blob: 634c274c8858e3a311ce8b9c3cf4e35decb36ea8 [file] [log] [blame]
cristy701db312009-11-20 03:14:08 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y %
7% MM MM O O R R P P H H O O L O O G Y Y %
8% M M M O O RRRR PPPP HHHHH O O L O O G GGG Y %
9% M M O O R R P H H O O L O O G G Y %
10% M M OOO R R P H H OOO LLLLL OOO GGG Y %
11% %
12% %
13% MagickCore Morphology Methods %
14% %
15% Software Design %
16% Anthony Thyssen %
17% September 2009 %
18% %
19% %
cristy16af1cb2009-12-11 21:38:29 +000020% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
cristy701db312009-11-20 03:14:08 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
anthony602ab9b2010-01-05 08:06:50 +000036% Morpology is the the application of various kernals, of any size and even
37% shape, to a image in various ways (typically binary, but not always).
cristy701db312009-11-20 03:14:08 +000038%
anthony602ab9b2010-01-05 08:06:50 +000039% Convolution (weighted sum or average) is just one specific type of
40% morphology. Just one that is very common for image bluring and sharpening
41% effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring.
42%
43% This module provides not only a general morphology function, and the ability
44% to apply more advanced or iterative morphologies, but also functions for the
45% generation of many different types of kernel arrays from user supplied
46% arguments. Prehaps even the generation of a kernel from a small image.
cristy701db312009-11-20 03:14:08 +000047*/
48
49/*
50 Include declarations.
51*/
52#include "magick/studio.h"
anthony602ab9b2010-01-05 08:06:50 +000053#include "magick/artifact.h"
cristy701db312009-11-20 03:14:08 +000054#include "magick/cache-view.h"
55#include "magick/color-private.h"
56#include "magick/enhance.h"
57#include "magick/exception.h"
58#include "magick/exception-private.h"
anthony602ab9b2010-01-05 08:06:50 +000059#include "magick/gem.h"
cristy701db312009-11-20 03:14:08 +000060#include "magick/hashmap.h"
61#include "magick/image.h"
cristybba804b2010-01-05 15:39:59 +000062#include "magick/image-private.h"
cristy701db312009-11-20 03:14:08 +000063#include "magick/list.h"
64#include "magick/memory_.h"
65#include "magick/monitor-private.h"
66#include "magick/morphology.h"
anthony602ab9b2010-01-05 08:06:50 +000067#include "magick/option.h"
cristy701db312009-11-20 03:14:08 +000068#include "magick/pixel-private.h"
69#include "magick/prepress.h"
70#include "magick/quantize.h"
71#include "magick/registry.h"
72#include "magick/semaphore.h"
73#include "magick/splay-tree.h"
74#include "magick/statistic.h"
75#include "magick/string_.h"
anthony602ab9b2010-01-05 08:06:50 +000076#include "magick/string-private.h"
77#include "magick/token.h"
78
79/*
80 * The following are assignments and tests for special floating point numbers
81 * of value NaN (not a number), that may be used within a Kernel Definition.
82 * NaN's are defined as part of the IEEE standard for floating point number
83 * representation.
84 *
85 * These are used a Kernel value of NaN means that that kernal position
86 * is not part of the normal convolution or morphology process, and thus
87 * allowing the use of 'shaped' kernels.
88 *
89 * Special Properities
90 * Two NaN's are never equal, even if they are from the same variable
91 * That is the IsNaN() macro is only true if the value is NaN.
92 */
93#define IsNan(a) ((a)!=(a))
94
95
96/*
97%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
98% %
99% %
100% %
101% A c q u i r e K e r n e l F r o m S t r i n g %
102% %
103% %
104% %
105%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
106%
107% AcquireKernelFromString() takes the given string (generally supplied by the
108% user) and converts it into a Morphology/Convolution Kernel. This allows
109% users to specify a kernel from a number of pre-defined kernels, or to fully
110% specify their own kernel for a specific Convolution or Morphology
111% Operation.
112%
113% The kernel so generated can be any rectangular array of floating point
114% values (doubles) with the 'control point' or 'pixel being affected'
115% anywhere within that array of values.
116%
117% ASIDE: Previously IM was restricted to a square of odd size using the exact
118% center.
119%
120% The floating point values in the kernel can also include a special value
121% known as 'NaN' or 'not a number' to indicate that this value is not part
122% of the kernel array. This allows you to specify a non-rectangular shaped
123% kernel, for use in Morphological operators, without the need for some type
124% of kernal mask.
125%
126% The returned kernel should be freed using the DestroyKernel() when you are
127% finished with it.
128%
129% Input kernel defintion strings can consist of any of three types.
130%
131% "num, num, num, num, ..."
132% list of floating point numbers defining an 'old style' odd sized
133% square kernel. At least 9 values should be provided for a 3x3
134% square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc.
135% Values can be space or comma separated.
136%
137% "WxH[+X+Y]:num, num, num ..."
138% a kernal of size W by H, with W*H floating point numbers following.
139% the 'center' can be optionally be defined at +X+Y (such that +0+0
140% is top left corner). If not defined a pixel closest to the center
141% of the array is automatically defined.
142%
143% "name:args"
144% Select from one of the built in kernels. See AcquireKernelBuiltIn()
145%
146% Note that 'name' kernels will start with an alphabetic character
147% while the new kernel specification has a ':' character in its
148% specification.
149%
150% TODO: bias and auto-scale handling of the kernel
151% The given kernel is assumed to have been pre-scaled appropriatally, usally
152% by the kernel generator.
153%
154% The format of the AcquireKernal method is:
155%
156% MagickKernel *AcquireKernelFromString(const char *kernel_string)
157%
158% A description of each parameter follows:
159%
160% o kernel_string: the Morphology/Convolution kernel wanted.
