplication
387 - @ref NECropKernel / @ref NECropResize
388 - @ref NEDepthwiseConvolutionAssemblyDispatch
389 - @ref NEFFTDigitReverseKernel
390 - @ref NEFFTRadixStageKernel
391 - @ref NEFFTScaleKernel
392 - @ref NEGEMMLowpOffsetContributionOutputStageKernel
393 - @ref NEHeightConcatenateLayerKernel
394 - @ref NESpaceToBatchLayerKernel / @ref NESpaceToBatchLayer
395 - @ref NEFFT1D
396 - @ref NEFFT2D
397 - @ref NEFFTConvolutionLayer
398 - New OpenCL kernels / functions:
399 - @ref CLComplexPixelWiseMultiplicationKernel / @ref CLComplexPixelWiseMultiplication
400 - @ref CLCropKernel / @ref CLCropResize
401 - @ref CLDeconvolutionReshapeOutputKernel
402 - @ref CLFFTDigitReverseKernel
403 - @ref CLFFTRadixStageKernel
404 - @ref CLFFTScaleKernel
405 - @ref CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel
406 - @ref CLGEMMMatrixMultiplyReshapedOnlyRHSKernel
407 - @ref CLHeightConcatenateLayerKernel
408 - @ref CLDirectDeconvolutionLayer
409 - @ref CLFFT1D
410 - @ref CLFFT2D
411 - @ref CLFFTConvolutionLayer
412 - @ref CLGEMMDeconvolutionLayer
413 - New OpenGLES kernels / functions:
414 - @ref GCConcatenateLayer
415 - Deprecated functions/interfaces
Jenkins975dfe12019-09-02 11:47:54 +0100416 - GCDepthConcatenateLayer
417 - NEWidthConcatenateLayer
418 - NEDepthConcatenateLayer
419 - CLWidthConcatenateLayer
420 - CLDepthConcatenateLayer
421 - CLGEMMInterleave4x4
422 - CLGEMMTranspose1xW
Jenkins4ba87db2019-05-23 17:11:51 +0100423 - Support different quantization info in CLConcatLayer.
424 - Add checks on different input/output quantization info were not supported.
425 - Tensors have different quantization information.
426 - Add FP16 support checks.
427 - Fix output quantization CLDeptwiseConv3x3 when activation is fused.
428 - New graph examples:
429 - graph_convolution
430 - graph_fully_connected
431 - graph_depthwise_convolution
432 - Deepspeech v0.4.1
433 - Add support for QASYMM8 in NEArithmeticSubtractionKernel.
434 - Add support for QASYMM8 in NEPixelWiseMultiplicationKernel.
435 - Add support for QASYMM8 NEDeconvolution.
436 - Add support for DequantizationLayer for NEON/CL.
437 - Add support for dilation in CLDepthwiseConvolution.
438 - Fuse offset contribution with the output stage when we use NEGEMMLowpMatrixMultiplyCore.
439 - Optimize CLDeconvolution.
440 - Add StackLayer to the graph API.
441 - Add support for "reflect" padding mode in NEPad.
442 - Winograd 7x7 NHWC on OpenCL.
443 - Rework CL ML layers to run exclusively on CL.
444 - Support different quantization info in PoolingLayer.
445 - Implement and test import memory interfaces.
446 - Added new tests and removed old ones.
447 - Various clang-tidy fixes.
448
Jenkins514be652019-02-28 12:25:18 +0000449v19.02 Public major release
450 - Various bug fixes.
451 - Various optimisations.
452 - New Neon kernels / functions:
453 - @ref NETileKernel / @ref NETile
454 - @ref NEFuseBatchNormalizationKernel / @ref NEFuseBatchNormalization
455 - @ref NEElementwiseOperationKernel
456 - @ref NEElementwiseMax
457 - @ref NEElementwiseMin
458 - @ref NEElementwiseSquaredDiff
459 - @ref NESelectKernel / @ref NESelect
460 - @ref NESplit
461 - @ref NESlice
462 - @ref NEUnstack
463 - @ref NEStridedSliceKernel / @ref NEStridedSlice
464 - @ref NEElementwiseUnaryKernel
465 - @ref NERsqrtLayer
466 - @ref NEExpLayer
467 - @ref NEReverseKernel / @ref NEReverse
468 - @ref NEArgMinMaxLayer
469 - @ref NEStackLayerKernel / @ref NEStackLayer
470 - @ref NERangeKernel / @ref NERange
471 - @ref NEPadLayer
472 - @ref NEMemsetKernel
473 - @ref NEGatherKernel / @ref NEGather
474 - @ref NEElementwiseComparison
475 - @ref NEElementwiseComparisonStatic
476 - @ref NEComparisonOperationKernel
477 - @ref NEElementwiseDivision
478 - New OpenCL kernels / functions:
479 - @ref CLSelectKernel / @ref CLSelect
480 - @ref CLTileKernel / @ref CLTile
481 - @ref CLComparisonKernel / @ref CLComparison
482 - @ref CLArgMinMaxLayer
483 - @ref CLElementwiseMax
484 - @ref CLElementwiseMin
485 - @ref CLElementwiseSquaredDiff
486 - @ref CLStackLayerKernel / @ref CLStackLayer
487 - @ref CLReverse / @ref CLReverseKernel
488 - @ref CLRsqrtLayer
489 - @ref CLExpLayer
490 - @ref CLElementWiseUnaryLayerKernel
491 - @ref CLGEMMReshapeLHSMatrixKernel
492 - @ref CLGEMMReshapeRHSMatrixKernel
493 - @ref CLGEMMMatrixMultiplyReshapedKernel
494 - @ref CLRangeKernel / @ref CLRange
495 - @ref CLUnstack
496 - @ref CLGatherKernel / @ref CLGather
497 - @ref CLGEMMLowpMatrixMultiplyReshapedKernel
498 - New CPP kernels / functions:
499 - @ref CPPDetectionOutputLayer
500 - @ref CPPTopKV / @ref CPPTopKVKernel
501 - Added new examples:
502 - graph_ssd_mobilenet.cpp
503 - graph_mobilenet_v2.cpp
504 - graph_resnet12.cpp
505 - graph_srcnn955.cpp
506 - graph_vgg_vdsr.cpp
507 - graph_inception_resnet_v1.cpp
508 - Add 4D tensors support to
509 - @ref NESoftmaxLayer
510 - Fused activation in @ref CLWinogradConvolutionLayer
511 - Extented @ref NEPermute to support more cases
512 - Added NEON/SVE GEMM Hybrid kernels
513 - Added u8 and s8 hybrid assembly kernels
514 - Introduced GEMM strategy name in NEGEMMAssemblyWrapper
515 - Improved @ref CLTuner
516 - Fused the bias addition within @ref CLGEMM
517 - Added support for QASYMM8 LOGISTIC activation in @ref NEActivationLayer
518 - Added NHWC data layout support to:
519 - @ref NEScale for F16
520 - @ref CLNormalizationLayer IN_MAP_2D for FP32/FP16
521 - @ref NEL2NormalizeLayer for FP32/FP16
522 - @ref NENormalizationLayer IN_MAP_2D for FP32/FP16
523 - @ref CLROIAlignLayer
524 - @ref CLGenerateProposalsLayer
525 - Added QASYMM8 support to the following kernels:
526 - @ref NEArithmeticAdditionKernel
527 - @ref NEScale
528 - Added new tests and improved validation and benchmarking suites.
529 - Deprecated functions/interfaces
530 - Usage of inner_border_right and inner_border_top has been deprecated in @ref CLDeconvolutionLayer and @ref NEDeconvolutionLayer
531
Jenkinsb9abeae2018-11-22 11:58:08 +0000532v18.11 Public major release
533 - Various bug fixes.
534 - Various optimisations.
535 - New Neon kernels / functions:
536 - @ref NEChannelShuffleLayer / @ref NEChannelShuffleLayerKernel
537 - @ref NEReduceMean
538 - @ref NEReorgLayer / @ref NEReorgLayerKernel
539 - @ref NEPriorBoxLayer / @ref NEPriorBoxLayerKernel
540 - @ref NEUpsampleLayer / @ref NEUpsampleLayerKernel
541 - @ref NEYOLOLayer / @ref NEYOLOLayerKernel
542 - New OpenCL kernels / functions:
543 - @ref CLBatchToSpaceLayer / @ref CLBatchToSpaceLayerKernel
544 - @ref CLBoundingBoxTransform / @ref CLBoundingBoxTransformKernel
545 - @ref CLComputeAllAnchorsKernel
546 - @ref CLGenerateProposalsLayer
547 - @ref CLNormalizePlanarYUVLayer / @ref CLNormalizePlanarYUVLayerKernel
548 - @ref CLReorgLayer / @ref CLReorgLayerKernel
549 - @ref CLSpaceToBatchLayer / @ref CLSpaceToBatchLayerKernel
550 - @ref CLPadLayer
551 - @ref CLReduceMean
552 - @ref CLPriorBoxLayer / @ref CLPriorBoxLayerKernel
553 - @ref CLROIAlignLayer / @ref CLROIAlignLayerKernel
554 - @ref CLSlice
555 - @ref CLSplit
556 - @ref CLStridedSlice / @ref CLStridedSliceKernel
557 - @ref CLUpsampleLayer / @ref CLUpsampleLayerKernel
558 - @ref CLYOLOLayer / @ref CLYOLOLayerKernel
559 - New CPP kernels / functions:
560 - @ref CPPBoxWithNonMaximaSuppressionLimit / @ref CPPBoxWithNonMaximaSuppressionLimitKernel
561 - Added the validate method in:
562 - @ref NEDepthConvertLayer
563 - @ref NEFloor / @ref CLFloor
564 - @ref NEGEMMMatrixAdditionKernel
565 - @ref NEReshapeLayer / @ref CLReshapeLayer
566 - @ref CLScale
567 - Added new examples:
568 - graph_shufflenet.cpp
569 - graph_yolov3.cpp
570 - Added documentation for add a new function or kernel.
