blob: 02d412394d70c10995ad38f5d82434c332d31ee8 [file] [log] [blame]
cristy3ed852e2009-09-05 21:47:34 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M AAA TTTTT RRRR IIIII X X %
7% MM MM A A T R R I X X %
8% M M M AAAAA T RRRR I X %
9% M M A A T R R I X X %
10% M M A A T R R IIIII X X %
11% %
12% %
13% MagickCore Matrix Methods %
14% %
15% Software Design %
16% John Cristy %
17% August 2007 %
18% %
19% %
cristy1454be72011-12-19 01:52:48 +000020% Copyright 1999-2012 ImageMagick Studio LLC, a non-profit organization %
cristy3ed852e2009-09-05 21:47:34 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36%
37*/
38
39/*
40 Include declarations.
41*/
cristy4c08aed2011-07-01 19:47:50 +000042#include "MagickCore/studio.h"
43#include "MagickCore/matrix.h"
cristyd1dd6e42011-09-04 01:46:08 +000044#include "MagickCore/matrix-private.h"
cristy35f15302012-06-07 14:59:02 +000045#include "MagickCore/pixel-private.h"
cristy4c08aed2011-07-01 19:47:50 +000046#include "MagickCore/memory_.h"
cristy3ed852e2009-09-05 21:47:34 +000047
48/*
49%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50% %
51% %
52% %
53% A c q u i r e M a g i c k M a t r i x %
54% %
55% %
56% %
57%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58%
59% AcquireMagickMatrix() allocates and returns a matrix in the form of an
60% array of pointers to an array of doubles, with all values pre-set to zero.
61%
anthonyfd706f92012-01-19 04:22:02 +000062% This used to generate the two dimensional matrix, that can be referenced
63% using the simple C-code of the form "matrix[y][x]".
64%
65% This matrix is typically used for perform for the GaussJordanElimination()
66% method below, solving some system of simultanious equations.
cristy3ed852e2009-09-05 21:47:34 +000067%
68% The format of the AcquireMagickMatrix method is:
69%
cristybb503372010-05-27 20:51:26 +000070% double **AcquireMagickMatrix(const size_t number_rows,
71% const size_t size)
cristy3ed852e2009-09-05 21:47:34 +000072%
73% A description of each parameter follows:
74%
cristy74908cf2010-05-17 19:43:54 +000075% o number_rows: the number pointers for the array of pointers
cristy1ad491d2010-05-17 19:45:27 +000076% (first dimension).
cristy3ed852e2009-09-05 21:47:34 +000077%
cristy1ad491d2010-05-17 19:45:27 +000078% o size: the size of the array of doubles each pointer points to
79% (second dimension).
cristy3ed852e2009-09-05 21:47:34 +000080%
81*/
cristybb503372010-05-27 20:51:26 +000082MagickExport double **AcquireMagickMatrix(const size_t number_rows,
83 const size_t size)
cristy3ed852e2009-09-05 21:47:34 +000084{
85 double
cristy74908cf2010-05-17 19:43:54 +000086 **matrix;
cristy3ed852e2009-09-05 21:47:34 +000087
cristybb503372010-05-27 20:51:26 +000088 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +000089 i,
90 j;
91
cristy74908cf2010-05-17 19:43:54 +000092 matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix));
cristy3ed852e2009-09-05 21:47:34 +000093 if (matrix == (double **) NULL)
cristy26295322011-09-22 00:50:36 +000094 return((double **) NULL);
cristybb503372010-05-27 20:51:26 +000095 for (i=0; i < (ssize_t) number_rows; i++)
cristy3ed852e2009-09-05 21:47:34 +000096 {
97 matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
98 if (matrix[i] == (double *) NULL)
99 {
100 for (j=0; j < i; j++)
101 matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
102 matrix=(double **) RelinquishMagickMemory(matrix);
103 return((double **) NULL);
104 }
cristybb503372010-05-27 20:51:26 +0000105 for (j=0; j < (ssize_t) size; j++)
cristy74908cf2010-05-17 19:43:54 +0000106 matrix[i][j]=0.0;
cristy3ed852e2009-09-05 21:47:34 +0000107 }
108 return(matrix);
109}
110
111/*
112%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113% %
114% %
115% %
116% G a u s s J o r d a n E l i m i n a t i o n %
117% %
118% %
119% %
120%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121%
122% GaussJordanElimination() returns a matrix in reduced row echelon form,
123% while simultaneously reducing and thus solving the augumented results
124% matrix.