161%
162*/
163
164MagickExport MagickKernel *AcquireKernelFromString(const char *kernel_string)
165{
166 MagickKernel
167 *kernel;
168
169 char
170 token[MaxTextExtent];
171
172 register unsigned long
173 i;
174
175 const char
176 *p;
177
178 MagickStatusType
179 flags;
180
181 GeometryInfo
182 args;
183
184 assert(kernel_string != (const char *) NULL);
185 SetGeometryInfo(&args);
186
187 /* does it start with an alpha - Return a builtin kernel */
188 GetMagickToken(kernel_string,&p,token);
189 if ( isalpha((int)token[0]) )
190 {
191 long
192 type;
193
194 type=ParseMagickOption(MagickKernelOptions,MagickFalse,token);
195 if ( type < 0 || type == UserDefinedKernel )
196 return((MagickKernel *)NULL);
197
198 while (((isspace((int) ((unsigned char) *p)) != 0) ||
199 (*p == ',') || (*p == ':' )) && (*p != '\0'))
200 p++;
201 flags = ParseGeometry(p, &args);
202
203 /* special handling of missing values in input string */
204 if ( type == RectangleKernel ) {
205 if ( (flags & WidthValue) == 0 ) /* if no width then */
206 args.rho = args.sigma; /* then width = height */
207 if ( args.rho < 1.0 ) /* if width too small */
208 args.rho = 3; /* then width = 3 */
209 if ( args.sigma < 1.0 ) /* if height too small */
210 args.sigma = args.rho; /* then height = width */
211 if ( (flags & XValue) == 0 ) /* center offset if not defined */
212 args.xi = (double)(((long)args.rho-1)/2);
213 if ( (flags & YValue) == 0 )
214 args.psi = (double)(((long)args.sigma-1)/2);
215 }
216
217 return(AcquireKernelBuiltIn((MagickKernelType)type, &args));
218 }
219
220 kernel=(MagickKernel *) AcquireMagickMemory(sizeof(*kernel));
221 if (kernel == (MagickKernel *)NULL)
222 return(kernel);
223 (void) ResetMagickMemory(kernel,0,sizeof(*kernel));
224 kernel->type = UserDefinedKernel;
225
226 /* Has a ':' in argument - New user kernel specification */
227 p = strchr(kernel_string, ':');
228 if ( p != (char *) NULL)
229 {
230#if 1
231 /* ParseGeometry() needs the geometry separated! -- Arrgghh */
232 memcpy(token, kernel_string, p-kernel_string);
233 token[p-kernel_string] = '\0';
234 flags = ParseGeometry(token, &args);
235#else
236 flags = ParseGeometry(kernel_string, &args);
237#endif
238
239 /* Size Handling and Checks */
240 if ( (flags & WidthValue) == 0 ) /* if no width then */
241 args.rho = args.sigma; /* then width = height */
242 if ( args.rho < 1.0 ) /* if width too small */
243 args.rho = 1.0; /* then width = 1 */
244 if ( args.sigma < 1.0 ) /* if height too small */
245 args.sigma = args.rho; /* then height = width */
246 kernel->width = (unsigned long)args.rho;
247 kernel->height = (unsigned long)args.sigma;
248
249 /* Offset Handling and Checks */
250 if ( args.xi < 0.0 || args.psi < 0.0 )
251 return(DestroyKernel(kernel));
252 kernel->offset_x = ((flags & XValue)!=0) ? (unsigned long)args.xi
253 : (kernel->width-1)/2;
254 kernel->offset_y = ((flags & YValue)!=0) ? (unsigned long)args.psi
255 : (kernel->height-1)/2;
256 if ( kernel->offset_x >= kernel->width ||
257 kernel->offset_y >= kernel->height )
258 return(DestroyKernel(kernel));
259
260 p++; /* advance beyond the ':' */
261 }
262 else
263 { /* ELSE - Old old kernel specification, forming odd-square kernel */
264 /* count up number of values given */
265 p=(const char *) kernel_string;
266 for (i=0; *p != '\0'; i++)
267 {
268 GetMagickToken(p,&p,token);
269 if (*token == ',')
270 GetMagickToken(p,&p,token);
271 }
272 /* set the size of the kernel - old sized square */
273 kernel->width = kernel->height= (unsigned long) sqrt((double) i+1.0);
274 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
275 p=(const char *) kernel_string;
276 }
277
278 /* Read in the kernel values from rest of input string argument */
279 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
280 kernel->height*sizeof(double));
281 if (kernel->values == (double *) NULL)
282 return(DestroyKernel(kernel));
283
284 kernel->range_neg = kernel->range_pos = 0.0;
285 for (i=0; (i < kernel->width*kernel->height) && (*p != '\0'); i++)
286 {
287 GetMagickToken(p,&p,token);
288 if (*token == ',')
289 GetMagickToken(p,&p,token);
290 (( kernel->values[i] = StringToDouble(token) ) < 0)
291 ? ( kernel->range_neg += kernel->values[i] )
292 : ( kernel->range_pos += kernel->values[i] );
293 }
294 for ( ; i < kernel->width*kernel->height; i++)
295 kernel->values[i]=0.0;
296
297 return(kernel);
298}
299
300/*
301%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
302% %
303% %
304% %
305% A c q u i r e K e r n e l B u i l t I n %
306% %
307% %
308% %
309%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
310%
311% AcquireKernelBuiltIn() returned one of the 'named' built-in types of
312% kernels used for special purposes such as gaussian blurring, skeleton
313% pruning, and edge distance determination.
314%
315% They take a KernelType, and a set of geometry style arguments, which were
316% typically decoded from a user supplied string, or from a more complex
317% Morphology Method that was requested.
318%
319% The format of the AcquireKernalBuiltIn method is:
320%
321% MagickKernel *AcquireKernelBuiltIn(const MagickKernelType type,
322% const GeometryInfo args)
323%
324% A description of each parameter follows:
325%
326% o type: the pre-defined type of kernel wanted
327%
328% o args: arguments defining or modifying the kernel
329%
330% Convolution Kernels
331%
332% Gaussian "[{radius}]x{sigma}"
333% Generate a two-dimentional gaussian kernel, as used by -gaussian
334% A sigma is required, (with the 'x'), due to historical reasons.
335%
336% NOTE: that the 'radius' is optional, but if provided can limit (clip)
337% the final size of the resulting kernel to a square 2*radius+1 in size.
338% The radius should be at least 2 times that of the sigma value, or
339% sever clipping and aliasing may result. If not given or set to 0 the
340% radius will be determined so as to produce the best minimal error
341% result, which is usally much larger than is normally needed.
342%
343% Blur "[{radius}]x{sigma}[+angle]"
344% As per Gaussian, but generates a 1 dimensional or linear gaussian
345% blur, at the angle given (current restricted to orthogonal angles).
346% If a 'radius' is given the kernel is clipped to a width of 2*radius+1.
347%
348% NOTE that two such blurs perpendicular to each other is equivelent to
349% -blur and the previous gaussian, but is often 10 or more times faster.
350%
351% Comet "[{width}]x{sigma}[+angle]"
352% Blur in one direction only, mush like how a bright object leaves
353% a comet like trail. The Kernel is actually half a gaussian curve,
354% Adding two such blurs in oppiste directions produces a Linear Blur.
355%
356% NOTE: that the first argument is the width of the kernel and not the
357% radius of the kernel.
358%
359% # Still to be implemented...
360% #
361% # Laplacian "{radius}x{sigma}"
362% # Laplacian (a mexican hat like) Function
363% #
364% # LOG "{radius},{sigma1},{sigma2}
365% # Laplacian of Gaussian
366% #
367% # DOG "{radius},{sigma1},{sigma2}
368% # Difference of Gaussians
369%
370% Boolean Kernels
371%
372% Rectangle "{geometry}"
373% Simply generate a rectangle of 1's with the size given. You can also
374% specify the location of the 'control point', otherwise the closest
375% pixel to the center of the rectangle is selected.
376%
377% Properly centered and odd sized rectangles work the best.
378%
379% Diamond "[{radius}]"
380% Generate a diamond shaped kernal with given radius to the points.
381% Kernel size will again be radius*2+1 square and defaults to radius 1,
382% generating a 3x3 kernel that is slightly larger than a square.
383%
384% Square "[{radius}]"
385% Generate a square shaped kernel of size radius*2+1, and defaulting
386% to a 3x3 (radius 1).
387%
388% Note that using a larger radius for the "Square" or the "Diamond"
389% is also equivelent to iterating the basic morphological method
390% that many times. However However iterating with the smaller radius 1
391% default is actually faster than using a larger kernel radius.
