blob: bf429614684134ccaf1b7771ad954298788ba6dc [file] [log] [blame]
Robert Sloanab8b8882018-03-26 11:39:51 -07001#! /usr/bin/env perl
2# Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
Adam Langleyd9e397b2015-01-22 14:27:53 -08009
10# ====================================================================
11# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
18# functions were re-implemented to address P4 performance issue [see
19# commentary below], and in 2006 the rest was rewritten in order to
20# gain freedom to liberate licensing terms.
21
22# January, September 2004.
23#
24# It was noted that Intel IA-32 C compiler generates code which
25# performs ~30% *faster* on P4 CPU than original *hand-coded*
26# SHA1 assembler implementation. To address this problem (and
27# prove that humans are still better than machines:-), the
28# original code was overhauled, which resulted in following
29# performance changes:
30#
31# compared with original compared with Intel cc
32# assembler impl. generated code
33# Pentium -16% +48%
34# PIII/AMD +8% +16%
35# P4 +85%(!) +45%
36#
37# As you can see Pentium came out as looser:-( Yet I reckoned that
Robert Sloanab8b8882018-03-26 11:39:51 -070038# improvement on P4 outweighs the loss and incorporate this
Adam Langleyd9e397b2015-01-22 14:27:53 -080039# re-tuned code to 0.9.7 and later.
40# ----------------------------------------------------------------
Adam Langleyd9e397b2015-01-22 14:27:53 -080041
42# August 2009.
43#
44# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
45# '(c&d) + (b&(c^d))', which allows to accumulate partial results
46# and lighten "pressure" on scratch registers. This resulted in
47# >12% performance improvement on contemporary AMD cores (with no
48# degradation on other CPUs:-). Also, the code was revised to maximize
49# "distance" between instructions producing input to 'lea' instruction
50# and the 'lea' instruction itself, which is essential for Intel Atom
51# core and resulted in ~15% improvement.
52
53# October 2010.
54#
55# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
56# is to offload message schedule denoted by Wt in NIST specification,
57# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
58# and in SSE2 context was first explored by Dean Gaudet in 2004, see
59# http://arctic.org/~dean/crypto/sha1.html. Since then several things
60# have changed that made it interesting again:
61#
62# a) XMM units became faster and wider;
63# b) instruction set became more versatile;
64# c) an important observation was made by Max Locktykhin, which made
65# it possible to reduce amount of instructions required to perform
66# the operation in question, for further details see
67# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
68
69# April 2011.
70#
71# Add AVX code path, probably most controversial... The thing is that
72# switch to AVX alone improves performance by as little as 4% in
73# comparison to SSSE3 code path. But below result doesn't look like
74# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
Kenny Rootb8494592015-09-25 02:29:14 +000075# pair of µ-ops, and it's the additional µ-ops, two per round, that
Adam Langleyd9e397b2015-01-22 14:27:53 -080076# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
Kenny Rootb8494592015-09-25 02:29:14 +000077# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
Adam Langleyd9e397b2015-01-22 14:27:53 -080078# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
79# cycles per processed byte. But 'sh[rl]d' is not something that used
80# to be fast, nor does it appear to be fast in upcoming Bulldozer
81# [according to its optimization manual]. Which is why AVX code path
82# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
83# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
84# makes no sense to keep the AVX code path. If somebody feels that
85# strongly, it's probably more appropriate to discuss possibility of
86# using vector rotate XOP on AMD...
87
88# March 2014.
89#
90# Add support for Intel SHA Extensions.
91
92######################################################################
93# Current performance is summarized in following table. Numbers are
94# CPU clock cycles spent to process single byte (less is better).
95#
96# x86 SSSE3 AVX
97# Pentium 15.7 -
98# PIII 11.5 -
99# P4 10.6 -
100# AMD K8 7.1 -
101# Core2 7.3 6.0/+22% -
102# Westmere 7.3 5.5/+33% -
103# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73%
104# Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53%
105# Haswell 6.5 4.3/+51% 4.1(**)/+58%
Robert Sloana94fe052017-02-21 08:49:28 -0800106# Skylake 6.4 4.1/+55% 4.1(**)/+55%
Adam Langleyd9e397b2015-01-22 14:27:53 -0800107# Bulldozer 11.6 6.0/+92%
108# VIA Nano 10.6 7.5/+41%
109# Atom 12.5 9.3(*)/+35%
110# Silvermont 14.5 9.9(*)/+46%
Robert Sloana94fe052017-02-21 08:49:28 -0800111# Goldmont 8.8 6.7/+30% 1.7(***)/+415%
Adam Langleyd9e397b2015-01-22 14:27:53 -0800112#
113# (*) Loop is 1056 instructions long and expected result is ~8.25.
114# The discrepancy is because of front-end limitations, so
115# called MS-ROM penalties, and on Silvermont even rotate's
116# limited parallelism.
117#
118# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
Robert Sloana94fe052017-02-21 08:49:28 -0800119#
120# (***) SHAEXT result
Adam Langleyd9e397b2015-01-22 14:27:53 -0800121
122$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
Robert Sloan572a4e22017-04-17 10:52:19 -0700123push(@INC,"${dir}","${dir}../../../perlasm");
Adam Langleyd9e397b2015-01-22 14:27:53 -0800124require "x86asm.pl";
125
David Benjaminc895d6b2016-08-11 13:26:41 -0400126$output=pop;
127open STDOUT,">$output";
128
Robert Sloan8ff03552017-06-14 12:40:58 -0700129&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
Adam Langleyd9e397b2015-01-22 14:27:53 -0800130
131$xmm=$ymm=0;
132for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
133
Kenny Roote99801b2015-11-06 15:31:15 -0800134# In upstream, this is controlled by shelling out to the compiler to check
135# versions, but BoringSSL is intended to be used with pre-generated perlasm
136# output, so this isn't useful anyway.
Adam Langley4139edb2016-01-13 15:00:54 -0800137$ymm = 1;
Adam Langleyd9e397b2015-01-22 14:27:53 -0800138
Kenny Roote99801b2015-11-06 15:31:15 -0800139$ymm = 0 unless ($xmm);
Adam Langleyd9e397b2015-01-22 14:27:53 -0800140
141$shaext=$xmm; ### set to zero if compiling for 1.0.1
142
Kenny Roote99801b2015-11-06 15:31:15 -0800143# TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
144# been tested.
145$shaext = 0;
146
Adam Langleyd9e397b2015-01-22 14:27:53 -0800147&external_label("OPENSSL_ia32cap_P") if ($xmm);
148
149
150$A="eax";
151$B="ebx";
152$C="ecx";
153$D="edx";
154$E="edi";
155$T="esi";
156$tmp1="ebp";
157
158@V=($A,$B,$C,$D,$E,$T);
159
160$alt=0; # 1 denotes alternative IALU implementation, which performs
161 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
162 # Sandy Bridge...
