blob: 1ec50f1a5876ed746400e01d0164a27fb8eb492c [file] [log] [blame]
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +02001// Copyright 2010 Google Inc. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14//
15// Entropy encoding (Huffman) utilities.
16
17#include "./entropy_encode.h"
18
19#include <stdint.h>
20#include <algorithm>
21#include <limits>
22#include <vector>
Roderick Sheeterc23cb1e2013-12-12 10:43:05 -080023#include <cstdlib>
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +020024
25#include "./histogram.h"
26
27namespace brotli {
28
29namespace {
30
31struct HuffmanTree {
32 HuffmanTree();
33 HuffmanTree(int count, int16_t left, int16_t right)
34 : total_count_(count),
35 index_left_(left),
36 index_right_or_value_(right) {
37 }
38 int total_count_;
39 int16_t index_left_;
40 int16_t index_right_or_value_;
41};
42
43HuffmanTree::HuffmanTree() {}
44
45// Sort the root nodes, least popular first.
46bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
Zoltan Szabadkac6b9c7c2013-11-15 19:02:17 +010047 if (v0.total_count_ == v1.total_count_) {
48 return v0.index_right_or_value_ > v1.index_right_or_value_;
49 }
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +020050 return v0.total_count_ < v1.total_count_;
51}
52
53void SetDepth(const HuffmanTree &p,
54 HuffmanTree *pool,
55 uint8_t *depth,
56 int level) {
57 if (p.index_left_ >= 0) {
58 ++level;
59 SetDepth(pool[p.index_left_], pool, depth, level);
60 SetDepth(pool[p.index_right_or_value_], pool, depth, level);
61 } else {
62 depth[p.index_right_or_value_] = level;
63 }
64}
65
66} // namespace
67
68// This function will create a Huffman tree.
69//
70// The catch here is that the tree cannot be arbitrarily deep.
71// Brotli specifies a maximum depth of 15 bits for "code trees"
72// and 7 bits for "code length code trees."
73//
74// count_limit is the value that is to be faked as the minimum value
75// and this minimum value is raised until the tree matches the
76// maximum length requirement.
77//
78// This algorithm is not of excellent performance for very long data blocks,
79// especially when population counts are longer than 2**tree_limit, but
80// we are not planning to use this with extremely long blocks.
81//
82// See http://en.wikipedia.org/wiki/Huffman_coding
83void CreateHuffmanTree(const int *data,
84 const int length,
85 const int tree_limit,
86 uint8_t *depth) {
87 // For block sizes below 64 kB, we never need to do a second iteration
88 // of this loop. Probably all of our block sizes will be smaller than
89 // that, so this loop is mostly of academic interest. If we actually
90 // would need this, we would be better off with the Katajainen algorithm.
91 for (int count_limit = 1; ; count_limit *= 2) {
92 std::vector<HuffmanTree> tree;
93 tree.reserve(2 * length + 1);
94
95 for (int i = 0; i < length; ++i) {
96 if (data[i]) {
97 const int count = std::max(data[i], count_limit);
98 tree.push_back(HuffmanTree(count, -1, i));
99 }
100 }
101
102 const int n = tree.size();
103 if (n == 1) {
104 depth[tree[0].index_right_or_value_] = 1; // Only one element.
105 break;
106 }
107
108 std::sort(tree.begin(), tree.end(), SortHuffmanTree);
109
110 // The nodes are:
111 // [0, n): the sorted leaf nodes that we start with.
112 // [n]: we add a sentinel here.
113 // [n + 1, 2n): new parent nodes are added here, starting from
114 // (n+1). These are naturally in ascending order.
115 // [2n]: we add a sentinel at the end as well.
116 // There will be (2n+1) elements at the end.
117 const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
118 tree.push_back(sentinel);
119 tree.push_back(sentinel);
120
121 int i = 0; // Points to the next leaf node.
122 int j = n + 1; // Points to the next non-leaf node.