392%
393% Disk "[{radius}]
394% Generate a binary disk of the radius given, radius may be a float.
395% Kernel size will be ceil(radius)*2+1 square.
396% NOTE: Here are some disk shapes of specific interest
397% "disk:1" => "diamond" or "cross:1"
398% "disk:1.5" => "square"
399% "disk:2" => "diamond:2"
400% "disk:2.5" => default - radius 2 disk shape
401% "disk:2.9" => "square:2"
402% "disk:3.5" => octagonal/disk shape of radius 3
403% "disk:4.2" => roughly octagonal shape of radius 4
404% "disk:4.3" => disk shape of radius 4
405% After this all the kernel shape becomes more and more circular.
406%
407% Because a "disk" is more circular when using a larger radius, using a
408% larger radius is preferred over iterating the morphological operation.
409%
410% Plus "[{radius}]"
411% Generate a kernel in the shape of a 'plus' sign. The length of each
412% arm is also the radius, which defaults to 2.
413%
414% This kernel is not a good general morphological kernel, but is used
415% more for highlighting and marking any single pixels in an image using,
416% a "Dilate" or "Erode" method as appropriate.
417#
418% NOTE: "plus:1" is equivelent to a "Diamond" kernel.
419%
420% Note that unlike other kernels iterating a plus does not produce the
421% same result as using a larger radius for the cross.
422%
423% Distance Measuring Kernels
424%
425% Chebyshev "[{radius}][x{scale}]" largest x or y distance (default r=1)
426% Manhatten "[{radius}][x{scale}]" square grid distance (default r=1)
427% Knight "[{radius}][x{scale}]" octagonal distance (default r=1)
428% Euclidean "[{radius}][x{scale}]" direct distance (default r=4)
429%
430% Different types of distance measuring methods, which are used with the
431% a 'Distance' morphology method for generating a gradient based on
432% distance from an edge of a binary shape, though there is a technique
433% for handling a anti-aliased shape.
434%
435% The first 3 are simplifications that alow the use of a small kernel
436% which is iterated. The lest is more accurate but requires a larger
437% kernel to produce a accurate distance measure. The larger the better.
438%
439% The actual distance is scaled the size give, which while unnecessary
440% for a "Chebyshev" or "Manhatten" distance, is needed to allow for
441% correct handling of fractional distances in "Knight" and "Euclidean"
442% distance formulas. If no scale is provided it is set to a value of
443% 100, allowing for a maximum distance measurement of 655 pixels from
444% any edge, using a Q16 version of IM.
445%
446% See the 'Distance' Morphological Method, for information of how it
447% is applied.
448%
449*/
450
451static void KernelRotate(MagickKernel *kernel, double angle)
452{
453 /* Rotate a kernel appropriately for the angle given
454 **
455 ** Currently assumes the kernel (rightly) horizontally is symetrical
456 **
457 ** TODO: expand beyond simple 90 degree rotates, flips and flops
458 */
459
460 /* Modulus the angle */
461 angle = fmod(angle, 360.0);
462 if ( angle < 0 )
463 angle += 360.0;
464
465 if ( 315.0 < angle || angle <= 45.0 )
466 return; /* no change! - At least at this time */
467
468 switch (kernel->type) {
469 /* These kernels are cylindrical kernel, rotating is useless */
470 case GaussianKernel:
471 case LaplacianKernel:
472 case LOGKernel:
473 case DOGKernel:
474 case DiskKernel:
475 case ChebyshevKernel:
476 case ManhattenKernel:
477 case KnightKernel:
478 case EuclideanKernel:
479 return;
480
481 /* These may be rotatable at non-90 angles in the future */
482 /* but simply rotating them 90 degrees is useless */
483 case SquareKernel:
484 case DiamondKernel:
485 case PlusKernel:
486 return;
487
488 /* These only allows a +/-90 degree rotation (transpose) */
489 case BlurKernel:
490 case RectangleKernel:
491 if ( 135.0 < angle && angle <= 225.0 )
492 return;
493 if ( 225.0 < angle && angle <= 315.0 )
494 angle -= 180;
495 break;
496
497 /* these are freely rotatable in 90 degree units */
498 case CometKernel:
499 case UndefinedKernel:
500 case UserDefinedKernel:
501 break;
502 }
503
504fprintf(stderr, "angle2 = %lf\n", angle);
505
506 if ( 135.0 < angle && angle <= 315.0 )
507 {
508 /* Do a flop, this assumes kernel is horizontally symetrical. */
509 /* Each kernel data row need to be reversed! */
510 unsigned long
511 y;
512 register unsigned long
513 x,r;
514 register double
515 *k,t;
516 for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) {
517 for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--)
518 t=k[x], k[x]=k[r], k[r]=t;
519 }
520 kernel->offset_x = kernel->width - kernel->offset_x - 1;
521 angle = fmod(angle+180.0, 360.0);
522 }
523 if ( 45.0 < angle && angle <= 135.0 )
524 {
525 /* Do a transpose, this assumes the kernel is orthoginally symetrical */
526 /* The data is the same, just the size and offsets needs to be swapped. */
527 unsigned long
528 t;
529 t = kernel->width;
530 kernel->width = kernel->height;
531 kernel->height = t;
532 t = kernel->offset_x;
533 kernel->offset_x = kernel->offset_y;
534 kernel->offset_y = t;
535 angle = fmod(450.0 - angle, 360.0);
536 }
537 /* at this point angle should be between +45 and -45 (315) degrees */
538 return;
539}
540
541MagickExport MagickKernel *AcquireKernelBuiltIn(const MagickKernelType type,
542 const GeometryInfo *args)
543{
544 MagickKernel
545 *kernel;
546
547 register unsigned long
548 i;
549
550 register long
551 u,
552 v;
553
554 double
555 nan = sqrt((double)-1.0); /* Special Value : Not A Number */
556
557 kernel=(MagickKernel *) AcquireMagickMemory(sizeof(*kernel));
558 if (kernel == (MagickKernel *) NULL)
559 return(kernel);
560 (void) ResetMagickMemory(kernel,0,sizeof(*kernel));
561 kernel->range_neg = kernel->range_pos = 0.0;
562 kernel->type = type;
563
564 switch(type) {
565 /* Convolution Kernels */
566 case GaussianKernel:
567 { double
568 sigma = fabs(args->sigma);
569
570 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
571
572 kernel->width = kernel->height =
573 GetOptimalKernelWidth2D(args->rho,sigma);
574 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
575 kernel->range_neg = kernel->range_pos = 0.0;
576 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
577 kernel->height*sizeof(double));
578 if (kernel->values == (double *) NULL)
579 return(DestroyKernel(kernel));
580
581 sigma = 2.0*sigma*sigma; /* simplify the expression */
582 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
583 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
584 kernel->range_pos += (
585 kernel->values[i] =
586 exp(-((double)(u*u+v*v))/sigma)
587 /* / (MagickPI*sigma) */ );
588
589 /* Normalize the Kernel - see notes in BlurKernel, below */
590 u=kernel->width*kernel->height;
591 for (i=0; i < (unsigned long)u; i++)
592 kernel->values[i] /= kernel->range_pos;
593 kernel->range_pos=1.0;
594
595 break;
596 }
597 case BlurKernel:
598 { double
599 sigma = fabs(args->sigma);
600
601 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
602
603 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
604 kernel->offset_x = (kernel->width-1)/2;
605 kernel->height = 1;
606 kernel->offset_y = 0;
607 kernel->range_neg = kernel->range_pos = 0.0;
608 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
609 kernel->height*sizeof(double));
610 if (kernel->values == (double *) NULL)
611 return(DestroyKernel(kernel));
612
613#if 1
614#define KernelRank 3
615 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix).
