blob: 036d0b8888ae776441be1f4d53aa023a473816e6 [file] [log] [blame]
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
Caitlin Sadowski19903462011-09-14 20:05:09 +000013// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
Caitlin Sadowski402aa062011-09-09 16:11:56 +000015//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
Ted Kremenek439ed162011-10-22 02:14:27 +000019#include "clang/Analysis/Analyses/PostOrderCFGView.h"
Caitlin Sadowskid5b16052011-09-09 23:00:59 +000020#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000023#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
Caitlin Sadowskid5b16052011-09-09 23:00:59 +000027#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
DeLesley Hutchins96fac6a2012-07-03 19:47:18 +000029#include "clang/Basic/OperatorKinds.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000030#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/ImmutableMap.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringRef.h"
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +000036#include "llvm/Support/raw_ostream.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000037#include <algorithm>
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +000038#include <utility>
Caitlin Sadowski402aa062011-09-09 16:11:56 +000039#include <vector>
40
41using namespace clang;
42using namespace thread_safety;
43
Caitlin Sadowski19903462011-09-14 20:05:09 +000044// Key method definition
45ThreadSafetyHandler::~ThreadSafetyHandler() {}
46
Caitlin Sadowski402aa062011-09-09 16:11:56 +000047namespace {
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +000048
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +000049/// SExpr implements a simple expression language that is used to store,
50/// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr
51/// does not capture surface syntax, and it does not distinguish between
52/// C++ concepts, like pointers and references, that have no real semantic
53/// differences. This simplicity allows SExprs to be meaningfully compared,
54/// e.g.
55/// (x) = x
56/// (*this).foo = this->foo
57/// *&a = a
Caitlin Sadowski402aa062011-09-09 16:11:56 +000058///
59/// Thread-safety analysis works by comparing lock expressions. Within the
60/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
61/// a particular mutex object at run-time. Subsequent occurrences of the same
62/// expression (where "same" means syntactic equality) will refer to the same
63/// run-time object if three conditions hold:
64/// (1) Local variables in the expression, such as "x" have not changed.
65/// (2) Values on the heap that affect the expression have not changed.
66/// (3) The expression involves only pure function calls.
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +000067///
Caitlin Sadowski402aa062011-09-09 16:11:56 +000068/// The current implementation assumes, but does not verify, that multiple uses
69/// of the same lock expression satisfies these criteria.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +000070class SExpr {
71private:
72 enum ExprOp {
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +000073 EOP_Nop, ///< No-op
74 EOP_Wildcard, ///< Matches anything.
75 EOP_Universal, ///< Universal lock.
76 EOP_This, ///< This keyword.
77 EOP_NVar, ///< Named variable.
78 EOP_LVar, ///< Local variable.
79 EOP_Dot, ///< Field access
80 EOP_Call, ///< Function call
81 EOP_MCall, ///< Method call
82 EOP_Index, ///< Array index
83 EOP_Unary, ///< Unary operation
84 EOP_Binary, ///< Binary operation
85 EOP_Unknown ///< Catchall for everything else
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +000086 };
87
88
89 class SExprNode {
90 private:
Ted Kremenekad0fe032012-08-22 23:50:41 +000091 unsigned char Op; ///< Opcode of the root node
92 unsigned char Flags; ///< Additional opcode-specific data
93 unsigned short Sz; ///< Number of child nodes
94 const void* Data; ///< Additional opcode-specific data
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +000095
96 public:
97 SExprNode(ExprOp O, unsigned F, const void* D)
98 : Op(static_cast<unsigned char>(O)),
99 Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
100 { }
101
102 unsigned size() const { return Sz; }
103 void setSize(unsigned S) { Sz = S; }
104
105 ExprOp kind() const { return static_cast<ExprOp>(Op); }
106
107 const NamedDecl* getNamedDecl() const {
108 assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
109 return reinterpret_cast<const NamedDecl*>(Data);
110 }
111
112 const NamedDecl* getFunctionDecl() const {
113 assert(Op == EOP_Call || Op == EOP_MCall);
114 return reinterpret_cast<const NamedDecl*>(Data);
115 }
116
117 bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
118 void setArrow(bool A) { Flags = A ? 1 : 0; }
119
120 unsigned arity() const {
121 switch (Op) {
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000122 case EOP_Nop: return 0;
123 case EOP_Wildcard: return 0;
124 case EOP_Universal: return 0;
125 case EOP_NVar: return 0;
126 case EOP_LVar: return 0;
127 case EOP_This: return 0;
128 case EOP_Dot: return 1;
129 case EOP_Call: return Flags+1; // First arg is function.
