blob: d62bf94298df660a8a66e4743c60880ff932163a [file] [log] [blame]
Reid Spencer5f016e22007-07-11 17:01:13 +00001//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/ADT/SmallVector.h"
19using namespace clang;
20
21enum FloatingRank {
22 FloatRank, DoubleRank, LongDoubleRank
23};
24
25ASTContext::~ASTContext() {
26 // Deallocate all the types.
27 while (!Types.empty()) {
28 if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
29 // Destroy the object, but don't call delete. These are malloc'd.
30 FT->~FunctionTypeProto();
31 free(FT);
32 } else {
33 delete Types.back();
34 }
35 Types.pop_back();
36 }
37}
38
39void ASTContext::PrintStats() const {
40 fprintf(stderr, "*** AST Context Stats:\n");
41 fprintf(stderr, " %d types total.\n", (int)Types.size());
42 unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
43 unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
44
45 unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
46
47 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
48 Type *T = Types[i];
49 if (isa<BuiltinType>(T))
50 ++NumBuiltin;
51 else if (isa<PointerType>(T))
52 ++NumPointer;
53 else if (isa<ReferenceType>(T))
54 ++NumReference;
55 else if (isa<ArrayType>(T))
56 ++NumArray;
57 else if (isa<FunctionTypeNoProto>(T))
58 ++NumFunctionNP;
59 else if (isa<FunctionTypeProto>(T))
60 ++NumFunctionP;
61 else if (isa<TypedefType>(T))
62 ++NumTypeName;
63 else if (TagType *TT = dyn_cast<TagType>(T)) {
64 ++NumTagged;
65 switch (TT->getDecl()->getKind()) {
66 default: assert(0 && "Unknown tagged type!");
67 case Decl::Struct: ++NumTagStruct; break;
68 case Decl::Union: ++NumTagUnion; break;
69 case Decl::Class: ++NumTagClass; break;
70 case Decl::Enum: ++NumTagEnum; break;
71 }
72 } else {
73 assert(0 && "Unknown type!");
74 }
75 }
76
77 fprintf(stderr, " %d builtin types\n", NumBuiltin);
78 fprintf(stderr, " %d pointer types\n", NumPointer);
79 fprintf(stderr, " %d reference types\n", NumReference);
80 fprintf(stderr, " %d array types\n", NumArray);
81 fprintf(stderr, " %d function types with proto\n", NumFunctionP);
82 fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
83 fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
84 fprintf(stderr, " %d tagged types\n", NumTagged);
85 fprintf(stderr, " %d struct types\n", NumTagStruct);
86 fprintf(stderr, " %d union types\n", NumTagUnion);
87 fprintf(stderr, " %d class types\n", NumTagClass);
88 fprintf(stderr, " %d enum types\n", NumTagEnum);
89 fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
90 NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
91 NumFunctionP*sizeof(FunctionTypeProto)+
92 NumFunctionNP*sizeof(FunctionTypeNoProto)+
93 NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
94}
95
96
97void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
98 Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
99}
100
101
102void ASTContext::InitBuiltinTypes() {
103 assert(VoidTy.isNull() && "Context reinitialized?");
104
105 // C99 6.2.5p19.
106 InitBuiltinType(VoidTy, BuiltinType::Void);
107
108 // C99 6.2.5p2.
109 InitBuiltinType(BoolTy, BuiltinType::Bool);
110 // C99 6.2.5p3.
111 if (Target.isCharSigned(SourceLocation()))
112 InitBuiltinType(CharTy, BuiltinType::Char_S);
113 else
114 InitBuiltinType(CharTy, BuiltinType::Char_U);
115 // C99 6.2.5p4.
116 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
117 InitBuiltinType(ShortTy, BuiltinType::Short);
118 InitBuiltinType(IntTy, BuiltinType::Int);
119 InitBuiltinType(LongTy, BuiltinType::Long);
120 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
121
122 // C99 6.2.5p6.
123 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
124 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
125 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
126 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
127 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
128
129 // C99 6.2.5p10.
130 InitBuiltinType(FloatTy, BuiltinType::Float);
131 InitBuiltinType(DoubleTy, BuiltinType::Double);
132 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
133
134 // C99 6.2.5p11.