571 - Improved doxygen documentation adding a list of the existing functions.
572 - Add 4D tensors support to
Jenkins975dfe12019-09-02 11:47:54 +0100573 - CLWidthConcatenateLayer
Jenkinsb9abeae2018-11-22 11:58:08 +0000574 - @ref CLFlattenLayer
575 - @ref CLSoftmaxLayer
576 - Add dot product support for @ref CLDepthwiseConvolutionLayer3x3NHWCKernel non-unit stride
577 - Add SVE support
578 - Fused batch normalization into convolution layer weights in @ref CLFuseBatchNormalization
579 - Fuses activation in @ref CLDepthwiseConvolutionLayer3x3NCHWKernel, @ref CLDepthwiseConvolutionLayer3x3NHWCKernel and @ref NEGEMMConvolutionLayer
580 - Added NHWC data layout support to:
581 - @ref CLChannelShuffleLayer
582 - @ref CLDeconvolutionLayer
583 - @ref CLL2NormalizeLayer
584 - Added QASYMM8 support to the following kernels:
585 - @ref CLScaleKernel
586 - @ref NEDepthwiseConvolutionLayer3x3Kernel
587 - @ref CLPixelWiseMultiplicationKernel
588 - Added FP16 support to the following kernels:
589 - @ref CLDepthwiseConvolutionLayer3x3NHWCKernel
590 - @ref NEDepthwiseConvolutionLayer3x3Kernel
591 - @ref CLNormalizePlanarYUVLayerKernel
592 - @ref CLWinogradConvolutionLayer (5x5 kernel)
593 - More tests added to both validation and benchmarking suites.
594
Jenkins52ba29e2018-08-29 15:32:11 +0000595v18.08 Public major release
596 - Various bug fixes.
597 - Various optimisations.
598 - Updated recommended NDK version to r17b.
599 - Removed support for QS8/QS16 data types.
600 - Added support for grouped convolution in @ref CLConvolutionLayer.
601 - Added NHWC data layout support to:
Jenkins975dfe12019-09-02 11:47:54 +0100602 - NEDepthConcatenateLayer / CLDepthConcatenateLayer
Jenkins52ba29e2018-08-29 15:32:11 +0000603 - @ref NEWinogradConvolutionLayer / @ref CLWinogradConvolutionLayer
604 - @ref CLDepthwiseConvolutionLayer
605 - @ref CLDirectConvolutionLayer
606 - @ref CLConvolutionLayer
607 - @ref CLScale
608 - @ref CLIm2ColKernel
609 - New Neon kernels / functions:
610 - @ref NERNNLayer
611 - New OpenCL kernels / functions:
612 - @ref CLArithmeticDivision
613 - Introduced prepare() stage support in the graph API for GLES.
614 - Added support for memory reusage when trying to allocate smaller CLTensors.
615 - Enabled NHWC execution on graph examples.
616 - Added JPEG accessor for validation purposes.
617 - Added validate methods to some kernels / functions.
618
619v18.05 Public major release
Jenkinsb3a371b2018-05-23 11:36:53 +0100620 - Various bug fixes.
621 - Various optimisations.
622 - Major redesign in the interface for the neon kernels implemented in assembly.
623 - Removed arm_compute::NEGEMMLowpAArch64A53Kernel / arm_compute::NEGEMMLowpAArch64Kernel / arm_compute::NEGEMMLowpAArch64V8P4Kernel / arm_compute::NEGEMMInterleavedBlockedKernel / arm_compute::NEGEMMLowpAssemblyMatrixMultiplyCore / arm_compute::NEHGEMMAArch64FP16Kernel
624 - Added NEGEMMAssemblyWrapper and AssemblyKernelGlue which are used to execute assembly kernels in neon functions.
625 - Minor changes to the CPUInfo type to make it compatible with the new assembly gemm interface.
626 - Moved neon assembly kernels to the folder src/core/NEON/kernels/arm_gemm.
627 - Improved doxygen documentation.
628 - Improved memory management for layer's transitions.
629 - Added support for NHWC data layout in tensors.
630 - Added NHWC data layout support to:
631 - @ref NEGEMMConvolutionLayer
632 - @ref NEDirectConvolutionLayer
633 - @ref NEPoolingLayer / @ref CLPoolingLayer
634 - @ref NEBatchNormalizationLayer / @ref CLBatchNormalizationLayer
635 - @ref NEDepthwiseConvolutionLayer
636 - @ref NEScale
637 - @ref NEIm2Col
638 - Added support for dilated convolutions in @ref NEConvolutionLayer and @ref CLConvolutionLayer.
639 - New OpenCL kernels / functions:
640 - @ref CLChannelShuffleLayer / @ref CLChannelShuffleLayerKernel
641 - @ref CLConvertFullyConnectedWeightsKernel / @ref CLConvertFullyConnectedWeights
642 - @ref CLCopy / @ref CLCopyKernel
643 - @ref CLLSTMLayer
644 - @ref CLRNNLayer
Jenkins975dfe12019-09-02 11:47:54 +0100645 - CLWidthConcatenateLayer / @ref CLWidthConcatenateLayerKernel
Jenkinsb3a371b2018-05-23 11:36:53 +0100646 - @ref CLWinogradFilterTransformKernel / @ref CLWinogradInputTransformKernel / @ref CLWinogradConvolutionLayer
647 - @ref CLWinogradInputTransformKernel / @ref CLWinogradInputTransform
648 - New Neon kernels / functions:
Jenkinsb3a371b2018-05-23 11:36:53 +0100649 - @ref NEConvertFullyConnectedWeightsKernel / @ref NEConvertFullyConnectedWeights.
650 - Created the validate method in @ref CLDepthwiseConvolutionLayer.
651 - Beta and gamma are no longer mandatory arguments in @ref NEBatchNormalizationLayer and @ref CLBatchNormalizationLayer.
652 - Added depth multiplier support in @ref NEDepthwiseConvolutionLayer and @ref CLDepthwiseConvolutionLayer.
653 - Added broadcast multiply support in @ref NEPixelWiseMultiplication / @ref NEPixelWiseMultiplicationKernel.
654 - Port mobilenet example to NHWC data layout.
655 - Enabled Winograd method in @ref CLConvolutionLayer.
656 - Renamed NEWinogradLayer to @ref NEWinogradConvolutionLayer.
657 - Updated @ref NEWinogradConvolutionLayer to use highly optimised assembly kernels in src/core/NEON/kernels/arm_gemm.
658 - Added memory manager support in GLES functions.
659 - Major refactoring of the graph API.
660 - Added GLES backend in the graph API.
661 - Added support for the memory manager in the graph API.
662 - Enabled Winograd Convolution method in the graph API.
663 - Added support for grouped convolutions in the graph API.
664 - Replaced NEDeconvolutionLayerUpsampleKernel with @ref NEScaleKernel in @ref NEDeconvolutionLayer.
665 - Added fast maths flag in @ref CLConvolutionLayer.
666 - Added new tests and benchmarks in validation and benchmark frameworks
667 - Merge Activation layer with Convolution Layer (NEON. CL, GLES)
668 - Added support to OpenCL 2.0 SVM
669 - Added support to import memory in OpenCL tensors.
670 - Added the prepare() method to perform any one off pre-processing before running the function.
671 - Added new examples:
672 - graph_inception_v4.cpp
673 - graph_resnext50.cpp
674 - Added memory measurement instrument for CL.
675
Jenkinsc3f34a42018-03-02 12:38:09 +0000676v18.03 Public maintenance release
677 - Various bug fixes.
678 - Fixed bug in @ref NEActivationLayer
679 - Fix in @ref CLTuner when using batches.
680 - Updated recommended NDK version to r16b (And fixed warnings).
681 - Fixed bug in validation code.
682 - Added Inception v4 graph example.
Jenkinsb3a371b2018-05-23 11:36:53 +0100683 - Renamed NEWinogradLayer.cpp to @ref NEWinogradConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000684
Anthony Barbier06ea0482018-02-22 15:45:35 +0000685v18.02 Public major release
686 - Various NEON / OpenCL / GLES optimisations.
687 - Various bug fixes.
688 - Changed default number of threads on big LITTLE systems.
689 - Refactored examples and added:
690 - graph_mobilenet_qassym8
691 - graph_resnet
692 - graph_squeezenet_v1_1
Jenkinsc3f34a42018-03-02 12:38:09 +0000693 - Renamed @ref CLConvolutionLayer into @ref CLGEMMConvolutionLayer and created a new @ref CLConvolutionLayer to select the fastest convolution method.
694 - Renamed @ref NEConvolutionLayer into @ref NEGEMMConvolutionLayer and created a new @ref NEConvolutionLayer to select the fastest convolution method.