130 case EOP_MCall: return Flags+1; // First arg is implicit obj.
131 case EOP_Index: return 2;
132 case EOP_Unary: return 1;
133 case EOP_Binary: return 2;
134 case EOP_Unknown: return Flags;
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000135 }
136 return 0;
137 }
138
139 bool operator==(const SExprNode& Other) const {
140 // Ignore flags and size -- they don't matter.
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000141 return (Op == Other.Op &&
142 Data == Other.Data);
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000143 }
144
145 bool operator!=(const SExprNode& Other) const {
146 return !(*this == Other);
147 }
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000148
149 bool matches(const SExprNode& Other) const {
150 return (*this == Other) ||
151 (Op == EOP_Wildcard) ||
152 (Other.Op == EOP_Wildcard);
153 }
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000154 };
155
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000156
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000157 /// \brief Encapsulates the lexical context of a function call. The lexical
158 /// context includes the arguments to the call, including the implicit object
159 /// argument. When an attribute containing a mutex expression is attached to
160 /// a method, the expression may refer to formal parameters of the method.
161 /// Actual arguments must be substituted for formal parameters to derive
162 /// the appropriate mutex expression in the lexical context where the function
163 /// is called. PrevCtx holds the context in which the arguments themselves
164 /// should be evaluated; multiple calling contexts can be chained together
165 /// by the lock_returned attribute.
166 struct CallingContext {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000167 const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
168 Expr* SelfArg; // Implicit object argument -- e.g. 'this'
169 bool SelfArrow; // is Self referred to with -> or .?
170 unsigned NumArgs; // Number of funArgs
171 Expr** FunArgs; // Function arguments
172 CallingContext* PrevCtx; // The previous context; or 0 if none.
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000173
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000174 CallingContext(const NamedDecl *D = 0, Expr *S = 0,
175 unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
176 : AttrDecl(D), SelfArg(S), SelfArrow(false),
177 NumArgs(N), FunArgs(A), PrevCtx(P)
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000178 { }
179 };
180
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000181 typedef SmallVector<SExprNode, 4> NodeVector;
182
183private:
184 // A SExpr is a list of SExprNodes in prefix order. The Size field allows
185 // the list to be traversed as a tree.
186 NodeVector NodeVec;
187
188private:
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000189 unsigned makeNop() {
190 NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
191 return NodeVec.size()-1;
192 }
193
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000194 unsigned makeWildcard() {
195 NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
196 return NodeVec.size()-1;
197 }
198
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000199 unsigned makeUniversal() {
200 NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
201 return NodeVec.size()-1;
202 }
203
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000204 unsigned makeNamedVar(const NamedDecl *D) {
205 NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
206 return NodeVec.size()-1;
207 }
208
209 unsigned makeLocalVar(const NamedDecl *D) {
210 NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
211 return NodeVec.size()-1;
212 }
213
214 unsigned makeThis() {
215 NodeVec.push_back(SExprNode(EOP_This, 0, 0));
216 return NodeVec.size()-1;
217 }
218
219 unsigned makeDot(const NamedDecl *D, bool Arrow) {
220 NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
221 return NodeVec.size()-1;
222 }
223
224 unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
225 NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
226 return NodeVec.size()-1;
227 }
228
229 unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
230 NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
231 return NodeVec.size()-1;
232 }
233
234 unsigned makeIndex() {
235 NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
236 return NodeVec.size()-1;
237 }
238
239 unsigned makeUnary() {
240 NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
241 return NodeVec.size()-1;
242 }
243
244 unsigned makeBinary() {
245 NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
246 return NodeVec.size()-1;
247 }
248
249 unsigned makeUnknown(unsigned Arity) {
250 NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
251 return NodeVec.size()-1;
252 }
253
254 /// Build an SExpr from the given C++ expression.
