blob: 46e5a108ca5df26b3a321c6837eaddab77680a38 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Builtins.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/Type.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Scope.h"
22#include "clang/Lex/IdentifierTable.h"
23#include "clang/Basic/LangOptions.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallSet.h"
26using namespace clang;
27
28// C99: 6.7.5p3: Used by ParseDeclarator/ParseField to make sure we have
29// a constant expression of type int with a value greater than zero.
30bool Sema::VerifyConstantArrayType(const ArrayType *Array,
31 SourceLocation DeclLoc) {
32 const Expr *Size = Array->getSizeExpr();
33 if (Size == 0) return false; // incomplete type.
34
35 if (!Size->getType()->isIntegerType()) {
36 Diag(Size->getLocStart(), diag::err_array_size_non_int,
37 Size->getType().getAsString(), Size->getSourceRange());
38 return true;
39 }
40
41 // Verify that the size of the array is an integer constant expr.
42 SourceLocation Loc;
43 llvm::APSInt SizeVal(32);
44 if (!Size->isIntegerConstantExpr(SizeVal, Context, &Loc)) {
45 // FIXME: This emits the diagnostic to enforce 6.7.2.1p8, but the message
46 // is wrong. It is also wrong for static variables.
47 // FIXME: This is also wrong for:
48 // int sub1(int i, char *pi) { typedef int foo[i];
49 // struct bar {foo f1; int f2:3; int f3:4} *p; }
50 Diag(DeclLoc, diag::err_typecheck_illegal_vla, Size->getSourceRange());
51 return true;
52 }
53
54 // We have a constant expression with an integer type, now make sure
55 // value greater than zero (C99 6.7.5.2p1).
56
57 // FIXME: This check isn't specific to static VLAs, this should be moved
58 // elsewhere or replicated. 'int X[-1];' inside a function should emit an
59 // error.
60 if (SizeVal.isSigned()) {
61 llvm::APSInt Zero(SizeVal.getBitWidth());
62 Zero.setIsUnsigned(false);
63 if (SizeVal < Zero) {
64 Diag(DeclLoc, diag::err_typecheck_negative_array_size,
65 Size->getSourceRange());
66 return true;
67 } else if (SizeVal == 0) {
68 // GCC accepts zero sized static arrays.
69 Diag(DeclLoc, diag::err_typecheck_zero_array_size,
70 Size->getSourceRange());
71 }
72 }
73 return false;
74}
75
76Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
77 return dyn_cast_or_null<TypedefDecl>(II.getFETokenInfo<Decl>());
78}
79
80void Sema::PopScope(SourceLocation Loc, Scope *S) {
81 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
82 I != E; ++I) {
83 Decl *D = static_cast<Decl*>(*I);
84 assert(D && "This decl didn't get pushed??");
85 IdentifierInfo *II = D->getIdentifier();
86 if (!II) continue;
87
88 // Unlink this decl from the identifier. Because the scope contains decls
89 // in an unordered collection, and because we have multiple identifier
90 // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
91 if (II->getFETokenInfo<Decl>() == D) {
92 // Normal case, no multiple decls in different namespaces.
93 II->setFETokenInfo(D->getNext());
94 } else {
95 // Scan ahead. There are only three namespaces in C, so this loop can
96 // never execute more than 3 times.
97 Decl *SomeDecl = II->getFETokenInfo<Decl>();
98 while (SomeDecl->getNext() != D) {
99 SomeDecl = SomeDecl->getNext();
100 assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
101 }
102 SomeDecl->setNext(D->getNext());
103 }
104
105 // This will have to be revisited for C++: there we want to nest stuff in
106 // namespace decls etc. Even for C, we might want a top-level translation
107 // unit decl or something.
108 if (!CurFunctionDecl)
109 continue;
110
111 // Chain this decl to the containing function, it now owns the memory for
112 // the decl.
113 D->setNext(CurFunctionDecl->getDeclChain());
114 CurFunctionDecl->setDeclChain(D);
115 }
116}
117
118/// LookupScopedDecl - Look up the inner-most declaration in the specified
119/// namespace.
120Decl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI,
121 SourceLocation IdLoc, Scope *S) {
122 if (II == 0) return 0;
123 Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
124
125 // Scan up the scope chain looking for a decl that matches this identifier
126 // that is in the appropriate namespace. This search should not take long, as
127 // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
128 for (Decl *D = II->getFETokenInfo<Decl>(); D; D = D->getNext())
129 if (D->getIdentifierNamespace() == NS)
130 return D;
131
132 // If we didn't find a use of this identifier, and if the identifier
133 // corresponds to a compiler builtin, create the decl object for the builtin
134 // now, injecting it into translation unit scope, and return it.
135 if (NS == Decl::IDNS_Ordinary) {
136 // If this is a builtin on some other target, or if this builtin varies
137 // across targets (e.g. in type), emit a diagnostic and mark the translation
138 // unit non-portable for using it.
139 if (II->isNonPortableBuiltin()) {
140 // Only emit this diagnostic once for this builtin.
