Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2017 ARM Limited. |
| 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | #include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h" |
| 25 | |
| 26 | #include "arm_compute/core/Validate.h" |
| 27 | #include "arm_compute/runtime/CL/CLScheduler.h" |
| 28 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 29 | #include <algorithm> |
| 30 | #include <cmath> |
| 31 | |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 32 | using namespace arm_compute; |
| 33 | |
| 34 | CLFullyConnectedLayer::CLFullyConnectedLayer() |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 35 | : _im2col_kernel(), _transpose_kernel(), _transpose1xW_kernel(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _transpose_output(), |
| 36 | _transpose1xW_output(), _is_first_run(true), _transpose_weights(true), _fc_after_conv(true), _batched_fc_layer(false), _accumulate_biases(false) |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 37 | { |
| 38 | } |
| 39 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 40 | void CLFullyConnectedLayer::configure_conv_fc_wb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output) |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 41 | { |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 42 | ARM_COMPUTE_ERROR_ON(weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))); |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 43 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 44 | // If the fully connected layer is called after a convolution layer, the input tensor must be linearized |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 45 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 46 | // Initialize output tensor for im2col |
| 47 | TensorShape shape_im2col; |
| 48 | shape_im2col.set(0, weights->info()->dimension(1)); |
| 49 | shape_im2col.set(1, input->info()->dimension(3)); |
| 50 | shape_im2col.set(2, input->info()->dimension(4)); |
| 51 | shape_im2col.set(3, input->info()->dimension(5)); |
| 52 | _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type())); |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 53 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 54 | // Initialize output tensor for interleave 4x4 |
| 55 | TensorShape shape_interleaved = _im2col_output.info()->tensor_shape(); |
| 56 | shape_interleaved.set(0, shape_interleaved.x() * 4); |
| 57 | shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4)); |
| 58 | _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, input->info()->data_type())); |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 59 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 60 | // Initialize output tensor for transpose 1xW |
| 61 | TensorShape shape_transposed1xW(weights->info()->dimension(1) * 4, static_cast<size_t>(std::ceil(weights->info()->dimension(0) / 4.f))); |
| 62 | _transpose1xW_output.allocator()->init(TensorInfo(shape_transposed1xW, 1, weights->info()->data_type())); |
| 63 | |
| 64 | // Configure im2col kernel |
| 65 | _im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false); |
| 66 | |
| 67 | // Configure interleave4x4 kernel |
| 68 | _interleave4x4_kernel.configure(&_im2col_output, &_interleave4x4_output); |
| 69 | |
| 70 | // Configure transpose 1xW kernel |
| 71 | _transpose1xW_kernel.configure(weights, &_transpose1xW_output); |
| 72 | |
| 73 | // Configure matrix multiply kernel |
| 74 | _mm_kernel.configure(&_interleave4x4_output, &_transpose1xW_output, output, 1.0f); |
| 75 | |
| 76 | // Allocate the tensors once all the configure methods have been called |
| 77 | _im2col_output.allocator()->allocate(); |
| 78 | _interleave4x4_output.allocator()->allocate(); |
| 79 | _transpose1xW_output.allocator()->allocate(); |
| 80 | } |
| 81 | |
| 82 | void CLFullyConnectedLayer::configure_fc_fc_wb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output) |
| 83 | { |
| 84 | // Initialize output tensor for interleave 4x4 |
| 85 | TensorShape shape_interleaved = input->info()->tensor_shape(); |
| 86 | shape_interleaved.set(0, shape_interleaved.x() * 4); |
| 87 | shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4)); |
| 88 | _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, input->info()->data_type())); |
| 89 | |
| 90 | // Initialize output tensor for transpose 1xW |
| 91 | TensorShape shape_transposed1xW(weights->info()->dimension(1) * 4, static_cast<size_t>(std::ceil(weights->info()->dimension(0) / 4.f))); |
| 92 | _transpose1xW_output.allocator()->init(TensorInfo(shape_transposed1xW, 1, weights->info()->data_type())); |
| 93 | |
| 94 | // Configure interleave4x4 kernel |
| 95 | _interleave4x4_kernel.configure(input, &_interleave4x4_output); |
| 96 | |
| 97 | // Configure transpose 1xW kernel |
| 98 | _transpose1xW_kernel.configure(weights, &_transpose1xW_output); |
| 99 | |
| 100 | // Configure matrix multiply kernel |
| 101 | _mm_kernel.configure(&_interleave4x4_output, &_transpose1xW_output, output, 1.0f); |
| 102 | |
| 103 | // Allocate the tensors once all the configure methods have been called |
| 104 | _interleave4x4_output.allocator()->allocate(); |
| 105 | _transpose1xW_output.allocator()->allocate(); |
| 106 | } |
| 107 | |
| 108 | void CLFullyConnectedLayer::configure_conv_fc_nb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output) |
| 109 | { |
| 110 | ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)))); |
| 111 | |
| 112 | // If the fully connected layer is called after a convolution layer, the input tensor must be linearized |
| 113 | |
| 114 | // Initialize output tensor for im2col |
| 115 | TensorShape shape_im2col; |
| 116 | shape_im2col.set(0, weights->info()->dimension(1)); |
| 117 | shape_im2col.set(1, 1); |
| 118 | _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type())); |
| 119 | |
| 120 | // Configure im2col kernel |
| 121 | _im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false); |
| 122 | |
