blob: 32c75827d3891e43328c9fbe849a8be129fe1650 [file] [log] [blame]
Kaizen8938bd32017-09-28 14:38:23 +01001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Kaizen8938bd32017-09-28 14:38:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
25
Kaizen8938bd32017-09-28 14:38:23 +010026#include "support/ToolchainSupport.h"
27#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
30#include <cstdlib>
Kaizen8938bd32017-09-28 14:38:23 +010031
Anthony Barbierf45d5a92018-01-24 16:23:15 +000032using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010033using namespace arm_compute::graph::frontend;
Kaizen8938bd32017-09-28 14:38:23 +010034using namespace arm_compute::graph_utils;
35
Kaizen8938bd32017-09-28 14:38:23 +010036/** Example demonstrating how to implement LeNet's network using the Compute Library's graph API
37 *
38 * @param[in] argc Number of arguments
Jenkinsb3a371b2018-05-23 11:36:53 +010039 * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] batches, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
Kaizen8938bd32017-09-28 14:38:23 +010040 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041class GraphLenetExample : public Example
Kaizen8938bd32017-09-28 14:38:23 +010042{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000043public:
44 void do_setup(int argc, char **argv) override
45 {
46 std::string data_path; /** Path to the trainable data */
47 unsigned int batches = 4; /** Number of batches */
Kaizen8938bd32017-09-28 14:38:23 +010048
Anthony Barbier06ea0482018-02-22 15:45:35 +000049 // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
Jenkinsb3a371b2018-05-23 11:36:53 +010050 const int target = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
51 Target target_hint = set_target_hint(target);
52
53 FastMathHint fast_math_hint = FastMathHint::DISABLED;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000054
Anthony Barbierf45d5a92018-01-24 16:23:15 +000055 // Parse arguments
56 if(argc < 2)
57 {
58 // Print help
Jenkinsb3a371b2018-05-23 11:36:53 +010059 std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [batches] [fast_math_hint]\n\n";
Anthony Barbierf45d5a92018-01-24 16:23:15 +000060 std::cout << "No data folder provided: using random values\n\n";
61 }
62 else if(argc == 2)
63 {
Jenkinsb3a371b2018-05-23 11:36:53 +010064 std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [batches] [fast_math_hint]\n\n";
Anthony Barbierf45d5a92018-01-24 16:23:15 +000065 std::cout << "No data folder provided: using random values\n\n";
66 }
67 else if(argc == 3)
68 {
69 //Do something with argv[1]
70 data_path = argv[2];
Jenkinsb3a371b2018-05-23 11:36:53 +010071 std::cout << "Usage: " << argv[0] << " [path_to_data] [batches] [fast_math_hint]\n\n";
Anthony Barbierf45d5a92018-01-24 16:23:15 +000072 std::cout << "No number of batches where specified, thus will use the default : " << batches << "\n\n";
73 }
Jenkinsb3a371b2018-05-23 11:36:53 +010074 else if(argc == 4)
75 {
76 data_path = argv[2];
77 batches = std::strtol(argv[3], nullptr, 0);
78 std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [fast_math_hint]\n\n";
79 std::cout << "No fast math info provided: disabling fast math\n\n";
80 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +000081 else
82 {
83 //Do something with argv[1] and argv[2]
Jenkinsb3a371b2018-05-23 11:36:53 +010084 data_path = argv[2];
85 batches = std::strtol(argv[3], nullptr, 0);
86 fast_math_hint = (std::strtol(argv[4], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000087 }
88
89 //conv1 << pool1 << conv2 << pool2 << fc1 << act1 << fc2 << smx
90 graph << target_hint
Jenkinsb3a371b2018-05-23 11:36:53 +010091 << fast_math_hint
92 << InputLayer(TensorDescriptor(TensorShape(28U, 28U, 1U, batches), DataType::F32), get_input_accessor(""))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000093 << ConvolutionLayer(
94 5U, 5U, 20U,
95 get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_w.npy"),
96 get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_b.npy"),
97 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010098 .set_name("conv1")
99 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000100 << ConvolutionLayer(
101 5U, 5U, 50U,
102 get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_w.npy"),
103 get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_b.npy"),
104 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100105 .set_name("conv2")
106 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000107 << FullyConnectedLayer(
108 500U,
109 get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_w.npy"),
110 get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100111 .set_name("ip1")
112 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000113 << FullyConnectedLayer(
114 10U,
115 get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_w.npy"),
116 get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100117 .set_name("ip2")
118 << SoftmaxLayer().set_name("prob")
119 << OutputLayer(get_output_accessor(""));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000120
Jenkinsb3a371b2018-05-23 11:36:53 +0100121 // Finalize graph
122 GraphConfig config;
123 config.use_tuner = (target == 2);
124 graph.finalize(target_hint, config);
Kaizen8938bd32017-09-28 14:38:23 +0100125 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000126 void do_run() override
Kaizen8938bd32017-09-28 14:38:23 +0100127 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000128 // Run graph
129 graph.run();
Kaizen8938bd32017-09-28 14:38:23 +0100130 }
131
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000132private:
Jenkinsb3a371b2018-05-23 11:36:53 +0100133 Stream graph{ 0, "LeNet" };
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000134};
Kaizen8938bd32017-09-28 14:38:23 +0100135
136/** Main program for LeNet
137 *
138 * @param[in] argc Number of arguments
Jenkinsb3a371b2018-05-23 11:36:53 +0100139 * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] batches, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
Kaizen8938bd32017-09-28 14:38:23 +0100140 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000141int main(int argc, char **argv)
Kaizen8938bd32017-09-28 14:38:23 +0100142{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000143 return arm_compute::utils::run_example<GraphLenetExample>(argc, argv);
Kaizen8938bd32017-09-28 14:38:23 +0100144}