blob: 9dc7959baf94065d16f761b531e4d3a4d8d9a573 [file] [log] [blame]
cristy3ed852e2009-09-05 21:47:34 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M AAA TTTTT RRRR IIIII X X %
7% MM MM A A T R R I X X %
8% M M M AAAAA T RRRR I X %
9% M M A A T R R I X X %
10% M M A A T R R IIIII X X %
11% %
12% %
13% MagickCore Matrix Methods %
14% %
15% Software Design %
16% John Cristy %
17% August 2007 %
18% %
19% %
cristy7e41fe82010-12-04 23:12:08 +000020% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
cristy3ed852e2009-09-05 21:47:34 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36%
37*/
38
39/*
40 Include declarations.
41*/
42#include "magick/studio.h"
43#include "magick/matrix.h"
44#include "magick/memory_.h"
45#include "magick/utility.h"
46
47/*
48%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49% %
50% %
51% %
52% A c q u i r e M a g i c k M a t r i x %
53% %
54% %
55% %
56%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57%
58% AcquireMagickMatrix() allocates and returns a matrix in the form of an
59% array of pointers to an array of doubles, with all values pre-set to zero.
60%
61% This used to generate the two dimentional matrix, and vectors required
62% for the GaussJordanElimination() method below, solving some system of
63% simultanious equations.
64%
65% The format of the AcquireMagickMatrix method is:
66%
cristybb503372010-05-27 20:51:26 +000067% double **AcquireMagickMatrix(const size_t number_rows,
68% const size_t size)
cristy3ed852e2009-09-05 21:47:34 +000069%
70% A description of each parameter follows:
71%
cristy74908cf2010-05-17 19:43:54 +000072% o number_rows: the number pointers for the array of pointers
cristy1ad491d2010-05-17 19:45:27 +000073% (first dimension).
cristy3ed852e2009-09-05 21:47:34 +000074%
cristy1ad491d2010-05-17 19:45:27 +000075% o size: the size of the array of doubles each pointer points to
76% (second dimension).
cristy3ed852e2009-09-05 21:47:34 +000077%
78*/
cristybb503372010-05-27 20:51:26 +000079MagickExport double **AcquireMagickMatrix(const size_t number_rows,
80 const size_t size)
cristy3ed852e2009-09-05 21:47:34 +000081{
82 double
cristy74908cf2010-05-17 19:43:54 +000083 **matrix;
cristy3ed852e2009-09-05 21:47:34 +000084
cristybb503372010-05-27 20:51:26 +000085 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +000086 i,
87 j;
88
cristy74908cf2010-05-17 19:43:54 +000089 matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix));
cristy3ed852e2009-09-05 21:47:34 +000090 if (matrix == (double **) NULL)
91 return((double **)NULL);
cristybb503372010-05-27 20:51:26 +000092 for (i=0; i < (ssize_t) number_rows; i++)
cristy3ed852e2009-09-05 21:47:34 +000093 {
94 matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
95 if (matrix[i] == (double *) NULL)
96 {
97 for (j=0; j < i; j++)
98 matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
99 matrix=(double **) RelinquishMagickMemory(matrix);
100 return((double **) NULL);
101 }
cristybb503372010-05-27 20:51:26 +0000102 for (j=0; j < (ssize_t) size; j++)
cristy74908cf2010-05-17 19:43:54 +0000103 matrix[i][j]=0.0;
cristy3ed852e2009-09-05 21:47:34 +0000104 }
105 return(matrix);
106}
107
108/*
109%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110% %
111% %
112% %
113% G a u s s J o r d a n E l i m i n a t i o n %
114% %
115% %
116% %
117%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
118%
119% GaussJordanElimination() returns a matrix in reduced row echelon form,
120% while simultaneously reducing and thus solving the augumented results
121% matrix.
122%
123% See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
124%
125% The format of the GaussJordanElimination method is:
126%
cristy74908cf2010-05-17 19:43:54 +0000127% MagickBooleanType GaussJordanElimination(double **matrix,double **vectors,
cristybb503372010-05-27 20:51:26 +0000128% const size_t rank,const size_t number_vectors)
cristy3ed852e2009-09-05 21:47:34 +0000129%
130% A description of each parameter follows:
131%
132% o matrix: the matrix to be reduced, as an 'array of row pointers'.