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000255 /// Recursive function that terminates on DeclRefExpr.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000256 /// Note: this function merely creates a SExpr; it does not check to
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000257 /// ensure that the original expression is a valid mutex expression.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000258 ///
259 /// NDeref returns the number of Derefence and AddressOf operations
260 /// preceeding the Expr; this is used to decide whether to pretty-print
261 /// SExprs with . or ->.
262 unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
263 if (!Exp)
264 return 0;
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000265
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000266 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
267 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000268 ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
269 if (PV) {
270 FunctionDecl *FD =
271 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
272 unsigned i = PV->getFunctionScopeIndex();
273
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000274 if (CallCtx && CallCtx->FunArgs &&
275 FD == CallCtx->AttrDecl->getCanonicalDecl()) {
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000276 // Substitute call arguments for references to function parameters
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000277 assert(i < CallCtx->NumArgs);
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000278 return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000279 }
280 // Map the param back to the param of the original function declaration.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000281 makeNamedVar(FD->getParamDecl(i));
282 return 1;
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000283 }
284 // Not a function parameter -- just store the reference.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000285 makeNamedVar(ND);
286 return 1;
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000287 } else if (isa<CXXThisExpr>(Exp)) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000288 // Substitute parent for 'this'
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000289 if (CallCtx && CallCtx->SelfArg) {
290 if (!CallCtx->SelfArrow && NDeref)
291 // 'this' is a pointer, but self is not, so need to take address.
292 --(*NDeref);
293 return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
294 }
DeLesley Hutchins4bda3ec2012-02-16 17:03:24 +0000295 else {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000296 makeThis();
297 return 1;
DeLesley Hutchins4bda3ec2012-02-16 17:03:24 +0000298 }
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000299 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
300 NamedDecl *ND = ME->getMemberDecl();
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000301 int ImplicitDeref = ME->isArrow() ? 1 : 0;
302 unsigned Root = makeDot(ND, false);
303 unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
304 NodeVec[Root].setArrow(ImplicitDeref > 0);
305 NodeVec[Root].setSize(Sz + 1);
306 return Sz + 1;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000307 } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000308 // When calling a function with a lock_returned attribute, replace
309 // the function call with the expression in lock_returned.
DeLesley Hutchins54081532012-08-31 22:09:53 +0000310 CXXMethodDecl* MD =
311 cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
312 if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000313 CallingContext LRCallCtx(CMCE->getMethodDecl());
314 LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000315 LRCallCtx.SelfArrow =
316 dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000317 LRCallCtx.NumArgs = CMCE->getNumArgs();
318 LRCallCtx.FunArgs = CMCE->getArgs();
319 LRCallCtx.PrevCtx = CallCtx;
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000320 return buildSExpr(At->getArg(), &LRCallCtx);
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000321 }
DeLesley Hutchins96fac6a2012-07-03 19:47:18 +0000322 // Hack to treat smart pointers and iterators as pointers;
323 // ignore any method named get().
324 if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
325 CMCE->getNumArgs() == 0) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000326 if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
327 ++(*NDeref);
328 return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
DeLesley Hutchins96fac6a2012-07-03 19:47:18 +0000329 }
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000330 unsigned NumCallArgs = CMCE->getNumArgs();
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000331 unsigned Root =
332 makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
333 unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000334 Expr** CallArgs = CMCE->getArgs();
335 for (unsigned i = 0; i < NumCallArgs; ++i) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000336 Sz += buildSExpr(CallArgs[i], CallCtx);
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000337 }
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000338 NodeVec[Root].setSize(Sz + 1);
339 return Sz + 1;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000340 } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
DeLesley Hutchins54081532012-08-31 22:09:53 +0000341 FunctionDecl* FD =
342 cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
343 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000344 CallingContext LRCallCtx(CE->getDirectCallee());
345 LRCallCtx.NumArgs = CE->getNumArgs();
346 LRCallCtx.FunArgs = CE->getArgs();
347 LRCallCtx.PrevCtx = CallCtx;
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000348 return buildSExpr(At->getArg(), &LRCallCtx);
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000349 }
DeLesley Hutchins96fac6a2012-07-03 19:47:18 +0000350 // Treat smart pointers and iterators as pointers;
351 // ignore the * and -> operators.
