blob: 5168c09d67cb8f03109dcad5ac21734acd1f8333 [file] [log] [blame]
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +08001# Copyright 2015 The Chromium OS Authors. All rights reserved.
2# Use of this source code is governed by a BSD-style license that can be
3# found in the LICENSE file.
4
5"""This module provides utilities to do audio data analysis."""
6
7import logging
8import numpy
9import operator
10
11# Only peaks with coefficient greater than 0.01 of the first peak should be
12# considered. Note that this correspond to -40dB in the spectrum.
13DEFAULT_MIN_PEAK_RATIO = 0.01
14
15PEAK_WINDOW_SIZE_HZ = 20 # Window size for peak detection.
16
17# The minimum RMS value of meaningful audio data.
18MEANINGFUL_RMS_THRESHOLD = 0.001
19
20class RMSTooSmallError(Exception):
21 """Error when signal RMS is too small."""
22 pass
23
24
Cheng-Yi Chiang3f282552015-12-08 09:06:35 +080025class EmptyDataError(Exception):
26 """Error when signal is empty."""
27
28
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +080029def normalize_signal(signal, saturate_value):
30 """Normalizes the signal with respect to the saturate value.
31
32 @param signal: A list for one-channel PCM data.
33 @param saturate_value: The maximum value that the PCM data might be.
34
35 @returns: A numpy array containing normalized signal. The normalized signal
36 has value -1 and 1 when it saturates.
37
38 """
39 signal = numpy.array(signal)
40 return signal / float(saturate_value)
41
42
43def spectral_analysis(signal, rate, min_peak_ratio=DEFAULT_MIN_PEAK_RATIO,
44 peak_window_size_hz=PEAK_WINDOW_SIZE_HZ):
45 """Gets the dominant frequencies by spectral analysis.
46
47 @param signal: A list of numbers for one-channel PCM data. This should be
48 normalized to [-1, 1] so the function can check if signal RMS
49 is too small to be meaningful.
50 @param rate: Sampling rate.
51 @param min_peak_ratio: The minimum peak_0/peak_i ratio such that the
52 peaks other than the greatest one should be
53 considered.
54 This is to ignore peaks that are too small compared
55 to the first peak peak_0.
56 @param peak_window_size_hz: The window size in Hz to find the peaks.
57 The minimum differences between found peaks will
58 be half of this value.
59
60 @returns: A list of tuples:
61 [(peak_frequency_0, peak_coefficient_0),
62 (peak_frequency_1, peak_coefficient_1),
63 (peak_frequency_2, peak_coefficient_2), ...]
64 where the tuples are sorted by coefficients.
65 The last peak_coefficient will be no less than
66 peak_coefficient * min_peak_ratio.
67
68 """
69 # Checks the signal is meaningful.
Cheng-Yi Chiang3f282552015-12-08 09:06:35 +080070 if len(signal) == 0:
71 raise EmptyDataError('Signal data is empty')
72
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +080073 signal_rms = numpy.linalg.norm(signal) / numpy.sqrt(len(signal))
74 logging.debug('signal RMS = %s', signal_rms)
75 if signal_rms < MEANINGFUL_RMS_THRESHOLD:
76 raise RMSTooSmallError(
77 'RMS %s is too small to be meaningful' % signal_rms)
78
Cheng-Yi Chiang222e5712016-09-10 06:48:37 +080079 logging.debug('Doing spectral analysis ...')
80
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +080081 # First, pass signal through a window function to mitigate spectral leakage.
82 y_conv_w = signal * numpy.hanning(len(signal))
83
84 length = len(y_conv_w)
85
86 # x_f is the frequency in Hz, y_f is the transformed coefficient.
87 x_f = _rfft_freq(length, rate)
88 y_f = 2.0 / length * numpy.fft.rfft(y_conv_w)
89
90 # y_f is complex so consider its absolute value for magnitude.
91 abs_y_f = numpy.abs(y_f)
92 threshold = max(abs_y_f) * min_peak_ratio
93
94 # Suppresses all coefficients that are below threshold.
95 for i in xrange(len(abs_y_f)):
96 if abs_y_f[i] < threshold:
97 abs_y_f[i] = 0
98
99 # Gets the peak detection window size in indice.
100 # x_f[1] is the frequency difference per index.
101 peak_window_size = int(peak_window_size_hz / x_f[1])
102
103 # Detects peaks.
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800104 peaks = peak_detection(abs_y_f, peak_window_size)
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800105
106 # Transform back the peak location from index to frequency.
107 results = []
108 for index, value in peaks:
109 results.append((x_f[index], value))
110 return results
111
112
113def _rfft_freq(length, rate):
114 """Gets the frequency at each index of real FFT.
115
116 @param length: The window length of FFT.
117 @param rate: Sampling rate.
118
119 @returns: A numpy array containing frequency corresponding to
120 numpy.fft.rfft result at each index.
121
122 """
123 # The difference in Hz between each index.
124 val = rate / float(length)
125 # Only care half of frequencies for FFT on real signal.