616 ** It generates a gaussian 3 times the width, and compresses it into
617 ** the expected range. This produces a closer normalization of the
618 ** resulting kernel, especially for very low sigma values.
619 ** As such while wierd it is prefered.
620 **
621 ** I am told this method originally came from Photoshop.
622 */
623 sigma *= KernelRank; /* simplify expanded curve */
624 v = (kernel->width*KernelRank-1)/2; /* start/end points to fit range */
625 (void) ResetMagickMemory(kernel->values,0, (size_t)
626 kernel->width*sizeof(double));
627 for ( u=-v; u <= v; u++) {
628 kernel->values[(u+v)/KernelRank] +=
629 exp(-((double)(u*u))/(2.0*sigma*sigma))
630 /* / (MagickSQ2PI*sigma/KernelRank) */ ;
631 }
632 for (i=0; i < kernel->width; i++)
633 kernel->range_pos += kernel->values[i];
634#else
635 for ( i=0, u=-kernel->offset_x; i < kernel->width; i++, u++)
636 kernel->range_pos += (
637 kernel->values[i] =
638 exp(-((double)(u*u))/(2.0*sigma*sigma))
639 /* / (MagickSQ2PI*sigma) */ );
640#endif
641 /* Note that both the above methods do not generate a normalized
642 ** kernel, though it gets close. The kernel may be 'clipped' by a user
643 ** defined radius, producing a smaller (darker) kernel. Also for very
644 ** small sigma's (> 0.1) the central value becomes larger than one,
645 ** and thus producing a bright kernel.
646 */
647#if 1
648 /* Normalize the 1D Gaussian Kernel
649 **
650 ** Because of this the divisor in the above kernel generator is
651 ** not needed, and is taken care of here.
652 */
653 for (i=0; i < kernel->width; i++)
654 kernel->values[i] /= kernel->range_pos;
655 kernel->range_pos=1.0;
656#endif
657 /* rotate the kernel by given angle */
658 KernelRotate(kernel, args->xi);
659 break;
660 }
661 case CometKernel:
662 { double
663 sigma = fabs(args->sigma);
664
665 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
666
667 if ( args->rho < 1.0 )
668 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
669 else
670 kernel->width = (unsigned long)args->rho;
671 kernel->offset_x = kernel->offset_y = 0;
672 kernel->height = 1;
673 kernel->range_neg = kernel->range_pos = 0.0;
674 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
675 kernel->height*sizeof(double));
676 if (kernel->values == (double *) NULL)
677 return(DestroyKernel(kernel));
678
679 /* A comet blur is half a gaussian curve, so that the object is
680 ** blurred in one direction only. This may not be quite the right
681 ** curve so may change in the future. The function must be normalised.
682 */
683#if 1
684#define KernelRank 3
685 sigma *= KernelRank; /* simplify expanded curve */
686 v = kernel->width*KernelRank; /* start/end points to fit range */
687 (void) ResetMagickMemory(kernel->values,0, (size_t)
688 kernel->width*sizeof(double));
689 for ( u=0; u < v; u++) {
690 kernel->values[u/KernelRank] +=
691 exp(-((double)(u*u))/(2.0*sigma*sigma))
692 /* / (MagickSQ2PI*sigma/KernelRank) */ ;
693 }
694 for (i=0; i < kernel->width; i++)
695 kernel->range_pos += kernel->values[i];
696#else
697 for ( i=0; i < kernel->width; i++)
698 kernel->range_pos += (
699 kernel->values[i] =
700 exp(-((double)(i*i))/(2.0*sigma*sigma))
701 /* / (MagickSQ2PI*sigma) */ );
702#endif
703 /* Normalize the Kernel - see notes in BlurKernel */
704 for (i=0; i < kernel->width; i++)
705 kernel->values[i] /= kernel->range_pos;
706 kernel->range_pos=1.0;
707
708 /* rotate the kernel by given angle */
709 KernelRotate(kernel, args->xi);
710 break;
711 }
712 /* Boolean Kernels */
713 case RectangleKernel:
714 case SquareKernel:
715 {
716 if ( type == SquareKernel )
717 {
718 if (args->rho < 1.0)
719 kernel->width = kernel->height = 3; /* radius 1 */
720 else
721 kernel->width = kernel->height = 2*(long)args->rho+1;
722 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
723 }
724 else {
725 if ( args->rho < 1.0 || args->sigma < 1.0 )
726 return(DestroyKernel(kernel));
727 kernel->width = (unsigned long)args->rho;
728 kernel->height = (unsigned long)args->sigma;
729 if ( args->xi < 0.0 || args->xi > (double)kernel->width ||
730 args->psi < 0.0 || args->psi > (double)kernel->height )
731 return(DestroyKernel(kernel));
732 kernel->offset_x = (unsigned long)args->xi;
733 kernel->offset_y = (unsigned long)args->psi;
734 }
735 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
736 kernel->height*sizeof(double));
737 if (kernel->values == (double *) NULL)
738 return(DestroyKernel(kernel));
739
740 u=kernel->width*kernel->height;
741 for ( i=0; i < (unsigned long)u; i++)
742 kernel->values[i] = 1.0;
743 break;
744 }
745 case DiamondKernel:
746 {
747 if (args->rho < 1.0)
748 kernel->width = kernel->height = 3; /* radius 1 */
749 else
750 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
751 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
752
753 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
754 kernel->height*sizeof(double));
755 if (kernel->values == (double *) NULL)
756 return(DestroyKernel(kernel));
757
758 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
759 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
760 if ((labs(u)+labs(v)) <= (long)kernel->offset_x)
761 kernel->range_pos += kernel->values[i] = 1.0;
762 else
763 kernel->values[i] = nan;
764 break;
765 }
766 case DiskKernel:
767 {
768 long
769 limit;
770
771 limit = (long)(args->rho*args->rho);
772 if (args->rho < 1.0) /* default: ~2.5 radius disk */
773 kernel->width = kernel->height = 5L, limit = 5L;
774 else
775 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
776 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
777
778 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
779 kernel->height*sizeof(double));
780 if (kernel->values == (double *) NULL)
781 return(DestroyKernel(kernel));
782
783 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
784 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
785 if ((u*u+v*v) <= limit)
786 kernel->range_pos += kernel->values[i] = 1.0;
787 else
788 kernel->values[i] = nan;
789 break;
790 }
791 case PlusKernel:
792 {
793 if (args->rho < 1.0)
794 kernel->width = kernel->height = 5; /* radius 2 */
795 else
796 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
797 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
798
799 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
800 kernel->height*sizeof(double));
801 if (kernel->values == (double *) NULL)
802 return(DestroyKernel(kernel));
803
804 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
805 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
806 kernel->values[i] = (u == 0 || v == 0) ? 1.0 : nan;
807 kernel->range_pos = kernel->width*2.0 - 1.0;
808 break;
809 }
810 /* Distance Measuring Kernels */