133%
134% o vectors: the additional matrix argumenting the matrix for row reduction.
135% Producing an 'array of column vectors'.
136%
137% o rank: The size of the matrix (both rows and columns).
138% Also represents the number terms that need to be solved.
139%
cristy74908cf2010-05-17 19:43:54 +0000140% o number_vectors: Number of vectors columns, argumenting the above matrix.
cristy3ed852e2009-09-05 21:47:34 +0000141% Usally 1, but can be more for more complex equation solving.
142%
143% Note that the 'matrix' is given as a 'array of row pointers' of rank size.
144% That is values can be assigned as matrix[row][column] where 'row' is
145% typically the equation, and 'column' is the term of the equation.
146% That is the matrix is in the form of a 'row first array'.
147%
148% However 'vectors' is a 'array of column pointers' which can have any number
149% of columns, with each column array the same 'rank' size as 'matrix'.
150%
151% This allows for simpler handling of the results, especially is only one
152% column 'vector' is all that is required to produce the desired solution.
153%
154% For example, the 'vectors' can consist of a pointer to a simple array of
155% doubles. when only one set of simultanious equations is to be solved from
156% the given set of coefficient weighted terms.
157%
158% double **matrix = AcquireMagickMatrix(8UL,8UL);
159% double coefficents[8];
160% ...
161% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
162%
163% However by specifing more 'columns' (as an 'array of vector columns',
164% you can use this function to solve a set of 'separable' equations.
165%
166% For example a distortion function where u = U(x,y) v = V(x,y)
167% And the functions U() and V() have separate coefficents, but are being
168% generated from a common x,y->u,v data set.
169%
170% Another example is generation of a color gradient from a set of colors
171% at specific coordients, such as a list x,y -> r,g,b,a
172% (Reference to be added - Anthony)
173%
174% You can also use the 'vectors' to generate an inverse of the given 'matrix'
175% though as a 'column first array' rather than a 'row first array'. For
176% details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
177%
178*/
179MagickExport MagickBooleanType GaussJordanElimination(double **matrix,
cristybb503372010-05-27 20:51:26 +0000180 double **vectors,const size_t rank,const size_t number_vectors)
cristy3ed852e2009-09-05 21:47:34 +0000181{
182#define GaussJordanSwap(x,y) \
183{ \
184 if ((x) != (y)) \
185 { \
186 (x)+=(y); \
187 (y)=(x)-(y); \
188 (x)=(x)-(y); \
189 } \
190}
191
192 double
193 max,
194 scale;
195
cristy9d314ff2011-03-09 01:30:28 +0000196 register ssize_t
197 i,
198 j,
199 k;
200
cristybb503372010-05-27 20:51:26 +0000201 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000202 column,
203 *columns,
204 *pivots,
205 row,
206 *rows;
207
cristybb503372010-05-27 20:51:26 +0000208 columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns));
209 rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows));
210 pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots));
211 if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) ||
212 (pivots == (ssize_t *) NULL))
cristy3ed852e2009-09-05 21:47:34 +0000213 {
cristybb503372010-05-27 20:51:26 +0000214 if (pivots != (ssize_t *) NULL)
215 pivots=(ssize_t *) RelinquishMagickMemory(pivots);
216 if (columns != (ssize_t *) NULL)
217 columns=(ssize_t *) RelinquishMagickMemory(columns);
218 if (rows != (ssize_t *) NULL)
219 rows=(ssize_t *) RelinquishMagickMemory(rows);
cristy3ed852e2009-09-05 21:47:34 +0000220 return(MagickFalse);
221 }
222 (void) ResetMagickMemory(columns,0,rank*sizeof(*columns));
223 (void) ResetMagickMemory(rows,0,rank*sizeof(*rows));