126 result_length = length // 2 + 1
127 return numpy.linspace(0, (result_length - 1) * val, result_length)
128
129
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800130def peak_detection(array, window_size):
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800131 """Detects peaks in an array.
132
133 A point (i, array[i]) is a peak if array[i] is the maximum among
134 array[i - half_window_size] to array[i + half_window_size].
135 If array[i - half_window_size] to array[i + half_window_size] are all equal,
136 then there is no peak in this window.
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800137 Note that we only consider peak with value greater than 0.
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800138
139 @param window_size: The window to detect peaks.
140
141 @returns: A list of tuples:
142 [(peak_index_1, peak_value_1), (peak_index_2, peak_value_2), ...]
143 where the tuples are sorted by peak values.
144
145 """
146 half_window_size = window_size / 2
147 length = len(array)
148
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800149 def mid_is_peak(array, mid, left, right):
150 """Checks if value at mid is the largest among left to right in array.
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800151
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800152 @param array: A list of numbers.
153 @param mid: The mid index.
154 @param left: The left index.
155 @param rigth: The right index.
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800156
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800157 @returns: A tuple (is_peak, next_candidate)
158 is_peak is True if array[index] is the maximum among numbers
159 in array between index [left, right] inclusively.
160 next_candidate is the index of next candidate for peak if
161 is_peak is False. It is the index of maximum value in
162 [mid + 1, right]. If is_peak is True, next_candidate is
163 right + 1.
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800164
165 """
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800166 value_mid = array[mid]
167 is_peak = True
168 next_peak_candidate_index = None
169
170 # Check the left half window.
171 for index in xrange(left, mid):
172 if array[index] >= value_mid:
173 is_peak = False
174 break
175
176 # Mid is at the end of array.
177 if mid == right:
178 return is_peak, right + 1
179
180 # Check the right half window and also record next candidate.
181 # Favor the larger index for next_peak_candidate_index.
182 for index in xrange(right, mid, -1):
183 if (next_peak_candidate_index is None or
184 array[index] > array[next_peak_candidate_index]):
185 next_peak_candidate_index = index
186
187 if array[next_peak_candidate_index] >= value_mid:
188 is_peak = False
189
190 if is_peak:
191 next_peak_candidate_index = right + 1
192
193 return is_peak, next_peak_candidate_index
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800194
195 results = []
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800196 mid = 0
197 next_candidate_idx = None
198 while mid < length:
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800199 left = max(0, mid - half_window_size)
200 right = min(length - 1, mid + half_window_size)
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800201
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800202 # Only consider value greater than 0.
203 if array[mid] == 0:
204 mid = mid + 1
205 continue;
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800206
Cheng-Yi Chiang47ab82a2016-09-14 05:24:53 +0800207 is_peak, next_candidate_idx = mid_is_peak(array, mid, left, right)
208
209 if is_peak:
210 results.append((mid, array[mid]))
211
212 # Use the next candidate found in [mid + 1, right], or right + 1.
213 mid = next_candidate_idx
Cheng-Yi Chiangf9427ff2015-11-02 21:01:45 +0800214
215 # Sort the peaks by values.
216 return sorted(results, key=lambda x: x[1], reverse=True)
Cheng-Yi Chiang4085acc2015-11-16 15:31:35 -0800217
218
219# The default pattern mathing threshold. By experiment, this threshold
220# can tolerate normal noise of 0.3 amplitude when sine wave signal
221# amplitude is 1.
222PATTERN_MATCHING_THRESHOLD = 0.85
223
Cheng-Yi Chiang7dfe9c82015-12-30 16:08:21 +0800224# The default block size of pattern matching.
225ANOMALY_DETECTION_BLOCK_SIZE = 120
226
227def anomaly_detection(signal, rate, freq,
228 block_size=ANOMALY_DETECTION_BLOCK_SIZE,
Cheng-Yi Chiang4085acc2015-11-16 15:31:35 -0800229 threshold=PATTERN_MATCHING_THRESHOLD):
230 """Detects anomaly in a sine wave signal.
231
232 This method detects anomaly in a sine wave signal by matching
233 patterns of each block.
234 For each moving window of block in the test signal, checks if there
235 is any block in golden signal that is similar to this block of test signal.
236 If there is such a block in golden signal, then this block of test
237 signal is matched and there is no anomaly in this block of test signal.
238 If there is any block in test signal that is not matched, then this block
239 covers an anomaly.
240 The block of test signal starts from index 0, and proceeds in steps of
241 half block size. The overlapping of test signal blocks makes sure there must
242 be at least one block covering the transition from sine wave to anomaly.
243
244 @param signal: A 1-D array-like object for 1-channel PCM data.
245 @param rate: The sampling rate.
246 @param freq: The expected frequency of signal.
247 @param block_size: The block size in samples to detect anomaly.
248 @param threshold: The threshold of correlation index to be judge as matched.
249
250 @returns: A list containing detected anomaly time in seconds.
