blob: 5ddc811df260f0cde10b961ddee4718d14f40d8a [file] [log] [blame] [view]
Suchakra Sharmac4970562015-08-03 19:22:22 -04001![BCC Logo](images/logo2.png)
Brendenc3c4fc12015-05-03 08:33:53 -07002# BPF Compiler Collection (BCC)
3
Brendan Gregg493fd622015-09-10 14:46:52 -07004BCC is a toolkit for creating efficient kernel tracing and manipulation
5programs, and includes several useful tools and examples. It makes use of eBPF
6(Extended Berkeley Packet Filters), a new feature that was first added to
7Linux 3.15. Much of what BCC uses requires Linux 4.1 and above.
Brendenc3c4fc12015-05-03 08:33:53 -07008
Brendan Gregg493fd622015-09-10 14:46:52 -07009eBPF was [described by](https://lkml.org/lkml/2015/4/14/232) Ingo Molnár as:
10
11> One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively.
12
Brendan Gregg90b3ea52015-09-10 14:50:02 -070013BCC makes eBPF programs easier to write, with kernel instrumentation in C
14and a front-end in Python. It is suited for many tasks, including performance
15analysis and network traffic control.
Brendan Gregg493fd622015-09-10 14:46:52 -070016
17## Screenshot
18
19This example traces a disk I/O kernel function, and populates an in-kernel
20power-of-2 histogram of the I/O size. For efficiency, only the histogram
21summary is returned to user-level.
22
23```Shell
24# ./bitehist.py
25Tracing... Hit Ctrl-C to end.
26^C
27 value : count distribution
28 0 -> 1 : 3 | |
29 2 -> 3 : 0 | |
30 4 -> 7 : 211 |********** |
31 8 -> 15 : 0 | |
32 16 -> 31 : 0 | |
33 32 -> 63 : 0 | |
34 64 -> 127 : 1 | |
35 128 -> 255 : 800 |**************************************|
36```
37
38The above output shows a bimodal distribution, where the largest mode of
39800 I/O was between 128 and 255 Kbytes in size.
40
41See the source: [bitehist.c](examples/bitehist.c) and
42[bitehist.py](examples/bitehist.py). What this traces, what this stores, and how
43the data is presented, can be entirely customized. This shows only some of
44many possible capabilities.
Brendenc3c4fc12015-05-03 08:33:53 -070045
Brenden Blanco31518432015-07-07 17:38:30 -070046## Installing
47
48See [INSTALL.md](INSTALL.md) for installation steps on your platform.
49
Brendan Gregg493fd622015-09-10 14:46:52 -070050## Contents
51
52Some of these are single files that contain both C and Python, others have a
53pair of .c and .py files, and some are directories of files.
54
55### Tracing
56
57Examples:
58
59- examples/[bitehist.py](examples/bitehist.py) examples/[bitehist.c](examples/bitehist.c): Block I/O size histogram. [Examples](examples/bitehist_example.txt).
Brendan Gregg25173392015-09-10 14:48:48 -070060- examples/[disksnoop.py](examples/disksnoop.py) examples/[disksnoop.c](examples/disksnoop.c): Trace block device I/O latency. [Examples](examples/disksnoop_example.txt).
Brendan Gregg493fd622015-09-10 14:46:52 -070061- examples/[hello_world.py](examples/hello_world.py): Prints "Hello, World!" for new processes.
62- examples/[trace_fields.py](examples/trace_fields.py): Simple example of printing fields from traced events.
63- examples/[vfsreadlat.py](examples/vfsreadlat.py) examples/[vfsreadlat.c](examples/vfsreadlat.c): VFS read latency distribution. [Examples](examples/vfsreadlat_example.txt).
64
65Tools:
66
Brendan Greggac5c9e32015-09-16 15:30:07 -070067- tools/[biosnoop](tools/biosnoop): Trace block device I/O with PID and latency. [Examples](tools/biosnoop_example.txt).
Brendan Gregg493fd622015-09-10 14:46:52 -070068- tools/[funccount](tools/funccount): Count kernel function calls. [Examples](tools/funccount_example.txt).
Brendan Greggbedd1502015-09-17 21:52:52 -070069- tools/[opensnoop](tools/opensnoop): Trace open() syscalls. [Examples](tools/opensnoop_example.txt).
Brendan Gregg493fd622015-09-10 14:46:52 -070070- tools/[pidpersec](tools/pidpersec): Count new processes (via fork). [Examples](tools/pidpersec_example.txt).
71- tools/[syncsnoop](tools/syncsnoop): Trace sync() syscall. [Examples](tools/syncsnoop_example.txt).
72- tools/[vfscount](tools/vfscount) tools/[vfscount.c](tools/vfscount.c): Count VFS calls. [Examples](tools/vfscount_example.txt).
73- tools/[vfsstat](tools/vfsstat) tools/[vfsstat.c](tools/vfsstat.c): Count some VFS calls, with column output. [Examples](tools/vfsstat_example.txt).
74
75### Networking
76
77Examples:
78
79- examples/[distributed_bridge/](examples/distributed_bridge): Distributed bridge example.