141 II->setNonPortableBuiltin(false);
142 Context.Target.DiagnoseNonPortability(IdLoc,
143 diag::port_target_builtin_use);
144 }
145 // If this is a builtin on this (or all) targets, create the decl.
146 if (unsigned BuiltinID = II->getBuiltinID())
147 return LazilyCreateBuiltin(II, BuiltinID, S);
148 }
149 return 0;
150}
151
152/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
153/// lazily create a decl for it.
154Decl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, Scope *S) {
155 Builtin::ID BID = (Builtin::ID)bid;
156
157 QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
158 FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R,
159 FunctionDecl::Extern, 0);
160
161 // Find translation-unit scope to insert this function into.
162 while (S->getParent())
163 S = S->getParent();
164 S->AddDecl(New);
165
166 // Add this decl to the end of the identifier info.
167 if (Decl *LastDecl = II->getFETokenInfo<Decl>()) {
168 // Scan until we find the last (outermost) decl in the id chain.
169 while (LastDecl->getNext())
170 LastDecl = LastDecl->getNext();
171 // Insert before (outside) it.
172 LastDecl->setNext(New);
173 } else {
174 II->setFETokenInfo(New);
175 }
176 // Make sure clients iterating over decls see this.
177 LastInGroupList.push_back(New);
178
179 return New;
180}
181
182/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
183/// and scope as a previous declaration 'Old'. Figure out how to resolve this
184/// situation, merging decls or emitting diagnostics as appropriate.
185///
186TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
187 // Verify the old decl was also a typedef.
188 TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
189 if (!Old) {
190 Diag(New->getLocation(), diag::err_redefinition_different_kind,
191 New->getName());
192 Diag(OldD->getLocation(), diag::err_previous_definition);
193 return New;
194 }
195
196 // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
197 // TODO: This is totally simplistic. It should handle merging functions
198 // together etc, merging extern int X; int X; ...
199 Diag(New->getLocation(), diag::err_redefinition, New->getName());
200 Diag(Old->getLocation(), diag::err_previous_definition);
201 return New;
202}
203
204/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
205/// and scope as a previous declaration 'Old'. Figure out how to resolve this
206/// situation, merging decls or emitting diagnostics as appropriate.
207///
208FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
209 // Verify the old decl was also a function.
210 FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
211 if (!Old) {
212 Diag(New->getLocation(), diag::err_redefinition_different_kind,
213 New->getName());
214 Diag(OldD->getLocation(), diag::err_previous_definition);
215 return New;
216 }
217
218 // This is not right, but it's a start. If 'Old' is a function prototype with
219 // the same type as 'New', silently allow this. FIXME: We should link up decl
220 // objects here.
221 if (Old->getBody() == 0 &&
222 Old->getCanonicalType() == New->getCanonicalType()) {
223 return New;
224 }
225
226 // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
227 // TODO: This is totally simplistic. It should handle merging functions
228 // together etc, merging extern int X; int X; ...
229 Diag(New->getLocation(), diag::err_redefinition, New->getName());
230 Diag(Old->getLocation(), diag::err_previous_definition);
231 return New;
232}
233
234/// MergeVarDecl - We just parsed a variable 'New' which has the same name
235/// and scope as a previous declaration 'Old'. Figure out how to resolve this
236/// situation, merging decls or emitting diagnostics as appropriate.
237///
238/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
239/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
240///
241VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
242 // Verify the old decl was also a variable.
243 VarDecl *Old = dyn_cast<VarDecl>(OldD);
244 if (!Old) {
245 Diag(New->getLocation(), diag::err_redefinition_different_kind,
246 New->getName());
247 Diag(OldD->getLocation(), diag::err_previous_definition);
248 return New;
249 }
250 // Verify the types match.
251 if (Old->getCanonicalType() != New->getCanonicalType()) {
252 Diag(New->getLocation(), diag::err_redefinition, New->getName());
253 Diag(Old->getLocation(), diag::err_previous_definition);
254 return New;
255 }
256 // We've verified the types match, now check if Old is "extern".
257 if (Old->getStorageClass() != VarDecl::Extern) {
258 Diag(New->getLocation(), diag::err_redefinition, New->getName());
259 Diag(Old->getLocation(), diag::err_previous_definition);
260 }
261 return New;
262}
263
264/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
265/// no declarator (e.g. "struct foo;") is parsed.
266Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
267 // TODO: emit error on 'int;' or 'const enum foo;'.
268 // TODO: emit error on 'typedef int;'
269 // if (!DS.isMissingDeclaratorOk()) Diag(...);
270
271 return 0;
272}
273
274Sema::DeclTy *
275Sema::ParseDeclarator(Scope *S, Declarator &D, ExprTy *init,
276 DeclTy *lastDeclarator) {
277 Decl *LastDeclarator = (Decl*)lastDeclarator;
278 Expr *Init = static_cast<Expr*>(init);
279 IdentifierInfo *II = D.getIdentifier();
280
281 // All of these full declarators require an identifier. If it doesn't have
282 // one, the ParsedFreeStandingDeclSpec action should be used.