352 if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
353 OverloadedOperatorKind k = OE->getOperator();
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000354 if (k == OO_Star) {
355 if (NDeref) ++(*NDeref);
356 return buildSExpr(OE->getArg(0), CallCtx, NDeref);
357 }
358 else if (k == OO_Arrow) {
359 return buildSExpr(OE->getArg(0), CallCtx, NDeref);
DeLesley Hutchins96fac6a2012-07-03 19:47:18 +0000360 }
361 }
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000362 unsigned NumCallArgs = CE->getNumArgs();
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000363 unsigned Root = makeCall(NumCallArgs, 0);
364 unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000365 Expr** CallArgs = CE->getArgs();
366 for (unsigned i = 0; i < NumCallArgs; ++i) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000367 Sz += buildSExpr(CallArgs[i], CallCtx);
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000368 }
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000369 NodeVec[Root].setSize(Sz+1);
370 return Sz+1;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000371 } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000372 unsigned Root = makeBinary();
373 unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
374 Sz += buildSExpr(BOE->getRHS(), CallCtx);
375 NodeVec[Root].setSize(Sz);
376 return Sz;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000377 } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000378 // Ignore & and * operators -- they're no-ops.
379 // However, we try to figure out whether the expression is a pointer,
380 // so we can use . and -> appropriately in error messages.
381 if (UOE->getOpcode() == UO_Deref) {
382 if (NDeref) ++(*NDeref);
383 return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
384 }
385 if (UOE->getOpcode() == UO_AddrOf) {
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000386 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
387 if (DRE->getDecl()->isCXXInstanceMember()) {
388 // This is a pointer-to-member expression, e.g. &MyClass::mu_.
389 // We interpret this syntax specially, as a wildcard.
390 unsigned Root = makeDot(DRE->getDecl(), false);
391 makeWildcard();
392 NodeVec[Root].setSize(2);
393 return 2;
394 }
395 }
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000396 if (NDeref) --(*NDeref);
397 return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
398 }
399 unsigned Root = makeUnary();
400 unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
401 NodeVec[Root].setSize(Sz);
402 return Sz;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000403 } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000404 unsigned Root = makeIndex();
405 unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
406 Sz += buildSExpr(ASE->getIdx(), CallCtx);
407 NodeVec[Root].setSize(Sz);
408 return Sz;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000409 } else if (AbstractConditionalOperator *CE =
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000410 dyn_cast<AbstractConditionalOperator>(Exp)) {
411 unsigned Root = makeUnknown(3);
412 unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
413 Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
414 Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
415 NodeVec[Root].setSize(Sz);
416 return Sz;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000417 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000418 unsigned Root = makeUnknown(3);
419 unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
420 Sz += buildSExpr(CE->getLHS(), CallCtx);
421 Sz += buildSExpr(CE->getRHS(), CallCtx);
422 NodeVec[Root].setSize(Sz);
423 return Sz;
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000424 } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000425 return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000426 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000427 return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
DeLesley Hutchins9d6e7f32012-07-03 18:25:56 +0000428 } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000429 return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
DeLesley Hutchins96fac6a2012-07-03 19:47:18 +0000430 } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000431 return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000432 } else if (isa<CharacterLiteral>(Exp) ||
DeLesley Hutchins9d6e7f32012-07-03 18:25:56 +0000433 isa<CXXNullPtrLiteralExpr>(Exp) ||
434 isa<GNUNullExpr>(Exp) ||
435 isa<CXXBoolLiteralExpr>(Exp) ||
436 isa<FloatingLiteral>(Exp) ||
437 isa<ImaginaryLiteral>(Exp) ||
438 isa<IntegerLiteral>(Exp) ||
439 isa<StringLiteral>(Exp) ||
440 isa<ObjCStringLiteral>(Exp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000441 makeNop();
442 return 1; // FIXME: Ignore literals for now
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000443 } else {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000444 makeNop();
445 return 1; // Ignore. FIXME: mark as invalid expression?