224 (void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots));
225 column=0;
226 row=0;
cristybb503372010-05-27 20:51:26 +0000227 for (i=0; i < (ssize_t) rank; i++)
cristy3ed852e2009-09-05 21:47:34 +0000228 {
229 max=0.0;
cristybb503372010-05-27 20:51:26 +0000230 for (j=0; j < (ssize_t) rank; j++)
cristy3ed852e2009-09-05 21:47:34 +0000231 if (pivots[j] != 1)
232 {
cristybb503372010-05-27 20:51:26 +0000233 for (k=0; k < (ssize_t) rank; k++)
cristy3ed852e2009-09-05 21:47:34 +0000234 if (pivots[k] != 0)
235 {
236 if (pivots[k] > 1)
237 return(MagickFalse);
238 }
239 else
240 if (fabs(matrix[j][k]) >= max)
241 {
242 max=fabs(matrix[j][k]);
243 row=j;
244 column=k;
245 }
246 }
247 pivots[column]++;
248 if (row != column)
249 {
cristybb503372010-05-27 20:51:26 +0000250 for (k=0; k < (ssize_t) rank; k++)
cristy3ed852e2009-09-05 21:47:34 +0000251 GaussJordanSwap(matrix[row][k],matrix[column][k]);
cristybb503372010-05-27 20:51:26 +0000252 for (k=0; k < (ssize_t) number_vectors; k++)
cristy3ed852e2009-09-05 21:47:34 +0000253 GaussJordanSwap(vectors[k][row],vectors[k][column]);
254 }
255 rows[i]=row;
256 columns[i]=column;
257 if (matrix[column][column] == 0.0)
258 return(MagickFalse); /* sigularity */
259 scale=1.0/matrix[column][column];
260 matrix[column][column]=1.0;
cristybb503372010-05-27 20:51:26 +0000261 for (j=0; j < (ssize_t) rank; j++)
cristy3ed852e2009-09-05 21:47:34 +0000262 matrix[column][j]*=scale;
cristybb503372010-05-27 20:51:26 +0000263 for (j=0; j < (ssize_t) number_vectors; j++)
cristy3ed852e2009-09-05 21:47:34 +0000264 vectors[j][column]*=scale;
cristybb503372010-05-27 20:51:26 +0000265 for (j=0; j < (ssize_t) rank; j++)
cristy3ed852e2009-09-05 21:47:34 +0000266 if (j != column)
267 {
268 scale=matrix[j][column];
269 matrix[j][column]=0.0;
cristybb503372010-05-27 20:51:26 +0000270 for (k=0; k < (ssize_t) rank; k++)
cristy3ed852e2009-09-05 21:47:34 +0000271 matrix[j][k]-=scale*matrix[column][k];
cristybb503372010-05-27 20:51:26 +0000272 for (k=0; k < (ssize_t) number_vectors; k++)
cristy3ed852e2009-09-05 21:47:34 +0000273 vectors[k][j]-=scale*vectors[k][column];
274 }
275 }
cristybb503372010-05-27 20:51:26 +0000276 for (j=(ssize_t) rank-1; j >= 0; j--)
cristy3ed852e2009-09-05 21:47:34 +0000277 if (columns[j] != rows[j])
cristybb503372010-05-27 20:51:26 +0000278 for (i=0; i < (ssize_t) rank; i++)
cristy3ed852e2009-09-05 21:47:34 +0000279 GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
cristybb503372010-05-27 20:51:26 +0000280 pivots=(ssize_t *) RelinquishMagickMemory(pivots);
281 rows=(ssize_t *) RelinquishMagickMemory(rows);
282 columns=(ssize_t *) RelinquishMagickMemory(columns);
cristy3ed852e2009-09-05 21:47:34 +0000283 return(MagickTrue);
284}
285
286/*
287%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
288% %
289% %
290% %
291% L e a s t S q u a r e s A d d T e r m s %
292% %
293% %
294% %
295%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
296%
297% LeastSquaresAddTerms() adds one set of terms and associate results to the
298% given matrix and vectors for solving using least-squares function fitting.
299%
300% The format of the AcquireMagickMatrix method is:
301%
302% void LeastSquaresAddTerms(double **matrix,double **vectors,
cristybb503372010-05-27 20:51:26 +0000303% const double *terms,const double *results,const size_t rank,
304% const size_t number_vectors);
cristy3ed852e2009-09-05 21:47:34 +0000305%
306% A description of each parameter follows:
307%
308% o matrix: the square matrix to add given terms/results to.
309%
310% o vectors: the result vectors to add terms/results to.
311%
312% o terms: the pre-calculated terms (without the unknown coefficent
313% weights) that forms the equation being added.