163
164sub BODY_00_15
165 {
166 local($n,$a,$b,$c,$d,$e,$f)=@_;
167
168 &comment("00_15 $n");
169
170 &mov($f,$c); # f to hold F_00_19(b,c,d)
171 if ($n==0) { &mov($tmp1,$a); }
172 else { &mov($a,$tmp1); }
173 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
174 &xor($f,$d);
175 &add($tmp1,$e); # tmp1+=e;
176 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
177 # with xi, also note that e becomes
178 # f in next round...
179 &and($f,$b);
180 &rotr($b,2); # b=ROTATE(b,30)
181 &xor($f,$d); # f holds F_00_19(b,c,d)
182 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
183
184 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
185 &add($f,$tmp1); } # f+=tmp1
186 else { &add($tmp1,$f); } # f becomes a in next round
187 &mov($tmp1,$a) if ($alt && $n==15);
188 }
189
190sub BODY_16_19
191 {
192 local($n,$a,$b,$c,$d,$e,$f)=@_;
193
194 &comment("16_19 $n");
195
196if ($alt) {
197 &xor($c,$d);
198 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
199 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
200 &xor($f,&swtmp(($n+8)%16));
201 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
202 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
203 &rotl($f,1); # f=ROTATE(f,1)
204 &add($e,$tmp1); # e+=F_00_19(b,c,d)
205 &xor($c,$d); # restore $c
206 &mov($tmp1,$a); # b in next round
207 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
208 &mov(&swtmp($n%16),$f); # xi=f
209 &rotl($a,5); # ROTATE(a,5)
210 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
211 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
212 &add($f,$a); # f+=ROTATE(a,5)
213} else {
214 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
215 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
216 &xor($tmp1,$d);
217 &xor($f,&swtmp(($n+8)%16));
218 &and($tmp1,$b);
219 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
220 &rotl($f,1); # f=ROTATE(f,1)
221 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
222 &add($e,$tmp1); # e+=F_00_19(b,c,d)
223 &mov($tmp1,$a);
224 &rotr($b,2); # b=ROTATE(b,30)
225 &mov(&swtmp($n%16),$f); # xi=f
226 &rotl($tmp1,5); # ROTATE(a,5)
227 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
228 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
229 &add($f,$tmp1); # f+=ROTATE(a,5)
230}
231 }
232
233sub BODY_20_39
234 {
235 local($n,$a,$b,$c,$d,$e,$f)=@_;
236 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
237
238 &comment("20_39 $n");
239
240if ($alt) {
241 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
242 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
243 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
244 &xor($f,&swtmp(($n+8)%16));
245 &add($e,$tmp1); # e+=F_20_39(b,c,d)
246 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
247 &rotl($f,1); # f=ROTATE(f,1)
248 &mov($tmp1,$a); # b in next round
249 &rotr($b,7); # b=ROTATE(b,30)
250 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
251 &rotl($a,5); # ROTATE(a,5)
252 &xor($b,$c) if($n==39);# warm up for BODY_40_59
253 &and($tmp1,$b) if($n==39);
254 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
255 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
256 &add($f,$a); # f+=ROTATE(a,5)
257 &rotr($a,5) if ($n==79);
258} else {
259 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
260 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
261 &xor($tmp1,$c);
262 &xor($f,&swtmp(($n+8)%16));
263 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
264 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
265 &rotl($f,1); # f=ROTATE(f,1)
266 &add($e,$tmp1); # e+=F_20_39(b,c,d)
267 &rotr($b,2); # b=ROTATE(b,30)
268 &mov($tmp1,$a);
269 &rotl($tmp1,5); # ROTATE(a,5)
270 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
271 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
272 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
273 &add($f,$tmp1); # f+=ROTATE(a,5)
274}
275 }
276
277sub BODY_40_59
278 {
279 local($n,$a,$b,$c,$d,$e,$f)=@_;
280
281 &comment("40_59 $n");
282
283if ($alt) {
284 &add($e,$tmp1); # e+=b&(c^d)
285 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
286 &mov($tmp1,$d);
287 &xor($f,&swtmp(($n+8)%16));
288 &xor($c,$d); # restore $c
289 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
290 &rotl($f,1); # f=ROTATE(f,1)
291 &and($tmp1,$c);
292 &rotr($b,7); # b=ROTATE(b,30)
293 &add($e,$tmp1); # e+=c&d
294 &mov($tmp1,$a); # b in next round
295 &mov(&swtmp($n%16),$f); # xi=f
296 &rotl($a,5); # ROTATE(a,5)
297 &xor($b,$c) if ($n<59);
298 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
299 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
300 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
301 &add($f,$a); # f+=ROTATE(a,5)
302} else {
303 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
304 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
305 &xor($tmp1,$d);
306 &xor($f,&swtmp(($n+8)%16));
307 &and($tmp1,$b);
308 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
309 &rotl($f,1); # f=ROTATE(f,1)
310 &add($tmp1,$e); # b&(c^d)+=e
311 &rotr($b,2); # b=ROTATE(b,30)
312 &mov($e,$a); # e becomes volatile
313 &rotl($e,5); # ROTATE(a,5)
314 &mov(&swtmp($n%16),$f); # xi=f
315 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
316 &mov($tmp1,$c);
317 &add($f,$e); # f+=ROTATE(a,5)
318 &and($tmp1,$d);
319 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
320 &add($f,$tmp1); # f+=c&d
321}
322 }
323
324&function_begin("sha1_block_data_order");
325if ($xmm) {
326 &static_label("shaext_shortcut") if ($shaext);
327 &static_label("ssse3_shortcut");
328 &static_label("avx_shortcut") if ($ymm);
329 &static_label("K_XX_XX");
330
331 &call (&label("pic_point")); # make it PIC!
332 &set_label("pic_point");
333 &blindpop($tmp1);
334 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
335 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
336
337 &mov ($A,&DWP(0,$T));
338 &mov ($D,&DWP(4,$T));
339 &test ($D,1<<9); # check SSSE3 bit
340 &jz (&label("x86"));
341 &mov ($C,&DWP(8,$T));
342 &test ($A,1<<24); # check FXSR bit
343 &jz (&label("x86"));
344 if ($shaext) {
345 &test ($C,1<<29); # check SHA bit
346 &jnz (&label("shaext_shortcut"));
347 }
348 if ($ymm) {
349 &and ($D,1<<28); # mask AVX bit
350 &and ($A,1<<30); # mask "Intel CPU" bit
351 &or ($A,$D);
352 &cmp ($A,1<<28|1<<30);
353 &je (&label("avx_shortcut"));
354 }
355 &jmp (&label("ssse3_shortcut"));
356 &set_label("x86",16);
357}
358 &mov($tmp1,&wparam(0)); # SHA_CTX *c
359 &mov($T,&wparam(1)); # const void *input
360 &mov($A,&wparam(2)); # size_t num
361 &stack_push(16+3); # allocate X[16]
362 &shl($A,6);
363 &add($A,$T);
364 &mov(&wparam(2),$A); # pointer beyond the end of input
365 &mov($E,&DWP(16,$tmp1));# pre-load E
366 &jmp(&label("loop"));
367
368&set_label("loop",16);
369
370 # copy input chunk to X, but reversing byte order!