123 for (int k = n - 1; k > 0; --k) {
124 int left, right;
125 if (tree[i].total_count_ <= tree[j].total_count_) {
126 left = i;
127 ++i;
128 } else {
129 left = j;
130 ++j;
131 }
132 if (tree[i].total_count_ <= tree[j].total_count_) {
133 right = i;
134 ++i;
135 } else {
136 right = j;
137 ++j;
138 }
139
140 // The sentinel node becomes the parent node.
141 int j_end = tree.size() - 1;
142 tree[j_end].total_count_ =
143 tree[left].total_count_ + tree[right].total_count_;
144 tree[j_end].index_left_ = left;
145 tree[j_end].index_right_or_value_ = right;
146
147 // Add back the last sentinel node.
148 tree.push_back(sentinel);
149 }
150 SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
151
152 // We need to pack the Huffman tree in tree_limit bits.
153 // If this was not successful, add fake entities to the lowest values
154 // and retry.
155 if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
156 break;
157 }
158 }
159}
160
Zoltan Szabadka60c24c02013-12-12 13:18:04 +0100161void Reverse(uint8_t* v, int start, int end) {
162 --end;
163 while (start < end) {
164 int tmp = v[start];
165 v[start] = v[end];
166 v[end] = tmp;
167 ++start;
168 --end;
169 }
170}
171
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200172void WriteHuffmanTreeRepetitions(
173 const int previous_value,
174 const int value,
175 int repetitions,
176 uint8_t* tree,
177 uint8_t* extra_bits,
178 int* tree_size) {
179 if (previous_value != value) {
180 tree[*tree_size] = value;
181 extra_bits[*tree_size] = 0;
182 ++(*tree_size);
183 --repetitions;
184 }
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100185 if (repetitions == 7) {
186 tree[*tree_size] = value;
187 extra_bits[*tree_size] = 0;
188 ++(*tree_size);
189 --repetitions;
190 }
Zoltan Szabadka60c24c02013-12-12 13:18:04 +0100191 if (repetitions < 3) {
192 for (int i = 0; i < repetitions; ++i) {
193 tree[*tree_size] = value;
194 extra_bits[*tree_size] = 0;
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200195 ++(*tree_size);
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200196 }
Zoltan Szabadka60c24c02013-12-12 13:18:04 +0100197 } else {
198 repetitions -= 3;
199 int start = *tree_size;
200 while (repetitions >= 0) {
201 tree[*tree_size] = 16;
202 extra_bits[*tree_size] = repetitions & 0x3;
203 ++(*tree_size);
204 repetitions >>= 2;
205 --repetitions;
206 }
207 Reverse(tree, start, *tree_size);
208 Reverse(extra_bits, start, *tree_size);
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200209 }
210}
211
212void WriteHuffmanTreeRepetitionsZeros(
213 int repetitions,
214 uint8_t* tree,
215 uint8_t* extra_bits,
216 int* tree_size) {
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100217 if (repetitions == 11) {
218 tree[*tree_size] = 0;
219 extra_bits[*tree_size] = 0;
220 ++(*tree_size);
221 --repetitions;
222 }
Zoltan Szabadka60c24c02013-12-12 13:18:04 +0100223 if (repetitions < 3) {
224 for (int i = 0; i < repetitions; ++i) {
225 tree[*tree_size] = 0;
226 extra_bits[*tree_size] = 0;
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200227 ++(*tree_size);
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200228 }
Zoltan Szabadka60c24c02013-12-12 13:18:04 +0100229 } else {
230 repetitions -= 3;
231 int start = *tree_size;
232 while (repetitions >= 0) {
233 tree[*tree_size] = 17;
234 extra_bits[*tree_size] = repetitions & 0x7;
235 ++(*tree_size);
236 repetitions >>= 3;
237 --repetitions;
238 }
239 Reverse(tree, start, *tree_size);
240 Reverse(extra_bits, start, *tree_size);
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200241 }
242}
243
244
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200245int OptimizeHuffmanCountsForRle(int length, int* counts) {
246 int stride;
247 int limit;
248 int sum;
249 uint8_t* good_for_rle;
250 // Let's make the Huffman code more compatible with rle encoding.
251 int i;
252 for (; length >= 0; --length) {
253 if (length == 0) {
254 return 1; // All zeros.
