Olli Etuaho | 853dc1a | 2014-11-06 17:25:48 +0200 | [diff] [blame] | 1 | // |
| 2 | // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. |
| 3 | // Use of this source code is governed by a BSD-style license that can be |
| 4 | // found in the LICENSE file. |
| 5 | // |
| 6 | |
| 7 | #include "compiler/translator/EmulatePrecision.h" |
| 8 | |
| 9 | namespace |
| 10 | { |
| 11 | |
| 12 | static void writeVectorPrecisionEmulationHelpers( |
| 13 | TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size) |
| 14 | { |
| 15 | std::stringstream vecTypeStrStr; |
| 16 | if (outputLanguage == SH_ESSL_OUTPUT) |
| 17 | vecTypeStrStr << "highp "; |
| 18 | vecTypeStrStr << "vec" << size; |
| 19 | std::string vecType = vecTypeStrStr.str(); |
| 20 | |
| 21 | sink << |
| 22 | vecType << " angle_frm(in " << vecType << " v) {\n" |
| 23 | " v = clamp(v, -65504.0, 65504.0);\n" |
| 24 | " " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n" |
| 25 | " bvec" << size << " isNonZero = greaterThanEqual(exponent, vec" << size << "(-25.0));\n" |
| 26 | " v = v * exp2(-exponent);\n" |
| 27 | " v = sign(v) * floor(abs(v));\n" |
| 28 | " return v * exp2(exponent) * vec" << size << "(isNonZero);\n" |
| 29 | "}\n"; |
| 30 | |
| 31 | sink << |
| 32 | vecType << " angle_frl(in " << vecType << " v) {\n" |
| 33 | " v = clamp(v, -2.0, 2.0);\n" |
| 34 | " v = v * 256.0;\n" |
| 35 | " v = sign(v) * floor(abs(v));\n" |
| 36 | " return v * 0.00390625;\n" |
| 37 | "}\n"; |
| 38 | } |
| 39 | |
| 40 | static void writeMatrixPrecisionEmulationHelper( |
| 41 | TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size, const char *functionName) |
| 42 | { |
| 43 | std::stringstream matTypeStrStr; |
| 44 | if (outputLanguage == SH_ESSL_OUTPUT) |
| 45 | matTypeStrStr << "highp "; |
| 46 | matTypeStrStr << "mat" << size; |
| 47 | std::string matType = matTypeStrStr.str(); |
| 48 | |
| 49 | sink << matType << " " << functionName << "(in " << matType << " m) {\n" |
| 50 | " " << matType << " rounded;\n"; |
| 51 | |
| 52 | for (unsigned int i = 0; i < size; ++i) |
| 53 | { |
| 54 | sink << " rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n"; |
| 55 | } |
| 56 | |
| 57 | sink << " return rounded;\n" |
| 58 | "}\n"; |
| 59 | } |
| 60 | |
| 61 | static void writeCommonPrecisionEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage) |
| 62 | { |
| 63 | // Write the angle_frm functions that round floating point numbers to |
| 64 | // half precision, and angle_frl functions that round them to minimum lowp |
| 65 | // precision. |
| 66 | |
| 67 | // Unoptimized version of angle_frm for single floats: |
| 68 | // |
| 69 | // int webgl_maxNormalExponent(in int exponentBits) { |
| 70 | // int possibleExponents = int(exp2(float(exponentBits))); |
| 71 | // int exponentBias = possibleExponents / 2 - 1; |
| 72 | // int allExponentBitsOne = possibleExponents - 1; |
| 73 | // return (allExponentBitsOne - 1) - exponentBias; |
| 74 | // } |
| 75 | // |
| 76 | // float angle_frm(in float x) { |
| 77 | // int mantissaBits = 10; |
| 78 | // int exponentBits = 5; |
| 79 | // float possibleMantissas = exp2(float(mantissaBits)); |
| 80 | // float mantissaMax = 2.0 - 1.0 / possibleMantissas; |
| 81 | // int maxNE = webgl_maxNormalExponent(exponentBits); |
| 82 | // float max = exp2(float(maxNE)) * mantissaMax; |
| 83 | // if (x > max) { |
| 84 | // return max; |
| 85 | // } |
| 86 | // if (x < -max) { |
| 87 | // return -max; |
| 88 | // } |
| 89 | // float exponent = floor(log2(abs(x))); |