DeLesley Hutchins0d95dfc2012-03-02 23:36:05 +0000446 }
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000447 }
448
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000449 /// \brief Construct a SExpr from an expression.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000450 /// \param MutexExp The original mutex expression within an attribute
451 /// \param DeclExp An expression involving the Decl on which the attribute
452 /// occurs.
453 /// \param D The declaration to which the lock/unlock attribute is attached.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000454 void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000455 CallingContext CallCtx(D);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000456
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000457 if (MutexExp) {
458 if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
459 if (SLit->getString() == StringRef("*"))
460 // The "*" expr is a universal lock, which essentially turns off
461 // checks until it is removed from the lockset.
462 makeUniversal();
463 else
464 // Ignore other string literals for now.
465 makeNop();
466 return;
467 }
DeLesley Hutchins4e4c1572012-08-31 21:57:32 +0000468 }
469
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000470 // If we are processing a raw attribute expression, with no substitutions.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000471 if (DeclExp == 0) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000472 buildSExpr(MutexExp, 0);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000473 return;
474 }
475
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000476 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000477 // for formal parameters when we call buildMutexID later.
DeLesley Hutchins81216392011-10-17 21:38:02 +0000478 if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000479 CallCtx.SelfArg = ME->getBase();
480 CallCtx.SelfArrow = ME->isArrow();
DeLesley Hutchins81216392011-10-17 21:38:02 +0000481 } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000482 CallCtx.SelfArg = CE->getImplicitObjectArgument();
483 CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
484 CallCtx.NumArgs = CE->getNumArgs();
485 CallCtx.FunArgs = CE->getArgs();
DeLesley Hutchinsdf497822011-12-29 00:56:48 +0000486 } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000487 CallCtx.NumArgs = CE->getNumArgs();
488 CallCtx.FunArgs = CE->getArgs();
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000489 } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000490 CallCtx.SelfArg = 0; // FIXME -- get the parent from DeclStmt
491 CallCtx.NumArgs = CE->getNumArgs();
492 CallCtx.FunArgs = CE->getArgs();
DeLesley Hutchins6db51f72011-10-21 20:51:27 +0000493 } else if (D && isa<CXXDestructorDecl>(D)) {
494 // There's no such thing as a "destructor call" in the AST.
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000495 CallCtx.SelfArg = DeclExp;
DeLesley Hutchins81216392011-10-17 21:38:02 +0000496 }
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000497
498 // If the attribute has no arguments, then assume the argument is "this".
499 if (MutexExp == 0) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000500 buildSExpr(CallCtx.SelfArg, 0);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000501 return;
502 }
DeLesley Hutchins81216392011-10-17 21:38:02 +0000503
DeLesley Hutchinsf63797c2012-06-25 18:33:18 +0000504 // For most attributes.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000505 buildSExpr(MutexExp, &CallCtx);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000506 }
507
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000508 /// \brief Get index of next sibling of node i.
509 unsigned getNextSibling(unsigned i) const {
510 return i + NodeVec[i].size();
511 }
512
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000513public:
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000514 explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000515
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000516 /// \param MutexExp The original mutex expression within an attribute
517 /// \param DeclExp An expression involving the Decl on which the attribute
518 /// occurs.
519 /// \param D The declaration to which the lock/unlock attribute is attached.
520 /// Caller must check isValid() after construction.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000521 SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
522 buildSExprFromExpr(MutexExp, DeclExp, D);
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000523 }
524
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000525 /// Return true if this is a valid decl sequence.
526 /// Caller must call this by hand after construction to handle errors.