283 if (II == 0) {
284 Diag(D.getDeclSpec().getSourceRange().Begin(), diag::err_declarator_need_ident,
285 D.getDeclSpec().getSourceRange(), D.getSourceRange());
286 return 0;
287 }
288
289 // See if this is a redefinition of a variable in the same scope.
290 Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary,
291 D.getIdentifierLoc(), S);
292 if (PrevDecl && !S->isDeclScope(PrevDecl))
293 PrevDecl = 0; // If in outer scope, it isn't the same thing.
294
295 Decl *New;
296 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
297 assert(Init == 0 && "Can't have initializer for a typedef!");
298 TypedefDecl *NewTD = ParseTypedefDecl(S, D, LastDeclarator);
299 if (!NewTD) return 0;
300
301 // Handle attributes prior to checking for duplicates in MergeVarDecl
302 HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
303 D.getAttributes());
304 // Merge the decl with the existing one if appropriate.
305 if (PrevDecl) {
306 NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
307 if (NewTD == 0) return 0;
308 }
309 New = NewTD;
310 if (S->getParent() == 0) {
311 // C99 6.7.7p2: If a typedef name specifies a variably modified type
312 // then it shall have block scope.
313 if (ArrayType *ary = dyn_cast<ArrayType>(NewTD->getUnderlyingType())) {
314 if (VerifyConstantArrayType(ary, D.getIdentifierLoc()))
315 return 0;
316 }
317 }
318 } else if (D.isFunctionDeclarator()) {
319 assert(Init == 0 && "Can't have an initializer for a functiondecl!");
320 QualType R = GetTypeForDeclarator(D, S);
321 if (R.isNull()) return 0; // FIXME: "auto func();" passes through...
322
323 FunctionDecl::StorageClass SC;
324 switch (D.getDeclSpec().getStorageClassSpec()) {
325 default: assert(0 && "Unknown storage class!");
326 case DeclSpec::SCS_auto:
327 case DeclSpec::SCS_register:
328 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
329 R.getAsString());
330 return 0;
331 case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
332 case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
333 case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
334 }
335
336 FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R, SC,
337 LastDeclarator);
338
339 // Merge the decl with the existing one if appropriate.
340 if (PrevDecl) {
341 NewFD = MergeFunctionDecl(NewFD, PrevDecl);
342 if (NewFD == 0) return 0;
343 }
344 New = NewFD;
345 } else {
346 QualType R = GetTypeForDeclarator(D, S);
347 if (R.isNull()) return 0;
348
349 VarDecl *NewVD;
350 VarDecl::StorageClass SC;
351 switch (D.getDeclSpec().getStorageClassSpec()) {
352 default: assert(0 && "Unknown storage class!");
353 case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
354 case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
355 case DeclSpec::SCS_static: SC = VarDecl::Static; break;
356 case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
357 case DeclSpec::SCS_register: SC = VarDecl::Register; break;
358 }
359 if (S->getParent() == 0) {
360 // File scope. C99 6.9.2p2: A declaration of an identifier for and
361 // object that has file scope without an initializer, and without a
362 // storage-class specifier or with the storage-class specifier "static",
363 // constitutes a tentative definition. Note: A tentative definition with
364 // external linkage is valid (C99 6.2.2p5).
365 if (!Init && SC == VarDecl::Static) {
366 // C99 6.9.2p3: If the declaration of an identifier for an object is
367 // a tentative definition and has internal linkage (C99 6.2.2p3), the
368 // declared type shall not be an incomplete type.
369 if (R->isIncompleteType()) {
370 Diag(D.getIdentifierLoc(), diag::err_typecheck_decl_incomplete_type,
371 R.getAsString());
372 return 0;
373 }
374 }
375 // C99 6.9p2: The storage-class specifiers auto and register shall not
376 // appear in the declaration specifiers in an external declaration.
377 if (SC == VarDecl::Auto || SC == VarDecl::Register) {
378 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
379 R.getAsString());
380 return 0;
381 }
382 // C99 6.7.5.2p2: If an identifier is declared to be an object with
383 // static storage duration, it shall not have a variable length array.
Chris Lattner36be3d82007-07-31 21:33:24 +0000384 if (const ArrayType *ary = R->getAsArrayType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000385 if (VerifyConstantArrayType(ary, D.getIdentifierLoc()))
386 return 0;
387 }
388 NewVD = new FileVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator);
389 } else {
390 // Block scope. C99 6.7p7: If an identifier for an object is declared with
391 // no linkage (C99 6.2.2p6), the type for the object shall be complete...
392 if (SC != VarDecl::Extern) {
393 if (R->isIncompleteType()) {
394 Diag(D.getIdentifierLoc(), diag::err_typecheck_decl_incomplete_type,
395 R.getAsString());
396 return 0;
397 }
398 }
399 if (SC == VarDecl::Static) {
400 // C99 6.7.5.2p2: If an identifier is declared to be an object with
401 // static storage duration, it shall not have a variable length array.