| 90 | // if (abs(x) == 0.0 || exponent < -float(maxNE)) { |
| 91 | // return 0.0 * sign(x) |
| 92 | // } |
| 93 | // x = x * exp2(-(exponent - float(mantissaBits))); |
| 94 | // x = sign(x) * floor(abs(x)); |
| 95 | // return x * exp2(exponent - float(mantissaBits)); |
| 96 | // } |
| 97 | |
| 98 | // All numbers with a magnitude less than 2^-15 are subnormal, and are |
| 99 | // flushed to zero. |
| 100 | |
| 101 | // Note the constant numbers below: |
| 102 | // a) 65504 is the maximum possible mantissa (1.1111111111 in binary) times |
| 103 | // 2^15, the maximum normal exponent. |
| 104 | // b) 10.0 is the number of mantissa bits. |
| 105 | // c) -25.0 is the minimum normal half-float exponent -15.0 minus the number |
| 106 | // of mantissa bits. |
| 107 | // d) + 1e-30 is to make sure the argument of log2() won't be zero. It can |
| 108 | // only affect the result of log2 on x where abs(x) < 1e-22. Since these |
| 109 | // numbers will be flushed to zero either way (2^-15 is the smallest |
| 110 | // normal positive number), this does not introduce any error. |
| 111 | |
| 112 | std::string floatType = "float"; |
| 113 | if (outputLanguage == SH_ESSL_OUTPUT) |
| 114 | floatType = "highp float"; |
| 115 | |
| 116 | sink << |
| 117 | floatType << " angle_frm(in " << floatType << " x) {\n" |
| 118 | " x = clamp(x, -65504.0, 65504.0);\n" |
| 119 | " " << floatType << " exponent = floor(log2(abs(x) + 1e-30)) - 10.0;\n" |
| 120 | " bool isNonZero = (exponent >= -25.0);\n" |
| 121 | " x = x * exp2(-exponent);\n" |
| 122 | " x = sign(x) * floor(abs(x));\n" |
| 123 | " return x * exp2(exponent) * float(isNonZero);\n" |
| 124 | "}\n"; |
| 125 | |
| 126 | sink << |
| 127 | floatType << " angle_frl(in " << floatType << " x) {\n" |
| 128 | " x = clamp(x, -2.0, 2.0);\n" |
| 129 | " x = x * 256.0;\n" |
| 130 | " x = sign(x) * floor(abs(x));\n" |
| 131 | " return x * 0.00390625;\n" |
| 132 | "}\n"; |
| 133 | |
| 134 | writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 2); |
| 135 | writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 3); |
| 136 | writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 4); |
| 137 | for (unsigned int size = 2; size <= 4; ++size) |
| 138 | { |
| 139 | writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frm"); |
| 140 | writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frl"); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | static void writeCompoundAssignmentPrecisionEmulation( |
| 145 | TInfoSinkBase& sink, ShShaderOutput outputLanguage, |
| 146 | const char *lType, const char *rType, const char *opStr, const char *opNameStr) |
| 147 | { |
| 148 | std::string lTypeStr = lType; |
| 149 | std::string rTypeStr = rType; |
| 150 | if (outputLanguage == SH_ESSL_OUTPUT) |
| 151 | { |
| 152 | std::stringstream lTypeStrStr; |
| 153 | lTypeStrStr << "highp " << lType; |
| 154 | lTypeStr = lTypeStrStr.str(); |
| 155 | std::stringstream rTypeStrStr; |
| 156 | rTypeStrStr << "highp " << rType; |
| 157 | rTypeStr = rTypeStrStr.str(); |
| 158 | } |
| 159 | |
| 160 | // Note that y should be passed through angle_frm at the function call site, |
| 161 | // but x can't be passed through angle_frm there since it is an inout parameter. |
| 162 | // So only pass x and the result through angle_frm here. |
| 163 | sink << |
| 164 | lTypeStr << " angle_compound_" << opNameStr << "_frm(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n" |
| 165 | " x = angle_frm(angle_frm(x) " << opStr << " y);\n" |