Anthony Barbier06ea0482018-02-22 15:45:35 +0000695 - Added in place support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000696 - @ref CLActivationLayer
697 - @ref CLBatchNormalizationLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000698 - Added QASYMM8 support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000699 - @ref CLActivationLayer
700 - @ref CLDepthwiseConvolutionLayer
701 - @ref NEDepthwiseConvolutionLayer
702 - @ref NESoftmaxLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000703 - Added FP16 support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000704 - @ref CLDepthwiseConvolutionLayer3x3
705 - @ref CLDepthwiseConvolutionLayer
706 - Added broadcasting support to @ref NEArithmeticAddition / @ref CLArithmeticAddition / @ref CLPixelWiseMultiplication
707 - Added fused batched normalization and activation to @ref CLBatchNormalizationLayer and @ref NEBatchNormalizationLayer
708 - Added support for non-square pooling to @ref NEPoolingLayer and @ref CLPoolingLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000709 - New OpenCL kernels / functions:
Jenkins0e205f72019-11-28 16:53:35 +0000710 - CLDirectConvolutionLayerOutputStageKernel
Anthony Barbier06ea0482018-02-22 15:45:35 +0000711 - New NEON kernels / functions
712 - Added name() method to all kernels.
713 - Added support for Winograd 5x5.
Jenkinsc3f34a42018-03-02 12:38:09 +0000714 - @ref NEPermuteKernel / @ref NEPermute
Jenkinsb3a371b2018-05-23 11:36:53 +0100715 - @ref NEWinogradLayerTransformInputKernel / NEWinogradLayer
716 - @ref NEWinogradLayerTransformOutputKernel / NEWinogradLayer
717 - @ref NEWinogradLayerTransformWeightsKernel / NEWinogradLayer
Jenkins52ba29e2018-08-29 15:32:11 +0000718 - Renamed NEWinogradLayerKernel into NEWinogradLayerBatchedGEMMKernel
Anthony Barbier06ea0482018-02-22 15:45:35 +0000719 - New GLES kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000720 - @ref GCTensorShiftKernel / @ref GCTensorShift
Anthony Barbier06ea0482018-02-22 15:45:35 +0000721
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000722v18.01 Public maintenance release
723 - Various bug fixes
724 - Added some of the missing validate() methods
Jenkinsc3f34a42018-03-02 12:38:09 +0000725 - Added @ref CLDeconvolutionLayerUpsampleKernel / @ref CLDeconvolutionLayer @ref CLDeconvolutionLayerUpsample
726 - Added @ref CLPermuteKernel / @ref CLPermute
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000727 - Added method to clean the programs cache in the CL Kernel library.
Jenkinsc3f34a42018-03-02 12:38:09 +0000728 - Added @ref GCArithmeticAdditionKernel / @ref GCArithmeticAddition
729 - Added @ref GCDepthwiseConvolutionLayer3x3Kernel / @ref GCDepthwiseConvolutionLayer3x3
730 - Added @ref GCNormalizePlanarYUVLayerKernel / @ref GCNormalizePlanarYUVLayer
731 - Added @ref GCScaleKernel / @ref GCScale
732 - Added @ref GCWeightsReshapeKernel / @ref GCConvolutionLayer
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000733 - Added FP16 support to the following GLES compute kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000734 - @ref GCCol2ImKernel
735 - @ref GCGEMMInterleave4x4Kernel
736 - @ref GCGEMMTranspose1xWKernel
737 - @ref GCIm2ColKernel
738 - Refactored NEON Winograd (NEWinogradLayerKernel)
739 - Added @ref NEDirectConvolutionLayerOutputStageKernel
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000740 - Added QASYMM8 support to the following NEON kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000741 - @ref NEDepthwiseConvolutionLayer3x3Kernel
742 - @ref NEFillBorderKernel
743 - @ref NEPoolingLayerKernel
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000744 - Added new examples:
745 - graph_cl_mobilenet_qasymm8.cpp
746 - graph_inception_v3.cpp
747 - gc_dc.cpp
748 - More tests added to both validation and benchmarking suites.
749
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000750v17.12 Public major release
751 - Most machine learning functions on OpenCL support the new data type QASYMM8
752 - Introduced logging interface
753 - Introduced opencl timer
754 - Reworked GEMMLowp interface
755 - Added new NEON assembly kernels for GEMMLowp, SGEMM and HGEMM
756 - Added validation method for most Machine Learning kernels / functions
757 - Added new graph examples such as googlenet, mobilenet, squeezenet, vgg16 and vgg19
758 - Added sgemm example for OpenCL
759 - Added absolute difference example for GLES compute
760 - Added new tests and benchmarks in validation and benchmark frameworks
761 - Added new kernels / functions for GLES compute
762
763 - New OpenGL ES kernels / functions
Jenkinsc3f34a42018-03-02 12:38:09 +0000764 - @ref GCAbsoluteDifferenceKernel / @ref GCAbsoluteDifference
765 - @ref GCActivationLayerKernel / @ref GCActivationLayer
766 - @ref GCBatchNormalizationLayerKernel / @ref GCBatchNormalizationLayer
767 - @ref GCCol2ImKernel
Jenkins975dfe12019-09-02 11:47:54 +0100768 - @ref GCDepthConcatenateLayerKernel / GCDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000769 - @ref GCDirectConvolutionLayerKernel / @ref GCDirectConvolutionLayer
770 - @ref GCDropoutLayerKernel / @ref GCDropoutLayer
771 - @ref GCFillBorderKernel / @ref GCFillBorder
772 - @ref GCGEMMInterleave4x4Kernel / @ref GCGEMMInterleave4x4
773 - @ref GCGEMMMatrixAccumulateBiasesKernel / @ref GCGEMMMatrixAdditionKernel / @ref GCGEMMMatrixMultiplyKernel / @ref GCGEMM
774 - @ref GCGEMMTranspose1xWKernel / @ref GCGEMMTranspose1xW
775 - @ref GCIm2ColKernel
776 - @ref GCNormalizationLayerKernel / @ref GCNormalizationLayer
777 - @ref GCPixelWiseMultiplicationKernel / @ref GCPixelWiseMultiplication
778 - @ref GCPoolingLayerKernel / @ref GCPoolingLayer
779 - @ref GCLogits1DMaxKernel / @ref GCLogits1DShiftExpSumKernel / @ref GCLogits1DNormKernel / @ref GCSoftmaxLayer
780 - @ref GCTransposeKernel / @ref GCTranspose
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000781
782 - New NEON kernels / functions
Jenkinsb3a371b2018-05-23 11:36:53 +0100783 - arm_compute::NEGEMMLowpAArch64A53Kernel / arm_compute::NEGEMMLowpAArch64Kernel / arm_compute::NEGEMMLowpAArch64V8P4Kernel / arm_compute::NEGEMMInterleavedBlockedKernel / arm_compute::NEGEMMLowpAssemblyMatrixMultiplyCore
784 - arm_compute::NEHGEMMAArch64FP16Kernel
Jenkins0e205f72019-11-28 16:53:35 +0000785 - @ref NEDepthwiseConvolutionLayer3x3Kernel / NEDepthwiseIm2ColKernel / @ref NEGEMMMatrixVectorMultiplyKernel / NEDepthwiseVectorToTensorKernel / @ref NEDepthwiseConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000786 - @ref NEGEMMLowpOffsetContributionKernel / @ref NEGEMMLowpMatrixAReductionKernel / @ref NEGEMMLowpMatrixBReductionKernel / @ref NEGEMMLowpMatrixMultiplyCore
787 - @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
788 - @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel / @ref NEGEMMLowpQuantizeDownInt32ToUint8Scale
Jenkinsb3a371b2018-05-23 11:36:53 +0100789 - NEWinogradLayer / NEWinogradLayerKernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000790
791 - New OpenCL kernels / functions
Jenkinsc3f34a42018-03-02 12:38:09 +0000792 - @ref CLGEMMLowpOffsetContributionKernel / @ref CLGEMMLowpMatrixAReductionKernel / @ref CLGEMMLowpMatrixBReductionKernel / @ref CLGEMMLowpMatrixMultiplyCore
793 - @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
794 - @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8Scale
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000795
796 - New graph nodes for NEON and OpenCL
Jenkinsb3a371b2018-05-23 11:36:53 +0100797 - graph::BranchLayer
798 - graph::DepthConvertLayer
799 - graph::DepthwiseConvolutionLayer
800 - graph::DequantizationLayer
801 - graph::FlattenLayer
802 - graph::QuantizationLayer
803 - graph::ReshapeLayer
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000804
Kaizenbf8b01d2017-10-12 14:26:51 +0100805v17.10 Public maintenance release
806 - Bug fixes:
807 - Check the maximum local workgroup size supported by OpenCL devices
808 - Minor documentation updates (Fixed instructions to build the examples)
Jenkinsc3f34a42018-03-02 12:38:09 +0000809 - Introduced a graph::GraphContext
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000810 - Added a few new Graph nodes, support for branches and grouping.
Kaizenbf8b01d2017-10-12 14:26:51 +0100811 - Automatically enable cl_printf in debug builds
812 - Fixed bare metal builds for armv7a
813 - Added AlexNet and cartoon effect examples
814 - Fixed library builds: libraries are no longer built as supersets of each other.(It means application using the Runtime part of the library now need to link against both libarm_compute_core and libarm_compute)
815
Kaizen8938bd32017-09-28 14:38:23 +0100816v17.09 Public major release
817 - Experimental Graph support: initial implementation of a simple stream API to easily chain machine learning layers.