Chris Lattner36be3d82007-07-31 21:33:24 +0000402 if (const ArrayType *ary = R->getAsArrayType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000403 if (VerifyConstantArrayType(ary, D.getIdentifierLoc()))
404 return 0;
405 }
406 }
407 NewVD = new BlockVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator);
408 }
409 // Handle attributes prior to checking for duplicates in MergeVarDecl
410 HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
411 D.getAttributes());
412
413 // Merge the decl with the existing one if appropriate.
414 if (PrevDecl) {
415 NewVD = MergeVarDecl(NewVD, PrevDecl);
416 if (NewVD == 0) return 0;
417 }
Steve Naroff0f32f432007-08-24 22:33:52 +0000418 if (Init) {
419 AssignmentCheckResult result;
420 result = CheckSingleAssignmentConstraints(R, Init);
421 // FIXME: emit errors if appropriate.
422 NewVD->setInit(Init);
423 }
Chris Lattner4b009652007-07-25 00:24:17 +0000424 New = NewVD;
425 }
426
427 // If this has an identifier, add it to the scope stack.
428 if (II) {
429 New->setNext(II->getFETokenInfo<Decl>());
430 II->setFETokenInfo(New);
431 S->AddDecl(New);
432 }
433
434 if (S->getParent() == 0)
435 AddTopLevelDecl(New, LastDeclarator);
436
437 return New;
438}
439
440/// The declarators are chained together backwards, reverse the list.
441Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
442 // Often we have single declarators, handle them quickly.
443 Decl *Group = static_cast<Decl*>(group);
444 if (Group == 0 || Group->getNextDeclarator() == 0) return Group;
445
446 Decl *NewGroup = 0;
447 while (Group) {
448 Decl *Next = Group->getNextDeclarator();
449 Group->setNextDeclarator(NewGroup);
450 NewGroup = Group;
451 Group = Next;
452 }
453 return NewGroup;
454}
455
456ParmVarDecl *
457Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo,
458 Scope *FnScope) {
459 const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo];
460
461 IdentifierInfo *II = PI.Ident;
462 // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
463 // Can this happen for params? We already checked that they don't conflict
464 // among each other. Here they can only shadow globals, which is ok.
465 if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary,
466 PI.IdentLoc, FnScope)) {
467
468 }
469
470 // FIXME: Handle storage class (auto, register). No declarator?
471 // TODO: Chain to previous parameter with the prevdeclarator chain?
Steve Naroff94cd93f2007-08-07 22:44:21 +0000472
473 // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
474 // Doing the promotion here has a win and a loss. The win is the type for
475 // both Decl's and DeclRefExpr's will match (a convenient invariant for the
476 // code generator). The loss is the orginal type isn't preserved. For example:
477 //
478 // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
479 // int blockvardecl[5];
480 // sizeof(parmvardecl); // size == 4
481 // sizeof(blockvardecl); // size == 20
482 // }
483 //
484 // For expressions, all implicit conversions are captured using the
485 // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
486 //
487 // FIXME: If a source translation tool needs to see the original type, then
488 // we need to consider storing both types (in ParmVarDecl)...
489 //
490 QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
491 if (const ArrayType *AT = parmDeclType->getAsArrayType())
492 parmDeclType = Context.getPointerType(AT->getElementType());
493 else if (parmDeclType->isFunctionType())
494 parmDeclType = Context.getPointerType(parmDeclType);
495
496 ParmVarDecl *New = new ParmVarDecl(PI.IdentLoc, II, parmDeclType,
Chris Lattner4b009652007-07-25 00:24:17 +0000497 VarDecl::None, 0);
498
499 // If this has an identifier, add it to the scope stack.
500 if (II) {
501 New->setNext(II->getFETokenInfo<Decl>());
502 II->setFETokenInfo(New);
503 FnScope->AddDecl(New);
504 }
505
506 return New;
507}
508
509
510Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
511 assert(CurFunctionDecl == 0 && "Function parsing confused");
512 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
513 "Not a function declarator!");
514 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
515
516 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
517 // for a K&R function.
518 if (!FTI.hasPrototype) {
519 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
520 if (FTI.ArgInfo[i].TypeInfo == 0) {
521 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
522 FTI.ArgInfo[i].Ident->getName());
523 // Implicitly declare the argument as type 'int' for lack of a better
524 // type.
525 FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
526 }
527 }
528
529 // Since this is a function definition, act as though we have information
530 // about the arguments.
531 FTI.hasPrototype = true;
532 } else {
533 // FIXME: Diagnose arguments without names in C.
534
535 }
536
537 Scope *GlobalScope = FnBodyScope->getParent();
538
539 FunctionDecl *FD =
540 static_cast<FunctionDecl*>(ParseDeclarator(GlobalScope, D, 0, 0));
541 CurFunctionDecl = FD;
542
543 // Create Decl objects for each parameter, adding them to the FunctionDecl.
544 llvm::SmallVector<ParmVarDecl*, 16> Params;
545
546 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
547 // no arguments, not a function that takes a single void argument.
548 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
549 FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) {
550 // empty arg list, don't push any params.