| 166 | " return x;\n" |
| 167 | "}\n"; |
| 168 | sink << |
| 169 | lTypeStr << " angle_compound_" << opNameStr << "_frl(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n" |
| 170 | " x = angle_frl(angle_frm(x) " << opStr << " y);\n" |
| 171 | " return x;\n" |
| 172 | "}\n"; |
| 173 | } |
| 174 | |
| 175 | const char *getFloatTypeStr(const TType& type) |
| 176 | { |
| 177 | switch (type.getNominalSize()) |
| 178 | { |
| 179 | case 1: |
| 180 | return "float"; |
| 181 | case 2: |
| 182 | return type.getSecondarySize() > 1 ? "mat2" : "vec2"; |
| 183 | case 3: |
| 184 | return type.getSecondarySize() > 1 ? "mat3" : "vec3"; |
| 185 | case 4: |
| 186 | return type.getSecondarySize() > 1 ? "mat4" : "vec4"; |
| 187 | default: |
| 188 | UNREACHABLE(); |
| 189 | return NULL; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | bool canRoundFloat(const TType &type) |
| 194 | { |
| 195 | return type.getBasicType() == EbtFloat && !type.isNonSquareMatrix() && !type.isArray() && |
| 196 | (type.getPrecision() == EbpLow || type.getPrecision() == EbpMedium); |
| 197 | } |
| 198 | |
| 199 | TIntermAggregate *createInternalFunctionCallNode(TString name, TIntermNode *child) |
| 200 | { |
| 201 | TIntermAggregate *callNode = new TIntermAggregate(); |
| 202 | callNode->setOp(EOpInternalFunctionCall); |
| 203 | callNode->setName(name); |
| 204 | callNode->getSequence()->push_back(child); |
| 205 | return callNode; |
| 206 | } |
| 207 | |
| 208 | TIntermAggregate *createRoundingFunctionCallNode(TIntermTyped *roundedChild) |
| 209 | { |
| 210 | TString roundFunctionName; |
| 211 | if (roundedChild->getPrecision() == EbpMedium) |
| 212 | roundFunctionName = "angle_frm"; |
| 213 | else |
| 214 | roundFunctionName = "angle_frl"; |
| 215 | return createInternalFunctionCallNode(roundFunctionName, roundedChild); |
| 216 | } |
| 217 | |
| 218 | TIntermAggregate *createCompoundAssignmentFunctionCallNode(TIntermTyped *left, TIntermTyped *right, const char *opNameStr) |
| 219 | { |
| 220 | std::stringstream strstr; |
| 221 | if (left->getPrecision() == EbpMedium) |
| 222 | strstr << "angle_compound_" << opNameStr << "_frm"; |
| 223 | else |
| 224 | strstr << "angle_compound_" << opNameStr << "_frl"; |
| 225 | TString functionName = strstr.str().c_str(); |
| 226 | TIntermAggregate *callNode = createInternalFunctionCallNode(functionName, left); |
| 227 | callNode->getSequence()->push_back(right); |
| 228 | return callNode; |
| 229 | } |
| 230 | |
Olli Etuaho | 1be8870 | 2015-01-19 16:56:44 +0200 | [diff] [blame^] | 231 | bool parentUsesResult(TIntermNode* parent, TIntermNode* node) |
| 232 | { |
| 233 | if (!parent) |
| 234 | { |
| 235 | return false; |
| 236 | } |
| 237 | |
| 238 | TIntermAggregate *aggParent = parent->getAsAggregate(); |
| 239 | // If the parent's op is EOpSequence, the result is not assigned anywhere, |
| 240 | // so rounding it is not needed. In particular, this can avoid a lot of |
| 241 | // unnecessary rounding of unused return values of assignment. |
| 242 | if (aggParent && aggParent->getOp() == EOpSequence) |
| 243 | { |
| 244 | return false; |
| 245 | } |
| 246 | if (aggParent && aggParent->getOp() == EOpComma && (aggParent->getSequence()->back() != node)) |
| 247 | { |
| 248 | return false; |
| 249 | } |
| 250 | return true; |
| 251 | } |
| 252 | |
Olli Etuaho | 853dc1a | 2014-11-06 17:25:48 +0200 | [diff] [blame] | 253 | } // namespace anonymous |
| 254 | |
| 255 | EmulatePrecision::EmulatePrecision() |