255 }
256 if (counts[length - 1] != 0) {
257 // Now counts[0..length - 1] does not have trailing zeros.
258 break;
259 }
260 }
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100261 {
262 int nonzeros = 0;
263 int smallest_nonzero = 1 << 30;
264 for (i = 0; i < length; ++i) {
265 if (counts[i] != 0) {
266 ++nonzeros;
267 if (smallest_nonzero > counts[i]) {
268 smallest_nonzero = counts[i];
269 }
270 }
271 }
272 if (nonzeros < 5) {
273 // Small histogram will model it well.
274 return 1;
275 }
276 int zeros = length - nonzeros;
277 if (smallest_nonzero < 4) {
278 if (zeros < 6) {
279 for (i = 1; i < length - 1; ++i) {
280 if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
281 counts[i] = 1;
282 }
283 }
284 }
285 }
286 if (nonzeros < 28) {
287 return 1;
288 }
289 }
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200290 // 2) Let's mark all population counts that already can be encoded
291 // with an rle code.
292 good_for_rle = (uint8_t*)calloc(length, 1);
293 if (good_for_rle == NULL) {
294 return 0;
295 }
296 {
297 // Let's not spoil any of the existing good rle codes.
298 // Mark any seq of 0's that is longer as 5 as a good_for_rle.
299 // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
300 int symbol = counts[0];
301 int stride = 0;
302 for (i = 0; i < length + 1; ++i) {
303 if (i == length || counts[i] != symbol) {
304 if ((symbol == 0 && stride >= 5) ||
305 (symbol != 0 && stride >= 7)) {
306 int k;
307 for (k = 0; k < stride; ++k) {
308 good_for_rle[i - k - 1] = 1;
309 }
310 }
311 stride = 1;
312 if (i != length) {
313 symbol = counts[i];
314 }
315 } else {
316 ++stride;
317 }
318 }
319 }
320 // 3) Let's replace those population counts that lead to more rle codes.
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100321 // Math here is in 24.8 fixed point representation.
322 const int streak_limit = 1240;
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200323 stride = 0;
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100324 limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200325 sum = 0;
326 for (i = 0; i < length + 1; ++i) {
327 if (i == length || good_for_rle[i] ||
328 (i != 0 && good_for_rle[i - 1]) ||
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100329 abs(256 * counts[i] - limit) >= streak_limit) {
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200330 if (stride >= 4 || (stride >= 3 && sum == 0)) {
331 int k;
332 // The stride must end, collapse what we have, if we have enough (4).
333 int count = (sum + stride / 2) / stride;
334 if (count < 1) {
335 count = 1;
336 }
337 if (sum == 0) {
338 // Don't make an all zeros stride to be upgraded to ones.
339 count = 0;
340 }
341 for (k = 0; k < stride; ++k) {
342 // We don't want to change value at counts[i],
343 // that is already belonging to the next stride. Thus - 1.
344 counts[i - k - 1] = count;
345 }
346 }
347 stride = 0;
348 sum = 0;
Zoltan Szabadkac6b9c7c2013-11-15 19:02:17 +0100349 if (i < length - 2) {
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200350 // All interesting strides have a count of at least 4,
351 // at least when non-zeros.
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100352 limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200353 } else if (i < length) {
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100354 limit = 256 * counts[i];
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200355 } else {
356 limit = 0;
357 }
358 }
359 ++stride;
360 if (i != length) {
361 sum += counts[i];
362 if (stride >= 4) {
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100363 limit = (256 * sum + stride / 2) / stride;
364 }
365 if (stride == 4) {
366 limit += 120;
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200367 }
368 }
369 }
370 free(good_for_rle);
371 return 1;
372}
373
374
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100375static void DecideOverRleUse(const uint8_t* depth, const int length,
376 bool *use_rle_for_non_zero,
377 bool *use_rle_for_zero) {
378 int total_reps_zero = 0;
379 int total_reps_non_zero = 0;
380 int count_reps_zero = 0;
381 int count_reps_non_zero = 0;
382 int new_length = length;
383 for (int i = 0; i < length; ++i) {
384 if (depth[length - i - 1] == 0) {
385 --new_length;
386 } else {
387 break;
388 }
389 }
390 for (uint32_t i = 0; i < new_length;) {
391 const int value = depth[i];
392 int reps = 1;
393 // Find rle coding for longer codes.