811 case ChebyshevKernel:
812 {
813 double
814 scale;
815
816 if (args->rho < 1.0)
817 kernel->width = kernel->height = 3;
818 else
819 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
820 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
821
822 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
823 kernel->height*sizeof(double));
824 if (kernel->values == (double *) NULL)
825 return(DestroyKernel(kernel));
826
827 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
828 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
829 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
830 kernel->range_pos += ( kernel->values[i] =
831 scale*((labs(u)>labs(v)) ? labs(u) : labs(v)) );
832 break;
833 }
834 case ManhattenKernel:
835 {
836 double
837 scale;
838
839 if (args->rho < 1.0)
840 kernel->width = kernel->height = 3;
841 else
842 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
843 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
844
845 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
846 kernel->height*sizeof(double));
847 if (kernel->values == (double *) NULL)
848 return(DestroyKernel(kernel));
849
850 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
851 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
852 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
853 kernel->range_pos += ( kernel->values[i] =
854 scale*(labs(u)+labs(v)) );
855 break;
856 }
857 case KnightKernel:
858 {
859 double
860 scale;
861
862 if (args->rho < 1.0)
863 kernel->width = kernel->height = 3;
864 else
865 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
866 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
867
868 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
869 kernel->height*sizeof(double));
870 if (kernel->values == (double *) NULL)
871 return(DestroyKernel(kernel));
872
873 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
874 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
875 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
876 kernel->range_pos += ( kernel->values[i] =
877 scale*((labs(u)<labs(v)) ? (MagickSQ2-1.0)*labs(u)+labs(v)
878 : (MagickSQ2-1.0)*labs(v)+labs(u) ) );
879 break;
880 }
881 case EuclideanKernel:
882 {
883 double
884 scale;
885
886 if (args->rho < 1.0)
887 kernel->width = kernel->height = 9;
888 else
889 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
890 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
891
892 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
893 kernel->height*sizeof(double));
894 if (kernel->values == (double *) NULL)
895 return(DestroyKernel(kernel));
896
897 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
898 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
899 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
900 kernel->range_pos += ( kernel->values[i] =
901 scale*sqrt((double)(u*u+v*v)) );
902 break;
903 }
904 /* Undefined Kernels */
905 case LaplacianKernel:
906 case LOGKernel:
907 case DOGKernel:
908 assert("Kernel Type has not been defined yet");
909 /* FALL THRU */
910 default:
911 /* Generate a No-Op minimal kernel - 1x1 pixel */
912 kernel->values=(double *)AcquireQuantumMemory((size_t)1,sizeof(double));
913 if (kernel->values == (double *) NULL)
914 return(DestroyKernel(kernel));
915 kernel->range_pos = kernel->values[0] = 1.0;
916 kernel->width = kernel->height = 1;
917 kernel->offset_x = kernel->offset_x = 0;
918 kernel->type = UndefinedKernel;
919 break;
920 }
921
922 return(kernel);
923}
924
925/*
926%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
927% %
928% %
929% %
930% D e s t r o y K e r n e l %
931% %
932% %
933% %
934%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
935%
936% DestroyKernel() frees the memory used by a Convolution/Morphology kernel.
937%
938% The format of the DestroyKernel method is:
939%
940% MagickKernel *DestroyKernel(MagickKernel *kernel)
941%
942% A description of each parameter follows:
943%
944% o kernel: the Morphology/Convolution kernel to be destroyed
945%
946*/
947
948MagickExport MagickKernel *DestroyKernel(MagickKernel *kernel)
949{
950 assert(kernel != (MagickKernel *) NULL);
951 kernel->values=(double *)RelinquishMagickMemory(kernel->values);
952 kernel=(MagickKernel *) RelinquishMagickMemory(kernel);
953 return(kernel);
954}
955
956
957/*
958%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
959% %
960% %
961% %
962% M o r p h o l o g y I m a g e %
963% %
964% %
965% %
966%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
967%
968% MorphologyImage() applies a user supplied kernel to the image according to
969% the given mophology method.
970%
971% The given kernel is assumed to have been pre-scaled appropriatally, usally
972% by the kernel generator.
973%
974% The format of the MorphologyImage method is:
975%
976% Image *MorphologyImage(const Image *image, const MorphologyMethod
977% method, const long iterations, const ChannelType channel,
978% const MagickKernel *kernel, ExceptionInfo *exception)
979%
980% A description of each parameter follows:
981%
982% o image: the image.
983%
984% o method: the morphology method to be applied.
985%
986% o iterations: apply the operation this many times (or no change).
987% A value of -1 means loop until no change found.
988% How this is applied may depend on the morphology method.
989% Typically this is a value of 1.
990%
991% o channel: the channel type.
992%
993% o kernel: An array of double representing the morphology kernel.
994% This is assumed to have been pre-scaled (normalized).
995%
996% o exception: return any errors or warnings in this structure.
997%
998%
999% TODO: bias and auto-scale handling of the kernel for convolution
1000% The given kernel is assumed to have been pre-scaled appropriatally, usally
1001% by the kernel generator.
1002%
1003*/
1004
1005static inline double MagickMin(const MagickRealType x,const MagickRealType y)
1006{
1007 return( x < y ? x : y);
1008}
1009static inline double MagickMax(const MagickRealType x,const MagickRealType y)
1010{
1011 return( x > y ? x : y);
1012}
1013#define Minimize(assign,value) assign=MagickMin(assign,value)
1014#define Maximize(assign,value) assign=MagickMax(assign,value)
1015
1016/* incr change if the value being assigned changed */
1017#define Assign(channel,value) \
1018 { q->channel = RoundToQuantum(value); \
1019 if ( p[r].channel != q->channel ) changed++; \
1020 }
1021#define AssignIndex(value) \
1022 { q_indexes[x] = RoundToQuantum(value); \
1023 if ( p_indexes[r] != q_indexes[x] ) changed++; \
1024 }
1025
1026/* Internal function
1027 * Apply the Morphology method with the given Kernel
1028 * And return the number of values changed.