371 for ($i=0; $i<16; $i+=4)
372 {
373 &mov($A,&DWP(4*($i+0),$T));
374 &mov($B,&DWP(4*($i+1),$T));
375 &mov($C,&DWP(4*($i+2),$T));
376 &mov($D,&DWP(4*($i+3),$T));
377 &bswap($A);
378 &bswap($B);
379 &bswap($C);
380 &bswap($D);
381 &mov(&swtmp($i+0),$A);
382 &mov(&swtmp($i+1),$B);
383 &mov(&swtmp($i+2),$C);
384 &mov(&swtmp($i+3),$D);
385 }
386 &mov(&wparam(1),$T); # redundant in 1st spin
387
388 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
389 &mov($B,&DWP(4,$tmp1));
390 &mov($C,&DWP(8,$tmp1));
391 &mov($D,&DWP(12,$tmp1));
392 # E is pre-loaded
393
394 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
395 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
396 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
397 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
398 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
399
400 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
401
402 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
403 &mov($D,&wparam(1)); # D is last "T" and is discarded
404
405 &add($E,&DWP(0,$tmp1)); # E is last "A"...
406 &add($T,&DWP(4,$tmp1));
407 &add($A,&DWP(8,$tmp1));
408 &add($B,&DWP(12,$tmp1));
409 &add($C,&DWP(16,$tmp1));
410
411 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
412 &add($D,64); # advance input pointer
413 &mov(&DWP(4,$tmp1),$T);
414 &cmp($D,&wparam(2)); # have we reached the end yet?
415 &mov(&DWP(8,$tmp1),$A);
416 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
417 &mov(&DWP(12,$tmp1),$B);
418 &mov($T,$D); # input pointer
419 &mov(&DWP(16,$tmp1),$C);
420 &jb(&label("loop"));
421
422 &stack_pop(16+3);
423&function_end("sha1_block_data_order");
424
425if ($xmm) {
426if ($shaext) {
427######################################################################
428# Intel SHA Extensions implementation of SHA1 update function.
429#
430my ($ctx,$inp,$num)=("edi","esi","ecx");
431my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
432my @MSG=map("xmm$_",(4..7));
433
434sub sha1rnds4 {
435 my ($dst,$src,$imm)=@_;
436 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
437 { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); }
438}
439sub sha1op38 {
440 my ($opcodelet,$dst,$src)=@_;
441 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
442 { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); }
443}
444sub sha1nexte { sha1op38(0xc8,@_); }
445sub sha1msg1 { sha1op38(0xc9,@_); }
446sub sha1msg2 { sha1op38(0xca,@_); }
447
448&function_begin("_sha1_block_data_order_shaext");
449 &call (&label("pic_point")); # make it PIC!
450 &set_label("pic_point");
451 &blindpop($tmp1);
452 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
453&set_label("shaext_shortcut");
454 &mov ($ctx,&wparam(0));
455 &mov ("ebx","esp");
456 &mov ($inp,&wparam(1));
457 &mov ($num,&wparam(2));
458 &sub ("esp",32);
459
460 &movdqu ($ABCD,&QWP(0,$ctx));
Adam Langleye9ada862015-05-11 17:20:37 -0700461 &movd ($E,&DWP(16,$ctx));
Adam Langleyd9e397b2015-01-22 14:27:53 -0800462 &and ("esp",-32);
463 &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap
464
465 &movdqu (@MSG[0],&QWP(0,$inp));
466 &pshufd ($ABCD,$ABCD,0b00011011); # flip word order
467 &movdqu (@MSG[1],&QWP(0x10,$inp));
468 &pshufd ($E,$E,0b00011011); # flip word order
469 &movdqu (@MSG[2],&QWP(0x20,$inp));
470 &pshufb (@MSG[0],$BSWAP);
471 &movdqu (@MSG[3],&QWP(0x30,$inp));
472 &pshufb (@MSG[1],$BSWAP);
473 &pshufb (@MSG[2],$BSWAP);
474 &pshufb (@MSG[3],$BSWAP);
475 &jmp (&label("loop_shaext"));
476
477&set_label("loop_shaext",16);
478 &dec ($num);
479 &lea ("eax",&DWP(0x40,$inp));
480 &movdqa (&QWP(0,"esp"),$E); # offload $E
481 &paddd ($E,@MSG[0]);
482 &cmovne ($inp,"eax");
483 &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD
484
485for($i=0;$i<20-4;$i+=2) {
486 &sha1msg1 (@MSG[0],@MSG[1]);
487 &movdqa ($E_,$ABCD);
488 &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3...
489 &sha1nexte ($E_,@MSG[1]);
490 &pxor (@MSG[0],@MSG[2]);
491 &sha1msg1 (@MSG[1],@MSG[2]);
492 &sha1msg2 (@MSG[0],@MSG[3]);
493
494 &movdqa ($E,$ABCD);
495 &sha1rnds4 ($ABCD,$E_,int(($i+1)/5));
496 &sha1nexte ($E,@MSG[2]);
497 &pxor (@MSG[1],@MSG[3]);
498 &sha1msg2 (@MSG[1],@MSG[0]);
499
500 push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG));
501}
502 &movdqu (@MSG[0],&QWP(0,$inp));
503 &movdqa ($E_,$ABCD);
504 &sha1rnds4 ($ABCD,$E,3); # 64-67
505 &sha1nexte ($E_,@MSG[1]);
506 &movdqu (@MSG[1],&QWP(0x10,$inp));
507 &pshufb (@MSG[0],$BSWAP);
508
509 &movdqa ($E,$ABCD);
510 &sha1rnds4 ($ABCD,$E_,3); # 68-71
511 &sha1nexte ($E,@MSG[2]);
512 &movdqu (@MSG[2],&QWP(0x20,$inp));
513 &pshufb (@MSG[1],$BSWAP);
514
515 &movdqa ($E_,$ABCD);
516 &sha1rnds4 ($ABCD,$E,3); # 72-75
517 &sha1nexte ($E_,@MSG[3]);
518 &movdqu (@MSG[3],&QWP(0x30,$inp));
519 &pshufb (@MSG[2],$BSWAP);
520
521 &movdqa ($E,$ABCD);
522 &sha1rnds4 ($ABCD,$E_,3); # 76-79
523 &movdqa ($E_,&QWP(0,"esp"));
524 &pshufb (@MSG[3],$BSWAP);
525 &sha1nexte ($E,$E_);
526 &paddd ($ABCD,&QWP(16,"esp"));
527
528 &jnz (&label("loop_shaext"));
529
530 &pshufd ($ABCD,$ABCD,0b00011011);
531 &pshufd ($E,$E,0b00011011);
532 &movdqu (&QWP(0,$ctx),$ABCD)
533 &movd (&DWP(16,$ctx),$E);
534 &mov ("esp","ebx");
535&function_end("_sha1_block_data_order_shaext");
536}
537######################################################################
538# The SSSE3 implementation.