135 FloatComplexTy = getComplexType(FloatTy);
136 DoubleComplexTy = getComplexType(DoubleTy);
137 LongDoubleComplexTy = getComplexType(LongDoubleTy);
138}
139
Chris Lattnera7674d82007-07-13 22:13:22 +0000140
141/// getTypeSize - Return the size of the specified type, in bits. This method
142/// does not work on incomplete types.
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000143std::pair<uint64_t, unsigned>
144ASTContext::getTypeInfo(QualType T, SourceLocation L) {
Chris Lattnera7674d82007-07-13 22:13:22 +0000145 T = T.getCanonicalType();
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000146 uint64_t Size;
147 unsigned Align;
Chris Lattnera7674d82007-07-13 22:13:22 +0000148 switch (T->getTypeClass()) {
Chris Lattner692233e2007-07-13 22:27:08 +0000149 default:
150 case Type::Complex:
151 case Type::Array:
152 case Type::Vector:
153 case Type::TypeName:
154 case Type::Tagged:
155 assert(0 && "Unimplemented type sizes!");
156 case Type::FunctionNoProto:
157 case Type::FunctionProto:
158 assert(0 && "Incomplete types have no size!");
Chris Lattnera7674d82007-07-13 22:13:22 +0000159 case Type::Builtin: {
160 // FIXME: need to use TargetInfo to derive the target specific sizes. This
161 // implementation will suffice for play with vector support.
162 switch (cast<BuiltinType>(T)->getKind()) {
Chris Lattner692233e2007-07-13 22:27:08 +0000163 default: assert(0 && "Unknown builtin type!");
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000164 case BuiltinType::Void:
165 assert(0 && "Incomplete types have no size!");
166 case BuiltinType::Bool: Target.getBoolInfo(Size, Align, L); break;
Chris Lattner692233e2007-07-13 22:27:08 +0000167 case BuiltinType::Char_S:
168 case BuiltinType::Char_U:
169 case BuiltinType::UChar:
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000170 case BuiltinType::SChar: Target.getCharInfo(Size, Align, L); break;
Chris Lattner692233e2007-07-13 22:27:08 +0000171 case BuiltinType::UShort:
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000172 case BuiltinType::Short: Target.getShortInfo(Size, Align, L); break;
Chris Lattner692233e2007-07-13 22:27:08 +0000173 case BuiltinType::UInt:
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000174 case BuiltinType::Int: Target.getIntInfo(Size, Align, L); break;
Chris Lattner692233e2007-07-13 22:27:08 +0000175 case BuiltinType::ULong:
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000176 case BuiltinType::Long: Target.getLongInfo(Size, Align, L); break;
Chris Lattner692233e2007-07-13 22:27:08 +0000177 case BuiltinType::ULongLong:
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000178 case BuiltinType::LongLong: Target.getLongLongInfo(Size, Align, L); break;
179 case BuiltinType::Float: Target.getFloatInfo(Size, Align, L); break;
180 case BuiltinType::Double: Target.getDoubleInfo(Size, Align, L); break;
181 case BuiltinType::LongDouble: Target.getLongDoubleInfo(Size, Align,L);break;
Chris Lattnera7674d82007-07-13 22:13:22 +0000182 }
Chris Lattnera7674d82007-07-13 22:13:22 +0000183 }
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000184 case Type::Pointer: Target.getPointerInfo(Size, Align, L); break;
Chris Lattnera7674d82007-07-13 22:13:22 +0000185 case Type::Reference:
Chris Lattner7ab2ed82007-07-13 22:16:13 +0000186 // "When applied to a reference or a reference type, the result is the size
187 // of the referenced type." C++98 5.3.3p2: expr.sizeof
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000188 return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L);
Chris Lattnera7674d82007-07-13 22:13:22 +0000189 }
Chris Lattnerd2d2a112007-07-14 01:29:45 +0000190
191 return std::make_pair(Size, Align);
Chris Lattnera7674d82007-07-13 22:13:22 +0000192}
193
194//===----------------------------------------------------------------------===//
195// Type creation/memoization methods
196//===----------------------------------------------------------------------===//
197
198
Reid Spencer5f016e22007-07-11 17:01:13 +0000199/// getComplexType - Return the uniqued reference to the type for a complex
200/// number with the specified element type.
201QualType ASTContext::getComplexType(QualType T) {
202 // Unique pointers, to guarantee there is only one pointer of a particular
203 // structure.