1029 */
1030static unsigned long MorphologyApply(const Image *image, Image
1031 *result_image, const MorphologyMethod method, const ChannelType channel,
1032 const MagickKernel *kernel, ExceptionInfo *exception)
1033{
1034 #define MorphologyTag "Morphology/Image"
1035
1036 long
1037 progress,
1038 y;
1039
1040 unsigned long
1041 changed;
1042
1043 MagickBooleanType
1044 status;
1045
1046 MagickPixelPacket
1047 bias;
1048
1049 CacheView
1050 *p_view,
1051 *q_view;
1052
1053 /*
1054 Apply Morphology to Image.
1055 */
1056 status=MagickTrue;
1057 changed=0;
1058 progress=0;
1059
1060 GetMagickPixelPacket(image,&bias);
1061 SetMagickPixelPacketBias(image,&bias);
1062
1063 p_view=AcquireCacheView(image);
1064 q_view=AcquireCacheView(result_image);
1065#if defined(MAGICKCORE_OPENMP_SUPPORT)
1066 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
1067#endif
1068 for (y=0; y < (long) image->rows; y++)
1069 {
1070 MagickBooleanType
1071 sync;
1072
1073 register const PixelPacket
1074 *restrict p;
1075
1076 register const IndexPacket
1077 *restrict p_indexes;
1078
1079 register PixelPacket
1080 *restrict q;
1081
1082 register IndexPacket
1083 *restrict q_indexes;
1084
1085 register long
1086 x;
1087
1088 long
1089 r;
1090
1091 if (status == MagickFalse)
1092 continue;
1093 p=GetCacheViewVirtualPixels(p_view, -kernel->offset_x, y-kernel->offset_y,
1094 image->columns+kernel->width, kernel->height, exception);
1095 q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1,
1096 exception);
1097 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
1098 {
1099 status=MagickFalse;
1100 continue;
1101 }
1102 p_indexes=GetCacheViewVirtualIndexQueue(p_view);
1103 q_indexes=GetCacheViewAuthenticIndexQueue(q_view);
1104 r = (image->columns+kernel->width)*kernel->offset_y+kernel->offset_x;
1105 for (x=0; x < (long) image->columns; x++)
1106 {
1107 long
1108 v;
1109
1110 register long
1111 u;
1112
1113 register const double
1114 *restrict k;
1115
1116 register const PixelPacket
1117 *restrict k_pixels;
1118
1119 register const IndexPacket
1120 *restrict k_indexes;
1121
1122 MagickPixelPacket
1123 result;
1124
1125 /* Copy input to ouput image - removes need for 'cloning' new images */
1126 *q = p[r];
1127 if (image->colorspace == CMYKColorspace)
1128 q_indexes[x] = p_indexes[r];
1129
cristybba804b2010-01-05 15:39:59 +00001130 result.index=0;
anthony602ab9b2010-01-05 08:06:50 +00001131 switch (method) {
1132 case ConvolveMorphology:
1133 result=bias;
1134 break; /* default result is the convolution bias */
1135 case DialateIntensityMorphology:
1136 case ErodeIntensityMorphology:
1137 /* result is the pixel as is */
1138 result.red = p[r].red;
1139 result.green = p[r].green;
1140 result.blue = p[r].blue;
1141 result.opacity = p[r].opacity;
1142 if ( image->colorspace == CMYKColorspace)
1143 result.index = p_indexes[r];
1144 break;
1145 default:
1146 /* most need to handle transparency as alpha */
1147 result.red = p[r].red;
1148 result.green = p[r].green;
1149 result.blue = p[r].blue;
1150 result.opacity = QuantumRange - p[r].opacity;
1151 if ( image->colorspace == CMYKColorspace)
1152 result.index = p_indexes[r];
1153 break;
1154 }
1155
1156 switch ( method ) {
1157 case ConvolveMorphology:
1158 /* Weighted Average of pixels */
1159 if (((channel & OpacityChannel) == 0) ||
1160 (image->matte == MagickFalse))
1161 {
1162 /* Kernel Weighted Convolution (no transparency) */
1163 k = kernel->values;
1164 k_pixels = p;
1165 k_indexes = p_indexes;
1166 for (v=0; v < (long) kernel->height; v++) {
1167 for (u=0; u < (long) kernel->width; u++, k++) {
1168 if ( IsNan(*k) ) continue;
1169 result.red += (*k)*k_pixels[u].red;
1170 result.green += (*k)*k_pixels[u].green;
1171 result.blue += (*k)*k_pixels[u].blue;
1172 /* result.opacity += no involvment */
1173 if ( image->colorspace == CMYKColorspace)
1174 result.index += (*k)*k_indexes[u];
1175 }
1176 k_pixels += image->columns+kernel->width;
1177 k_indexes += image->columns+kernel->width;
1178 }
1179 if ((channel & RedChannel) != 0)
1180 Assign(red,result.red);
1181 if ((channel & GreenChannel) != 0)
1182 Assign(green,result.green);
1183 if ((channel & BlueChannel) != 0)
1184 Assign(blue,result.blue);
1185 /* no transparency involved */
1186 if ((channel & IndexChannel) != 0
1187 && image->colorspace == CMYKColorspace)
1188 AssignIndex(result.index);
1189 }
1190 else
1191 { /* Kernel & Alpha weighted Convolution */
1192 MagickRealType
1193 alpha, /* alpha value * kernel weighting */
1194 gamma; /* weighting divisor */
1195
1196 gamma=0.0;
1197 k = kernel->values;
1198 k_pixels = p;
1199 k_indexes = p_indexes;
1200 for (v=0; v < (long) kernel->height; v++) {
1201 for (u=0; u < (long) kernel->width; u++, k++) {
1202 if ( IsNan(*k) ) continue;
1203 alpha=(*k)*(QuantumScale*(QuantumRange-
1204 k_pixels[u].opacity));
1205 gamma += alpha;
1206 result.red += alpha*k_pixels[u].red;
1207 result.green += alpha*k_pixels[u].green;
1208 result.blue += alpha*k_pixels[u].blue;
1209 result.opacity += (*k)*k_pixels[u].opacity;
1210 if ( image->colorspace == CMYKColorspace)
1211 result.index += alpha*k_indexes[u];
1212 }
1213 k_pixels += image->columns+kernel->width;
1214 k_indexes += image->columns+kernel->width;
1215 }
1216 gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
1217 if ((channel & RedChannel) != 0)
1218 Assign(red,gamma*result.red);
1219 if ((channel & GreenChannel) != 0)
1220 Assign(green,gamma*result.green);
1221 if ((channel & BlueChannel) != 0)
1222 Assign(blue,gamma*result.blue);
1223 if ((channel & OpacityChannel) != 0
1224 && image->matte == MagickTrue )
1225 Assign(opacity,result.opacity);
1226 if ((channel & IndexChannel) != 0
1227 && image->colorspace == CMYKColorspace)
1228 AssignIndex(gamma*result.index);
1229 }
1230 break;
1231
1232 case DialateMorphology:
1233 /* Maximize Value - Kernel should be boolean */
1234 k = kernel->values;
1235 k_pixels = p;
1236 k_indexes = p_indexes;
1237 for (v=0; v < (long) kernel->height; v++) {
1238 for (u=0; u < (long) kernel->width; u++, k++) {
1239 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1240 Maximize(result.red, k_pixels[u].red);
1241 Maximize(result.green, k_pixels[u].green);
1242 Maximize(result.blue, k_pixels[u].blue);