125%
126% See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
127%
128% The format of the GaussJordanElimination method is:
129%
cristy26295322011-09-22 00:50:36 +0000130% MagickBooleanType GaussJordanElimination(double **matrix,
131% double **vectors,const size_t rank,const size_t number_vectors)
cristy3ed852e2009-09-05 21:47:34 +0000132%
133% A description of each parameter follows:
134%
135% o matrix: the matrix to be reduced, as an 'array of row pointers'.
136%
137% o vectors: the additional matrix argumenting the matrix for row reduction.
138% Producing an 'array of column vectors'.
139%
anthonyfd706f92012-01-19 04:22:02 +0000140% o rank: The size of the square matrix (both rows and columns).
cristy3ed852e2009-09-05 21:47:34 +0000141% Also represents the number terms that need to be solved.
142%
cristy74908cf2010-05-17 19:43:54 +0000143% o number_vectors: Number of vectors columns, argumenting the above matrix.
cristy3ed852e2009-09-05 21:47:34 +0000144% Usally 1, but can be more for more complex equation solving.
145%
146% Note that the 'matrix' is given as a 'array of row pointers' of rank size.
147% That is values can be assigned as matrix[row][column] where 'row' is
148% typically the equation, and 'column' is the term of the equation.
149% That is the matrix is in the form of a 'row first array'.
150%
151% However 'vectors' is a 'array of column pointers' which can have any number
152% of columns, with each column array the same 'rank' size as 'matrix'.
anthonyfd706f92012-01-19 04:22:02 +0000153% It is assigned vector[column][row] where 'column' is the specific
154% 'result' and 'row' is the 'values' for that answer. After processing
155% the same vector array contains the 'weights' (answers) for each of the
156% 'separatable' results.
cristy3ed852e2009-09-05 21:47:34 +0000157%
158% This allows for simpler handling of the results, especially is only one
anthonyfd706f92012-01-19 04:22:02 +0000159% column 'vector' is all that is required to produce the desired solution
160% for that specific set of equations.
cristy3ed852e2009-09-05 21:47:34 +0000161%
162% For example, the 'vectors' can consist of a pointer to a simple array of
163% doubles. when only one set of simultanious equations is to be solved from
164% the given set of coefficient weighted terms.
165%
166% double **matrix = AcquireMagickMatrix(8UL,8UL);
167% double coefficents[8];
168% ...
169% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
anthony34364f42011-10-21 05:31:53 +0000170%
anthonyb16e1432011-10-21 05:06:56 +0000171% However by specifing more 'columns' (as an 'array of vector columns'),
172% you can use this function to solve multiple sets of 'separable' equations.
cristy3ed852e2009-09-05 21:47:34 +0000173%
174% For example a distortion function where u = U(x,y) v = V(x,y)
175% And the functions U() and V() have separate coefficents, but are being
176% generated from a common x,y->u,v data set.
177%
178% Another example is generation of a color gradient from a set of colors
179% at specific coordients, such as a list x,y -> r,g,b,a
anthonyfd706f92012-01-19 04:22:02 +0000180%
181% See LeastSquaresAddTerms() below for such an example.
cristy3ed852e2009-09-05 21:47:34 +0000182%
183% You can also use the 'vectors' to generate an inverse of the given 'matrix'
anthonyb16e1432011-10-21 05:06:56 +0000184% though as a 'column first array' rather than a 'row first array' (matrix
anthonyfd706f92012-01-19 04:22:02 +0000185% is transposed).