551 } else {
552 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
553 Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope));
554 }
555
556 FD->setParams(&Params[0], Params.size());
557
558 return FD;
559}
560
561Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) {
562 FunctionDecl *FD = static_cast<FunctionDecl*>(D);
563 FD->setBody((Stmt*)Body);
564
565 assert(FD == CurFunctionDecl && "Function parsing confused");
566 CurFunctionDecl = 0;
567
568 // Verify and clean out per-function state.
569
570 // Check goto/label use.
571 for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
572 I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
573 // Verify that we have no forward references left. If so, there was a goto
574 // or address of a label taken, but no definition of it. Label fwd
575 // definitions are indicated with a null substmt.
576 if (I->second->getSubStmt() == 0) {
577 LabelStmt *L = I->second;
578 // Emit error.
579 Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
580
581 // At this point, we have gotos that use the bogus label. Stitch it into
582 // the function body so that they aren't leaked and that the AST is well
583 // formed.
584 L->setSubStmt(new NullStmt(L->getIdentLoc()));
585 cast<CompoundStmt>((Stmt*)Body)->push_back(L);
586 }
587 }
588 LabelMap.clear();
589
590 return FD;
591}
592
593
594/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
595/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
596Decl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
597 Scope *S) {
598 if (getLangOptions().C99) // Extension in C99.
599 Diag(Loc, diag::ext_implicit_function_decl, II.getName());
600 else // Legal in C90, but warn about it.
601 Diag(Loc, diag::warn_implicit_function_decl, II.getName());
602
603 // FIXME: handle stuff like:
604 // void foo() { extern float X(); }
605 // void bar() { X(); } <-- implicit decl for X in another scope.
606
607 // Set a Declarator for the implicit definition: int foo();
608 const char *Dummy;
609 DeclSpec DS;
610 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
611 Error = Error; // Silence warning.
612 assert(!Error && "Error setting up implicit decl!");
613 Declarator D(DS, Declarator::BlockContext);
614 D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
615 D.SetIdentifier(&II, Loc);
616
617 // Find translation-unit scope to insert this function into.
618 while (S->getParent())
619 S = S->getParent();
620
621 return static_cast<Decl*>(ParseDeclarator(S, D, 0, 0));
622}
623
624
625TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D,
626 Decl *LastDeclarator) {
627 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
628
629 QualType T = GetTypeForDeclarator(D, S);
630 if (T.isNull()) return 0;
631
632 // Scope manipulation handled by caller.
633 return new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), T,
634 LastDeclarator);
635}
636
637
638/// ParseTag - This is invoked when we see 'struct foo' or 'struct {'. In the
639/// former case, Name will be non-null. In the later case, Name will be null.
640/// TagType indicates what kind of tag this is. TK indicates whether this is a
641/// reference/declaration/definition of a tag.
642Sema::DeclTy *Sema::ParseTag(Scope *S, unsigned TagType, TagKind TK,
643 SourceLocation KWLoc, IdentifierInfo *Name,
644 SourceLocation NameLoc, AttributeList *Attr) {
645 // If this is a use of an existing tag, it must have a name.
646 assert((Name != 0 || TK == TK_Definition) &&
647 "Nameless record must be a definition!");
648
649 Decl::Kind Kind;
650 switch (TagType) {
651 default: assert(0 && "Unknown tag type!");
652 case DeclSpec::TST_struct: Kind = Decl::Struct; break;
653 case DeclSpec::TST_union: Kind = Decl::Union; break;
654//case DeclSpec::TST_class: Kind = Decl::Class; break;
655 case DeclSpec::TST_enum: Kind = Decl::Enum; break;
656 }
657
658 // If this is a named struct, check to see if there was a previous forward
659 // declaration or definition.
660 if (TagDecl *PrevDecl =
661 dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag,
662 NameLoc, S))) {
663
664 // If this is a use of a previous tag, or if the tag is already declared in
665 // the same scope (so that the definition/declaration completes or
666 // rementions the tag), reuse the decl.
667 if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
668 // Make sure that this wasn't declared as an enum and now used as a struct
669 // or something similar.
670 if (PrevDecl->getKind() != Kind) {
671 Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
672 Diag(PrevDecl->getLocation(), diag::err_previous_use);
673 }
674
675 // If this is a use or a forward declaration, we're good.
676 if (TK != TK_Definition)
677 return PrevDecl;
678
679 // Diagnose attempts to redefine a tag.
680 if (PrevDecl->isDefinition()) {
681 Diag(NameLoc, diag::err_redefinition, Name->getName());
682 Diag(PrevDecl->getLocation(), diag::err_previous_definition);
683 // If this is a redefinition, recover by making this struct be
684 // anonymous, which will make any later references get the previous
685 // definition.
686 Name = 0;
687 } else {
688 // Okay, this is definition of a previously declared or referenced tag.
689 // Move the location of the decl to be the definition site.
690 PrevDecl->setLocation(NameLoc);
691 return PrevDecl;
692 }
693 }
694 // If we get here, this is a definition of a new struct type in a nested
695 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
696 // type.
697 }
698
699 // If there is an identifier, use the location of the identifier as the
700 // location of the decl, otherwise use the location of the struct/union
701 // keyword.
702 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
703
704 // Otherwise, if this is the first time we've seen this tag, create the decl.