Jenkinsc3f34a42018-03-02 12:38:09 +0000818 - Memory Manager (@ref BlobLifetimeManager, @ref BlobMemoryPool, @ref ILifetimeManager, @ref IMemoryGroup, @ref IMemoryManager, @ref IMemoryPool, @ref IPoolManager, @ref MemoryManagerOnDemand, @ref PoolManager)
Kaizen8938bd32017-09-28 14:38:23 +0100819 - New validation and benchmark frameworks (Boost and Google frameworks replaced by homemade framework).
820 - Most machine learning functions support both fixed point 8 and 16 bit (QS8, QS16) for both NEON and OpenCL.
821 - New NEON kernels / functions:
Jenkinsb3a371b2018-05-23 11:36:53 +0100822 - arm_compute::NEGEMMAssemblyBaseKernel arm_compute::NEGEMMAArch64Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +0000823 - @ref NEDequantizationLayerKernel / @ref NEDequantizationLayer
824 - @ref NEFloorKernel / @ref NEFloor
825 - @ref NEL2NormalizeLayerKernel / @ref NEL2NormalizeLayer
826 - @ref NEQuantizationLayerKernel @ref NEMinMaxLayerKernel / @ref NEQuantizationLayer
827 - @ref NEROIPoolingLayerKernel / @ref NEROIPoolingLayer
828 - @ref NEReductionOperationKernel / @ref NEReductionOperation
829 - @ref NEReshapeLayerKernel / @ref NEReshapeLayer
Kaizen8938bd32017-09-28 14:38:23 +0100830
831 - New OpenCL kernels / functions:
Jenkins0e205f72019-11-28 16:53:35 +0000832 - @ref CLDepthwiseConvolutionLayer3x3NCHWKernel @ref CLDepthwiseConvolutionLayer3x3NHWCKernel CLDepthwiseIm2ColKernel CLDepthwiseVectorToTensorKernel CLDepthwiseWeightsReshapeKernel / @ref CLDepthwiseConvolutionLayer3x3 @ref CLDepthwiseConvolutionLayer CLDepthwiseSeparableConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000833 - @ref CLDequantizationLayerKernel / @ref CLDequantizationLayer
834 - @ref CLDirectConvolutionLayerKernel / @ref CLDirectConvolutionLayer
835 - @ref CLFlattenLayer
836 - @ref CLFloorKernel / @ref CLFloor
Jenkins975dfe12019-09-02 11:47:54 +0100837 - CLGEMMTranspose1xW
Jenkinsc3f34a42018-03-02 12:38:09 +0000838 - @ref CLGEMMMatrixVectorMultiplyKernel
839 - @ref CLL2NormalizeLayerKernel / @ref CLL2NormalizeLayer
840 - @ref CLQuantizationLayerKernel @ref CLMinMaxLayerKernel / @ref CLQuantizationLayer
841 - @ref CLROIPoolingLayerKernel / @ref CLROIPoolingLayer
842 - @ref CLReductionOperationKernel / @ref CLReductionOperation
843 - @ref CLReshapeLayerKernel / @ref CLReshapeLayer
Kaizen8938bd32017-09-28 14:38:23 +0100844
Anthony Barbierdbdab852017-06-23 15:42:00 +0100845v17.06 Public major release
846 - Various bug fixes
847 - Added support for fixed point 8 bit (QS8) to the various NEON machine learning kernels.
848 - Added unit tests and benchmarks (AlexNet, LeNet)
849 - Added support for sub tensors.
850 - Added infrastructure to provide GPU specific optimisation for some OpenCL kernels.
Jenkinsc3f34a42018-03-02 12:38:09 +0000851 - Added @ref OMPScheduler (OpenMP) scheduler for NEON
852 - Added @ref SingleThreadScheduler scheduler for NEON (For bare metal)
853 - User can specify his own scheduler by implementing the @ref IScheduler interface.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100854 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000855 - @ref CLBatchNormalizationLayerKernel / @ref CLBatchNormalizationLayer
Jenkins975dfe12019-09-02 11:47:54 +0100856 - @ref CLDepthConcatenateLayerKernel / CLDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000857 - @ref CLHOGOrientationBinningKernel @ref CLHOGBlockNormalizationKernel, @ref CLHOGDetectorKernel / @ref CLHOGDescriptor @ref CLHOGDetector @ref CLHOGGradient @ref CLHOGMultiDetection
858 - @ref CLLocallyConnectedMatrixMultiplyKernel / @ref CLLocallyConnectedLayer
859 - @ref CLWeightsReshapeKernel / @ref CLConvolutionLayerReshapeWeights
Anthony Barbierdbdab852017-06-23 15:42:00 +0100860 - New C++ kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000861 - @ref CPPDetectionWindowNonMaximaSuppressionKernel
Anthony Barbierdbdab852017-06-23 15:42:00 +0100862 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000863 - @ref NEBatchNormalizationLayerKernel / @ref NEBatchNormalizationLayer
Jenkins975dfe12019-09-02 11:47:54 +0100864 - @ref NEDepthConcatenateLayerKernel / NEDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000865 - @ref NEDirectConvolutionLayerKernel / @ref NEDirectConvolutionLayer
866 - @ref NELocallyConnectedMatrixMultiplyKernel / @ref NELocallyConnectedLayer
867 - @ref NEWeightsReshapeKernel / @ref NEConvolutionLayerReshapeWeights
Anthony Barbierdbdab852017-06-23 15:42:00 +0100868
869v17.05 Public bug fixes release
870 - Various bug fixes
871 - Remaining of the functions ported to use accurate padding.
872 - Library does not link against OpenCL anymore (It uses dlopen / dlsym at runtime instead to determine whether or not OpenCL is available).
873 - Added "free" method to allocator.
874 - Minimum version of g++ required for armv7 Linux changed from 4.8 to 4.9
875
876v17.04 Public bug fixes release
877
878 The following functions have been ported to use the new accurate padding:
Jenkinsc3f34a42018-03-02 12:38:09 +0000879 - @ref CLColorConvertKernel
880 - @ref CLEdgeNonMaxSuppressionKernel
881 - @ref CLEdgeTraceKernel
882 - @ref CLGaussianPyramidHorKernel
883 - @ref CLGaussianPyramidVertKernel
884 - @ref CLGradientKernel
885 - @ref NEChannelCombineKernel
886 - @ref NEFillArrayKernel
887 - @ref NEGaussianPyramidHorKernel
888 - @ref NEGaussianPyramidVertKernel
Jenkinsb9abeae2018-11-22 11:58:08 +0000889 - NEHarrisScoreFP16Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +0000890 - @ref NEHarrisScoreKernel
891 - @ref NEHOGDetectorKernel
892 - @ref NELogits1DMaxKernel
893 - NELogits1DShiftExpSumKernel
894 - NELogits1DNormKernel
895 - @ref NENonMaximaSuppression3x3FP16Kernel
896 - @ref NENonMaximaSuppression3x3Kernel
Anthony Barbierdbdab852017-06-23 15:42:00 +0100897
Anthony Barbierdbdab852017-06-23 15:42:00 +0100898v17.03.1 First Major public release of the sources
899 - Renamed the library to arm_compute
900 - New CPP target introduced for C++ kernels shared between NEON and CL functions.
901 - New padding calculation interface introduced and ported most kernels / functions to use it.