1243 Maximize(result.opacity, QuantumRange-k_pixels[u].opacity);
1244 if ( image->colorspace == CMYKColorspace)
1245 Maximize(result.index, k_indexes[u]);
1246 }
1247 k_pixels += image->columns+kernel->width;
1248 k_indexes += image->columns+kernel->width;
1249 }
1250 if ((channel & RedChannel) != 0)
1251 Assign(red,result.red);
1252 if ((channel & GreenChannel) != 0)
1253 Assign(green,result.green);
1254 if ((channel & BlueChannel) != 0)
1255 Assign(blue,result.blue);
1256 if ((channel & OpacityChannel) != 0
1257 && image->matte == MagickTrue )
1258 Assign(opacity,QuantumRange-result.opacity);
1259 if ((channel & IndexChannel) != 0
1260 && image->colorspace == CMYKColorspace)
1261 AssignIndex(result.index);
1262 break;
1263
1264 case ErodeMorphology:
1265 /* Minimize Value - Kernel should be boolean */
1266 k = kernel->values;
1267 k_pixels = p;
1268 k_indexes = p_indexes;
1269 for (v=0; v < (long) kernel->height; v++) {
1270 for (u=0; u < (long) kernel->width; u++, k++) {
1271 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1272 Minimize(result.red, k_pixels[u].red);
1273 Minimize(result.green, k_pixels[u].green);
1274 Minimize(result.blue, k_pixels[u].blue);
1275 Minimize(result.opacity, QuantumRange-k_pixels[u].opacity);
1276 if ( image->colorspace == CMYKColorspace)
1277 Minimize(result.index, k_indexes[u]);
1278 }
1279 k_pixels += image->columns+kernel->width;
1280 k_indexes += image->columns+kernel->width;
1281 }
1282 if ((channel & RedChannel) != 0)
1283 Assign(red,result.red);
1284 if ((channel & GreenChannel) != 0)
1285 Assign(green,result.green);
1286 if ((channel & BlueChannel) != 0)
1287 Assign(blue,result.blue);
1288 if ((channel & OpacityChannel) != 0
1289 && image->matte == MagickTrue )
1290 Assign(opacity,QuantumRange-result.opacity);
1291 if ((channel & IndexChannel) != 0
1292 && image->colorspace == CMYKColorspace)
1293 AssignIndex(result.index);
1294 break;
1295
1296 case DialateIntensityMorphology:
1297 /* Maximum Intensity Pixel - Kernel should be boolean */
1298 k = kernel->values;
1299 k_pixels = p;
1300 k_indexes = p_indexes;
1301 for (v=0; v < (long) kernel->height; v++) {
1302 for (u=0; u < (long) kernel->width; u++, k++) {
1303 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1304 if ( PixelIntensity(&p[r]) >
1305 PixelIntensity(&(k_pixels[u])) ) continue;
1306 result.red = k_pixels[u].red;
1307 result.green = k_pixels[u].green;
1308 result.blue = k_pixels[u].blue;
1309 result.opacity = k_pixels[u].opacity;
1310 if ( image->colorspace == CMYKColorspace)
1311 result.index = k_indexes[u];
1312 }
1313 k_pixels += image->columns+kernel->width;
1314 k_indexes += image->columns+kernel->width;
1315 }
1316 if ((channel & RedChannel) != 0)
1317 Assign(red,result.red);
1318 if ((channel & GreenChannel) != 0)
1319 Assign(green,result.green);
1320 if ((channel & BlueChannel) != 0)
1321 Assign(blue,result.blue);
1322 if ((channel & OpacityChannel) != 0
1323 && image->matte == MagickTrue )
1324 Assign(opacity,result.opacity);
1325 if ((channel & IndexChannel) != 0
1326 && image->colorspace == CMYKColorspace)
1327 AssignIndex(result.index);
1328 break;
1329
1330 case ErodeIntensityMorphology:
1331 /* Minimum Intensity Pixel - Kernel should be boolean */
1332 k = kernel->values;
1333 k_pixels = p;
1334 k_indexes = p_indexes;
1335 for (v=0; v < (long) kernel->height; v++) {
1336 for (u=0; u < (long) kernel->width; u++, k++) {
1337 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1338 if ( PixelIntensity(&p[r]) <
1339 PixelIntensity(&(k_pixels[u])) ) continue;
1340 result.red = k_pixels[u].red;
1341 result.green = k_pixels[u].green;
1342 result.blue = k_pixels[u].blue;
1343 result.opacity = k_pixels[u].opacity;
1344 if ( image->colorspace == CMYKColorspace)
1345 result.index = k_indexes[u];
1346 }
1347 k_pixels += image->columns+kernel->width;
1348 k_indexes += image->columns+kernel->width;
1349 }
1350 if ((channel & RedChannel) != 0)
1351 Assign(red,result.red);
1352 if ((channel & GreenChannel) != 0)
1353 Assign(green,result.green);
1354 if ((channel & BlueChannel) != 0)
1355 Assign(blue,result.blue);
1356 if ((channel & OpacityChannel) != 0
1357 && image->matte == MagickTrue )
1358 Assign(opacity,result.opacity);
1359 if ((channel & IndexChannel) != 0
1360 && image->colorspace == CMYKColorspace)
1361 AssignIndex(result.index);
1362 break;
1363
1364 case DistanceMorphology:
1365#if 0
1366 /* No need to do distance morphology if all values are zero */
1367 /* Unfortunatally I have not been able to get this right! */
1368 if ( ((channel & RedChannel) == 0 && p[r].red == 0)
1369 || ((channel & GreenChannel) == 0 && p[r].green == 0)
1370 || ((channel & BlueChannel) == 0 && p[r].blue == 0)
1371 || ((channel & OpacityChannel) == 0 && p[r].opacity == 0)
1372 || (( (channel & IndexChannel) == 0
1373 || image->colorspace != CMYKColorspace
1374 ) && p_indexes[x] ==0 )
1375 )
1376 break;
1377#endif
1378 k = kernel->values;
1379 k_pixels = p;
1380 k_indexes = p_indexes;
1381 for (v=0; v < (long) kernel->height; v++) {
1382 for (u=0; u < (long) kernel->width; u++, k++) {
1383 if ( IsNan(*k) ) continue;
1384 Minimize(result.red, (*k)+k_pixels[u].red);
1385 Minimize(result.green, (*k)+k_pixels[u].green);
1386 Minimize(result.blue, (*k)+k_pixels[u].blue);
1387 Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity);
1388 if ( image->colorspace == CMYKColorspace)
1389 Minimize(result.index, (*k)+k_indexes[u]);
1390 }
1391 k_pixels += image->columns+kernel->width;
1392 k_indexes += image->columns+kernel->width;
1393 }
1394#if 1
1395 if ((channel & RedChannel) != 0)
1396 Assign(red,result.red);
1397 if ((channel & GreenChannel) != 0)
1398 Assign(green,result.green);
1399 if ((channel & BlueChannel) != 0)
1400 Assign(blue,result.blue);
1401 if ((channel & OpacityChannel) != 0
1402 && image->matte == MagickTrue )
1403 Assign(opacity,QuantumRange-result.opacity);
1404 if ((channel & IndexChannel) != 0
1405 && image->colorspace == CMYKColorspace)
1406 AssignIndex(result.index);
1407#else
1408 /* By returning the number of 'maximum' values still to process
1409 ** we can get the Distance iteration to finish faster.
1410 ** BUT this may cause an infinite loop on very large shapes,
1411 ** which may have a distance that reachs a maximum gradient.