204 llvm::FoldingSetNodeID ID;
205 ComplexType::Profile(ID, T);
206
207 void *InsertPos = 0;
208 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
209 return QualType(CT, 0);
210
211 // If the pointee type isn't canonical, this won't be a canonical type either,
212 // so fill in the canonical type field.
213 QualType Canonical;
214 if (!T->isCanonical()) {
215 Canonical = getComplexType(T.getCanonicalType());
216
217 // Get the new insert position for the node we care about.
218 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
219 assert(NewIP == 0 && "Shouldn't be in the map!");
220 }
221 ComplexType *New = new ComplexType(T, Canonical);
222 Types.push_back(New);
223 ComplexTypes.InsertNode(New, InsertPos);
224 return QualType(New, 0);
225}
226
227
228/// getPointerType - Return the uniqued reference to the type for a pointer to
229/// the specified type.
230QualType ASTContext::getPointerType(QualType T) {
231 // Unique pointers, to guarantee there is only one pointer of a particular
232 // structure.
233 llvm::FoldingSetNodeID ID;
234 PointerType::Profile(ID, T);
235
236 void *InsertPos = 0;
237 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
238 return QualType(PT, 0);
239
240 // If the pointee type isn't canonical, this won't be a canonical type either,
241 // so fill in the canonical type field.
242 QualType Canonical;
243 if (!T->isCanonical()) {
244 Canonical = getPointerType(T.getCanonicalType());
245
246 // Get the new insert position for the node we care about.
247 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
248 assert(NewIP == 0 && "Shouldn't be in the map!");
249 }
250 PointerType *New = new PointerType(T, Canonical);
251 Types.push_back(New);
252 PointerTypes.InsertNode(New, InsertPos);
253 return QualType(New, 0);
254}
255
256/// getReferenceType - Return the uniqued reference to the type for a reference
257/// to the specified type.
258QualType ASTContext::getReferenceType(QualType T) {
259 // Unique pointers, to guarantee there is only one pointer of a particular
260 // structure.
261 llvm::FoldingSetNodeID ID;
262 ReferenceType::Profile(ID, T);
263
264 void *InsertPos = 0;
265 if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
266 return QualType(RT, 0);
267
268 // If the referencee type isn't canonical, this won't be a canonical type
269 // either, so fill in the canonical type field.
270 QualType Canonical;
271 if (!T->isCanonical()) {
272 Canonical = getReferenceType(T.getCanonicalType());
273
274 // Get the new insert position for the node we care about.
275 ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
276 assert(NewIP == 0 && "Shouldn't be in the map!");
277 }
278
279 ReferenceType *New = new ReferenceType(T, Canonical);
280 Types.push_back(New);
281 ReferenceTypes.InsertNode(New, InsertPos);
282 return QualType(New, 0);
283}
284
285/// getArrayType - Return the unique reference to the type for an array of the
286/// specified element type.
287QualType ASTContext::getArrayType(QualType EltTy,ArrayType::ArraySizeModifier ASM,
288 unsigned EltTypeQuals, Expr *NumElts) {
289 // Unique array types, to guarantee there is only one array of a particular
290 // structure.
291 llvm::FoldingSetNodeID ID;
292 ArrayType::Profile(ID, ASM, EltTypeQuals, EltTy, NumElts);
293
294 void *InsertPos = 0;
295 if (ArrayType *ATP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
296 return QualType(ATP, 0);
297
298 // If the element type isn't canonical, this won't be a canonical type either,
299 // so fill in the canonical type field.
300 QualType Canonical;
301 if (!EltTy->isCanonical()) {
302 Canonical = getArrayType(EltTy.getCanonicalType(), ASM, EltTypeQuals,
303 NumElts);
304
305 // Get the new insert position for the node we care about.
306 ArrayType *NewIP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
307 assert(NewIP == 0 && "Shouldn't be in the map!");
308 }
309
310 ArrayType *New = new ArrayType(EltTy, ASM, EltTypeQuals, Canonical, NumElts);
311 ArrayTypes.InsertNode(New, InsertPos);
312 Types.push_back(New);
313 return QualType(New, 0);
314}
315
316/// convertToVectorType - Return the unique reference to a vector type of
317/// the specified element type and size. VectorType can be a pointer, array,
318/// function, or built-in type (i.e. _Bool, integer, or float).
319QualType ASTContext::convertToVectorType(QualType vecType, unsigned NumElts) {
320 BuiltinType *baseType;
321
322 baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
323 assert(baseType != 0 &&
324 "convertToVectorType(): Complex vector types unimplemented");
325
326 // Check if we've already instantiated a vector of this type.