902 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000903 - @ref CLGEMMLowpMatrixMultiplyKernel / CLGEMMLowp
Anthony Barbierdbdab852017-06-23 15:42:00 +0100904 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000905 - @ref NENormalizationLayerKernel / @ref NENormalizationLayer
906 - @ref NETransposeKernel / @ref NETranspose
907 - @ref NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
908 - @ref NEIm2ColKernel, @ref NECol2ImKernel, NEConvolutionLayerWeightsReshapeKernel / @ref NEConvolutionLayer
909 - @ref NEGEMMMatrixAccumulateBiasesKernel / @ref NEFullyConnectedLayer
910 - @ref NEGEMMLowpMatrixMultiplyKernel / NEGEMMLowp
Anthony Barbierdbdab852017-06-23 15:42:00 +0100911
912v17.03 Sources preview
913 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000914 - @ref CLGradientKernel, @ref CLEdgeNonMaxSuppressionKernel, @ref CLEdgeTraceKernel / @ref CLCannyEdge
Jenkins0e205f72019-11-28 16:53:35 +0000915 - GEMM refactoring + FP16 support: CLGEMMInterleave4x4Kernel, CLGEMMTranspose1xWKernel, @ref CLGEMMMatrixMultiplyKernel, CLGEMMMatrixAdditionKernel / @ref CLGEMM
Jenkinsc3f34a42018-03-02 12:38:09 +0000916 - @ref CLGEMMMatrixAccumulateBiasesKernel / @ref CLFullyConnectedLayer
917 - @ref CLTransposeKernel / @ref CLTranspose
918 - @ref CLLKTrackerInitKernel, @ref CLLKTrackerStage0Kernel, @ref CLLKTrackerStage1Kernel, @ref CLLKTrackerFinalizeKernel / @ref CLOpticalFlow
919 - @ref CLNormalizationLayerKernel / @ref CLNormalizationLayer
920 - @ref CLLaplacianPyramid, @ref CLLaplacianReconstruct
Anthony Barbierdbdab852017-06-23 15:42:00 +0100921 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000922 - @ref NEActivationLayerKernel / @ref NEActivationLayer
923 - GEMM refactoring + FP16 support (Requires armv8.2 CPU): @ref NEGEMMInterleave4x4Kernel, @ref NEGEMMTranspose1xWKernel, @ref NEGEMMMatrixMultiplyKernel, @ref NEGEMMMatrixAdditionKernel / @ref NEGEMM
924 - @ref NEPoolingLayerKernel / @ref NEPoolingLayer
Anthony Barbierdbdab852017-06-23 15:42:00 +0100925
926v17.02.1 Sources preview
927 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000928 - @ref CLLogits1DMaxKernel, @ref CLLogits1DShiftExpSumKernel, @ref CLLogits1DNormKernel / @ref CLSoftmaxLayer
929 - @ref CLPoolingLayerKernel / @ref CLPoolingLayer
930 - @ref CLIm2ColKernel, @ref CLCol2ImKernel, CLConvolutionLayerWeightsReshapeKernel / @ref CLConvolutionLayer
931 - @ref CLRemapKernel / @ref CLRemap
932 - @ref CLGaussianPyramidHorKernel, @ref CLGaussianPyramidVertKernel / @ref CLGaussianPyramid, @ref CLGaussianPyramidHalf, @ref CLGaussianPyramidOrb
933 - @ref CLMinMaxKernel, @ref CLMinMaxLocationKernel / @ref CLMinMaxLocation
934 - @ref CLNonLinearFilterKernel / @ref CLNonLinearFilter
Anthony Barbierdbdab852017-06-23 15:42:00 +0100935 - New NEON FP16 kernels (Requires armv8.2 CPU)
Jenkinsc3f34a42018-03-02 12:38:09 +0000936 - @ref NEAccumulateWeightedFP16Kernel
937 - @ref NEBox3x3FP16Kernel
938 - @ref NENonMaximaSuppression3x3FP16Kernel
Anthony Barbierdbdab852017-06-23 15:42:00 +0100939
940v17.02 Sources preview
941 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000942 - @ref CLActivationLayerKernel / @ref CLActivationLayer
943 - @ref CLChannelCombineKernel / @ref CLChannelCombine
944 - @ref CLDerivativeKernel / @ref CLChannelExtract
945 - @ref CLFastCornersKernel / @ref CLFastCorners
946 - @ref CLMeanStdDevKernel / @ref CLMeanStdDev
Anthony Barbierdbdab852017-06-23 15:42:00 +0100947 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000948 - HOG / SVM: @ref NEHOGOrientationBinningKernel, @ref NEHOGBlockNormalizationKernel, @ref NEHOGDetectorKernel, NEHOGNonMaximaSuppressionKernel / @ref NEHOGDescriptor, @ref NEHOGDetector, @ref NEHOGGradient, @ref NEHOGMultiDetection
949 - @ref NENonLinearFilterKernel / @ref NENonLinearFilter
Anthony Barbierdbdab852017-06-23 15:42:00 +0100950 - Introduced a CLScheduler to manage the default context and command queue used by the runtime library and create synchronisation events.
951 - Switched all the kernels / functions to use tensors instead of images.
952 - Updated documentation to include instructions to build the library from sources.
953
954v16.12 Binary preview release
955 - Original release
956
957@section S3_how_to_build How to build the library and the examples
958
959@subsection S3_1_build_options Build options
960
961scons 2.3 or above is required to build the library.
962To see the build options available simply run ```scons -h```:
963
964 debug: Debug (yes|no)
965 default: False
966 actual: False
967
968 asserts: Enable asserts (this flag is forced to 1 for debug=1) (yes|no)
969 default: False
970 actual: False
971
972 arch: Target Architecture (armv7a|arm64-v8a|arm64-v8.2-a|x86_32|x86_64)
973 default: armv7a
974 actual: armv7a
975
976 os: Target OS (linux|android|bare_metal)
977 default: linux
978 actual: linux
979
Anthony Barbier06ea0482018-02-22 15:45:35 +0000980 build: Build type (native|cross_compile|embed_only)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100981 default: cross_compile
982 actual: cross_compile
983
984 examples: Build example programs (yes|no)
985 default: True
986 actual: True
987
988 Werror: Enable/disable the -Werror compilation flag (yes|no)
989 default: True
990 actual: True
991
992 opencl: Enable OpenCL support (yes|no)
993 default: True
994 actual: True
995
996 neon: Enable Neon support (yes|no)
997 default: False
998 actual: False
999
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001000 gles_compute: Enable OpenGL ES Compute Shader support (yes|no)
1001 default: False
1002 actual: False
1003
1004 embed_kernels: Embed OpenCL kernels and OpenGL ES compute shader in library binary (yes|no)
Anthony Barbierf45d5a92018-01-24 16:23:15 +00001005 default: True
1006 actual: True
Anthony Barbierdbdab852017-06-23 15:42:00 +01001007
1008 set_soname: Set the library's soname and shlibversion (requires SCons 2.4 or above) (yes|no)
1009 default: False
1010 actual: False
1011
1012 openmp: Enable OpenMP backend (yes|no)
1013 default: False
1014 actual: False
1015
1016 cppthreads: Enable C++11 threads backend (yes|no)
1017 default: True
1018 actual: True
1019
1020 build_dir: Specify sub-folder for the build ( /path/to/build_dir )
1021 default: .
1022 actual: .
1023
1024 extra_cxx_flags: Extra CXX flags to be appended to the build command
1025 default:
1026 actual:
1027
1028 pmu: Enable PMU counters (yes|no)
1029 default: False
1030 actual: False
1031
Kaizen8938bd32017-09-28 14:38:23 +01001032 mali: Enable Mali hardware counters (yes|no)
1033 default: False
1034 actual: False
1035
Anthony Barbierdbdab852017-06-23 15:42:00 +01001036 validation_tests: Build validation test programs (yes|no)
1037 default: False
1038 actual: False
1039
1040 benchmark_tests: Build benchmark test programs (yes|no)
1041 default: False
1042 actual: False
1043
1044@b debug / @b asserts:
1045 - With debug=1 asserts are enabled, and the library is built with symbols and no optimisations enabled.
1046 - With debug=0 and asserts=1: Optimisations are enabled and symbols are removed, however all the asserts are still present (This is about 20% slower than the release build)
1047 - With debug=0 and asserts=0: All optimisations are enable and no validation is performed, if the application misuses the library it is likely to result in a crash. (Only use this mode once you are sure your application is working as expected).
1048
1049@b arch: The x86_32 and x86_64 targets can only be used with neon=0 and opencl=1.
1050
1051@b os: Choose the operating system you are targeting: Linux, Android or bare metal.
1052@note bare metal can only be used for NEON (not OpenCL), only static libraries get built and NEON's multi-threading support is disabled.
1053
1054@b build: you can either build directly on your device (native) or cross compile from your desktop machine (cross-compile). In both cases make sure the compiler is available in your path.
1055
1056@note If you want to natively compile for 32bit on a 64bit ARM device running a 64bit OS then you will have to use cross-compile too.
1057
Anthony Barbier06ea0482018-02-22 15:45:35 +00001058There is also an 'embed_only' option which will generate all the .embed files for the OpenCL kernels and / or OpenGLES compute shaders. This might be useful if using a different build system to compile the library.
1059
Anthony Barbierdbdab852017-06-23 15:42:00 +01001060@b Werror: If you are compiling using the same toolchains as the ones used in this guide then there shouldn't be any warning and therefore you should be able to keep Werror=1. If with a different compiler version the library fails to build because of warnings interpreted as errors then, if you are sure the warnings are not important, you might want to try to build with Werror=0 (But please do report the issue either on Github or by an email to developer@arm.com so that the issue can be addressed).
1061
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001062@b opencl / @b neon / @b gles_compute: Choose which SIMD technology you want to target. (NEON for ARM Cortex-A CPUs or OpenCL / GLES_COMPUTE for ARM Mali GPUs)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001063
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001064@b embed_kernels: For OpenCL / GLES_COMPUTE only: set embed_kernels=1 if you want the OpenCL / GLES_COMPUTE kernels to be built in the library's binaries instead of being read from separate ".cl" / ".cs" files. If embed_kernels is set to 0 then the application can set the path to the folder containing the OpenCL / GLES_COMPUTE kernel files by calling CLKernelLibrary::init() / GCKernelLibrary::init(). By default the path is set to "./cl_kernels" / "./cs_shaders".
Anthony Barbierdbdab852017-06-23 15:42:00 +01001065
1066@b set_soname: Do you want to build the versioned version of the library ?
1067
1068If enabled the library will contain a SONAME and SHLIBVERSION and some symlinks will automatically be created between the objects.
1069Example:
1070 libarm_compute_core.so -> libarm_compute_core.so.1.0.0
1071 libarm_compute_core.so.1 -> libarm_compute_core.so.1.0.0
1072 libarm_compute_core.so.1.0.0
1073
1074@note This options is disabled by default as it requires SCons version 2.4 or above.
1075
1076@b extra_cxx_flags: Custom CXX flags which will be appended to the end of the build command.
1077
1078@b build_dir: Build the library in a subfolder of the "build" folder. (Allows to build several configurations in parallel).
1079
1080@b examples: Build or not the examples
1081
1082@b validation_tests: Enable the build of the validation suite.