539#
540# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
541# 32 elements of the message schedule or Xupdate outputs. First 4
542# quadruples are simply byte-swapped input, next 4 are calculated
543# according to method originally suggested by Dean Gaudet (modulo
544# being implemented in SSSE3). Once 8 quadruples or 32 elements are
545# collected, it switches to routine proposed by Max Locktyukhin.
546#
Robert Sloanab8b8882018-03-26 11:39:51 -0700547# Calculations inevitably require temporary registers, and there are
Adam Langleyd9e397b2015-01-22 14:27:53 -0800548# no %xmm registers left to spare. For this reason part of the ring
549# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
550# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
551# X[-5], and X[4] - X[-4]...
552#
553# Another notable optimization is aggressive stack frame compression
554# aiming to minimize amount of 9-byte instructions...
555#
556# Yet another notable optimization is "jumping" $B variable. It means
557# that there is no register permanently allocated for $B value. This
558# allowed to eliminate one instruction from body_20_39...
559#
560my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
561my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
562my @V=($A,$B,$C,$D,$E);
563my $j=0; # hash round
564my $rx=0;
565my @T=($T,$tmp1);
566my $inp;
567
568my $_rol=sub { &rol(@_) };
569my $_ror=sub { &ror(@_) };
570
571&function_begin("_sha1_block_data_order_ssse3");
572 &call (&label("pic_point")); # make it PIC!
573 &set_label("pic_point");
574 &blindpop($tmp1);
575 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
576&set_label("ssse3_shortcut");
577
578 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
579 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
580 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
581 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
582 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
583
584 &mov ($E,&wparam(0)); # load argument block
585 &mov ($inp=@T[1],&wparam(1));
586 &mov ($D,&wparam(2));
587 &mov (@T[0],"esp");
588
589 # stack frame layout
590 #
591 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
592 # X[4]+K X[5]+K X[6]+K X[7]+K
593 # X[8]+K X[9]+K X[10]+K X[11]+K
594 # X[12]+K X[13]+K X[14]+K X[15]+K
595 #
596 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
597 # X[4] X[5] X[6] X[7]
598 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
599 #
600 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
601 # K_40_59 K_40_59 K_40_59 K_40_59
602 # K_60_79 K_60_79 K_60_79 K_60_79
603 # K_00_19 K_00_19 K_00_19 K_00_19
604 # pbswap mask
605 #
606 # +192 ctx # argument block
607 # +196 inp
608 # +200 end
609 # +204 esp
610 &sub ("esp",208);
611 &and ("esp",-64);
612
613 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
614 &movdqa (&QWP(112+16,"esp"),@X[5]);
615 &movdqa (&QWP(112+32,"esp"),@X[6]);
616 &shl ($D,6); # len*64
617 &movdqa (&QWP(112+48,"esp"),@X[3]);
618 &add ($D,$inp); # end of input
619 &movdqa (&QWP(112+64,"esp"),@X[2]);
620 &add ($inp,64);
621 &mov (&DWP(192+0,"esp"),$E); # save argument block
622 &mov (&DWP(192+4,"esp"),$inp);
623 &mov (&DWP(192+8,"esp"),$D);
624 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
625
626 &mov ($A,&DWP(0,$E)); # load context
627 &mov ($B,&DWP(4,$E));
628 &mov ($C,&DWP(8,$E));
629 &mov ($D,&DWP(12,$E));
630 &mov ($E,&DWP(16,$E));
631 &mov (@T[0],$B); # magic seed
632
633 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
634 &movdqu (@X[-3&7],&QWP(-48,$inp));
635 &movdqu (@X[-2&7],&QWP(-32,$inp));
636 &movdqu (@X[-1&7],&QWP(-16,$inp));
637 &pshufb (@X[-4&7],@X[2]); # byte swap
638 &pshufb (@X[-3&7],@X[2]);
639 &pshufb (@X[-2&7],@X[2]);
640 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
641 &pshufb (@X[-1&7],@X[2]);
642 &paddd (@X[-4&7],@X[3]); # add K_00_19
643 &paddd (@X[-3&7],@X[3]);
644 &paddd (@X[-2&7],@X[3]);
645 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
646 &psubd (@X[-4&7],@X[3]); # restore X[]
647 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
648 &psubd (@X[-3&7],@X[3]);
649 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
650 &mov (@T[1],$C);
651 &psubd (@X[-2&7],@X[3]);
652 &xor (@T[1],$D);
653 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
654 &and (@T[0],@T[1]);
655 &jmp (&label("loop"));
656
657######################################################################
Robert Sloanab8b8882018-03-26 11:39:51 -0700658# SSE instruction sequence is first broken to groups of independent
Adam Langleyd9e397b2015-01-22 14:27:53 -0800659# instructions, independent in respect to their inputs and shifter
660# (not all architectures have more than one). Then IALU instructions
661# are "knitted in" between the SSE groups. Distance is maintained for
662# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
663# [which allegedly also implements SSSE3]...
664#
665# Temporary registers usage. X[2] is volatile at the entry and at the
666# end is restored from backtrace ring buffer. X[3] is expected to
Robert Sloanab8b8882018-03-26 11:39:51 -0700667# contain current K_XX_XX constant and is used to calculate X[-1]+K
Adam Langleyd9e397b2015-01-22 14:27:53 -0800668# from previous round, it becomes volatile the moment the value is
669# saved to stack for transfer to IALU. X[4] becomes volatile whenever
670# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
671# end it is loaded with next K_XX_XX [which becomes X[3] in next
672# round]...