394 // Shorter codes seem not to benefit from rle.
395 for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) {
396 ++reps;
397 }
398 if (reps >= 3 && value == 0) {
399 total_reps_zero += reps;
400 ++count_reps_zero;
401 }
402 if (reps >= 4 && value != 0) {
403 total_reps_non_zero += reps;
404 ++count_reps_non_zero;
405 }
406 i += reps;
407 }
408 total_reps_non_zero -= count_reps_non_zero * 2;
409 total_reps_zero -= count_reps_zero * 2;
410 *use_rle_for_non_zero = total_reps_non_zero > 2;
411 *use_rle_for_zero = total_reps_zero > 2;
412}
413
414
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200415void WriteHuffmanTree(const uint8_t* depth, const int length,
416 uint8_t* tree,
417 uint8_t* extra_bits_data,
418 int* huffman_tree_size) {
Zoltan Szabadkac6b9c7c2013-11-15 19:02:17 +0100419 int previous_value = 8;
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100420
421 // First gather statistics on if it is a good idea to do rle.
422 bool use_rle_for_non_zero;
423 bool use_rle_for_zero;
424 DecideOverRleUse(depth, length, &use_rle_for_non_zero, &use_rle_for_zero);
425
426 // Actual rle coding.
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200427 for (uint32_t i = 0; i < length;) {
428 const int value = depth[i];
429 int reps = 1;
Zoltan Szabadka0454ab42014-02-14 15:04:23 +0100430 if (length > 50) {
431 // Find rle coding for longer codes.
432 // Shorter codes seem not to benefit from rle.
433 if ((value != 0 && use_rle_for_non_zero) ||
434 (value == 0 && use_rle_for_zero)) {
435 for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
436 ++reps;
437 }
438 }
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200439 }
440 if (value == 0) {
441 WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data,
442 huffman_tree_size);
443 } else {
444 WriteHuffmanTreeRepetitions(previous_value, value, reps, tree,
445 extra_bits_data, huffman_tree_size);
446 previous_value = value;
447 }
448 i += reps;
449 }
Zoltan Szabadka14473452013-12-17 17:17:57 +0100450 // Throw away trailing zeros.
451 for (; *huffman_tree_size > 0; --(*huffman_tree_size)) {
452 if (tree[*huffman_tree_size - 1] > 0 && tree[*huffman_tree_size - 1] < 17) {
453 break;
454 }
455 }
Zoltan Szabadkac66e4e32013-10-23 13:06:13 +0200456}
457
458namespace {
459
460uint16_t ReverseBits(int num_bits, uint16_t bits) {
461 static const size_t kLut[16] = { // Pre-reversed 4-bit values.
462 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
463 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
464 };
465 size_t retval = kLut[bits & 0xf];
466 for (int i = 4; i < num_bits; i += 4) {
467 retval <<= 4;
468 bits >>= 4;
469 retval |= kLut[bits & 0xf];
470 }
471 retval >>= (-num_bits & 0x3);
472 return retval;
473}
474
475} // namespace
476
477void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) {
478 // In Brotli, all bit depths are [1..15]
479 // 0 bit depth means that the symbol does not exist.
480 const int kMaxBits = 16; // 0..15 are values for bits
481 uint16_t bl_count[kMaxBits] = { 0 };
482 {
483 for (int i = 0; i < len; ++i) {
484 ++bl_count[depth[i]];
485 }
486 bl_count[0] = 0;
487 }
488 uint16_t next_code[kMaxBits];
489 next_code[0] = 0;
490 {
491 int code = 0;
492 for (int bits = 1; bits < kMaxBits; ++bits) {
493 code = (code + bl_count[bits - 1]) << 1;
494 next_code[bits] = code;
495 }
496 }
497 for (int i = 0; i < len; ++i) {
498 if (depth[i]) {
499 bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
500 }
501 }
502}
503
504} // namespace brotli