1083
Anthony Barbierdbdab852017-06-23 15:42:00 +01001084@b benchmark_tests: Enable the build of the benchmark tests
1085
1086@b pmu: Enable the PMU cycle counter to measure execution time in benchmark tests. (Your device needs to support it)
1087
Kaizen8938bd32017-09-28 14:38:23 +01001088@b mali: Enable the collection of Mali hardware counters to measure execution time in benchmark tests. (Your device needs to have a Mali driver that supports it)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001089
1090@b openmp Build in the OpenMP scheduler for NEON.
1091
1092@note Only works when building with g++ not clang++
1093
1094@b cppthreads Build in the C++11 scheduler for NEON.
1095
Jenkinsc3f34a42018-03-02 12:38:09 +00001096@sa Scheduler::set
Anthony Barbierdbdab852017-06-23 15:42:00 +01001097
Kaizen8938bd32017-09-28 14:38:23 +01001098@subsection S3_2_linux Building for Linux
Anthony Barbierdbdab852017-06-23 15:42:00 +01001099
1100@subsubsection S3_2_1_library How to build the library ?
1101
1102For Linux, the library was successfully built and tested using the following Linaro GCC toolchain:
1103
Jenkins52ba29e2018-08-29 15:32:11 +00001104 - gcc-linaro-4.9-2016.02-x86_64_arm-linux-gnueabihf
Anthony Barbierdbdab852017-06-23 15:42:00 +01001105 - gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu
Anthony Barbierdbdab852017-06-23 15:42:00 +01001106
Anthony Barbierdbdab852017-06-23 15:42:00 +01001107To cross-compile the library in debug mode, with NEON only support, for Linux 32bit:
1108
1109 scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=linux arch=armv7a
1110
1111To cross-compile the library in asserts mode, with OpenCL only support, for Linux 64bit:
1112
1113 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=linux arch=arm64-v8a
1114
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001115To cross-compile the library in asserts mode, with GLES_COMPUTE only support, for Linux 64bit:
1116
1117 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=0 gles_compute=1 embed_kernels=1 os=linux arch=arm64-v8a
1118
Anthony Barbierdbdab852017-06-23 15:42:00 +01001119You can also compile the library natively on an ARM device by using <b>build=native</b>:
1120
1121 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=arm64-v8a build=native
1122 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=native
1123
1124@note g++ for ARM is mono-arch, therefore if you want to compile for Linux 32bit on a Linux 64bit platform you will have to use a cross compiler.
1125
1126For example on a 64bit Debian based system you would have to install <b>g++-arm-linux-gnueabihf</b>
1127
1128 apt-get install g++-arm-linux-gnueabihf
1129
1130Then run
1131
1132 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=cross_compile
1133
1134or simply remove the build parameter as build=cross_compile is the default value:
1135
1136 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a
1137
1138@attention To cross compile with opencl=1 you need to make sure to have a version of libOpenCL matching your target architecture.
1139
1140@subsubsection S3_2_2_examples How to manually build the examples ?
1141
1142The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
1143
Jenkinsb3a371b2018-05-23 11:36:53 +01001144@note The following command lines assume the arm_compute binaries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built library with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001145
1146To cross compile a NEON example for Linux 32bit:
1147
Kaizenbf8b01d2017-10-12 14:26:51 +01001148 arm-linux-gnueabihf-g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001149
1150To cross compile a NEON example for Linux 64bit:
1151
Kaizenbf8b01d2017-10-12 14:26:51 +01001152 aarch64-linux-gnu-g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -L. -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001153
1154(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1155
1156To cross compile an OpenCL example for Linux 32bit:
1157
Jenkinsb3a371b2018-05-23 11:36:53 +01001158 arm-linux-gnueabihf-g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001159
1160To cross compile an OpenCL example for Linux 64bit:
1161
Jenkinsb3a371b2018-05-23 11:36:53 +01001162 aarch64-linux-gnu-g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -L. -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Kaizenbf8b01d2017-10-12 14:26:51 +01001163
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001164To cross compile a GLES example for Linux 32bit:
1165
1166 arm-linux-gnueabihf-g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -mfpu=neon -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
1167
1168To cross compile a GLES example for Linux 64bit:
1169
1170 aarch64-linux-gnu-g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
1171
Kaizenbf8b01d2017-10-12 14:26:51 +01001172(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1173
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001174To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
1175
1176@note The compute library must currently be built with both neon and opencl enabled - neon=1 and opencl=1
Kaizenbf8b01d2017-10-12 14:26:51 +01001177
1178i.e. to cross compile the "graph_lenet" example for Linux 32bit:
1179
Jenkins52ba29e2018-08-29 15:32:11 +00001180 arm-linux-gnueabihf-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Kaizenbf8b01d2017-10-12 14:26:51 +01001181
1182i.e. to cross compile the "graph_lenet" example for Linux 64bit:
1183
Jenkins52ba29e2018-08-29 15:32:11 +00001184 aarch64-linux-gnu-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Anthony Barbierdbdab852017-06-23 15:42:00 +01001185
1186(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1187
giorgio-arena869d4242017-10-23 16:58:59 +01001188@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
1189
Anthony Barbierdbdab852017-06-23 15:42:00 +01001190To compile natively (i.e directly on an ARM device) for NEON for Linux 32bit:
1191
Kaizenbf8b01d2017-10-12 14:26:51 +01001192 g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001193
1194To compile natively (i.e directly on an ARM device) for NEON for Linux 64bit:
1195
Kaizenbf8b01d2017-10-12 14:26:51 +01001196 g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001197
1198(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
1199
1200To compile natively (i.e directly on an ARM device) for OpenCL for Linux 32bit or Linux 64bit:
1201
Jenkinsb3a371b2018-05-23 11:36:53 +01001202 g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001203
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001204To compile natively (i.e directly on an ARM device) for GLES for Linux 32bit or Linux 64bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001205
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001206 g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
Kaizenbf8b01d2017-10-12 14:26:51 +01001207
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001208To compile natively the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
1209@note The compute library must currently be built with both neon and opencl enabled - neon=1 and opencl=1
Kaizenbf8b01d2017-10-12 14:26:51 +01001210
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001211i.e. to natively compile the "graph_lenet" example for Linux 32bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001212
Jenkins52ba29e2018-08-29 15:32:11 +00001213 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001214
1215i.e. to natively compile the "graph_lenet" example for Linux 64bit:
1216
Jenkins52ba29e2018-08-29 15:32:11 +00001217 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Kaizenbf8b01d2017-10-12 14:26:51 +01001218
1219(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001220
giorgio-arena869d4242017-10-23 16:58:59 +01001221@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
1222
Anthony Barbierdbdab852017-06-23 15:42:00 +01001223@note These two commands assume libarm_compute.so is available in your library path, if not add the path to it using -L
1224
1225To run the built executable simply run:
1226
1227 LD_LIBRARY_PATH=build ./neon_convolution
1228
1229or
1230
1231 LD_LIBRARY_PATH=build ./cl_convolution
1232
Jenkins52ba29e2018-08-29 15:32:11 +00001233@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
Jenkinsc3f34a42018-03-02 12:38:09 +00001234
1235For example:
Jenkinsb3a371b2018-05-23 11:36:53 +01001236
Jenkins52ba29e2018-08-29 15:32:11 +00001237 LD_LIBRARY_PATH=. ./graph_lenet --help
Jenkinsc3f34a42018-03-02 12:38:09 +00001238
Jenkins52ba29e2018-08-29 15:32:11 +00001239Below is a list of the common parameters among the graph examples :
1240@snippet utils/CommonGraphOptions.h Common graph examples parameters
Jenkinsc3f34a42018-03-02 12:38:09 +00001241
Kaizen8938bd32017-09-28 14:38:23 +01001242@subsection S3_3_android Building for Android
Anthony Barbierdbdab852017-06-23 15:42:00 +01001243
1244For Android, the library was successfully built and tested using Google's standalone toolchains:
Jenkins52ba29e2018-08-29 15:32:11 +00001245 - clang++ from NDK r17b for armv7a
1246 - clang++ from NDK r17b for arm64-v8a
1247 - clang++ from NDK r18-beta1 for arm64-v8.2-a with FP16 support
Anthony Barbierdbdab852017-06-23 15:42:00 +01001248
1249Here is a guide to <a href="https://developer.android.com/ndk/guides/standalone_toolchain.html">create your Android standalone toolchains from the NDK</a>
1250
Jenkins52ba29e2018-08-29 15:32:11 +00001251- Download the NDK r17b from here: https://developer.android.com/ndk/downloads/index.html
Jenkins4ba87db2019-05-23 17:11:51 +01001252- Make sure you have Python 2.7 installed on your machine.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001253- Generate the 32 and/or 64 toolchains by running the following commands:
1254
Jenkinsb3a371b2018-05-23 11:36:53 +01001255
Jenkins52ba29e2018-08-29 15:32:11 +00001256 $NDK/build/tools/make_standalone_toolchain.py --arch arm64 --install-dir $MY_TOOLCHAINS/aarch64-linux-android-ndk-r17b --stl libc++ --api 21
1257 $NDK/build/tools/make_standalone_toolchain.py --arch arm --install-dir $MY_TOOLCHAINS/arm-linux-android-ndk-r17b --stl libc++ --api 21
Anthony Barbierdbdab852017-06-23 15:42:00 +01001258
Jenkins52ba29e2018-08-29 15:32:11 +00001259@attention We used to use gnustl but as of NDK r17 it is deprecated so we switched to libc++
Anthony Barbierdbdab852017-06-23 15:42:00 +01001260
Jenkinsb3a371b2018-05-23 11:36:53 +01001261@note Make sure to add the toolchains to your PATH:
1262
Jenkins52ba29e2018-08-29 15:32:11 +00001263 export PATH=$PATH:$MY_TOOLCHAINS/aarch64-linux-android-ndk-r17b/bin:$MY_TOOLCHAINS/arm-linux-android-ndk-r17b/bin
Anthony Barbierdbdab852017-06-23 15:42:00 +01001264
1265@subsubsection S3_3_1_library How to build the library ?