673#
Robert Sloanab8b8882018-03-26 11:39:51 -0700674sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4
Adam Langleyd9e397b2015-01-22 14:27:53 -0800675{ use integer;
676 my $body = shift;
677 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
678 my ($a,$b,$c,$d,$e);
679
680 eval(shift(@insns)); # ror
681 eval(shift(@insns));
682 eval(shift(@insns));
683 &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
684 &movdqa (@X[2],@X[-1&7]);
685 eval(shift(@insns));
686 eval(shift(@insns));
687
688 &paddd (@X[3],@X[-1&7]);
689 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
690 eval(shift(@insns)); # rol
691 eval(shift(@insns));
692 &psrldq (@X[2],4); # "X[-3]", 3 dwords
693 eval(shift(@insns));
694 eval(shift(@insns));
695 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
696 eval(shift(@insns));
697 eval(shift(@insns)); # ror
698
699 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
700 eval(shift(@insns));
701 eval(shift(@insns));
702 eval(shift(@insns));
703
704 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
705 eval(shift(@insns));
706 eval(shift(@insns)); # rol
707 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
708 eval(shift(@insns));
709 eval(shift(@insns));
710
711 &movdqa (@X[4],@X[0]);
712 eval(shift(@insns));
713 eval(shift(@insns));
714 eval(shift(@insns)); # ror
715 &movdqa (@X[2],@X[0]);
716 eval(shift(@insns));
717
718 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
719 &paddd (@X[0],@X[0]);
720 eval(shift(@insns));
721 eval(shift(@insns));
722
723 &psrld (@X[2],31);
724 eval(shift(@insns));
725 eval(shift(@insns)); # rol
726 &movdqa (@X[3],@X[4]);
727 eval(shift(@insns));
728 eval(shift(@insns));
729 eval(shift(@insns));
730
731 &psrld (@X[4],30);
732 eval(shift(@insns));
733 eval(shift(@insns)); # ror
734 &por (@X[0],@X[2]); # "X[0]"<<<=1
735 eval(shift(@insns));
736 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
737 eval(shift(@insns));
738 eval(shift(@insns));
739
740 &pslld (@X[3],2);
741 eval(shift(@insns));
742 eval(shift(@insns)); # rol
743 &pxor (@X[0],@X[4]);
744 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
745 eval(shift(@insns));
746 eval(shift(@insns));
747
748 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
749 &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7])
750 &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7);
751 eval(shift(@insns));
752 eval(shift(@insns));
753
754 foreach (@insns) { eval; } # remaining instructions [if any]
755
756 $Xi++; push(@X,shift(@X)); # "rotate" X[]
757}
758
759sub Xupdate_ssse3_32_79()
760{ use integer;
761 my $body = shift;
762 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
763 my ($a,$b,$c,$d,$e);
764
765 eval(shift(@insns)); # body_20_39
766 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
767 &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
768 eval(shift(@insns));
769 eval(shift(@insns));
770 eval(shift(@insns)); # rol
771
772 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
773 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
774 eval(shift(@insns));
775 eval(shift(@insns));
776 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
777 if ($Xi%5) {
778 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
779 } else { # ... or load next one
780 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
781 }
782 eval(shift(@insns)); # ror
783 &paddd (@X[3],@X[-1&7]);
784 eval(shift(@insns));
785
786 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
787 eval(shift(@insns)); # body_20_39
788 eval(shift(@insns));
789 eval(shift(@insns));
790 eval(shift(@insns)); # rol
791
792 &movdqa (@X[2],@X[0]);
793 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
794 eval(shift(@insns));
795 eval(shift(@insns));
796 eval(shift(@insns)); # ror
797 eval(shift(@insns));
798 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
799
800 &pslld (@X[0],2);
801 eval(shift(@insns)); # body_20_39
802 eval(shift(@insns));
803 &psrld (@X[2],30);
804 eval(shift(@insns));
805 eval(shift(@insns)); # rol
806 eval(shift(@insns));
807 eval(shift(@insns));
808 eval(shift(@insns)); # ror
809 eval(shift(@insns));
810 eval(shift(@insns)) if (@insns[1] =~ /_rol/);
811 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
812
813 &por (@X[0],@X[2]); # "X[0]"<<<=2
814 eval(shift(@insns)); # body_20_39
815 eval(shift(@insns));
816 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
817 eval(shift(@insns));
818 eval(shift(@insns)); # rol
819 eval(shift(@insns));
820 eval(shift(@insns));
821 eval(shift(@insns)); # ror
822 &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0])
823 eval(shift(@insns));
824
825 foreach (@insns) { eval; } # remaining instructions
826
827 $Xi++; push(@X,shift(@X)); # "rotate" X[]
828}
829
830sub Xuplast_ssse3_80()
831{ use integer;
832 my $body = shift;
833 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
834 my ($a,$b,$c,$d,$e);
835
836 eval(shift(@insns));
837 eval(shift(@insns));
838 eval(shift(@insns));
839 eval(shift(@insns));
840 eval(shift(@insns));
841 eval(shift(@insns));
842 eval(shift(@insns));
843 &paddd (@X[3],@X[-1&7]);
844 eval(shift(@insns));
845 eval(shift(@insns));
846 eval(shift(@insns));
847 eval(shift(@insns));
848
849 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
850
851 foreach (@insns) { eval; } # remaining instructions
852
853 &mov ($inp=@T[1],&DWP(192+4,"esp"));
854 &cmp ($inp,&DWP(192+8,"esp"));
855 &je (&label("done"));
856
857 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
858 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
859 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
860 &movdqu (@X[-3&7],&QWP(16,$inp));
861 &movdqu (@X[-2&7],&QWP(32,$inp));
862 &movdqu (@X[-1&7],&QWP(48,$inp));
863 &add ($inp,64);
864 &pshufb (@X[-4&7],@X[2]); # byte swap
865 &mov (&DWP(192+4,"esp"),$inp);
866 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
867
868 $Xi=0;
869}
870
871sub Xloop_ssse3()
872{ use integer;
873 my $body = shift;
874 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
875 my ($a,$b,$c,$d,$e);
876
877 eval(shift(@insns));
878 eval(shift(@insns));
879 eval(shift(@insns));
880 eval(shift(@insns));
881 eval(shift(@insns));
882 eval(shift(@insns));
883 eval(shift(@insns));
884 &pshufb (@X[($Xi-3)&7],@X[2]);
885 eval(shift(@insns));
886 eval(shift(@insns));
887 eval(shift(@insns));
888 eval(shift(@insns));
889 &paddd (@X[($Xi-4)&7],@X[3]);
890 eval(shift(@insns));
891 eval(shift(@insns));
892 eval(shift(@insns));
893 eval(shift(@insns));
894 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
895 eval(shift(@insns));
896 eval(shift(@insns));
897 eval(shift(@insns));
898 eval(shift(@insns));
899 &psubd (@X[($Xi-4)&7],@X[3]);
900
901 foreach (@insns) { eval; }
902 $Xi++;
903}
904
905sub Xtail_ssse3()
906{ use integer;
907 my $body = shift;
908 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
909 my ($a,$b,$c,$d,$e);
910
911 foreach (@insns) { eval; }
912}
913
914sub body_00_19 () { # ((c^d)&b)^d
915 # on start @T[0]=(c^d)&b
916 return &body_20_39() if ($rx==19); $rx++;
917 (
918 '($a,$b,$c,$d,$e)=@V;'.