80- examples/[simple_tc.py](examples/simple_tc.py): Simple traffic control example.
Brendan Gregg02695fd2015-09-10 16:46:12 -070081- examples/[simulation.py](examples/simulation.py): Simulation helper.
Brendan Gregg493fd622015-09-10 14:46:52 -070082- examples/[tc_neighbor_sharing.py](examples/tc_neighbor_sharing.py) examples/[tc_neighbor_sharing.c](examples/tc_neighbor_sharing.c): Per-IP classification and rate limiting.
Brendan Gregg25173392015-09-10 14:48:48 -070083- examples/[tunnel_monitor/](examples/tunnel_monitor): Efficiently monitor traffic flows. [Example video](https://www.youtube.com/watch?v=yYy3Cwce02k).
Brendan Gregg493fd622015-09-10 14:46:52 -070084- examples/[vlan_learning.py](examples/vlan_learning.py) examples/[vlan_learning.c](examples/vlan_learning.c): Demux Ethernet traffic into worker veth+namespaces.
85
Brendenc3c4fc12015-05-03 08:33:53 -070086## Motivation
87
88BPF guarantees that the programs loaded into the kernel cannot crash, and
Brenden Blanco452de202015-05-03 10:43:07 -070089cannot run forever, but yet BPF is general purpose enough to perform many
90arbitrary types of computation. Currently, it is possible to write a program in
Brendenc3c4fc12015-05-03 08:33:53 -070091C that will compile into a valid BPF program, yet it is vastly easier to
92write a C program that will compile into invalid BPF (C is like that). The user
Brenden Blanco452de202015-05-03 10:43:07 -070093won't know until trying to run the program whether it was valid or not.
Brendenc3c4fc12015-05-03 08:33:53 -070094
95With a BPF-specific frontend, one should be able to write in a language and
96receive feedback from the compiler on the validity as it pertains to a BPF
97backend. This toolkit aims to provide a frontend that can only create valid BPF
98programs while still harnessing its full flexibility.
99
Brenden Blanco46176a12015-07-07 13:05:22 -0700100Furthermore, current integrations with BPF have a kludgy workflow, sometimes
101involving compiling directly in a linux kernel source tree. This toolchain aims
102to minimize the time that a developer spends getting BPF compiled, and instead
103focus on the applications that can be written and the problems that can be
104solved with BPF.
105
Brendenc3c4fc12015-05-03 08:33:53 -0700106The features of this toolkit include:
107* End-to-end BPF workflow in a shared library
Brenden Blanco46176a12015-07-07 13:05:22 -0700108 * A modified C language for BPF backends
Brenden Blanco452de202015-05-03 10:43:07 -0700109 * Integration with llvm-bpf backend for JIT
Brendenc3c4fc12015-05-03 08:33:53 -0700110 * Dynamic (un)loading of JITed programs
111 * Support for BPF kernel hooks: socket filters, tc classifiers,
112 tc actions, and kprobes
113* Bindings for Python
114* Examples for socket filters, tc classifiers, and kprobes
Brenden Blanco32326202015-09-03 16:31:47 -0700115* Self-contained tools for tracing a running system
Brenden Blanco46176a12015-07-07 13:05:22 -0700116
117In the future, more bindings besides python will likely be supported. Feel free
118to add support for the language of your choice and send a pull request!
119
Brendan Gregg493fd622015-09-10 14:46:52 -0700120## Tutorial
Brenden Blanco46176a12015-07-07 13:05:22 -0700121
Brendan Gregg493fd622015-09-10 14:46:52 -0700122The BCC toolchain is currently composed of two parts: a C wrapper around LLVM,
123and a Python API to interact with the running program. Later, we will go into
124more detail of how this all works.
Brenden Blanco46176a12015-07-07 13:05:22 -0700125
126### Hello, World
127
128First, we should include the BPF class from the bpf module:
129```python
Brenden Blancoc35989d2015-09-02 18:04:07 -0700130from bcc import BPF
Brenden Blanco46176a12015-07-07 13:05:22 -0700131```
132
133Since the C code is so short, we will embed it inside the python script.
134
135The BPF program always takes at least one argument, which is a pointer to the
136context for this type of program. Different program types have different calling
137conventions, but for this one we don't care so `void *` is fine.
138```python
Yonghong Song13753202015-09-10 19:05:58 -0700139BPF(text='void kprobe__sys_clone(void *ctx) { bpf_trace_printk("Hello, World!\\n"); }').trace_print()
Brenden Blanco46176a12015-07-07 13:05:22 -0700140```
141
142For this example, we will call the program every time `fork()` is called by a
Yonghong Song13753202015-09-10 19:05:58 -0700143userspace process. Underneath the hood, fork translates to the `clone` syscall.
144BCC recognizes prefix `kprobe__`, and will auto attach our program to the kernel symbol `sys_clone`.
Brenden Blanco46176a12015-07-07 13:05:22 -0700145
146The python process will then print the trace printk circular buffer until ctrl-c
147is pressed. The BPF program is removed from the kernel when the userspace
148process that loaded it closes the fd (or exits).