1266
Anthony Barbierdbdab852017-06-23 15:42:00 +01001267To cross-compile the library in debug mode, with NEON only support, for Android 32bit:
1268
1269 CXX=clang++ CC=clang scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=android arch=armv7a
1270
1271To cross-compile the library in asserts mode, with OpenCL only support, for Android 64bit:
1272
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001273 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=android arch=arm64-v8a
1274
1275To cross-compile the library in asserts mode, with GLES_COMPUTE only support, for Android 64bit:
1276
1277 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=0 gles_compute=1 embed_kernels=1 os=android arch=arm64-v8a
Anthony Barbierdbdab852017-06-23 15:42:00 +01001278
1279@subsubsection S3_3_2_examples How to manually build the examples ?
1280
1281The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
1282
Jenkinsb3a371b2018-05-23 11:36:53 +01001283@note The following command lines assume the arm_compute binaries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built library with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001284
1285Once you've got your Android standalone toolchain built and added to your path you can do the following:
1286
1287To cross compile a NEON example:
1288
1289 #32 bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001290 arm-linux-androideabi-clang++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o neon_convolution_arm -static-libstdc++ -pie
Anthony Barbierdbdab852017-06-23 15:42:00 +01001291 #64 bit:
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001292 aarch64-linux-android-clang++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o neon_convolution_aarch64 -static-libstdc++ -pie
Anthony Barbierdbdab852017-06-23 15:42:00 +01001293
1294To cross compile an OpenCL example:
1295
1296 #32 bit:
Jenkinsb3a371b2018-05-23 11:36:53 +01001297 arm-linux-androideabi-clang++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o cl_convolution_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001298 #64 bit:
Jenkinsb3a371b2018-05-23 11:36:53 +01001299 aarch64-linux-android-clang++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o cl_convolution_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001300
1301To cross compile a GLES example:
Anthony Barbierf45d5a92018-01-24 16:23:15 +00001302
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001303 #32 bit:
1304 arm-linux-androideabi-clang++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o gc_absdiff_arm -static-libstdc++ -pie -DARM_COMPUTE_GC
1305 #64 bit:
1306 aarch64-linux-android-clang++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o gc_absdiff_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_GC
Kaizenbf8b01d2017-10-12 14:26:51 +01001307
1308To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the library arm_compute_graph also.
1309(notice the compute library has to be built with both neon and opencl enabled - neon=1 and opencl=1)
1310
1311 #32 bit:
Jenkins52ba29e2018-08-29 15:32:11 +00001312 arm-linux-androideabi-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Kaizenbf8b01d2017-10-12 14:26:51 +01001313 #64 bit:
Jenkins52ba29e2018-08-29 15:32:11 +00001314 aarch64-linux-android-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001315
1316@note Due to some issues in older versions of the Mali OpenCL DDK (<= r13p0), we recommend to link arm_compute statically on Android.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001317@note When linked statically the arm_compute_graph library currently needs the --whole-archive linker flag in order to work properly
Anthony Barbierdbdab852017-06-23 15:42:00 +01001318
1319Then you need to do is upload the executable and the shared library to the device using ADB:
1320
1321 adb push neon_convolution_arm /data/local/tmp/
1322 adb push cl_convolution_arm /data/local/tmp/
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001323 adb push gc_absdiff_arm /data/local/tmp/
Anthony Barbierdbdab852017-06-23 15:42:00 +01001324 adb shell chmod 777 -R /data/local/tmp/
1325
1326And finally to run the example:
1327
1328 adb shell /data/local/tmp/neon_convolution_arm
1329 adb shell /data/local/tmp/cl_convolution_arm
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001330 adb shell /data/local/tmp/gc_absdiff_arm
Anthony Barbierdbdab852017-06-23 15:42:00 +01001331
1332For 64bit:
1333
1334 adb push neon_convolution_aarch64 /data/local/tmp/
1335 adb push cl_convolution_aarch64 /data/local/tmp/
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001336 adb push gc_absdiff_aarch64 /data/local/tmp/
Anthony Barbierdbdab852017-06-23 15:42:00 +01001337 adb shell chmod 777 -R /data/local/tmp/
1338
1339And finally to run the example:
1340
1341 adb shell /data/local/tmp/neon_convolution_aarch64
1342 adb shell /data/local/tmp/cl_convolution_aarch64
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001343 adb shell /data/local/tmp/gc_absdiff_aarch64
Anthony Barbierdbdab852017-06-23 15:42:00 +01001344
Jenkins52ba29e2018-08-29 15:32:11 +00001345@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
Jenkinsc3f34a42018-03-02 12:38:09 +00001346
1347For example:
Jenkins52ba29e2018-08-29 15:32:11 +00001348 adb shell /data/local/tmp/graph_lenet --help
Jenkinsc3f34a42018-03-02 12:38:09 +00001349
1350In this case the first argument of LeNet (like all the graph examples) is the target (i.e 0 to run on NEON, 1 to run on OpenCL if available, 2 to run on OpenCL using the CLTuner), the second argument is the path to the folder containing the npy files for the weights and finally the third argument is the number of batches to run.
1351
Kaizenbf8b01d2017-10-12 14:26:51 +01001352@subsection S3_4_bare_metal Building for bare metal
1353
1354For bare metal, the library was successfully built using linaros's latest (gcc-linaro-6.3.1-2017.05) bare metal toolchains:
1355 - arm-eabi for armv7a
1356 - aarch64-elf for arm64-v8a
1357
1358Download linaro for <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/arm-eabi/">armv7a</a> and <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-elf/">arm64-v8a</a>.
1359
1360@note Make sure to add the toolchains to your PATH: export PATH=$PATH:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-elf/bin:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_arm-eabi/bin
1361
1362@subsubsection S3_4_1_library How to build the library ?
1363
1364To cross-compile the library with NEON support for baremetal arm64-v8a:
1365
1366 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=bare_metal arch=arm64-v8a build=cross_compile cppthreads=0 openmp=0 standalone=1
1367
1368@subsubsection S3_4_2_examples How to manually build the examples ?
1369
1370Examples are disabled when building for bare metal. If you want to build the examples you need to provide a custom bootcode depending on the target architecture and link against the compute library. More information about bare metal bootcode can be found <a href="http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0527a/index.html">here</a>.
1371
1372@subsection S3_5_windows_host Building on a Windows host system
Kaizen8938bd32017-09-28 14:38:23 +01001373
1374Using `scons` directly from the Windows command line is known to cause
1375problems. The reason seems to be that if `scons` is setup for cross-compilation
1376it gets confused about Windows style paths (using backslashes). Thus it is
1377recommended to follow one of the options outlined below.
1378
Kaizenbf8b01d2017-10-12 14:26:51 +01001379@subsubsection S3_5_1_ubuntu_on_windows Bash on Ubuntu on Windows
Kaizen8938bd32017-09-28 14:38:23 +01001380
Jenkins975dfe12019-09-02 11:47:54 +01001381The best and easiest option is to use
1382<a href="https://msdn.microsoft.com/en-gb/commandline/wsl/about">Ubuntu on Windows</a>.
Kaizen8938bd32017-09-28 14:38:23 +01001383This feature is still marked as *beta* and thus might not be available.
1384However, if it is building the library is as simple as opening a *Bash on
1385Ubuntu on Windows* shell and following the general guidelines given above.
1386
Kaizenbf8b01d2017-10-12 14:26:51 +01001387@subsubsection S3_5_2_cygwin Cygwin
Kaizen8938bd32017-09-28 14:38:23 +01001388
Jenkins975dfe12019-09-02 11:47:54 +01001389If the Windows subsystem for Linux is not available <a href="https://www.cygwin.com/">Cygwin</a>
1390can be used to install and run `scons`, the minimum Cygwin version must be 3.0.7 or later. In addition
1391to the default packages installed by Cygwin `scons` has to be selected in the installer. (`git` might
Kaizen8938bd32017-09-28 14:38:23 +01001392also be useful but is not strictly required if you already have got the source
Jenkins975dfe12019-09-02 11:47:54 +01001393code of the library.) Linaro provides pre-built versions of
1394<a href="http://releases.linaro.org/components/toolchain/binaries/">GCC cross-compilers</a>
Kaizen8938bd32017-09-28 14:38:23 +01001395that can be used from the Cygwin terminal. When building for Android the
1396compiler is included in the Android standalone toolchain. After everything has
1397been set up in the Cygwin terminal the general guide on building the library
1398can be followed.
1399
Kaizenbf8b01d2017-10-12 14:26:51 +01001400@subsection S3_6_cl_stub_library The OpenCL stub library
Anthony Barbierdbdab852017-06-23 15:42:00 +01001401
1402In the opencl-1.2-stubs folder you will find the sources to build a stub OpenCL library which then can be used to link your application or arm_compute against.
1403
1404If you preferred you could retrieve the OpenCL library from your device and link against this one but often this library will have dependencies on a range of system libraries forcing you to link your application against those too even though it is not using them.