705 TagDecl *New;
706 switch (Kind) {
707 default: assert(0 && "Unknown tag kind!");
708 case Decl::Enum:
709 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
710 // enum X { A, B, C } D; D should chain to X.
711 New = new EnumDecl(Loc, Name, 0);
712 // If this is an undefined enum, warn.
713 if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
714 break;
715 case Decl::Union:
716 case Decl::Struct:
717 case Decl::Class:
718 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
719 // struct X { int A; } D; D should chain to X.
720 New = new RecordDecl(Kind, Loc, Name, 0);
721 break;
722 }
723
724 // If this has an identifier, add it to the scope stack.
725 if (Name) {
726 New->setNext(Name->getFETokenInfo<Decl>());
727 Name->setFETokenInfo(New);
728 S->AddDecl(New);
729 }
730
731 return New;
732}
733
734/// ParseField - Each field of a struct/union/class is passed into this in order
735/// to create a FieldDecl object for it.
736Sema::DeclTy *Sema::ParseField(Scope *S, DeclTy *TagDecl,
737 SourceLocation DeclStart,
738 Declarator &D, ExprTy *BitfieldWidth) {
739 IdentifierInfo *II = D.getIdentifier();
740 Expr *BitWidth = (Expr*)BitfieldWidth;
741
742 SourceLocation Loc = DeclStart;
743 if (II) Loc = D.getIdentifierLoc();
744
745 // FIXME: Unnamed fields can be handled in various different ways, for
746 // example, unnamed unions inject all members into the struct namespace!
747
748
749 if (BitWidth) {
750 // TODO: Validate.
751 //printf("WARNING: BITFIELDS IGNORED!\n");
752
753 // 6.7.2.1p3
754 // 6.7.2.1p4
755
756 } else {
757 // Not a bitfield.
758
759 // validate II.
760
761 }
762
763 QualType T = GetTypeForDeclarator(D, S);
764 if (T.isNull()) return 0;
765
766 // C99 6.7.2.1p8: A member of a structure or union may have any type other
767 // than a variably modified type.
Chris Lattner36be3d82007-07-31 21:33:24 +0000768 if (const ArrayType *ary = T->getAsArrayType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000769 if (VerifyConstantArrayType(ary, Loc))
770 return 0;
771 }
772
773 // FIXME: Chain fielddecls together.
774 return new FieldDecl(Loc, II, T, 0);
775}
776
777void Sema::ParseRecordBody(SourceLocation RecLoc, DeclTy *RecDecl,
778 DeclTy **Fields, unsigned NumFields) {
779 RecordDecl *Record = cast<RecordDecl>(static_cast<Decl*>(RecDecl));
780 if (Record->isDefinition()) {
781 // Diagnose code like:
782 // struct S { struct S {} X; };
783 // We discover this when we complete the outer S. Reject and ignore the
784 // outer S.
785 Diag(Record->getLocation(), diag::err_nested_redefinition,
786 Record->getKindName());
787 Diag(RecLoc, diag::err_previous_definition);
788 return;
789 }
790
791 // Verify that all the fields are okay.
792 unsigned NumNamedMembers = 0;
793 llvm::SmallVector<FieldDecl*, 32> RecFields;
794 llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
795
796 for (unsigned i = 0; i != NumFields; ++i) {
797 FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
798 if (!FD) continue; // Already issued a diagnostic.
799
800 // Get the type for the field.
Chris Lattner36be3d82007-07-31 21:33:24 +0000801 Type *FDTy = FD->getType().getTypePtr();
Chris Lattner4b009652007-07-25 00:24:17 +0000802
803 // C99 6.7.2.1p2 - A field may not be a function type.
Chris Lattner36be3d82007-07-31 21:33:24 +0000804 if (FDTy->isFunctionType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000805 Diag(FD->getLocation(), diag::err_field_declared_as_function,
806 FD->getName());
807 delete FD;
808 continue;
809 }
810
811 // C99 6.7.2.1p2 - A field may not be an incomplete type except...
812 if (FDTy->isIncompleteType()) {
813 if (i != NumFields-1 || // ... that the last member ...
814 Record->getKind() != Decl::Struct || // ... of a structure ...
Chris Lattner36be3d82007-07-31 21:33:24 +0000815 !FDTy->isArrayType()) { //... may have incomplete array type.
Chris Lattner4b009652007-07-25 00:24:17 +0000816 Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
817 delete FD;
818 continue;
819 }
820 if (NumNamedMembers < 1) { //... must have more than named member ...
821 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
822 FD->getName());
823 delete FD;
824 continue;
825 }
826
827 // Okay, we have a legal flexible array member at the end of the struct.
828 Record->setHasFlexibleArrayMember(true);
829 }
830
831
832 /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
833 /// field of another structure or the element of an array.
Chris Lattner36be3d82007-07-31 21:33:24 +0000834 if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000835 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
836 // If this is a member of a union, then entire union becomes "flexible".
837 if (Record->getKind() == Decl::Union) {
838 Record->setHasFlexibleArrayMember(true);
839 } else {
840 // If this is a struct/class and this is not the last element, reject
841 // it. Note that GCC supports variable sized arrays in the middle of
842 // structures.