186%
187% For details of this process see...
anthony34364f42011-10-21 05:31:53 +0000188% http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
cristy3ed852e2009-09-05 21:47:34 +0000189%
190*/
cristyd1dd6e42011-09-04 01:46:08 +0000191MagickPrivate MagickBooleanType GaussJordanElimination(double **matrix,
cristybb503372010-05-27 20:51:26 +0000192 double **vectors,const size_t rank,const size_t number_vectors)
cristy3ed852e2009-09-05 21:47:34 +0000193{
194#define GaussJordanSwap(x,y) \
195{ \
196 if ((x) != (y)) \
197 { \
198 (x)+=(y); \
199 (y)=(x)-(y); \
200 (x)=(x)-(y); \
201 } \
202}
203
204 double
205 max,
206 scale;
207
cristy9d314ff2011-03-09 01:30:28 +0000208 register ssize_t
209 i,
210 j,
211 k;
212
cristybb503372010-05-27 20:51:26 +0000213 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000214 column,
215 *columns,
216 *pivots,
217 row,
218 *rows;
219
cristybb503372010-05-27 20:51:26 +0000220 columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns));
221 rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows));
222 pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots));
223 if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) ||
224 (pivots == (ssize_t *) NULL))
cristy3ed852e2009-09-05 21:47:34 +0000225 {
cristybb503372010-05-27 20:51:26 +0000226 if (pivots != (ssize_t *) NULL)
227 pivots=(ssize_t *) RelinquishMagickMemory(pivots);
228 if (columns != (ssize_t *) NULL)
229 columns=(ssize_t *) RelinquishMagickMemory(columns);
230 if (rows != (ssize_t *) NULL)
231 rows=(ssize_t *) RelinquishMagickMemory(rows);
cristy3ed852e2009-09-05 21:47:34 +0000232 return(MagickFalse);
233 }
234 (void) ResetMagickMemory(columns,0,rank*sizeof(*columns));
235 (void) ResetMagickMemory(rows,0,rank*sizeof(*rows));
236 (void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots));
237 column=0;
238 row=0;
cristybb503372010-05-27 20:51:26 +0000239 for (i=0; i < (ssize_t) rank; i++)
cristy3ed852e2009-09-05 21:47:34 +0000240 {
241 max=0.0;
cristybb503372010-05-27 20:51:26 +0000242 for (j=0; j < (ssize_t) rank; j++)
cristy3ed852e2009-09-05 21:47:34 +0000243 if (pivots[j] != 1)
244 {
cristybb503372010-05-27 20:51:26 +0000245 for (k=0; k < (ssize_t) rank; k++)
cristy3ed852e2009-09-05 21:47:34 +0000246 if (pivots[k] != 0)
247 {
248 if (pivots[k] > 1)
249 return(MagickFalse);
250 }
251 else
252 if (fabs(matrix[j][k]) >= max)
253 {
254 max=fabs(matrix[j][k]);
255 row=j;
256 column=k;
257 }
258 }
259 pivots[column]++;
260 if (row != column)
261 {
cristybb503372010-05-27 20:51:26 +0000262 for (k=0; k < (ssize_t) rank; k++)
cristy3ed852e2009-09-05 21:47:34 +0000263 GaussJordanSwap(matrix[row][k],matrix[column][k]);
cristybb503372010-05-27 20:51:26 +0000264 for (k=0; k < (ssize_t) number_vectors; k++)
cristy3ed852e2009-09-05 21:47:34 +0000265 GaussJordanSwap(vectors[k][row],vectors[k][column]);
266 }
267 rows[i]=row;
268 columns[i]=column;
269 if (matrix[column][column] == 0.0)
anthony34364f42011-10-21 05:31:53 +0000270 return(MagickFalse); /* singularity */
cristy3e3ec3a2012-11-03 23:11:06 +0000271 scale=PerceptibleReciprocal(matrix[column][column]);
cristy3ed852e2009-09-05 21:47:34 +0000272 matrix[column][column]=1.0;
cristybb503372010-05-27 20:51:26 +0000273 for (j=0; j < (ssize_t) rank; j++)
cristy3ed852e2009-09-05 21:47:34 +0000274 matrix[column][j]*=scale;
cristybb503372010-05-27 20:51:26 +0000275 for (j=0; j < (ssize_t) number_vectors; j++)