1412 */
1413 if ((channel & RedChannel) != 0)
1414 { q->red = RoundToQuantum(result.red);
1415 if ( q->red == QuantumRange ) changed++; /* more to do */
1416 }
1417 if ((channel & GreenChannel) != 0)
1418 { q->green = RoundToQuantum(result.green);
1419 if ( q->green == QuantumRange ) changed++; /* more to do */
1420 }
1421 if ((channel & BlueChannel) != 0)
1422 { q->blue = RoundToQuantum(result.blue);
1423 if ( q->blue == QuantumRange ) changed++; /* more to do */
1424 }
1425 if ((channel & OpacityChannel) != 0)
1426 { q->opacity = RoundToQuantum(QuantumRange-result.opacity);
1427 if ( q->opacity == 0 ) changed++; /* more to do */
1428 }
1429 if (((channel & IndexChannel) != 0) &&
1430 (image->colorspace == CMYKColorspace))
1431 { q_indexes[x] = RoundToQuantum(result.index);
1432 if ( q_indexes[x] == QuantumRange ) changed++;
1433 }
1434#endif
1435 break;
1436
1437 case UndefinedMorphology:
1438 default:
1439 break; /* Do nothing */
1440 }
1441 p++;
1442 q++;
1443 }
1444 sync=SyncCacheViewAuthenticPixels(q_view,exception);
1445 if (sync == MagickFalse)
1446 status=MagickFalse;
1447 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1448 {
1449 MagickBooleanType
1450 proceed;
1451
1452#if defined(MAGICKCORE_OPENMP_SUPPORT)
1453 #pragma omp critical (MagickCore_MorphologyImage)
1454#endif
1455 proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows);
1456 if (proceed == MagickFalse)
1457 status=MagickFalse;
1458 }
1459 }
1460 result_image->type=image->type;
1461 q_view=DestroyCacheView(q_view);
1462 p_view=DestroyCacheView(p_view);
1463 return(status ? changed : 0);
1464}
1465
1466
1467MagickExport Image *MorphologyImage(const Image *image, MorphologyMethod
1468 method, const long iterations, const ChannelType channel,
1469 const MagickKernel *kernel, ExceptionInfo *exception)
1470{
1471 unsigned long
1472 count,
1473 limit,
1474 changed;
1475
1476 Image
1477 *new_image,
1478 *old_image;
1479
1480 assert(image != (Image *) NULL);
1481 assert(image->signature == MagickSignature);
1482 assert(exception != (ExceptionInfo *) NULL);
1483 assert(exception->signature == MagickSignature);
1484
1485 if ( GetImageArtifact(image,"showkernel") != (const char *) NULL)
1486 {
1487 /* Show the Kernel that was input by the user */
1488 unsigned long
1489 i, u, v;
1490
1491 fprintf(stderr, "Kernel \"%s\" size %lux%lu%+ld%+ld scaling %+lg to %+lg\n",
1492 MagickOptionToMnemonic(MagickKernelOptions, kernel->type),
1493 kernel->width, kernel->height,
1494 kernel->offset_x, kernel->offset_y,
1495 kernel->range_neg, kernel->range_pos);
1496 for (i=v=0; v < kernel->height; v++) {
1497 fprintf(stderr,"%2ld: ",v);
1498 for (u=0; u < kernel->width; u++, i++)
1499 fprintf(stderr,"%5.3lf ",kernel->values[i]);
1500 fprintf(stderr,"\n");
1501 }
1502 }
1503
1504 if ( iterations == 0 )
1505 return((Image *)NULL); /* null operation - nothing to do! */
1506
1507 /* kernel must be valid at this point
1508 * (except maybe for posible future morphology methods like "Prune"
1509 */
1510 assert(kernel != (MagickKernel *)NULL);
1511
1512 count = 0;
1513 limit = iterations;
1514 if ( iterations < 0 )
1515 limit = image->columns > image->rows ? image->columns : image->rows;
1516
1517 /* Special morphology cases */
cristybba804b2010-01-05 15:39:59 +00001518 changed=MagickFalse;
anthony602ab9b2010-01-05 08:06:50 +00001519 switch( method ) {
1520 case CloseMorphology:
1521 new_image = MorphologyImage(image, DialateMorphology, iterations, channel,
1522 kernel, exception);
1523 if (new_image == (Image *) NULL)
1524 return((Image *) NULL);
1525 method = ErodeMorphology;
1526 break;
1527 case OpenMorphology:
1528 new_image = MorphologyImage(image, ErodeMorphology, iterations, channel,
1529 kernel, exception);
1530 if (new_image == (Image *) NULL)
1531 return((Image *) NULL);
1532 method = DialateMorphology;
1533 break;
1534 case CloseIntensityMorphology:
1535 new_image = MorphologyImage(image, DialateIntensityMorphology,
1536 iterations, channel, kernel, exception);
1537 if (new_image == (Image *) NULL)
1538 return((Image *) NULL);
1539 method = ErodeIntensityMorphology;
1540 break;
1541 case OpenIntensityMorphology:
1542 new_image = MorphologyImage(image, ErodeIntensityMorphology,
1543 iterations, channel, kernel, exception);
1544 if (new_image == (Image *) NULL)
1545 return((Image *) NULL);
1546 method = DialateIntensityMorphology;
1547 break;
1548
1549 default:
1550 /* Do a morphology once!
1551 This ensures a new_image has been generated, but allows us
1552 to skip the creation of 'old_image' if it wasn't needed.
1553 */
1554 new_image=CloneImage(image,0,0,MagickTrue,exception);
1555 if (new_image == (Image *) NULL)
1556 return((Image *) NULL);
1557 if (SetImageStorageClass(new_image,DirectClass) == MagickFalse)
1558 {
1559 InheritException(exception,&new_image->exception);
1560 new_image=DestroyImage(new_image);
1561 return((Image *) NULL);
1562 }
1563 changed = MorphologyApply(image,new_image,method,channel,kernel,
1564 exception);
1565 count++;
1566 if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
1567 fprintf(stderr, "Morphology %s:%lu => Changed %lu\n",
1568 MagickOptionToMnemonic(MagickMorphologyOptions, method),
1569 count, changed);
1570 }
1571
1572 /* Repeat the interative morphology until count or no change */
1573 if ( count < limit && changed > 0 ) {
1574 old_image = CloneImage(new_image,0,0,MagickTrue,exception);
1575 if (old_image == (Image *) NULL)
1576 return(DestroyImage(new_image));
1577 if (SetImageStorageClass(old_image,DirectClass) == MagickFalse)
1578 {
1579 InheritException(exception,&old_image->exception);
1580 old_image=DestroyImage(old_image);
1581 return(DestroyImage(new_image));
1582 }
1583 while( count < limit && changed != 0 )
1584 {
1585 Image *tmp = old_image;
1586 old_image = new_image;
1587 new_image = tmp;
1588 changed = MorphologyApply(old_image,new_image,method,channel,kernel,
1589 exception);
1590 count++;
1591 if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
1592 fprintf(stderr, "Morphology %s:%lu => Changed %lu\n",
1593 MagickOptionToMnemonic(MagickMorphologyOptions, method),
1594 count, changed);
1595 }
1596 DestroyImage(old_image);
1597 }
1598
1599 return(new_image);
1600}
1601