843 if (i != NumFields-1) {
844 Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
845 FD->getName());
846 delete FD;
847 continue;
848 }
849
850 // We support flexible arrays at the end of structs in other structs
851 // as an extension.
852 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
853 FD->getName());
854 Record->setHasFlexibleArrayMember(true);
855 }
856 }
857 }
858
859 // Keep track of the number of named members.
860 if (IdentifierInfo *II = FD->getIdentifier()) {
861 // Detect duplicate member names.
862 if (!FieldIDs.insert(II)) {
863 Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
864 // Find the previous decl.
865 SourceLocation PrevLoc;
866 for (unsigned i = 0, e = RecFields.size(); ; ++i) {
867 assert(i != e && "Didn't find previous def!");
868 if (RecFields[i]->getIdentifier() == II) {
869 PrevLoc = RecFields[i]->getLocation();
870 break;
871 }
872 }
873 Diag(PrevLoc, diag::err_previous_definition);
874 delete FD;
875 continue;
876 }
877 ++NumNamedMembers;
878 }
879
880 // Remember good fields.
881 RecFields.push_back(FD);
882 }
883
884
885 // Okay, we successfully defined 'Record'.
886 Record->defineBody(&RecFields[0], RecFields.size());
887}
888
889Sema::DeclTy *Sema::ParseEnumConstant(Scope *S, DeclTy *theEnumDecl,
890 DeclTy *lastEnumConst,
891 SourceLocation IdLoc, IdentifierInfo *Id,
892 SourceLocation EqualLoc, ExprTy *val) {
893 theEnumDecl = theEnumDecl; // silence unused warning.
894 EnumConstantDecl *LastEnumConst =
895 cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
896 Expr *Val = static_cast<Expr*>(val);
897
898 // Verify that there isn't already something declared with this name in this
899 // scope.
900 if (Decl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, IdLoc, S)) {
901 if (S->isDeclScope(PrevDecl)) {
902 if (isa<EnumConstantDecl>(PrevDecl))
903 Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
904 else
905 Diag(IdLoc, diag::err_redefinition, Id->getName());
906 Diag(PrevDecl->getLocation(), diag::err_previous_definition);
907 // FIXME: Don't leak memory: delete Val;
908 return 0;
909 }
910 }
911
912 llvm::APSInt EnumVal(32);
913 QualType EltTy;
914 if (Val) {
915 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
916 SourceLocation ExpLoc;
917 if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
918 Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
919 Id->getName());
920 // FIXME: Don't leak memory: delete Val;
921 return 0;
922 }
923 EltTy = Val->getType();
924 } else if (LastEnumConst) {
925 // Assign the last value + 1.
926 EnumVal = LastEnumConst->getInitVal();
927 ++EnumVal;
928 // FIXME: detect overflow!
929 EltTy = LastEnumConst->getType();
930 } else {
931 // First value, set to zero.
932 EltTy = Context.IntTy;
933 // FIXME: Resize EnumVal to the size of int.
934 }
935
936 // TODO: Default promotions to int/uint.
937
938 // TODO: If the result value doesn't fit in an int, it must be a long or long
939 // long value. ISO C does not support this, but GCC does as an extension,
940 // emit a warning.
941
942 EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, EltTy, Val, EnumVal,
943 LastEnumConst);
944
945 // Register this decl in the current scope stack.
946 New->setNext(Id->getFETokenInfo<Decl>());
947 Id->setFETokenInfo(New);
948 S->AddDecl(New);
949 return New;
950}
951
952void Sema::ParseEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
953 DeclTy **Elements, unsigned NumElements) {
954 EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
955 assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
956
957 // Verify that all the values are okay, and reverse the list.
958 EnumConstantDecl *EltList = 0;
959 for (unsigned i = 0; i != NumElements; ++i) {
960 EnumConstantDecl *ECD =
961 cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
962 if (!ECD) continue; // Already issued a diagnostic.
963
964 ECD->setNextDeclarator(EltList);
965 EltList = ECD;
966 }
967
968 Enum->defineElements(EltList);
969}
970
971void Sema::AddTopLevelDecl(Decl *current, Decl *last) {
972 if (!current) return;
973
974 // If this is a top-level decl that is chained to some other (e.g. int A,B,C;)
975 // remember this in the LastInGroupList list.
976 if (last)
977 LastInGroupList.push_back((Decl*)last);
978}
979
980void Sema::HandleDeclAttribute(Decl *New, AttributeList *rawAttr) {
981 if (strcmp(rawAttr->getAttributeName()->getName(), "vector_size") == 0) {
982 if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
983 QualType newType = HandleVectorTypeAttribute(vDecl->getType(), rawAttr);
984 if (!newType.isNull()) // install the new vector type into the decl
985 vDecl->setType(newType);
986 }
987 if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
988 QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
989 rawAttr);
990 if (!newType.isNull()) // install the new vector type into the decl
991 tDecl->setUnderlyingType(newType);
992 }
993 }
994 if (strcmp(rawAttr->getAttributeName()->getName(), "ocu_vector_type") == 0) {
Steve Naroff82113e32007-07-29 16:33:31 +0000995 if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
996 HandleOCUVectorTypeAttribute(tDecl, rawAttr);
997 else
Chris Lattner4b009652007-07-25 00:24:17 +0000998 Diag(rawAttr->getAttributeLoc(),
999 diag::err_typecheck_ocu_vector_not_typedef);
Chris Lattner4b009652007-07-25 00:24:17 +00001000 }
1001 // FIXME: add other attributes...