251
252 """
Cheng-Yi Chiang3f282552015-12-08 09:06:35 +0800253 if len(signal) == 0:
254 raise EmptyDataError('Signal data is empty')
255
Cheng-Yi Chiang4085acc2015-11-16 15:31:35 -0800256 golden_y = _generate_golden_pattern(rate, freq, block_size)
257
258 results = []
259
260 for start in xrange(0, len(signal), block_size / 2):
261 end = start + block_size
262 test_signal = signal[start:end]
263 matched = _moving_pattern_matching(golden_y, test_signal, threshold)
264 if not matched:
265 results.append(start)
266
267 results = [float(x) / rate for x in results]
268
269 return results
270
271
272def _generate_golden_pattern(rate, freq, block_size):
273 """Generates a golden pattern of certain frequency.
274
275 The golden pattern must cover all the possibilities of waveforms in a
276 block. So, we need a golden pattern covering 1 period + 1 block size,
277 such that the test block can start anywhere in a period, and extends
278 a block size.
279
280 |period |1 bk|
281 | | |
282 . . . .
283 . . . .
284 . . .
285
286 @param rate: The sampling rate.
287 @param freq: The frequency of golden pattern.
288 @param block_size: The block size in samples to detect anomaly.
289
290 @returns: A 1-D array for golden pattern.
291
292 """
293 samples_in_a_period = int(rate / freq) + 1
294 samples_in_golden_pattern = samples_in_a_period + block_size
295 golden_x = numpy.linspace(
296 0.0, (samples_in_golden_pattern - 1) * 1.0 / rate,
297 samples_in_golden_pattern)
298 golden_y = numpy.sin(freq * 2.0 * numpy.pi * golden_x)
299 return golden_y
300
301
302def _moving_pattern_matching(golden_signal, test_signal, threshold):
303 """Checks if test_signal is similar to any block of golden_signal.
304
305 Compares test signal with each block of golden signal by correlation
306 index. If there is any block of golden signal that is similar to
307 test signal, then it is matched.
308
309 @param golden_signal: A 1-D array for golden signal.
310 @param test_signal: A 1-D array for test signal.
311 @param threshold: The threshold of correlation index to be judge as matched.
312
313 @returns: True if there is a match. False otherwise.
314
315 @raises: ValueError: if test signal is longer than golden signal.
316
317 """
318 if len(golden_signal) < len(test_signal):
319 raise ValueError('Test signal is longer than golden signal')
320
321 block_length = len(test_signal)
322 number_of_movings = len(golden_signal) - block_length + 1
323 correlation_indices = []
324 for moving_index in xrange(number_of_movings):
325 # Cuts one block of golden signal from start index.
326 # The block length is the same as test signal.
327 start = moving_index
328 end = start + block_length
329 golden_signal_block = golden_signal[start:end]
330 try:
331 correlation_index = _get_correlation_index(
332 golden_signal_block, test_signal)
333 except TestSignalNormTooSmallError:
334 logging.info('Caught one block of test signal that has no meaningful norm')
335 return False
336 correlation_indices.append(correlation_index)
337
338 # Checks if the maximum correlation index is high enough.
339 max_corr = max(correlation_indices)
340 if max_corr < threshold:
341 logging.debug('Got one unmatched block with max_corr: %s', max_corr)
342 return False
343 return True
344
345
346class GoldenSignalNormTooSmallError(Exception):
347 """Exception when golden signal norm is too small."""
348 pass
349
350
351class TestSignalNormTooSmallError(Exception):
352 """Exception when test signal norm is too small."""
353 pass
354
355
356_MINIMUM_SIGNAL_NORM = 0.001
357
358def _get_correlation_index(golden_signal, test_signal):
359 """Computes correlation index of two signal of same length.
360
361 @param golden_signal: An 1-D array-like object.
362 @param test_signal: An 1-D array-like object.
363
364 @raises: ValueError: if two signal have different lengths.
365 @raises: GoldenSignalNormTooSmallError: if golden signal norm is too small
366 @raises: TestSignalNormTooSmallError: if test signal norm is too small.
367
368 @returns: The correlation index.
369 """
370 if len(golden_signal) != len(test_signal):
371 raise ValueError(
372 'Only accepts signal of same length: %s, %s' % (
373 len(golden_signal), len(test_signal)))
374
375 norm_golden = numpy.linalg.norm(golden_signal)
376 norm_test = numpy.linalg.norm(test_signal)
377 if norm_golden <= _MINIMUM_SIGNAL_NORM:
378 raise GoldenSignalNormTooSmallError(
379 'No meaningful data as norm is too small.')
380 if norm_test <= _MINIMUM_SIGNAL_NORM:
381 raise TestSignalNormTooSmallError(
382 'No meaningful data as norm is too small.')
383
384 # The 'valid' cross correlation result of two signals of same length will
385 # contain only one number.
386 correlation = numpy.correlate(golden_signal, test_signal, 'valid')[0]
387 return correlation / (norm_golden * norm_test)