| 256 | : TIntermTraverser(true, true, true), |
| 257 | mDeclaringVariables(false), |
| 258 | mInLValue(false), |
| 259 | mInFunctionCallOutParameter(false) |
| 260 | {} |
| 261 | |
| 262 | void EmulatePrecision::visitSymbol(TIntermSymbol *node) |
| 263 | { |
| 264 | if (canRoundFloat(node->getType()) && |
| 265 | !mDeclaringVariables && !mInLValue && !mInFunctionCallOutParameter) |
| 266 | { |
| 267 | TIntermNode *parent = getParentNode(); |
| 268 | TIntermNode *replacement = createRoundingFunctionCallNode(node); |
| 269 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true)); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | |
| 274 | bool EmulatePrecision::visitBinary(Visit visit, TIntermBinary *node) |
| 275 | { |
| 276 | bool visitChildren = true; |
| 277 | |
| 278 | if (node->isAssignment()) |
| 279 | { |
| 280 | if (visit == PreVisit) |
| 281 | mInLValue = true; |
| 282 | else if (visit == InVisit) |
| 283 | mInLValue = false; |
| 284 | } |
| 285 | |
| 286 | TOperator op = node->getOp(); |
| 287 | |
| 288 | // RHS of initialize is not being declared. |
| 289 | if (op == EOpInitialize && visit == InVisit) |
| 290 | mDeclaringVariables = false; |
| 291 | |
| 292 | if ((op == EOpIndexDirectStruct || op == EOpVectorSwizzle) && visit == InVisit) |
| 293 | visitChildren = false; |
| 294 | |
| 295 | if (visit != PreVisit) |
| 296 | return visitChildren; |
| 297 | |
| 298 | const TType& type = node->getType(); |
| 299 | bool roundFloat = canRoundFloat(type); |
| 300 | |
| 301 | if (roundFloat) { |
| 302 | switch (op) { |
| 303 | // Math operators that can result in a float may need to apply rounding to the return |
| 304 | // value. Note that in the case of assignment, the rounding is applied to its return |
| 305 | // value here, not the value being assigned. |
| 306 | case EOpAssign: |
| 307 | case EOpAdd: |
| 308 | case EOpSub: |
| 309 | case EOpMul: |
| 310 | case EOpDiv: |
| 311 | case EOpVectorTimesScalar: |
| 312 | case EOpVectorTimesMatrix: |
| 313 | case EOpMatrixTimesVector: |
| 314 | case EOpMatrixTimesScalar: |
| 315 | case EOpMatrixTimesMatrix: |
| 316 | { |
| 317 | TIntermNode *parent = getParentNode(); |
Olli Etuaho | 1be8870 | 2015-01-19 16:56:44 +0200 | [diff] [blame^] | 318 | if (!parentUsesResult(parent, node)) |
| 319 | { |
| 320 | break; |
| 321 | } |
Olli Etuaho | 853dc1a | 2014-11-06 17:25:48 +0200 | [diff] [blame] | 322 | TIntermNode *replacement = createRoundingFunctionCallNode(node); |
| 323 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true)); |
| 324 | break; |
| 325 | } |
| 326 | |
| 327 | // Compound assignment cases need to replace the operator with a function call. |
| 328 | case EOpAddAssign: |
| 329 | { |
| 330 | mEmulateCompoundAdd.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType()))); |
| 331 | TIntermNode *parent = getParentNode(); |
| 332 | TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "add"); |
| 333 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false)); |
| 334 | break; |
| 335 | } |
| 336 | case EOpSubAssign: |
| 337 | { |
| 338 | mEmulateCompoundSub.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType()))); |
| 339 | TIntermNode *parent = getParentNode(); |
| 340 | TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "sub"); |
| 341 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false)); |
| 342 | break; |
| 343 | } |
| 344 | case EOpMulAssign: |
| 345 | case EOpVectorTimesMatrixAssign: |
| 346 | case EOpVectorTimesScalarAssign: |
| 347 | case EOpMatrixTimesScalarAssign: |