1002}
1003
1004void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
1005 AttributeList *declarator_postfix) {
1006 while (declspec_prefix) {
1007 HandleDeclAttribute(New, declspec_prefix);
1008 declspec_prefix = declspec_prefix->getNext();
1009 }
1010 while (declarator_postfix) {
1011 HandleDeclAttribute(New, declarator_postfix);
1012 declarator_postfix = declarator_postfix->getNext();
1013 }
1014}
1015
Steve Naroff82113e32007-07-29 16:33:31 +00001016void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
1017 AttributeList *rawAttr) {
1018 QualType curType = tDecl->getUnderlyingType();
Chris Lattner4b009652007-07-25 00:24:17 +00001019 // check the attribute arugments.
1020 if (rawAttr->getNumArgs() != 1) {
1021 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments,
1022 std::string("1"));
Steve Naroff82113e32007-07-29 16:33:31 +00001023 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001024 }
1025 Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1026 llvm::APSInt vecSize(32);
1027 if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1028 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int,
1029 sizeExpr->getSourceRange());
Steve Naroff82113e32007-07-29 16:33:31 +00001030 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001031 }
1032 // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1033 // in conjunction with complex types (pointers, arrays, functions, etc.).
1034 Type *canonType = curType.getCanonicalType().getTypePtr();
1035 if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1036 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type,
1037 curType.getCanonicalType().getAsString());
Steve Naroff82113e32007-07-29 16:33:31 +00001038 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001039 }
1040 // unlike gcc's vector_size attribute, the size is specified as the
1041 // number of elements, not the number of bytes.
1042 unsigned vectorSize = vecSize.getZExtValue();
1043
1044 if (vectorSize == 0) {
1045 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size,
1046 sizeExpr->getSourceRange());
Steve Naroff82113e32007-07-29 16:33:31 +00001047 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001048 }
Steve Naroff82113e32007-07-29 16:33:31 +00001049 // Instantiate/Install the vector type, the number of elements is > 0.
1050 tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
1051 // Remember this typedef decl, we will need it later for diagnostics.
1052 OCUVectorDecls.push_back(tDecl);
Chris Lattner4b009652007-07-25 00:24:17 +00001053}
1054
1055QualType Sema::HandleVectorTypeAttribute(QualType curType,
1056 AttributeList *rawAttr) {
1057 // check the attribute arugments.
1058 if (rawAttr->getNumArgs() != 1) {
1059 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments,
1060 std::string("1"));
1061 return QualType();
1062 }
1063 Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1064 llvm::APSInt vecSize(32);
1065 if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1066 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int,
1067 sizeExpr->getSourceRange());
1068 return QualType();
1069 }
1070 // navigate to the base type - we need to provide for vector pointers,
1071 // vector arrays, and functions returning vectors.
1072 Type *canonType = curType.getCanonicalType().getTypePtr();
1073
1074 if (canonType->isPointerType() || canonType->isArrayType() ||
1075 canonType->isFunctionType()) {
1076 assert(1 && "HandleVector(): Complex type construction unimplemented");
1077 /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
1078 do {
1079 if (PointerType *PT = dyn_cast<PointerType>(canonType))
1080 canonType = PT->getPointeeType().getTypePtr();
1081 else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
1082 canonType = AT->getElementType().getTypePtr();
1083 else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
1084 canonType = FT->getResultType().getTypePtr();
1085 } while (canonType->isPointerType() || canonType->isArrayType() ||
1086 canonType->isFunctionType());
1087 */
1088 }
1089 // the base type must be integer or float.
1090 if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1091 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type,
1092 curType.getCanonicalType().getAsString());
1093 return QualType();
1094 }
1095 unsigned typeSize = Context.getTypeSize(curType, rawAttr->getAttributeLoc());
1096 // vecSize is specified in bytes - convert to bits.
1097 unsigned vectorSize = vecSize.getZExtValue() * 8;
1098
1099 // the vector size needs to be an integral multiple of the type size.
1100 if (vectorSize % typeSize) {
1101 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_size,
1102 sizeExpr->getSourceRange());
1103 return QualType();
1104 }
1105 if (vectorSize == 0) {
1106 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size,
1107 sizeExpr->getSourceRange());
1108 return QualType();
1109 }
1110 // Since OpenCU requires 3 element vectors (OpenCU 5.1.2), we don't restrict
1111 // the number of elements to be a power of two (unlike GCC).
1112 // Instantiate the vector type, the number of elements is > 0.
1113 return Context.getVectorType(curType, vectorSize/typeSize);
1114}
1115