1405
1406@warning This OpenCL library provided is a stub and *not* a real implementation. You can use it to resolve OpenCL's symbols in arm_compute while building the example but you must make sure the real libOpenCL.so is in your PATH when running the example or it will not work.
1407
1408To cross-compile the stub OpenCL library simply run:
1409
1410 <target-prefix>-gcc -o libOpenCL.so -Iinclude opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1411
1412For example:
1413
Anthony Barbierdbdab852017-06-23 15:42:00 +01001414 #Linux 32bit
1415 arm-linux-gnueabihf-gcc -o libOpenCL.so -Iinclude opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1416 #Linux 64bit
1417 aarch64-linux-gnu-gcc -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC
1418 #Android 32bit
1419 arm-linux-androideabi-clang -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1420 #Android 64bit
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001421 aarch64-linux-android-clang -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1422
1423@subsection S3_7_gles_stub_library The Linux OpenGLES and EGL stub libraries
1424
1425In the opengles-3.1-stubs folder you will find the sources to build stub EGL and OpenGLES libraries which then can be used to link your Linux application of arm_compute against.
1426
1427@note The stub libraries are only needed on Linux. For Android, the NDK toolchains already provide the meta-EGL and meta-GLES libraries.
1428
1429To cross-compile the stub OpenGLES and EGL libraries simply run:
1430
1431 <target-prefix>-gcc -o libEGL.so -Iinclude/linux opengles-3.1-stubs/EGL.c -fPIC -shared
1432 <target-prefix>-gcc -o libGLESv2.so -Iinclude/linux opengles-3.1-stubs/GLESv2.c -fPIC -shared
1433
1434 #Linux 32bit
1435 arm-linux-gnueabihf-gcc -o libEGL.so -Iinclude/linux opengles-3.1-stubs/EGL.c -fPIC -shared
1436 arm-linux-gnueabihf-gcc -o libGLESv2.so -Iinclude/linux opengles-3.1-stubs/GLESv2.c -fPIC -shared
1437
1438 #Linux 64bit
1439 aarch64-linux-gnu-gcc -o libEGL.so -Iinclude/linux opengles-3.1-stubs/EGL.c -fPIC -shared
1440 aarch64-linux-gnu-gcc -o libGLESv2.so -Iinclude/linux opengles-3.1-stubs/GLESv2.c -fPIC -shared
Jenkins52ba29e2018-08-29 15:32:11 +00001441
1442@subsection S3_8_cl_requirements OpenCL DDK Requirements
1443
1444@subsubsection S3_8_1_cl_hard_requirements Hard Requirements
1445
1446Compute Library requires OpenCL 1.1 and above with support of non uniform workgroup sizes, which is officially supported in the Mali OpenCL DDK r8p0 and above as an extension (respective extension flag is \a -cl-arm-non-uniform-work-group-size).
1447
1448Enabling 16-bit floating point calculations require \a cl_khr_fp16 extension to be supported. All Mali GPUs with compute capabilities have native support for half precision floating points.
1449
1450Use of @ref CLMeanStdDev function requires 64-bit atomics support, thus \a cl_khr_int64_base_atomics should be supported in order to use.
1451
1452@subsubsection S3_8_2_cl_performance_requirements Performance improvements
1453
1454Integer dot product built-in function extensions (and therefore optimized kernels) are available with Mali OpenCL DDK r22p0 and above for the following GPUs : G71, G76. The relevant extensions are \a cl_arm_integer_dot_product_int8, \a cl_arm_integer_dot_product_accumulate_int8 and \a cl_arm_integer_dot_product_accumulate_int16.
1455
1456OpenCL kernel level debugging can be simplified with the use of printf, this requires the \a cl_arm_printf extension to be supported.
1457
1458SVM allocations are supported for all the underlying allocations in Compute Library. To enable this OpenCL 2.0 and above is a requirement.
1459
1460@subsection S3_9_cl_tuner OpenCL Tuner
1461
1462The OpenCL tuner, a.k.a. CLTuner, is a module of Arm Compute Library that can improve the performance of the OpenCL kernels tuning the Local-Workgroup-Size (LWS).
1463The optimal LWS for each unique OpenCL kernel configuration is stored in a table. This table can be either imported or exported from/to a file.
Jenkins4ba87db2019-05-23 17:11:51 +01001464The OpenCL tuner runs the same OpenCL kernel for a range of local workgroup sizes and keeps the local workgroup size of the fastest run to use in subsequent calls to the kernel. It supports three modes of tuning with different trade-offs between the time taken to tune and the kernel execution time achieved using the best LWS found. In the Exhaustive mode, it searches all the supported values of LWS. This mode takes the longest time to tune and is the most likely to find the optimal LWS. Normal mode searches a subset of LWS values to yield a good approximation of the optimal LWS. It takes less time to tune than Exhaustive mode. Rapid mode takes the shortest time to tune and finds an LWS value that is at least as good or better than the default LWS value. The mode affects only the search for the optimal LWS and has no effect when the LWS value is imported from a file.
Jenkins52ba29e2018-08-29 15:32:11 +00001465In order for the performance numbers to be meaningful you must disable the GPU power management and set it to a fixed frequency for the entire duration of the tuning phase.
1466
1467If you wish to know more about LWS and the important role on improving the GPU cache utilization, we suggest having a look at the presentation "Even Faster CNNs: Exploring the New Class of Winograd Algorithms available at the following link:
1468
1469https://www.embedded-vision.com/platinum-members/arm/embedded-vision-training/videos/pages/may-2018-embedded-vision-summit-iodice
1470
1471Tuning a network from scratch can be long and affect considerably the execution time for the first run of your network. It is recommended for this reason to store the CLTuner's result in a file to amortize this time when you either re-use the same network or the functions with the same configurations. The tuning is performed only once for each OpenCL kernel.
1472
1473CLTuner looks for the optimal LWS for each unique OpenCL kernel configuration. Since a function (i.e. Convolution Layer, Pooling Layer, Fully Connected Layer ...) can be called multiple times but with different parameters, we associate an "id" (called "config_id") to each kernel to distinguish the unique configurations.
1474
1475 #Example: 2 unique Matrix Multiply configurations
1476@code{.cpp}
1477 TensorShape a0 = TensorShape(32,32);
1478 TensorShape b0 = TensorShape(32,32);
1479 TensorShape c0 = TensorShape(32,32);
1480 TensorShape a1 = TensorShape(64,64);
1481 TensorShape b1 = TensorShape(64,64);
1482 TensorShape c1 = TensorShape(64,64);
1483
1484 Tensor a0_tensor;
1485 Tensor b0_tensor;
1486 Tensor c0_tensor;
1487 Tensor a1_tensor;
1488 Tensor b1_tensor;
1489 Tensor c1_tensor;
1490
1491 a0_tensor.allocator()->init(TensorInfo(a0, 1, DataType::F32));
1492 b0_tensor.allocator()->init(TensorInfo(b0, 1, DataType::F32));
1493 c0_tensor.allocator()->init(TensorInfo(c0, 1, DataType::F32));
1494 a1_tensor.allocator()->init(TensorInfo(a1, 1, DataType::F32));
1495 b1_tensor.allocator()->init(TensorInfo(b1, 1, DataType::F32));
1496 c1_tensor.allocator()->init(TensorInfo(c1 1, DataType::F32));
1497
1498 CLGEMM gemm0;
1499 CLGEMM gemm1;
1500
1501 // Configuration 0
1502 gemm0.configure(&a0, &b0, nullptr, &c0, 1.0f, 0.0f);
1503
1504 // Configuration 1
1505 gemm1.configure(&a1, &b1, nullptr, &c1, 1.0f, 0.0f);
1506@endcode
1507
1508@subsubsection S3_9_1_cl_tuner_how_to How to use it
1509
1510All the graph examples in the ACL's folder "examples" and the arm_compute_benchmark accept an argument to enable the OpenCL tuner and an argument to export/import the LWS values to/from a file
1511
1512 #Enable CL tuner
1513 ./graph_mobilenet --enable-tuner –-target=CL
1514 ./arm_compute_benchmark --enable-tuner
1515
1516 #Export/Import to/from a file
1517 ./graph_mobilenet --enable-tuner --target=CL --tuner-file=acl_tuner.csv
1518 ./arm_compute_benchmark --enable-tuner --tuner-file=acl_tuner.csv
1519
1520If you are importing the CLTuner'results from a file, the new tuned LWS values will be appended to it.
1521
1522Either you are benchmarking the graph examples or the test cases in the arm_compute_benchmark remember to:
1523
1524 -# Disable the power management
1525 -# Keep the GPU frequency constant
1526 -# Run multiple times the network (i.e. 10).
1527
1528If you are not using the graph API or the benchmark infrastructure you will need to manually pass a CLTuner object to CLScheduler before configuring any function.
1529
1530@code{.cpp}
1531CLTuner tuner;
1532
1533// Setup Scheduler
1534CLScheduler::get().default_init(&tuner);
1535@endcode
1536
1537After the first run, the CLTuner's results can be exported to a file using the method "save_to_file()".
1538- tuner.save_to_file("results.csv");
1539
1540This file can be also imported using the method "load_from_file("results.csv")".
1541- tuner.load_from_file("results.csv");
Anthony Barbierdbdab852017-06-23 15:42:00 +01001542*/
Jenkinsc3f34a42018-03-02 12:38:09 +00001543} // namespace arm_compute