| 123 | // Configure matrix multiply kernel |
| 124 | _mm_kernel.configure(&_im2col_output, weights, output, 1.0f); |
| 125 | |
| 126 | // Allocate the output tensor for im2col once all the configure methods have been called |
| 127 | _im2col_output.allocator()->allocate(); |
| 128 | } |
| 129 | |
| 130 | void CLFullyConnectedLayer::configure_fc_fc_nb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output) |
| 131 | { |
| 132 | ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1)); |
| 133 | |
| 134 | // Configure matrix multiply kernel |
| 135 | _mm_kernel.configure(input, weights, output, 1.0f); |
| 136 | } |
| 137 | |
| 138 | void CLFullyConnectedLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose_weights) |
| 139 | { |
| 140 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); |
| 141 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32); |
| 142 | ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); |
| 143 | ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() != 2); |
| 144 | |
| 145 | const ICLTensor *weights_to_use = weights; |
| 146 | |
| 147 | _is_first_run = true; |
| 148 | _transpose_weights = transpose_weights; |
| 149 | _fc_after_conv = true; |
| 150 | _batched_fc_layer = false; |
| 151 | _accumulate_biases = false; |
| 152 | |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 153 | if(biases != nullptr) |
| 154 | { |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 155 | ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); |
| 156 | |
| 157 | _accumulate_biases = true; |
| 158 | |
| 159 | // Configure accumulate biases kernel |
| 160 | _accumulate_biases_kernel.configure(output, biases); |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 161 | } |
| 162 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 163 | // Check if we need to transpose the weights |
| 164 | if(_transpose_weights) |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 165 | { |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 166 | // Initialize the output tensor for transpose |
| 167 | TensorShape shape_transposed(weights->info()->dimension(1), weights->info()->dimension(0)); |
| 168 | _transpose_output.allocator()->init(TensorInfo(shape_transposed, 1, weights->info()->data_type())); |
| 169 | _transpose_kernel.configure(weights, &_transpose_output); |
| 170 | |
| 171 | weights_to_use = &_transpose_output; |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 172 | } |
| 173 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 174 | // With the Fully Connected layer we can have 4 different cases: |
| 175 | // 1) Convolution layer -> Fully Connected layer without batches |
| 176 | // 2) Fully Connected layer -> Fully Connected layer without batches |
| 177 | // 3) Convolution layer -> Fully Connected layer with batches |
| 178 | // 4) Fully Connected layer -> Fully Connected layer with batches |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 179 | |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 180 | // Check if we have a fully connected layer with batches |
| 181 | _batched_fc_layer = (output->info()->dimension(1) > 1); |
| 182 | |
| 183 | if(_batched_fc_layer) |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 184 | { |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 185 | _fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3, |
| 186 | input->info()->tensor_shape().cend(), |
| 187 | output->info()->tensor_shape().cbegin() + 1)); |
| 188 | |
| 189 | if(_fc_after_conv) |
| 190 | { |
| 191 | // Fully Connected layer after a Convolution Layer with batches |
| 192 | configure_conv_fc_wb(input, weights_to_use, output); |
| 193 | } |
| 194 | else |
| 195 | { |
| 196 | // Fully Connected layer after a Fully Connected Layer with batches |
| 197 | configure_fc_fc_wb(input, weights_to_use, output); |
| 198 | } |
| 199 | } |
| 200 | else |
| 201 | { |
| 202 | _fc_after_conv = (weights_to_use->info()->dimension(1) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))); |
| 203 | |
| 204 | if(_fc_after_conv) |
| 205 | { |
| 206 | // Fully Connected layer after a Convolution Layer without batches |
| 207 | configure_conv_fc_nb(input, weights_to_use, output); |
| 208 | } |
| 209 | else |
| 210 | { |
| 211 | // Fully Connected layer after a Fully Connected Layer without batches |
| 212 | configure_fc_fc_nb(input, weights_to_use, output); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | // Allocate the transpose tensor if the transpose_weights flag is true and once all the configure methods have been called |
| 217 | if(_transpose_weights) |
| 218 | { |
| 219 | _transpose_output.allocator()->allocate(); |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 220 | } |
| 221 | } |
| 222 | |
| 223 | void CLFullyConnectedLayer::run() |
| 224 | { |
Anthony Barbier | a437638 | 2017-04-12 15:12:46 +0100 | [diff] [blame^] | 225 | // The reshape of the weights happens only once |
| 226 | if(_is_first_run) |
| 227 | { |
| 228 | _is_first_run = false; |
| 229 | |
| 230 | if(_transpose_weights) |
| 231 | { |
| 232 | CLScheduler::get().enqueue(_transpose_kernel); |
| 233 | } |
| 234 | |
| 235 | if(_batched_fc_layer) |
| 236 | { |
| 237 | CLScheduler::get().enqueue(_transpose1xW_kernel); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // Linearize input if it comes from a convolutional layer |
| 242 | if(_fc_after_conv) |
| 243 | { |
| 244 | CLScheduler::get().enqueue(_im2col_kernel, false); |
| 245 | } |
| 246 | |
| 247 | // Interleave input |
| 248 | if(_batched_fc_layer) |
| 249 | { |
| 250 | CLScheduler::get().enqueue(_interleave4x4_kernel, false); |
| 251 | } |
| 252 | |
| 253 | // Run matrix multiply |
| 254 | CLScheduler::get().enqueue(_mm_kernel, !_accumulate_biases); |
| 255 | |
| 256 | // Accumulate biases if provided |
| 257 | if(_accumulate_biases) |
| 258 | { |
| 259 | CLScheduler::get().enqueue(_accumulate_biases_kernel); |
| 260 | } |
Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame] | 261 | } |