314%
315% o results: the result(s) that should be generated from the given terms
316% weighted by the yet-to-be-solved coefficents.
317%
318% o rank: the rank or size of the dimentions of the square matrix.
319% Also the length of vectors, and number of terms being added.
320%
cristy1ad491d2010-05-17 19:45:27 +0000321% o number_vectors: Number of result vectors, and number or results being
322% added. Also represents the number of separable systems of equations
323% that is being solved.
cristy3ed852e2009-09-05 21:47:34 +0000324%
325% Example of use...
326%
327% 2 dimentional Affine Equations (which are separable)
328% c0*x + c2*y + c4*1 => u
329% c1*x + c3*y + c5*1 => v
330%
331% double **matrix = AcquireMagickMatrix(3UL,3UL);
332% double **vectors = AcquireMagickMatrix(2UL,3UL);
333% double terms[3], results[2];
334% ...
335% for each given x,y -> u,v
336% terms[0] = x;
337% terms[1] = y;
338% terms[2] = 1;
339% results[0] = u;
340% results[1] = v;
341% LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
342% ...
343% if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
344% c0 = vectors[0][0];
345% c2 = vectors[0][1];
346% c4 = vectors[0][2];
347% c1 = vectors[1][0];
348% c3 = vectors[1][1];
349% c5 = vectors[1][2];
350% }
351% else
352% printf("Matrix unsolvable\n);
353% RelinquishMagickMatrix(matrix,3UL);
354% RelinquishMagickMatrix(vectors,2UL);
355%
356*/
357MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors,
cristybb503372010-05-27 20:51:26 +0000358 const double *terms,const double *results,const size_t rank,
359 const size_t number_vectors)
cristy3ed852e2009-09-05 21:47:34 +0000360{
cristybb503372010-05-27 20:51:26 +0000361 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000362 i,
363 j;
364
cristybb503372010-05-27 20:51:26 +0000365 for (j=0; j < (ssize_t) rank; j++)
cristy74908cf2010-05-17 19:43:54 +0000366 {
cristybb503372010-05-27 20:51:26 +0000367 for (i=0; i < (ssize_t) rank; i++)
cristy74908cf2010-05-17 19:43:54 +0000368 matrix[i][j]+=terms[i]*terms[j];
cristybb503372010-05-27 20:51:26 +0000369 for (i=0; i < (ssize_t) number_vectors; i++)
cristy74908cf2010-05-17 19:43:54 +0000370 vectors[i][j]+=results[i]*terms[j];
cristy3ed852e2009-09-05 21:47:34 +0000371 }
cristy3ed852e2009-09-05 21:47:34 +0000372 return;
373}
374
375/*
376%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
377% %
378% %
379% %
380% R e l i n q u i s h M a g i c k M a t r i x %
381% %
382% %
383% %
384%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
385%
386% RelinquishMagickMatrix() frees the previously acquired matrix (array of
387% pointers to arrays of doubles).
388%
389% The format of the RelinquishMagickMatrix method is:
390%
391% double **RelinquishMagickMatrix(double **matrix,
cristybb503372010-05-27 20:51:26 +0000392% const size_t number_rows)
cristy3ed852e2009-09-05 21:47:34 +0000393%
394% A description of each parameter follows:
395%
396% o matrix: the matrix to relinquish
397%
cristy1ad491d2010-05-17 19:45:27 +0000398% o number_rows: the first dimension of the acquired matrix (number of
399% pointers)
cristy3ed852e2009-09-05 21:47:34 +0000400%
401*/
402MagickExport double **RelinquishMagickMatrix(double **matrix,
cristybb503372010-05-27 20:51:26 +0000403 const size_t number_rows)
cristy3ed852e2009-09-05 21:47:34 +0000404{
cristybb503372010-05-27 20:51:26 +0000405 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000406 i;
407
408 if (matrix == (double **) NULL )
409 return(matrix);
cristybb503372010-05-27 20:51:26 +0000410 for (i=0; i < (ssize_t) number_rows; i++)
cristy3ed852e2009-09-05 21:47:34 +0000411 matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
412 matrix=(double **) RelinquishMagickMemory(matrix);
cristy3ed852e2009-09-05 21:47:34 +0000413 return(matrix);
414}
415