| 348 | case EOpMatrixTimesMatrixAssign: |
| 349 | { |
| 350 | mEmulateCompoundMul.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType()))); |
| 351 | TIntermNode *parent = getParentNode(); |
| 352 | TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "mul"); |
| 353 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false)); |
| 354 | break; |
| 355 | } |
| 356 | case EOpDivAssign: |
| 357 | { |
| 358 | mEmulateCompoundDiv.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType()))); |
| 359 | TIntermNode *parent = getParentNode(); |
| 360 | TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "div"); |
| 361 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false)); |
| 362 | break; |
| 363 | } |
| 364 | default: |
| 365 | // The rest of the binary operations should not need precision emulation. |
| 366 | break; |
| 367 | } |
| 368 | } |
| 369 | return visitChildren; |
| 370 | } |
| 371 | |
| 372 | bool EmulatePrecision::visitAggregate(Visit visit, TIntermAggregate *node) |
| 373 | { |
| 374 | bool visitChildren = true; |
| 375 | switch (node->getOp()) |
| 376 | { |
| 377 | case EOpSequence: |
| 378 | case EOpConstructStruct: |
| 379 | // No special handling |
| 380 | break; |
| 381 | case EOpFunction: |
| 382 | if (visit == PreVisit) |
| 383 | { |
| 384 | const TIntermSequence &sequence = *(node->getSequence()); |
| 385 | TIntermSequence::const_iterator seqIter = sequence.begin(); |
| 386 | TIntermAggregate *params = (*seqIter)->getAsAggregate(); |
| 387 | ASSERT(params != NULL); |
| 388 | ASSERT(params->getOp() == EOpParameters); |
| 389 | mFunctionMap[node->getName()] = params->getSequence(); |
| 390 | } |
| 391 | break; |
| 392 | case EOpPrototype: |
| 393 | if (visit == PreVisit) |
| 394 | mFunctionMap[node->getName()] = node->getSequence(); |
| 395 | visitChildren = false; |
| 396 | break; |
| 397 | case EOpParameters: |
| 398 | visitChildren = false; |
| 399 | break; |
| 400 | case EOpInvariantDeclaration: |
| 401 | visitChildren = false; |
| 402 | break; |
| 403 | case EOpDeclaration: |
| 404 | // Variable declaration. |
| 405 | if (visit == PreVisit) |
| 406 | { |
| 407 | mDeclaringVariables = true; |
| 408 | } |
| 409 | else if (visit == InVisit) |
| 410 | { |
| 411 | mDeclaringVariables = true; |
| 412 | } |
| 413 | else |
| 414 | { |
| 415 | mDeclaringVariables = false; |
| 416 | } |
| 417 | break; |
| 418 | case EOpFunctionCall: |
| 419 | { |
| 420 | // Function call. |
| 421 | bool inFunctionMap = (mFunctionMap.find(node->getName()) != mFunctionMap.end()); |
| 422 | if (visit == PreVisit) |
| 423 | { |
Olli Etuaho | 1be8870 | 2015-01-19 16:56:44 +0200 | [diff] [blame^] | 424 | // User-defined function return values are not rounded, this relies on that |
| 425 | // calculations producing the value were rounded. |
| 426 | TIntermNode *parent = getParentNode(); |
| 427 | if (canRoundFloat(node->getType()) && !inFunctionMap && parentUsesResult(parent, node)) |
| 428 | { |
Olli Etuaho | 853dc1a | 2014-11-06 17:25:48 +0200 | [diff] [blame] | 429 | TIntermNode *replacement = createRoundingFunctionCallNode(node); |
| 430 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true)); |
| 431 | } |
| 432 | |
| 433 | if (inFunctionMap) |
| 434 | { |
| 435 | mSeqIterStack.push_back(mFunctionMap[node->getName()]->begin()); |
| 436 | if (mSeqIterStack.back() != mFunctionMap[node->getName()]->end()) |
| 437 | { |
| 438 | TQualifier qualifier = (*mSeqIterStack.back())->getAsTyped()->getQualifier(); |
