blob: a70389ab6ca891ec4b86d0c8432f5f6c0fa4d437 [file] [log] [blame]
Jenkinsb3a371b2018-05-23 11:36:53 +01001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
27#include "arm_compute/core/Utils.h"
28#include "arm_compute/core/Validate.h"
29#include "arm_compute/core/utils/misc/ShapeCalculator.h"
30#include "arm_compute/runtime/CL/CLScheduler.h"
31
32using namespace arm_compute;
33
34namespace
35{
Jenkins52ba29e2018-08-29 15:32:11 +000036Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataLayout data_layout)
Jenkinsb3a371b2018-05-23 11:36:53 +010037{
38 Size2D output_tile = Size2D{};
39
Jenkins52ba29e2018-08-29 15:32:11 +000040 const unsigned int kernel_max_dim = std::max(kernel_dims.width, kernel_dims.height);
41
42 // Check if the input spatial dimensions are smaller than 4
43 const bool is_input_lt4_nchw = (input_dims.width <= 4 && input_dims.height <= 4) && (data_layout == DataLayout::NCHW);
44
45 if(kernel_max_dim == 3U)
Jenkinsb3a371b2018-05-23 11:36:53 +010046 {
Jenkins52ba29e2018-08-29 15:32:11 +000047 if(kernel_dims == Size2D(3U, 3U))
48 {
49 output_tile = is_input_lt4_nchw ? Size2D(2U, 2U) : Size2D(4U, 4U);
50 }
51 else if(kernel_dims == Size2D(3U, 1U))
52 {
53 output_tile = is_input_lt4_nchw ? Size2D(2U, 1U) : Size2D(4U, 1U);
54 }
55 else
56 {
57 output_tile = is_input_lt4_nchw ? Size2D(1U, 2U) : Size2D(1U, 4U);
58 }
Jenkinsb3a371b2018-05-23 11:36:53 +010059 }
Jenkins52ba29e2018-08-29 15:32:11 +000060 else if(kernel_max_dim == 5U)
Jenkinsb3a371b2018-05-23 11:36:53 +010061 {
Jenkins52ba29e2018-08-29 15:32:11 +000062 output_tile = Size2D(kernel_dims.width == 1 ? 1U : 4U,
63 kernel_dims.height == 1 ? 1U : 4U);
Jenkinsb3a371b2018-05-23 11:36:53 +010064 }
65
66 return output_tile;
67}
68
69bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
70{
71 // Check if we want to configure a Winograd configuration which requires fast math
72 using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
73
74 std::vector<WinogradConfiguration> fast_math_winograd =
75 {
76 WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5))
77 };
78
79 auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
80 std::pair<int, int>(kernel_size.width, kernel_size.height));
81
82 return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
83}
84} // namespace
85
86CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
87 : _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _activationlayer_function(), _input0(), _input1(), _batched_mm_output(),
88 _original_weights(nullptr), _is_prepared(false), _is_activationlayer_enabled(false)
89{
90}
91
92void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
93 bool enable_fast_math)
94{
95 // Get indices for the width and height
96 const size_t idx_width = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
97 const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
98
99 // Input shape, kernel size and output tile
100 const Size2D input_dims = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]);
101 const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]);
Jenkins52ba29e2018-08-29 15:32:11 +0000102 const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, input->info()->data_layout());
Jenkinsb3a371b2018-05-23 11:36:53 +0100103
104 // Check if the Winograd configuration requires fast math
105 if(!enable_fast_math)
106 {
107 ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
108 }
109
110 const WinogradInfo winograd_info = WinogradInfo(output_tile,
111 kernel_size,
112 input_dims,
113 conv_info,
114 input->info()->data_layout());
115
116 _is_prepared = false;
117 _original_weights = weights;
118
119 // Manage intermediate tensors
120 _memory_group.manage(&_input0);
121 _memory_group.manage(&_batched_mm_output);
122
123 // Do not manage _input1 as it contains the weights
124
125 // Configure input transform
126 _input_transform.configure(input, &_input0, winograd_info);
127
128 // Configure filter transform
129 _filter_transform.configure(weights, &_input1, winograd_info);
130
131 // Configure batched matrix multiply
132 _batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
133
134 // Configure output transform
135 _output_transform.configure(&_batched_mm_output, biases, output, winograd_info);
136
137 // Configure activation layer
138 _is_activationlayer_enabled = act_info.enabled();
139 if(_is_activationlayer_enabled)
140 {
141 _activationlayer_function.configure(output, nullptr, act_info);
142 }
143
144 // Allocate temporary tensors
145 _input0.allocator()->allocate();
146 _batched_mm_output.allocator()->allocate();
147}
148
149Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
150 const ActivationLayerInfo &act_info, bool enable_fast_math)
151{
152 // Get indeces for the width and height
153 const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
154 const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
155
156 // Input shape, kernel size and output tile
157 const Size2D input_dims = Size2D(input->tensor_shape()[idx_width], input->tensor_shape()[idx_height]);
158 const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
Jenkins52ba29e2018-08-29 15:32:11 +0000159 const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, input->data_layout());
Jenkinsb3a371b2018-05-23 11:36:53 +0100160
161 // Check if the Winograd configuration requires fast math
162 if(!enable_fast_math)
163 {
164 ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
165 }
166
167 const WinogradInfo winograd_info = WinogradInfo(output_tile,
168 kernel_size,
169 input_dims,
170 conv_info,
171 input->data_layout());
172
173 // Validate input transform
174 const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
175 const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape);
176 ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, winograd_info));
177
178 // Validate filter transform
179 const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
180 const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape);
181 ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));
182
183 // Validate batched matrix multiply
184 TensorShape batched_mm_output_shape = input0.tensor_shape();
185 batched_mm_output_shape[0] = input1.tensor_shape()[0];
186 const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape);
187 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)));
188
189 // Configure output transform
190 ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, winograd_info));
191
192 // Validate Activation Layer
193 if(act_info.enabled())
194 {
195 ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
196 }
197
198 return Status{};
199}
200
201void CLWinogradConvolutionLayer::run()
202{
203 prepare();
204
205 _memory_group.acquire();
206
207 // Run input transform
208 _input_transform.run();
209
210 // Run batched matrix multiplication
211 _batched_mm.run();
212
213 // Run output transform
214 CLScheduler::get().enqueue(_output_transform);
215
216 if(_is_activationlayer_enabled)
217 {
218 _activationlayer_function.run();
219 }
220
221 _memory_group.release();
222}
223
224void CLWinogradConvolutionLayer::prepare()
225{
226 if(!_is_prepared)
227 {
228 // Run filter transform and mark original weights as unused
229 _input1.allocator()->allocate();
230 CLScheduler::get().enqueue(_filter_transform, false);
231 _original_weights->mark_as_unused();
232
233 // Prepare GEMM and release reshaped weights if marked unused by CLGEMM
234 _batched_mm.prepare();
235 if(!_input1.is_used())
236 {
237 _input1.allocator()->free();
238 }
239
240 CLScheduler::get().queue().finish();
241 _is_prepared = true;
242 }
243}