327 llvm::FoldingSetNodeID ID;
328 VectorType::Profile(ID, vecType, NumElts);
329 void *InsertPos = 0;
330 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
331 return QualType(VTP, 0);
332
333 // If the element type isn't canonical, this won't be a canonical type either,
334 // so fill in the canonical type field.
335 QualType Canonical;
336 if (!vecType->isCanonical()) {
337 Canonical = convertToVectorType(vecType.getCanonicalType(), NumElts);
338
339 // Get the new insert position for the node we care about.
340 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
341 assert(NewIP == 0 && "Shouldn't be in the map!");
342 }
343 VectorType *New = new VectorType(vecType, NumElts, Canonical);
344 VectorTypes.InsertNode(New, InsertPos);
345 Types.push_back(New);
346 return QualType(New, 0);
347}
348
349/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
350///
351QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
352 // Unique functions, to guarantee there is only one function of a particular
353 // structure.
354 llvm::FoldingSetNodeID ID;
355 FunctionTypeNoProto::Profile(ID, ResultTy);
356
357 void *InsertPos = 0;
358 if (FunctionTypeNoProto *FT =
359 FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
360 return QualType(FT, 0);
361
362 QualType Canonical;
363 if (!ResultTy->isCanonical()) {
364 Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
365
366 // Get the new insert position for the node we care about.
367 FunctionTypeNoProto *NewIP =
368 FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
369 assert(NewIP == 0 && "Shouldn't be in the map!");
370 }
371
372 FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
373 Types.push_back(New);
374 FunctionTypeProtos.InsertNode(New, InsertPos);
375 return QualType(New, 0);
376}
377
378/// getFunctionType - Return a normal function type with a typed argument
379/// list. isVariadic indicates whether the argument list includes '...'.
380QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
381 unsigned NumArgs, bool isVariadic) {
382 // Unique functions, to guarantee there is only one function of a particular
383 // structure.
384 llvm::FoldingSetNodeID ID;
385 FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
386
387 void *InsertPos = 0;
388 if (FunctionTypeProto *FTP =
389 FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
390 return QualType(FTP, 0);
391
392 // Determine whether the type being created is already canonical or not.
393 bool isCanonical = ResultTy->isCanonical();
394 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
395 if (!ArgArray[i]->isCanonical())
396 isCanonical = false;
397
398 // If this type isn't canonical, get the canonical version of it.
399 QualType Canonical;
400 if (!isCanonical) {
401 llvm::SmallVector<QualType, 16> CanonicalArgs;
402 CanonicalArgs.reserve(NumArgs);
403 for (unsigned i = 0; i != NumArgs; ++i)
404 CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
405
406 Canonical = getFunctionType(ResultTy.getCanonicalType(),
407 &CanonicalArgs[0], NumArgs,
408 isVariadic);
409
410 // Get the new insert position for the node we care about.
411 FunctionTypeProto *NewIP =
412 FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
413 assert(NewIP == 0 && "Shouldn't be in the map!");
414 }
415
416 // FunctionTypeProto objects are not allocated with new because they have a
417 // variable size array (for parameter types) at the end of them.
418 FunctionTypeProto *FTP =
419 (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
420 (NumArgs-1)*sizeof(QualType));
421 new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
422 Canonical);
423 Types.push_back(FTP);
424 FunctionTypeProtos.InsertNode(FTP, InsertPos);
425 return QualType(FTP, 0);
426}
427
428/// getTypedefType - Return the unique reference to the type for the
429/// specified typename decl.
430QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
431 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
432
433 QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
434 Decl->TypeForDecl = new TypedefType(Decl, Canonical);
435 Types.push_back(Decl->TypeForDecl);
436 return QualType(Decl->TypeForDecl, 0);
437}
438
439/// getTagDeclType - Return the unique reference to the type for the
440/// specified TagDecl (struct/union/class/enum) decl.
441QualType ASTContext::getTagDeclType(TagDecl *Decl) {
442 // The decl stores the type cache.
443 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
444
445 Decl->TypeForDecl = new TagType(Decl, QualType());
446 Types.push_back(Decl->TypeForDecl);
447 return QualType(Decl->TypeForDecl, 0);
448}
449
450/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
451/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
452/// needs to agree with the definition in <stddef.h>.