919 '&$_ror ($b,$j?7:2);', # $b>>>2
920 '&xor (@T[0],$d);',
921 '&mov (@T[1],$a);', # $b in next round
922
923 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
924 '&xor ($b,$c);', # $c^$d for next round
925
926 '&$_rol ($a,5);',
927 '&add ($e,@T[0]);',
928 '&and (@T[1],$b);', # ($b&($c^$d)) for next round
929
930 '&xor ($b,$c);', # restore $b
931 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
932 );
933}
934
935sub body_20_39 () { # b^d^c
936 # on entry @T[0]=b^d
937 return &body_40_59() if ($rx==39); $rx++;
938 (
939 '($a,$b,$c,$d,$e)=@V;'.
940 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
941 '&xor (@T[0],$d) if($j==19);'.
942 '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c)
943 '&mov (@T[1],$a);', # $b in next round
944
945 '&$_rol ($a,5);',
946 '&add ($e,@T[0]);',
947 '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round
948
949 '&$_ror ($b,7);', # $b>>>2
950 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
951 );
952}
953
954sub body_40_59 () { # ((b^c)&(c^d))^c
955 # on entry @T[0]=(b^c), (c^=d)
956 $rx++;
957 (
958 '($a,$b,$c,$d,$e)=@V;'.
959 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
960 '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d)
961 '&xor ($c,$d) if ($j>=40);', # restore $c
962
963 '&$_ror ($b,7);', # $b>>>2
964 '&mov (@T[1],$a);', # $b for next round
965 '&xor (@T[0],$c);',
966
967 '&$_rol ($a,5);',
968 '&add ($e,@T[0]);',
969 '&xor (@T[1],$c) if ($j==59);'.
970 '&xor (@T[1],$b) if ($j< 59);', # b^c for next round
971
972 '&xor ($b,$c) if ($j< 59);', # c^d for next round
973 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
974 );
975}
976######
977sub bodyx_00_19 () { # ((c^d)&b)^d
978 # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
979 return &bodyx_20_39() if ($rx==19); $rx++;
980 (
981 '($a,$b,$c,$d,$e)=@V;'.
982
983 '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2
984 '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2
985 '&lea ($e,&DWP(0,$e,@T[0]));',
986 '&rorx (@T[0],$a,5);',
987
988 '&andn (@T[1],$a,$c);',
989 '&and ($a,$b)',
990 '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer
991
992 '&xor (@T[1],$a)',
993 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
994 );
995}
996
997sub bodyx_20_39 () { # b^d^c
998 # on start $b=b^c^d
999 return &bodyx_40_59() if ($rx==39); $rx++;
1000 (
1001 '($a,$b,$c,$d,$e)=@V;'.
1002
1003 '&add ($e,($j==19?@T[0]:$b))',
1004 '&rorx ($b,@T[1],7);', # $b>>>2
1005 '&rorx (@T[0],$a,5);',
1006
1007 '&xor ($a,$b) if ($j<79);',
1008 '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer
1009 '&xor ($a,$c) if ($j<79);',
1010 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1011 );
1012}
1013
1014sub bodyx_40_59 () { # ((b^c)&(c^d))^c
1015 # on start $b=((b^c)&(c^d))^c
1016 return &bodyx_20_39() if ($rx==59); $rx++;
1017 (
1018 '($a,$b,$c,$d,$e)=@V;'.
1019
1020 '&rorx (@T[0],$a,5)',
1021 '&lea ($e,&DWP(0,$e,$b))',
1022 '&rorx ($b,@T[1],7)', # $b>>>2
1023 '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer
1024
1025 '&mov (@T[1],$c)',
1026 '&xor ($a,$b)', # b^c for next round
1027 '&xor (@T[1],$b)', # c^d for next round
1028
1029 '&and ($a,@T[1])',
1030 '&add ($e,@T[0])',
1031 '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1032 );
1033}
1034
1035&set_label("loop",16);
1036 &Xupdate_ssse3_16_31(\&body_00_19);
1037 &Xupdate_ssse3_16_31(\&body_00_19);
1038 &Xupdate_ssse3_16_31(\&body_00_19);
1039 &Xupdate_ssse3_16_31(\&body_00_19);
1040 &Xupdate_ssse3_32_79(\&body_00_19);
1041 &Xupdate_ssse3_32_79(\&body_20_39);
1042 &Xupdate_ssse3_32_79(\&body_20_39);
1043 &Xupdate_ssse3_32_79(\&body_20_39);
1044 &Xupdate_ssse3_32_79(\&body_20_39);
1045 &Xupdate_ssse3_32_79(\&body_20_39);
1046 &Xupdate_ssse3_32_79(\&body_40_59);
1047 &Xupdate_ssse3_32_79(\&body_40_59);
1048 &Xupdate_ssse3_32_79(\&body_40_59);
1049 &Xupdate_ssse3_32_79(\&body_40_59);
1050 &Xupdate_ssse3_32_79(\&body_40_59);
1051 &Xupdate_ssse3_32_79(\&body_20_39);
1052 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
1053
1054 $saved_j=$j; @saved_V=@V;
1055
1056 &Xloop_ssse3(\&body_20_39);
1057 &Xloop_ssse3(\&body_20_39);
1058 &Xloop_ssse3(\&body_20_39);
1059
1060 &mov (@T[1],&DWP(192,"esp")); # update context
1061 &add ($A,&DWP(0,@T[1]));
1062 &add (@T[0],&DWP(4,@T[1])); # $b
1063 &add ($C,&DWP(8,@T[1]));
1064 &mov (&DWP(0,@T[1]),$A);
1065 &add ($D,&DWP(12,@T[1]));
1066 &mov (&DWP(4,@T[1]),@T[0]);
1067 &add ($E,&DWP(16,@T[1]));
1068 &mov (&DWP(8,@T[1]),$C);
1069 &mov ($B,$C);
1070 &mov (&DWP(12,@T[1]),$D);
1071 &xor ($B,$D);
1072 &mov (&DWP(16,@T[1]),$E);
1073 &mov (@T[1],@T[0]);
1074 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
1075 &and (@T[0],$B);
1076 &mov ($B,$T[1]);
1077
1078 &jmp (&label("loop"));
1079
1080&set_label("done",16); $j=$saved_j; @V=@saved_V;
1081
1082 &Xtail_ssse3(\&body_20_39);
1083 &Xtail_ssse3(\&body_20_39);
1084 &Xtail_ssse3(\&body_20_39);
1085
1086 &mov (@T[1],&DWP(192,"esp")); # update context
1087 &add ($A,&DWP(0,@T[1]));
1088 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1089 &add (@T[0],&DWP(4,@T[1])); # $b
1090 &add ($C,&DWP(8,@T[1]));
1091 &mov (&DWP(0,@T[1]),$A);
1092 &add ($D,&DWP(12,@T[1]));
1093 &mov (&DWP(4,@T[1]),@T[0]);
1094 &add ($E,&DWP(16,@T[1]));
1095 &mov (&DWP(8,@T[1]),$C);
1096 &mov (&DWP(12,@T[1]),$D);
1097 &mov (&DWP(16,@T[1]),$E);
1098
1099&function_end("_sha1_block_data_order_ssse3");
1100
1101$rx=0; # reset
1102
1103if ($ymm) {
1104my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
1105my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
1106my @V=($A,$B,$C,$D,$E);
1107my $j=0; # hash round
1108my @T=($T,$tmp1);
1109my $inp;
1110
1111my $_rol=sub { &shld(@_[0],@_) };
1112my $_ror=sub { &shrd(@_[0],@_) };
1113
1114&function_begin("_sha1_block_data_order_avx");
1115 &call (&label("pic_point")); # make it PIC!