cristy3ed852e2009-09-05 21:47:34 +0000276 vectors[j][column]*=scale;
cristybb503372010-05-27 20:51:26 +0000277 for (j=0; j < (ssize_t) rank; j++)
cristy3ed852e2009-09-05 21:47:34 +0000278 if (j != column)
279 {
280 scale=matrix[j][column];
281 matrix[j][column]=0.0;
cristybb503372010-05-27 20:51:26 +0000282 for (k=0; k < (ssize_t) rank; k++)
cristy3ed852e2009-09-05 21:47:34 +0000283 matrix[j][k]-=scale*matrix[column][k];
cristybb503372010-05-27 20:51:26 +0000284 for (k=0; k < (ssize_t) number_vectors; k++)
cristy3ed852e2009-09-05 21:47:34 +0000285 vectors[k][j]-=scale*vectors[k][column];
286 }
287 }
cristybb503372010-05-27 20:51:26 +0000288 for (j=(ssize_t) rank-1; j >= 0; j--)
cristy3ed852e2009-09-05 21:47:34 +0000289 if (columns[j] != rows[j])
cristybb503372010-05-27 20:51:26 +0000290 for (i=0; i < (ssize_t) rank; i++)
cristy3ed852e2009-09-05 21:47:34 +0000291 GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
cristybb503372010-05-27 20:51:26 +0000292 pivots=(ssize_t *) RelinquishMagickMemory(pivots);
293 rows=(ssize_t *) RelinquishMagickMemory(rows);
294 columns=(ssize_t *) RelinquishMagickMemory(columns);
cristy3ed852e2009-09-05 21:47:34 +0000295 return(MagickTrue);
296}
297
298/*
299%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300% %
301% %
302% %
303% L e a s t S q u a r e s A d d T e r m s %
304% %
305% %
306% %
307%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
308%
309% LeastSquaresAddTerms() adds one set of terms and associate results to the
310% given matrix and vectors for solving using least-squares function fitting.
311%
312% The format of the AcquireMagickMatrix method is:
313%
314% void LeastSquaresAddTerms(double **matrix,double **vectors,
cristybb503372010-05-27 20:51:26 +0000315% const double *terms,const double *results,const size_t rank,
316% const size_t number_vectors);
cristy3ed852e2009-09-05 21:47:34 +0000317%
318% A description of each parameter follows:
319%
320% o matrix: the square matrix to add given terms/results to.
321%
322% o vectors: the result vectors to add terms/results to.
323%
324% o terms: the pre-calculated terms (without the unknown coefficent
cristy26295322011-09-22 00:50:36 +0000325% weights) that forms the equation being added.
cristy3ed852e2009-09-05 21:47:34 +0000326%
327% o results: the result(s) that should be generated from the given terms
cristy26295322011-09-22 00:50:36 +0000328% weighted by the yet-to-be-solved coefficents.
cristy3ed852e2009-09-05 21:47:34 +0000329%
cristy4c08aed2011-07-01 19:47:50 +0000330% o rank: the rank or size of the dimentions of the square matrix.
cristy26295322011-09-22 00:50:36 +0000331% Also the length of vectors, and number of terms being added.
cristy3ed852e2009-09-05 21:47:34 +0000332%
cristy1ad491d2010-05-17 19:45:27 +0000333% o number_vectors: Number of result vectors, and number or results being
334% added. Also represents the number of separable systems of equations
335% that is being solved.
cristy3ed852e2009-09-05 21:47:34 +0000336%
337% Example of use...
338%
glennrp2489f532011-06-25 03:02:43 +0000339% 2 dimensional Affine Equations (which are separable)
cristy3ed852e2009-09-05 21:47:34 +0000340% c0*x + c2*y + c4*1 => u
341% c1*x + c3*y + c5*1 => v
342%
343% double **matrix = AcquireMagickMatrix(3UL,3UL);
344% double **vectors = AcquireMagickMatrix(2UL,3UL);
345% double terms[3], results[2];
346% ...