Brenden Blanco46176a12015-07-07 13:05:22 -0700149
150Output:
151```
Yonghong Song13753202015-09-10 19:05:58 -0700152bcc/examples$ sudo python hello_world.py
Brenden Blanco46176a12015-07-07 13:05:22 -0700153 python-7282 [002] d... 3757.488508: : Hello, World!
154```
155
Brenden Blanco00312852015-09-04 00:08:19 -0700156For an explanation of the meaning of the printed fields, see the trace_pipe
157section of the [kernel ftrace doc](https://www.kernel.org/doc/Documentation/trace/ftrace.txt).
158
Brenden Blanco46176a12015-07-07 13:05:22 -0700159[Source code listing](examples/hello_world.py)
160
161### Networking
162
Brenden Blanco31518432015-07-07 17:38:30 -0700163At RedHat Summit 2015, BCC was presented as part of a [session on BPF](http://www.devnation.org/#7784f1f7513e8542e4db519e79ff5eec).
164A multi-host vxlan environment is simulated and a BPF program used to monitor
165one of the physical interfaces. The BPF program keeps statistics on the inner
166and outer IP addresses traversing the interface, and the userspace component
167turns those statistics into a graph showing the traffic distribution at
168multiple granularities. See the code [here](examples/tunnel_monitor).
169
170[![Screenshot](http://img.youtube.com/vi/yYy3Cwce02k/0.jpg)](https://youtu.be/yYy3Cwce02k)
Brenden Blanco46176a12015-07-07 13:05:22 -0700171
172### Tracing
Brendenc3c4fc12015-05-03 08:33:53 -0700173
Brenden Blanco31518432015-07-07 17:38:30 -0700174Here is a slightly more complex tracing example than Hello World. This program
175will be invoked for every task change in the kernel, and record in a BPF map
176the new and old pids.
177
178The C program below introduces two new concepts.
179The first is the macro `BPF_TABLE`. This defines a table (type="hash"), with key
180type `key_t` and leaf type `u64` (a single counter). The table name is `stats`,
181containing 1024 entries maximum. One can `lookup`, `lookup_or_init`, `update`,
182and `delete` entries from the table.
183The second concept is the prev argument. This argument is treated specially by
184the BCC frontend, such that accesses to this variable are read from the saved
185context that is passed by the kprobe infrastructure. The prototype of the args
186starting from position 1 should match the prototype of the kernel function being
187kprobed. If done so, the program will have seamless access to the function
188parameters.
189```c
190#include <uapi/linux/ptrace.h>
191#include <linux/sched.h>
192
193struct key_t {
194 u32 prev_pid;
195 u32 curr_pid;
196};
197// map_type, key_type, leaf_type, table_name, num_entry
198BPF_TABLE("hash", struct key_t, u64, stats, 1024);
Brenden Blanco00312852015-09-04 00:08:19 -0700199// attach to finish_task_switch in kernel/sched/core.c, which has the following
200// prototype:
201// struct rq *finish_task_switch(struct task_struct *prev)
Brenden Blanco31518432015-07-07 17:38:30 -0700202int count_sched(struct pt_regs *ctx, struct task_struct *prev) {
203 struct key_t key = {};
204 u64 zero = 0, *val;
205
206 key.curr_pid = bpf_get_current_pid_tgid();
207 key.prev_pid = prev->pid;
208
209 val = stats.lookup_or_init(&key, &zero);
210 (*val)++;
211 return 0;
212}
213```
214[Source code listing](examples/task_switch.c)
215
216The userspace component loads the file shown above, and attaches it to the
Brenden Blanco00312852015-09-04 00:08:19 -0700217`finish_task_switch` kernel function.
218The [] operator of the BPF object gives access to each BPF_TABLE in the
219program, allowing pass-through access to the values residing in the kernel. Use
220the object as you would any other python dict object: read, update, and deletes
221are all allowed.
Brenden Blanco31518432015-07-07 17:38:30 -0700222```python
Brenden Blancoc35989d2015-09-02 18:04:07 -0700223from bcc import BPF
Brenden Blanco31518432015-07-07 17:38:30 -0700224from time import sleep
225
226b = BPF(src_file="task_switch.c")
Brenden Blancoc8b66982015-08-28 23:15:19 -0700227b.attach_kprobe(event="finish_task_switch", fn_name="count_sched")
Brenden Blanco31518432015-07-07 17:38:30 -0700228
229# generate many schedule events
230for i in range(0, 100): sleep(0.01)
231
Brenden Blancoc8b66982015-08-28 23:15:19 -0700232for k, v in b["stats"].items():
Brenden Blanco31518432015-07-07 17:38:30 -0700233 print("task_switch[%5d->%5d]=%u" % (k.prev_pid, k.curr_pid, v.value))
234```
235[Source code listing](examples/task_switch.py)
236
Brenden Blanco452de202015-05-03 10:43:07 -0700237## Getting started
238
Brenden Blanco31518432015-07-07 17:38:30 -0700239See [INSTALL.md](INSTALL.md) for installation steps on your platform.