1116 &set_label("pic_point");
1117 &blindpop($tmp1);
1118 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1119&set_label("avx_shortcut");
1120 &vzeroall();
1121
1122 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
1123 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
1124 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
1125 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
1126 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
1127
1128 &mov ($E,&wparam(0)); # load argument block
1129 &mov ($inp=@T[1],&wparam(1));
1130 &mov ($D,&wparam(2));
1131 &mov (@T[0],"esp");
1132
1133 # stack frame layout
1134 #
1135 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
1136 # X[4]+K X[5]+K X[6]+K X[7]+K
1137 # X[8]+K X[9]+K X[10]+K X[11]+K
1138 # X[12]+K X[13]+K X[14]+K X[15]+K
1139 #
1140 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
1141 # X[4] X[5] X[6] X[7]
1142 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
1143 #
1144 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
1145 # K_40_59 K_40_59 K_40_59 K_40_59
1146 # K_60_79 K_60_79 K_60_79 K_60_79
1147 # K_00_19 K_00_19 K_00_19 K_00_19
1148 # pbswap mask
1149 #
1150 # +192 ctx # argument block
1151 # +196 inp
1152 # +200 end
1153 # +204 esp
1154 &sub ("esp",208);
1155 &and ("esp",-64);
1156
1157 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
1158 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
1159 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
1160 &shl ($D,6); # len*64
1161 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
1162 &add ($D,$inp); # end of input
1163 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
1164 &add ($inp,64);
1165 &mov (&DWP(192+0,"esp"),$E); # save argument block
1166 &mov (&DWP(192+4,"esp"),$inp);
1167 &mov (&DWP(192+8,"esp"),$D);
1168 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
1169
1170 &mov ($A,&DWP(0,$E)); # load context
1171 &mov ($B,&DWP(4,$E));
1172 &mov ($C,&DWP(8,$E));
1173 &mov ($D,&DWP(12,$E));
1174 &mov ($E,&DWP(16,$E));
1175 &mov (@T[0],$B); # magic seed
1176
1177 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
1178 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
1179 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
1180 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
1181 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1182 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1183 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1184 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1185 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1186 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
1187 &vpaddd (@X[1],@X[-3&7],@X[3]);
1188 &vpaddd (@X[2],@X[-2&7],@X[3]);
1189 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
1190 &mov (@T[1],$C);
1191 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
1192 &xor (@T[1],$D);
1193 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
1194 &and (@T[0],@T[1]);
1195 &jmp (&label("loop"));
1196
Robert Sloanab8b8882018-03-26 11:39:51 -07001197sub Xupdate_avx_16_31() # recall that $Xi starts with 4
Adam Langleyd9e397b2015-01-22 14:27:53 -08001198{ use integer;
1199 my $body = shift;
1200 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
1201 my ($a,$b,$c,$d,$e);
1202
1203 eval(shift(@insns));
1204 eval(shift(@insns));
1205 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
1206 eval(shift(@insns));
1207 eval(shift(@insns));
1208
1209 &vpaddd (@X[3],@X[3],@X[-1&7]);
1210 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1211 eval(shift(@insns));
1212 eval(shift(@insns));
1213 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
1214 eval(shift(@insns));
1215 eval(shift(@insns));
1216 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
1217 eval(shift(@insns));
1218 eval(shift(@insns));
1219
1220 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
1221 eval(shift(@insns));
1222 eval(shift(@insns));
1223 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1224 eval(shift(@insns));
1225 eval(shift(@insns));
1226
1227 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
1228 eval(shift(@insns));
1229 eval(shift(@insns));
1230 eval(shift(@insns));
1231 eval(shift(@insns));
1232
1233 &vpsrld (@X[2],@X[0],31);
1234 eval(shift(@insns));
1235 eval(shift(@insns));
1236 eval(shift(@insns));
1237 eval(shift(@insns));
1238
1239 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
1240 &vpaddd (@X[0],@X[0],@X[0]);
1241 eval(shift(@insns));
1242 eval(shift(@insns));
1243 eval(shift(@insns));
1244 eval(shift(@insns));
1245
1246 &vpsrld (@X[3],@X[4],30);
1247 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
1248 eval(shift(@insns));
1249 eval(shift(@insns));
1250 eval(shift(@insns));
1251 eval(shift(@insns));
1252
1253 &vpslld (@X[4],@X[4],2);
1254 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1255 eval(shift(@insns));
1256 eval(shift(@insns));
1257 &vpxor (@X[0],@X[0],@X[3]);
1258 eval(shift(@insns));
1259 eval(shift(@insns));
1260 eval(shift(@insns));
1261 eval(shift(@insns));
1262
1263 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1264 eval(shift(@insns));
1265 eval(shift(@insns));
1266 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1267 eval(shift(@insns));
1268 eval(shift(@insns));
1269
1270 foreach (@insns) { eval; } # remaining instructions [if any]
1271
1272 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1273}
1274
1275sub Xupdate_avx_32_79()
1276{ use integer;
1277 my $body = shift;
1278 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
1279 my ($a,$b,$c,$d,$e);
1280
1281 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1282 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1283 eval(shift(@insns)); # body_20_39
1284 eval(shift(@insns));
1285 eval(shift(@insns));
1286 eval(shift(@insns)); # rol
1287
1288 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1289 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1290 eval(shift(@insns));
1291 eval(shift(@insns));
1292 if ($Xi%5) {