| 439 | mInFunctionCallOutParameter = (qualifier == EvqOut || qualifier == EvqInOut); |
| 440 | } |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | // The function is not user-defined - it is likely built-in texture function. |
| 445 | // Assume that those do not have out parameters. |
| 446 | mInFunctionCallOutParameter = false; |
| 447 | } |
| 448 | } |
| 449 | else if (visit == InVisit) |
| 450 | { |
| 451 | if (inFunctionMap) |
| 452 | { |
| 453 | ++mSeqIterStack.back(); |
| 454 | TQualifier qualifier = (*mSeqIterStack.back())->getAsTyped()->getQualifier(); |
| 455 | mInFunctionCallOutParameter = (qualifier == EvqOut || qualifier == EvqInOut); |
| 456 | } |
| 457 | } |
| 458 | else |
| 459 | { |
| 460 | if (inFunctionMap) |
| 461 | { |
| 462 | mSeqIterStack.pop_back(); |
| 463 | mInFunctionCallOutParameter = false; |
| 464 | } |
| 465 | } |
| 466 | break; |
| 467 | } |
| 468 | default: |
Olli Etuaho | 1be8870 | 2015-01-19 16:56:44 +0200 | [diff] [blame^] | 469 | TIntermNode *parent = getParentNode(); |
| 470 | if (canRoundFloat(node->getType()) && visit == PreVisit && parentUsesResult(parent, node)) |
Olli Etuaho | 853dc1a | 2014-11-06 17:25:48 +0200 | [diff] [blame] | 471 | { |
Olli Etuaho | 853dc1a | 2014-11-06 17:25:48 +0200 | [diff] [blame] | 472 | TIntermNode *replacement = createRoundingFunctionCallNode(node); |
| 473 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true)); |
| 474 | } |
| 475 | break; |
| 476 | } |
| 477 | return visitChildren; |
| 478 | } |
| 479 | |
| 480 | bool EmulatePrecision::visitUnary(Visit visit, TIntermUnary *node) |
| 481 | { |
| 482 | switch (node->getOp()) |
| 483 | { |
| 484 | case EOpNegative: |
| 485 | case EOpVectorLogicalNot: |
| 486 | case EOpLogicalNot: |
| 487 | break; |
| 488 | case EOpPostIncrement: |
| 489 | case EOpPostDecrement: |
| 490 | case EOpPreIncrement: |
| 491 | case EOpPreDecrement: |
| 492 | if (visit == PreVisit) |
| 493 | mInLValue = true; |
| 494 | else if (visit == PostVisit) |
| 495 | mInLValue = false; |
| 496 | break; |
| 497 | default: |
| 498 | if (canRoundFloat(node->getType()) && visit == PreVisit) |
| 499 | { |
| 500 | TIntermNode *parent = getParentNode(); |
| 501 | TIntermNode *replacement = createRoundingFunctionCallNode(node); |
| 502 | mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true)); |
| 503 | } |
| 504 | break; |
| 505 | } |
| 506 | |
| 507 | return true; |
| 508 | } |
| 509 | |
| 510 | void EmulatePrecision::writeEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage) |
| 511 | { |
| 512 | // Other languages not yet supported |
| 513 | ASSERT(outputLanguage == SH_GLSL_OUTPUT || outputLanguage == SH_ESSL_OUTPUT); |
| 514 | writeCommonPrecisionEmulationHelpers(sink, outputLanguage); |
| 515 | |
| 516 | EmulationSet::const_iterator it; |
| 517 | for (it = mEmulateCompoundAdd.begin(); it != mEmulateCompoundAdd.end(); it++) |
| 518 | writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "+", "add"); |
| 519 | for (it = mEmulateCompoundSub.begin(); it != mEmulateCompoundSub.end(); it++) |
| 520 | writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "-", "sub"); |
| 521 | for (it = mEmulateCompoundDiv.begin(); it != mEmulateCompoundDiv.end(); it++) |
| 522 | writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "/", "div"); |
| 523 | for (it = mEmulateCompoundMul.begin(); it != mEmulateCompoundMul.end(); it++) |
| 524 | writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "*", "mul"); |
| 525 | } |
| 526 | |