| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallVector.h" |
| using namespace clang; |
| |
| enum FloatingRank { |
| FloatRank, DoubleRank, LongDoubleRank |
| }; |
| |
| ASTContext::~ASTContext() { |
| // Deallocate all the types. |
| while (!Types.empty()) { |
| if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) { |
| // Destroy the object, but don't call delete. These are malloc'd. |
| FT->~FunctionTypeProto(); |
| free(FT); |
| } else { |
| delete Types.back(); |
| } |
| Types.pop_back(); |
| } |
| } |
| |
| void ASTContext::PrintStats() const { |
| fprintf(stderr, "*** AST Context Stats:\n"); |
| fprintf(stderr, " %d types total.\n", (int)Types.size()); |
| unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; |
| unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0; |
| |
| unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| if (isa<BuiltinType>(T)) |
| ++NumBuiltin; |
| else if (isa<PointerType>(T)) |
| ++NumPointer; |
| else if (isa<ReferenceType>(T)) |
| ++NumReference; |
| else if (isa<ArrayType>(T)) |
| ++NumArray; |
| else if (isa<FunctionTypeNoProto>(T)) |
| ++NumFunctionNP; |
| else if (isa<FunctionTypeProto>(T)) |
| ++NumFunctionP; |
| else if (isa<TypedefType>(T)) |
| ++NumTypeName; |
| else if (TagType *TT = dyn_cast<TagType>(T)) { |
| ++NumTagged; |
| switch (TT->getDecl()->getKind()) { |
| default: assert(0 && "Unknown tagged type!"); |
| case Decl::Struct: ++NumTagStruct; break; |
| case Decl::Union: ++NumTagUnion; break; |
| case Decl::Class: ++NumTagClass; break; |
| case Decl::Enum: ++NumTagEnum; break; |
| } |
| } else { |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| fprintf(stderr, " %d builtin types\n", NumBuiltin); |
| fprintf(stderr, " %d pointer types\n", NumPointer); |
| fprintf(stderr, " %d reference types\n", NumReference); |
| fprintf(stderr, " %d array types\n", NumArray); |
| fprintf(stderr, " %d function types with proto\n", NumFunctionP); |
| fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); |
| fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); |
| fprintf(stderr, " %d tagged types\n", NumTagged); |
| fprintf(stderr, " %d struct types\n", NumTagStruct); |
| fprintf(stderr, " %d union types\n", NumTagUnion); |
| fprintf(stderr, " %d class types\n", NumTagClass); |
| fprintf(stderr, " %d enum types\n", NumTagEnum); |
| fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ |
| NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ |
| NumFunctionP*sizeof(FunctionTypeProto)+ |
| NumFunctionNP*sizeof(FunctionTypeNoProto)+ |
| NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType))); |
| } |
| |
| |
| void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { |
| Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr()); |
| } |
| |
| |
| void ASTContext::InitBuiltinTypes() { |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (Target.isCharSigned(SourceLocation())) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| } |
| |
| |
| /// getTypeSize - Return the size of the specified type, in bits. This method |
| /// does not work on incomplete types. |
| std::pair<uint64_t, unsigned> |
| ASTContext::getTypeInfo(QualType T, SourceLocation L) { |
| T = T.getCanonicalType(); |
| uint64_t Size; |
| unsigned Align; |
| switch (T->getTypeClass()) { |
| default: |
| case Type::Complex: |
| case Type::Array: |
| case Type::Vector: |
| case Type::TypeName: |
| case Type::Tagged: |
| assert(0 && "Unimplemented type sizes!"); |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| assert(0 && "Incomplete types have no size!"); |
| case Type::Builtin: { |
| // FIXME: need to use TargetInfo to derive the target specific sizes. This |
| // implementation will suffice for play with vector support. |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "Unknown builtin type!"); |
| case BuiltinType::Void: |
| assert(0 && "Incomplete types have no size!"); |
| case BuiltinType::Bool: Target.getBoolInfo(Size, Align, L); break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: Target.getCharInfo(Size, Align, L); break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: Target.getShortInfo(Size, Align, L); break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: Target.getIntInfo(Size, Align, L); break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: Target.getLongInfo(Size, Align, L); break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: Target.getLongLongInfo(Size, Align, L); break; |
| case BuiltinType::Float: Target.getFloatInfo(Size, Align, L); break; |
| case BuiltinType::Double: Target.getDoubleInfo(Size, Align, L); break; |
| case BuiltinType::LongDouble: Target.getLongDoubleInfo(Size, Align,L);break; |
| } |
| } |
| case Type::Pointer: Target.getPointerInfo(Size, Align, L); break; |
| case Type::Reference: |
| // "When applied to a reference or a reference type, the result is the size |
| // of the referenced type." C++98 5.3.3p2: expr.sizeof |
| return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L); |
| } |
| |
| return std::make_pair(Size, Align); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getComplexType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ComplexType *New = new ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getPointerType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| PointerType *New = new PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getReferenceType - Return the uniqued reference to the type for a reference |
| /// to the specified type. |
| QualType ASTContext::getReferenceType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getReferenceType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ReferenceType *New = new ReferenceType(T, Canonical); |
| Types.push_back(New); |
| ReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getArrayType - Return the unique reference to the type for an array of the |
| /// specified element type. |
| QualType ASTContext::getArrayType(QualType EltTy,ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals, Expr *NumElts) { |
| // Unique array types, to guarantee there is only one array of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ArrayType::Profile(ID, ASM, EltTypeQuals, EltTy, NumElts); |
| |
| void *InsertPos = 0; |
| if (ArrayType *ATP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!EltTy->isCanonical()) { |
| Canonical = getArrayType(EltTy.getCanonicalType(), ASM, EltTypeQuals, |
| NumElts); |
| |
| // Get the new insert position for the node we care about. |