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000527 bool isValid() const {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000528 return !NodeVec.empty();
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000529 }
530
DeLesley Hutchins4e4c1572012-08-31 21:57:32 +0000531 bool shouldIgnore() const {
532 // Nop is a mutex that we have decided to deliberately ignore.
533 assert(NodeVec.size() > 0 && "Invalid Mutex");
534 return NodeVec[0].kind() == EOP_Nop;
535 }
536
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000537 bool isUniversal() const {
538 assert(NodeVec.size() > 0 && "Invalid Mutex");
539 return NodeVec[0].kind() == EOP_Universal;
540 }
541
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000542 /// Issue a warning about an invalid lock expression
543 static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
544 Expr *DeclExp, const NamedDecl* D) {
545 SourceLocation Loc;
546 if (DeclExp)
547 Loc = DeclExp->getExprLoc();
548
549 // FIXME: add a note about the attribute location in MutexExp or D
550 if (Loc.isValid())
551 Handler.handleInvalidLockExp(Loc);
552 }
553
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000554 bool operator==(const SExpr &other) const {
555 return NodeVec == other.NodeVec;
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000556 }
557
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000558 bool operator!=(const SExpr &other) const {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000559 return !(*this == other);
560 }
561
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000562 bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
563 if (NodeVec[i].matches(Other.NodeVec[j])) {
DeLesley Hutchinsf9ee0ba2012-09-11 23:04:49 +0000564 unsigned ni = NodeVec[i].arity();
565 unsigned nj = Other.NodeVec[j].arity();
566 unsigned n = (ni < nj) ? ni : nj;
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000567 bool Result = true;
568 unsigned ci = i+1; // first child of i
569 unsigned cj = j+1; // first child of j
570 for (unsigned k = 0; k < n;
571 ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
572 Result = Result && matches(Other, ci, cj);
573 }
574 return Result;
575 }
576 return false;
577 }
578
DeLesley Hutchins3f0ec522012-09-10 19:58:23 +0000579 // A partial match between a.mu and b.mu returns true a and b have the same
580 // type (and thus mu refers to the same mutex declaration), regardless of
581 // whether a and b are different objects or not.
582 bool partiallyMatches(const SExpr &Other) const {
583 if (NodeVec[0].kind() == EOP_Dot)
584 return NodeVec[0].matches(Other.NodeVec[0]);
585 return false;
586 }
587
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000588 /// \brief Pretty print a lock expression for use in error messages.
589 std::string toString(unsigned i = 0) const {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000590 assert(isValid());
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000591 if (i >= NodeVec.size())
592 return "";
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000593
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000594 const SExprNode* N = &NodeVec[i];
595 switch (N->kind()) {
596 case EOP_Nop:
597 return "_";
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000598 case EOP_Wildcard:
599 return "(?)";
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000600 case EOP_Universal:
601 return "*";
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000602 case EOP_This:
603 return "this";
604 case EOP_NVar:
605 case EOP_LVar: {
606 return N->getNamedDecl()->getNameAsString();
607 }
608 case EOP_Dot: {
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000609 if (NodeVec[i+1].kind() == EOP_Wildcard) {
610 std::string S = "&";
611 S += N->getNamedDecl()->getQualifiedNameAsString();
612 return S;
613 }
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000614 std::string FieldName = N->getNamedDecl()->getNameAsString();
615 if (NodeVec[i+1].kind() == EOP_This)
616 return FieldName;
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000617
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000618 std::string S = toString(i+1);
619 if (N->isArrow())
620 return S + "->" + FieldName;
621 else
622 return S + "." + FieldName;
623 }
624 case EOP_Call: {
625 std::string S = toString(i+1) + "(";
626 unsigned NumArgs = N->arity()-1;
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000627 unsigned ci = getNextSibling(i+1);
628 for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000629 S += toString(ci);
630 if (k+1 < NumArgs) S += ",";
631 }
632 S += ")";
633 return S;
634 }
635 case EOP_MCall: {
636 std::string S = "";
637 if (NodeVec[i+1].kind() != EOP_This)
638 S = toString(i+1) + ".";