347% for each given x,y -> u,v
348% terms[0] = x;
349% terms[1] = y;
350% terms[2] = 1;
351% results[0] = u;
352% results[1] = v;
353% LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
354% ...
355% if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
356% c0 = vectors[0][0];
anthonyfd706f92012-01-19 04:22:02 +0000357% c2 = vectors[0][1]; %* weights to calculate u from any given x,y *%
cristy3ed852e2009-09-05 21:47:34 +0000358% c4 = vectors[0][2];
359% c1 = vectors[1][0];
anthonyfd706f92012-01-19 04:22:02 +0000360% c3 = vectors[1][1]; %* weights for calculate v from any given x,y *%
cristy3ed852e2009-09-05 21:47:34 +0000361% c5 = vectors[1][2];
362% }
363% else
364% printf("Matrix unsolvable\n);
365% RelinquishMagickMatrix(matrix,3UL);
366% RelinquishMagickMatrix(vectors,2UL);
367%
anthonyfd706f92012-01-19 04:22:02 +0000368% More examples can be found in "distort.c"
369%
cristy3ed852e2009-09-05 21:47:34 +0000370*/
cristyd1dd6e42011-09-04 01:46:08 +0000371MagickPrivate void LeastSquaresAddTerms(double **matrix,double **vectors,
cristybb503372010-05-27 20:51:26 +0000372 const double *terms,const double *results,const size_t rank,
373 const size_t number_vectors)
cristy3ed852e2009-09-05 21:47:34 +0000374{
cristybb503372010-05-27 20:51:26 +0000375 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000376 i,
377 j;
378
cristybb503372010-05-27 20:51:26 +0000379 for (j=0; j < (ssize_t) rank; j++)
cristy74908cf2010-05-17 19:43:54 +0000380 {
cristybb503372010-05-27 20:51:26 +0000381 for (i=0; i < (ssize_t) rank; i++)
cristy74908cf2010-05-17 19:43:54 +0000382 matrix[i][j]+=terms[i]*terms[j];
cristybb503372010-05-27 20:51:26 +0000383 for (i=0; i < (ssize_t) number_vectors; i++)
cristy74908cf2010-05-17 19:43:54 +0000384 vectors[i][j]+=results[i]*terms[j];
cristy3ed852e2009-09-05 21:47:34 +0000385 }
cristy3ed852e2009-09-05 21:47:34 +0000386}
387
388/*
389%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
390% %
391% %
392% %
393% R e l i n q u i s h M a g i c k M a t r i x %
394% %
395% %
396% %
397%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
398%
399% RelinquishMagickMatrix() frees the previously acquired matrix (array of
400% pointers to arrays of doubles).
401%
402% The format of the RelinquishMagickMatrix method is:
403%
404% double **RelinquishMagickMatrix(double **matrix,
cristybb503372010-05-27 20:51:26 +0000405% const size_t number_rows)
cristy3ed852e2009-09-05 21:47:34 +0000406%
407% A description of each parameter follows:
408%
409% o matrix: the matrix to relinquish
410%
cristy1ad491d2010-05-17 19:45:27 +0000411% o number_rows: the first dimension of the acquired matrix (number of
412% pointers)
cristy3ed852e2009-09-05 21:47:34 +0000413%
414*/
415MagickExport double **RelinquishMagickMatrix(double **matrix,
cristybb503372010-05-27 20:51:26 +0000416 const size_t number_rows)
cristy3ed852e2009-09-05 21:47:34 +0000417{
cristybb503372010-05-27 20:51:26 +0000418 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000419 i;
420
421 if (matrix == (double **) NULL )
422 return(matrix);
cristybb503372010-05-27 20:51:26 +0000423 for (i=0; i < (ssize_t) number_rows; i++)
cristy3ed852e2009-09-05 21:47:34 +0000424 matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
425 matrix=(double **) RelinquishMagickMemory(matrix);
cristy3ed852e2009-09-05 21:47:34 +0000426 return(matrix);
427}