blob: 49753ad0805737730b700a0c12aaf528a7180bbf [file] [log] [blame]
Jenkinsb3a371b2018-05-23 11:36:53 +01001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
27#include "arm_compute/core/Utils.h"
28#include "arm_compute/core/Validate.h"
29#include "arm_compute/core/utils/misc/ShapeCalculator.h"
30#include "arm_compute/runtime/CL/CLScheduler.h"
31
32using namespace arm_compute;
33
34namespace
35{
36Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims)
37{
38 Size2D output_tile = Size2D{};
39
40 if(kernel_dims == Size2D(3U, 3U))
41 {
42 output_tile = (input_dims.width <= 4 && input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
43 }
44 else if(kernel_dims == Size2D(5U, 5U))
45 {
46 output_tile = Size2D(4U, 4U);
47 }
48
49 return output_tile;
50}
51
52bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
53{
54 // Check if we want to configure a Winograd configuration which requires fast math
55 using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
56
57 std::vector<WinogradConfiguration> fast_math_winograd =
58 {
59 WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5))
60 };
61
62 auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
63 std::pair<int, int>(kernel_size.width, kernel_size.height));
64
65 return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
66}
67} // namespace
68
69CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
70 : _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _activationlayer_function(), _input0(), _input1(), _batched_mm_output(),
71 _original_weights(nullptr), _is_prepared(false), _is_activationlayer_enabled(false)
72{
73}
74
75void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
76 bool enable_fast_math)
77{
78 // Get indices for the width and height
79 const size_t idx_width = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
80 const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
81
82 // Input shape, kernel size and output tile
83 const Size2D input_dims = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]);
84 const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]);
85 const Size2D output_tile = winograd_output_tile(input_dims, kernel_size);
86
87 // Check if the Winograd configuration requires fast math
88 if(!enable_fast_math)
89 {
90 ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
91 }
92
93 const WinogradInfo winograd_info = WinogradInfo(output_tile,
94 kernel_size,
95 input_dims,
96 conv_info,
97 input->info()->data_layout());
98
99 _is_prepared = false;
100 _original_weights = weights;
101
102 // Manage intermediate tensors
103 _memory_group.manage(&_input0);
104 _memory_group.manage(&_batched_mm_output);
105
106 // Do not manage _input1 as it contains the weights
107
108 // Configure input transform
109 _input_transform.configure(input, &_input0, winograd_info);
110
111 // Configure filter transform
112 _filter_transform.configure(weights, &_input1, winograd_info);
113
114 // Configure batched matrix multiply
115 _batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
116
117 // Configure output transform
118 _output_transform.configure(&_batched_mm_output, biases, output, winograd_info);
119
120 // Configure activation layer
121 _is_activationlayer_enabled = act_info.enabled();
122 if(_is_activationlayer_enabled)
123 {
124 _activationlayer_function.configure(output, nullptr, act_info);
125 }
126
127 // Allocate temporary tensors
128 _input0.allocator()->allocate();
129 _batched_mm_output.allocator()->allocate();
130}
131
132Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
133 const ActivationLayerInfo &act_info, bool enable_fast_math)
134{
135 // Get indeces for the width and height
136 const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
137 const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
138
139 // Input shape, kernel size and output tile
140 const Size2D input_dims = Size2D(input->tensor_shape()[idx_width], input->tensor_shape()[idx_height]);
141 const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
142 const Size2D output_tile = winograd_output_tile(input_dims, kernel_size);
143
144 // Check if the Winograd configuration requires fast math
145 if(!enable_fast_math)
146 {
147 ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
148 }
149
150 const WinogradInfo winograd_info = WinogradInfo(output_tile,
151 kernel_size,
152 input_dims,
153 conv_info,
154 input->data_layout());
155
156 // Validate input transform
157 const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
158 const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape);
159 ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, winograd_info));
160
161 // Validate filter transform
162 const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
163 const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape);
164 ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));
165
166 // Validate batched matrix multiply
167 TensorShape batched_mm_output_shape = input0.tensor_shape();
168 batched_mm_output_shape[0] = input1.tensor_shape()[0];
169 const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape);
170 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)));
171
172 // Configure output transform
173 ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, winograd_info));
174
175 // Validate Activation Layer
176 if(act_info.enabled())
177 {
178 ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
179 }
180
181 return Status{};
182}
183
184void CLWinogradConvolutionLayer::run()
185{
186 prepare();
187
188 _memory_group.acquire();
189
190 // Run input transform
191 _input_transform.run();
192
193 // Run batched matrix multiplication
194 _batched_mm.run();
195
196 // Run output transform
197 CLScheduler::get().enqueue(_output_transform);
198
199 if(_is_activationlayer_enabled)
200 {
201 _activationlayer_function.run();
202 }
203
204 _memory_group.release();
205}
206
207void CLWinogradConvolutionLayer::prepare()
208{
209 if(!_is_prepared)
210 {
211 // Run filter transform and mark original weights as unused
212 _input1.allocator()->allocate();
213 CLScheduler::get().enqueue(_filter_transform, false);
214 _original_weights->mark_as_unused();
215
216 // Prepare GEMM and release reshaped weights if marked unused by CLGEMM
217 _batched_mm.prepare();
218 if(!_input1.is_used())
219 {
220 _input1.allocator()->free();
221 }
222
223 CLScheduler::get().queue().finish();
224 _is_prepared = true;
225 }
226}