| ArrayType *NewIP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ArrayType *New = new ArrayType(EltTy, ASM, EltTypeQuals, Canonical, NumElts); |
| ArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// convertToVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType can be a pointer, array, |
| /// function, or built-in type (i.e. _Bool, integer, or float). |
| QualType ASTContext::convertToVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr()); |
| assert(baseType != 0 && |
| "convertToVectorType(): Complex vector types unimplemented"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = convertToVectorType(vecType.getCanonicalType(), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| VectorType *New = new VectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'. |
| /// |
| QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeNoProto::Profile(ID, ResultTy); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeNoProto *FT = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!ResultTy->isCanonical()) { |
| Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeNoProto *NewIP = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical); |
| Types.push_back(New); |
| FunctionTypeProtos.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionType - Return a normal function type with a typed argument |
| /// list. isVariadic indicates whether the argument list includes '...'. |
| QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray, |
| unsigned NumArgs, bool isVariadic) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeProto *FTP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FTP, 0); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = ResultTy->isCanonical(); |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i]->isCanonical()) |
| isCanonical = false; |
| |
| // If this type isn't canonical, get the canonical version of it. |
| QualType Canonical; |
| if (!isCanonical) { |
| llvm::SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(ArgArray[i].getCanonicalType()); |
| |
| Canonical = getFunctionType(ResultTy.getCanonicalType(), |
| &CanonicalArgs[0], NumArgs, |
| isVariadic); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeProto *NewIP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| // FunctionTypeProto objects are not allocated with new because they have a |
| // variable size array (for parameter types) at the end of them. |
| FunctionTypeProto *FTP = |
| (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + |
| (NumArgs-1)*sizeof(QualType)); |
| new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic, |
| Canonical); |
| Types.push_back(FTP); |
| FunctionTypeProtos.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typename decl. |
| QualType ASTContext::getTypedefType(TypedefDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| QualType Canonical = Decl->getUnderlyingType().getCanonicalType(); |
| Decl->TypeForDecl = new TypedefType(Decl, Canonical); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(TagDecl *Decl) { |
| // The decl stores the type cache. |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| Decl->TypeForDecl = new TagType(Decl, QualType()); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getSizeType() const { |
| // On Darwin, size_t is defined as a "long unsigned int". |
| // FIXME: should derive from "Target". |
| return UnsignedLongTy; |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug... |
| // FIXME: should derive from "Target". |
| return IntTy; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum. |
| static int getIntegerRank(QualType t) { |
| if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) { |
| assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum"); |
| return 4; |
| } |
| |
| const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType()); |
| switch (BT->getKind()) { |
| default: |
| assert(0 && "getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2; |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3; |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4; |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5; |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6; |
| } |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static int getFloatingRank(QualType T) { |
| T = T.getCanonicalType(); |
| if (ComplexType *CT = dyn_cast<ComplexType>(T)) |
| return getFloatingRank(CT->getElementType()); |
| |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "getFloatingPointRank(): not a floating type"); |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| } |
| } |
| |
| // maxComplexType - the following code handles 3 different combinations: |
| // complex/complex, complex/float, float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. g |
| // getFloatingRank & convertFloatingRankToComplexType handle this without |
| // enumerating all permutations. |
| // It also allows us to add new types without breakage. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| |
| QualType ASTContext::maxComplexType(QualType lt, QualType rt) const { |
| switch (std::max(getFloatingRank(lt), getFloatingRank(rt))) { |
| default: assert(0 && "convertRankToComplex(): illegal value for rank"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| } |
| } |
| |
| // maxFloatingType - handles the simple case, both operands are floats. |
| QualType ASTContext::maxFloatingType(QualType lt, QualType rt) { |
| return getFloatingRank(lt) > getFloatingRank(rt) ? lt : rt; |
| } |
| |
| // maxIntegerType - Returns the highest ranked integer type. Handles 3 case: |
| // unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1. |
| QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) { |
| if (lhs == rhs) return lhs; |
| |
| bool t1Unsigned = lhs->isUnsignedIntegerType(); |
| bool t2Unsigned = rhs->isUnsignedIntegerType(); |
| |
| if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned)) |
| return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs; |
| |
| // We have two integer types with differing signs |
| QualType unsignedType = t1Unsigned ? lhs : rhs; |
| QualType signedType = t1Unsigned ? rhs : lhs; |
| |
| if (getIntegerRank(unsignedType) >= getIntegerRank(signedType)) |
| return unsignedType; |
| else { |
| // FIXME: Need to check if the signed type can represent all values of the |
| // unsigned type. If it can, then the result is the signed type. |
| // If it can't, then the result is the unsigned version of the signed type. |
| // Should probably add a helper that returns a signed integer type from |
| // an unsigned (and vice versa). C99 6.3.1.8. |
| return signedType; |
| } |
| } |