1293 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1294 } else { # ... or load next one
1295 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1296 }
1297 &vpaddd (@X[3],@X[3],@X[-1&7]);
1298 eval(shift(@insns)); # ror
1299 eval(shift(@insns));
1300
1301 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1302 eval(shift(@insns)); # body_20_39
1303 eval(shift(@insns));
1304 eval(shift(@insns));
1305 eval(shift(@insns)); # rol
1306
1307 &vpsrld (@X[2],@X[0],30);
1308 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1309 eval(shift(@insns));
1310 eval(shift(@insns));
1311 eval(shift(@insns)); # ror
1312 eval(shift(@insns));
1313
1314 &vpslld (@X[0],@X[0],2);
1315 eval(shift(@insns)); # body_20_39
1316 eval(shift(@insns));
1317 eval(shift(@insns));
1318 eval(shift(@insns)); # rol
1319 eval(shift(@insns));
1320 eval(shift(@insns));
1321 eval(shift(@insns)); # ror
1322 eval(shift(@insns));
1323
1324 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1325 eval(shift(@insns)); # body_20_39
1326 eval(shift(@insns));
1327 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1328 eval(shift(@insns));
1329 eval(shift(@insns)); # rol
1330 eval(shift(@insns));
1331 eval(shift(@insns));
1332 eval(shift(@insns)); # ror
1333 eval(shift(@insns));
1334
1335 foreach (@insns) { eval; } # remaining instructions
1336
1337 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1338}
1339
1340sub Xuplast_avx_80()
1341{ use integer;
1342 my $body = shift;
1343 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1344 my ($a,$b,$c,$d,$e);
1345
1346 eval(shift(@insns));
1347 &vpaddd (@X[3],@X[3],@X[-1&7]);
1348 eval(shift(@insns));
1349 eval(shift(@insns));
1350 eval(shift(@insns));
1351 eval(shift(@insns));
1352
1353 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1354
1355 foreach (@insns) { eval; } # remaining instructions
1356
1357 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1358 &cmp ($inp,&DWP(192+8,"esp"));
1359 &je (&label("done"));
1360
1361 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1362 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1363 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1364 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1365 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1366 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1367 &add ($inp,64);
1368 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1369 &mov (&DWP(192+4,"esp"),$inp);
1370 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1371
1372 $Xi=0;
1373}
1374
1375sub Xloop_avx()
1376{ use integer;
1377 my $body = shift;
1378 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1379 my ($a,$b,$c,$d,$e);
1380
1381 eval(shift(@insns));
1382 eval(shift(@insns));
1383 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1384 eval(shift(@insns));
1385 eval(shift(@insns));
1386 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1387 eval(shift(@insns));
1388 eval(shift(@insns));
1389 eval(shift(@insns));
1390 eval(shift(@insns));
1391 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1392 eval(shift(@insns));
1393 eval(shift(@insns));
1394
1395 foreach (@insns) { eval; }
1396 $Xi++;
1397}
1398
1399sub Xtail_avx()
1400{ use integer;
1401 my $body = shift;
1402 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1403 my ($a,$b,$c,$d,$e);
1404
1405 foreach (@insns) { eval; }
1406}
1407
1408&set_label("loop",16);
1409 &Xupdate_avx_16_31(\&body_00_19);
1410 &Xupdate_avx_16_31(\&body_00_19);
1411 &Xupdate_avx_16_31(\&body_00_19);
1412 &Xupdate_avx_16_31(\&body_00_19);
1413 &Xupdate_avx_32_79(\&body_00_19);
1414 &Xupdate_avx_32_79(\&body_20_39);
1415 &Xupdate_avx_32_79(\&body_20_39);
1416 &Xupdate_avx_32_79(\&body_20_39);
1417 &Xupdate_avx_32_79(\&body_20_39);
1418 &Xupdate_avx_32_79(\&body_20_39);
1419 &Xupdate_avx_32_79(\&body_40_59);
1420 &Xupdate_avx_32_79(\&body_40_59);
1421 &Xupdate_avx_32_79(\&body_40_59);
1422 &Xupdate_avx_32_79(\&body_40_59);
1423 &Xupdate_avx_32_79(\&body_40_59);
1424 &Xupdate_avx_32_79(\&body_20_39);
1425 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1426
1427 $saved_j=$j; @saved_V=@V;
1428
1429 &Xloop_avx(\&body_20_39);
1430 &Xloop_avx(\&body_20_39);
1431 &Xloop_avx(\&body_20_39);
1432
1433 &mov (@T[1],&DWP(192,"esp")); # update context
1434 &add ($A,&DWP(0,@T[1]));
1435 &add (@T[0],&DWP(4,@T[1])); # $b
1436 &add ($C,&DWP(8,@T[1]));
1437 &mov (&DWP(0,@T[1]),$A);
1438 &add ($D,&DWP(12,@T[1]));
1439 &mov (&DWP(4,@T[1]),@T[0]);
1440 &add ($E,&DWP(16,@T[1]));
1441 &mov ($B,$C);
1442 &mov (&DWP(8,@T[1]),$C);
1443 &xor ($B,$D);
1444 &mov (&DWP(12,@T[1]),$D);
1445 &mov (&DWP(16,@T[1]),$E);
1446 &mov (@T[1],@T[0]);
1447 &and (@T[0],$B);
1448 &mov ($B,@T[1]);
1449
1450 &jmp (&label("loop"));
1451
1452&set_label("done",16); $j=$saved_j; @V=@saved_V;
1453
1454 &Xtail_avx(\&body_20_39);
1455 &Xtail_avx(\&body_20_39);
1456 &Xtail_avx(\&body_20_39);
1457
1458 &vzeroall();
1459
1460 &mov (@T[1],&DWP(192,"esp")); # update context
1461 &add ($A,&DWP(0,@T[1]));
1462 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1463 &add (@T[0],&DWP(4,@T[1])); # $b
1464 &add ($C,&DWP(8,@T[1]));
1465 &mov (&DWP(0,@T[1]),$A);
1466 &add ($D,&DWP(12,@T[1]));
1467 &mov (&DWP(4,@T[1]),@T[0]);
1468 &add ($E,&DWP(16,@T[1]));
1469 &mov (&DWP(8,@T[1]),$C);
1470 &mov (&DWP(12,@T[1]),$D);
1471 &mov (&DWP(16,@T[1]),$E);
1472&function_end("_sha1_block_data_order_avx");
1473}
1474&set_label("K_XX_XX",64);
1475&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1476&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1477&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1478&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1479&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1480&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
1481}
1482&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1483
1484&asm_finish();
David Benjaminc895d6b2016-08-11 13:26:41 -04001485
Pete Bentley0c61efe2019-08-13 09:32:23 +01001486close STDOUT or die "error closing STDOUT";