blob: 17ec26e2a61bbb6b1d4a7c4a9007669b041b70c0 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032using namespace arm_compute::graph_utils;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000033
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement Squeezenet's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000035class GraphSqueezenetExample : public Example
Anthony Barbier8140e1e2017-12-14 23:48:46 +000036{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000037public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphSqueezenetExample()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
44 // Parse arguments
45 cmd_parser.parse(argc, argv);
46
47 // Consume common parameters
48 common_params = consume_common_graph_parameters(common_opts);
49
50 // Return when help menu is requested
51 if(common_params.help)
52 {
53 cmd_parser.print_help(argv[0]);
54 return false;
55 }
56
57 // Checks
58 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
59 ARM_COMPUTE_EXIT_ON_MSG(common_params.data_type == DataType::F16 && common_params.target == Target::NEON, "F16 NEON not supported for this graph");
60
61 // Print parameter values
62 std::cout << common_params << std::endl;
63
64 // Get trainable parameters data path
65 std::string data_path = common_params.data_path;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000066
Anthony Barbier06ea0482018-02-22 15:45:35 +000067 // Create a preprocessor object
68 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
69 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000070
Jenkins52ba29e2018-08-29 15:32:11 +000071 // Create input descriptor
72 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
73 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000074
Jenkins52ba29e2018-08-29 15:32:11 +000075 // Set weights trained layout
76 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000077
Jenkins52ba29e2018-08-29 15:32:11 +000078 graph << common_params.target
79 << common_params.fast_math_hint
80 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000081 << ConvolutionLayer(
82 7U, 7U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000083 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000084 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_b.npy"),
85 PadStrideInfo(2, 2, 0, 0))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000086 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
87 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
88 << ConvolutionLayer(
89 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000090 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000091 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_b.npy"),
92 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010093 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +000094 graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U);
Jenkinsb3a371b2018-05-23 11:36:53 +010095 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +000096 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000097 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000098 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_b.npy"),
99 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100100 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000101 graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100102 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000103 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000104 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000105 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_b.npy"),
106 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100107 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000108 graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100109 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000110 << ConvolutionLayer(
111 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000112 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000113 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_b.npy"),
114 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100115 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000116 graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100117 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000118 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000119 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000120 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_b.npy"),
121 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100122 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000123 graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100124 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000125 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000126 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000127 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_b.npy"),
128 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100129 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000130 graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100131 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000132 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000133 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000134 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_b.npy"),
135 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100136 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000137 graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100138 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000139 << ConvolutionLayer(
140 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000141 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000142 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_b.npy"),
143 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100144 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000145 graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100146 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000147 1U, 1U, 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000148 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000149 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_b.npy"),
150 PadStrideInfo(1, 1, 0, 0))
151 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
152 << PoolingLayer(PoolingLayerInfo(PoolingType::AVG))
153 << FlattenLayer()
154 << SoftmaxLayer()
Jenkins52ba29e2018-08-29 15:32:11 +0000155 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000156
Jenkinsb3a371b2018-05-23 11:36:53 +0100157 // Finalize graph
158 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000159 config.num_threads = common_params.threads;
160 config.use_tuner = common_params.enable_tuner;
161 config.tuner_file = common_params.tuner_file;
162
163 graph.finalize(common_params.target, config);
164
165 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000166 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000167 void do_run() override
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000168 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000169 // Run graph
170 graph.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000171 }
172
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000173private:
Jenkins52ba29e2018-08-29 15:32:11 +0000174 CommandLineParser cmd_parser;
175 CommonGraphOptions common_opts;
176 CommonGraphParams common_params;
177 Stream graph;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000178
Jenkinsb9abeae2018-11-22 11:58:08 +0000179 ConcatLayer get_expand_fire_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
Jenkins52ba29e2018-08-29 15:32:11 +0000180 unsigned int expand1_filt, unsigned int expand3_filt)
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000181 {
182 std::string total_path = "/cnn_data/squeezenet_v1.0_model/" + param_path + "_";
Jenkinsb3a371b2018-05-23 11:36:53 +0100183 SubStream i_a(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000184 i_a << ConvolutionLayer(
185 1U, 1U, expand1_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000186 get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000187 get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
188 PadStrideInfo(1, 1, 0, 0))
189 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000190
Jenkinsb3a371b2018-05-23 11:36:53 +0100191 SubStream i_b(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000192 i_b << ConvolutionLayer(
193 3U, 3U, expand3_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000194 get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000195 get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
196 PadStrideInfo(1, 1, 1, 1))
197 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
198
Jenkinsb9abeae2018-11-22 11:58:08 +0000199 return ConcatLayer(std::move(i_a), std::move(i_b));
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000200 }
201};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000202
203/** Main program for Squeezenet v1.0
204 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000205 * Model is based on:
206 * https://arxiv.org/abs/1602.07360
207 * "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
208 * Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
209 *
Jenkins52ba29e2018-08-29 15:32:11 +0000210 * @note To list all the possible arguments execute the binary appended with the --help option
211 *
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000212 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000213 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000214 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000215int main(int argc, char **argv)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000216{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000217 return arm_compute::utils::run_example<GraphSqueezenetExample>(argc, argv);
218}