453QualType ASTContext::getSizeType() const {
454 // On Darwin, size_t is defined as a "long unsigned int".
455 // FIXME: should derive from "Target".
456 return UnsignedLongTy;
457}
458
Chris Lattner8b9023b2007-07-13 03:05:23 +0000459/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
460/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
461QualType ASTContext::getPointerDiffType() const {
462 // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
463 // FIXME: should derive from "Target".
464 return IntTy;
465}
466
Reid Spencer5f016e22007-07-11 17:01:13 +0000467/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
468/// routine will assert if passed a built-in type that isn't an integer or enum.
469static int getIntegerRank(QualType t) {
470 if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
471 assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
472 return 4;
473 }
474
475 const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType());
476 switch (BT->getKind()) {
477 default:
478 assert(0 && "getIntegerRank(): not a built-in integer");
479 case BuiltinType::Bool:
480 return 1;
481 case BuiltinType::Char_S:
482 case BuiltinType::Char_U:
483 case BuiltinType::SChar:
484 case BuiltinType::UChar:
485 return 2;
486 case BuiltinType::Short:
487 case BuiltinType::UShort:
488 return 3;
489 case BuiltinType::Int:
490 case BuiltinType::UInt:
491 return 4;
492 case BuiltinType::Long:
493 case BuiltinType::ULong:
494 return 5;
495 case BuiltinType::LongLong:
496 case BuiltinType::ULongLong:
497 return 6;
498 }
499}
500
501/// getFloatingRank - Return a relative rank for floating point types.
502/// This routine will assert if passed a built-in type that isn't a float.
503static int getFloatingRank(QualType T) {
504 T = T.getCanonicalType();
505 if (ComplexType *CT = dyn_cast<ComplexType>(T))
506 return getFloatingRank(CT->getElementType());
507
508 switch (cast<BuiltinType>(T)->getKind()) {
509 default: assert(0 && "getFloatingPointRank(): not a floating type");
510 case BuiltinType::Float: return FloatRank;
511 case BuiltinType::Double: return DoubleRank;
512 case BuiltinType::LongDouble: return LongDoubleRank;
513 }
514}
515
516// maxComplexType - the following code handles 3 different combinations:
517// complex/complex, complex/float, float/complex.
518// When both operands are complex, the shorter operand is converted to the
519// type of the longer, and that is the type of the result. This corresponds
520// to what is done when combining two real floating-point operands.
521// The fun begins when size promotion occur across type domains. g
522// getFloatingRank & convertFloatingRankToComplexType handle this without
523// enumerating all permutations.
524// It also allows us to add new types without breakage.
525// From H&S 6.3.4: When one operand is complex and the other is a real
526// floating-point type, the less precise type is converted, within it's
527// real or complex domain, to the precision of the other type. For example,
528// when combining a "long double" with a "double _Complex", the
529// "double _Complex" is promoted to "long double _Complex".
530
531QualType ASTContext::maxComplexType(QualType lt, QualType rt) const {
532 switch (std::max(getFloatingRank(lt), getFloatingRank(rt))) {
533 default: assert(0 && "convertRankToComplex(): illegal value for rank");
534 case FloatRank: return FloatComplexTy;
535 case DoubleRank: return DoubleComplexTy;
536 case LongDoubleRank: return LongDoubleComplexTy;
537 }
538}
539
540// maxFloatingType - handles the simple case, both operands are floats.
541QualType ASTContext::maxFloatingType(QualType lt, QualType rt) {
542 return getFloatingRank(lt) > getFloatingRank(rt) ? lt : rt;
543}
544
545// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
546// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
547QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
548 if (lhs == rhs) return lhs;
549
550 bool t1Unsigned = lhs->isUnsignedIntegerType();
551 bool t2Unsigned = rhs->isUnsignedIntegerType();
552
553 if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
554 return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
555
556 // We have two integer types with differing signs
557 QualType unsignedType = t1Unsigned ? lhs : rhs;
558 QualType signedType = t1Unsigned ? rhs : lhs;
559
560 if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
561 return unsignedType;
562 else {
563 // FIXME: Need to check if the signed type can represent all values of the
564 // unsigned type. If it can, then the result is the signed type.
565 // If it can't, then the result is the unsigned version of the signed type.
566 // Should probably add a helper that returns a signed integer type from
567 // an unsigned (and vice versa). C99 6.3.1.8.
568 return signedType;
569 }
570}