639 if (const NamedDecl *D = N->getFunctionDecl())
640 S += D->getNameAsString() + "(";
641 else
642 S += "#(";
643 unsigned NumArgs = N->arity()-1;
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000644 unsigned ci = getNextSibling(i+1);
645 for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000646 S += toString(ci);
647 if (k+1 < NumArgs) S += ",";
648 }
649 S += ")";
650 return S;
651 }
652 case EOP_Index: {
653 std::string S1 = toString(i+1);
654 std::string S2 = toString(i+1 + NodeVec[i+1].size());
655 return S1 + "[" + S2 + "]";
656 }
657 case EOP_Unary: {
658 std::string S = toString(i+1);
659 return "#" + S;
660 }
661 case EOP_Binary: {
662 std::string S1 = toString(i+1);
663 std::string S2 = toString(i+1 + NodeVec[i+1].size());
664 return "(" + S1 + "#" + S2 + ")";
665 }
666 case EOP_Unknown: {
667 unsigned NumChildren = N->arity();
668 if (NumChildren == 0)
669 return "(...)";
670 std::string S = "(";
671 unsigned ci = i+1;
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000672 for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000673 S += toString(ci);
674 if (j+1 < NumChildren) S += "#";
675 }
676 S += ")";
677 return S;
678 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000679 }
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000680 return "";
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000681 }
682};
683
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000684
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000685
686/// \brief A short list of SExprs
687class MutexIDList : public SmallVector<SExpr, 3> {
DeLesley Hutchins5381c052012-07-05 21:16:29 +0000688public:
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000689 /// \brief Return true if the list contains the specified SExpr
DeLesley Hutchins5381c052012-07-05 21:16:29 +0000690 /// Performs a linear search, because these lists are almost always very small.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000691 bool contains(const SExpr& M) {
DeLesley Hutchins5381c052012-07-05 21:16:29 +0000692 for (iterator I=begin(),E=end(); I != E; ++I)
693 if ((*I) == M) return true;
694 return false;
695 }
696
697 /// \brief Push M onto list, bud discard duplicates
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000698 void push_back_nodup(const SExpr& M) {
DeLesley Hutchins5381c052012-07-05 21:16:29 +0000699 if (!contains(M)) push_back(M);
700 }
701};
702
703
704
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000705/// \brief This is a helper class that stores info about the most recent
706/// accquire of a Lock.
707///
708/// The main body of the analysis maps MutexIDs to LockDatas.
709struct LockData {
710 SourceLocation AcquireLoc;
711
712 /// \brief LKind stores whether a lock is held shared or exclusively.
713 /// Note that this analysis does not currently support either re-entrant
714 /// locking or lock "upgrading" and "downgrading" between exclusive and
715 /// shared.
716 ///
717 /// FIXME: add support for re-entrant locking and lock up/downgrading
718 LockKind LKind;
DeLesley Hutchinsc99a5d82012-06-28 22:42:48 +0000719 bool Managed; // for ScopedLockable objects
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000720 SExpr UnderlyingMutex; // for ScopedLockable objects
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000721
DeLesley Hutchinsc99a5d82012-06-28 22:42:48 +0000722 LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
723 : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
724 UnderlyingMutex(Decl::EmptyShell())
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000725 {}
726
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000727 LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
DeLesley Hutchinsc99a5d82012-06-28 22:42:48 +0000728 : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
729 UnderlyingMutex(Mu)
730 {}
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000731
732 bool operator==(const LockData &other) const {
733 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
734 }
735
736 bool operator!=(const LockData &other) const {
737 return !(*this == other);
738 }
739
740 void Profile(llvm::FoldingSetNodeID &ID) const {
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000741 ID.AddInteger(AcquireLoc.getRawEncoding());
742 ID.AddInteger(LKind);
743 }
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000744
745 bool isAtLeast(LockKind LK) {
746 return (LK == LK_Shared) || (LKind == LK_Exclusive);
747 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000748};
749
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000750
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000751/// \brief A FactEntry stores a single fact that is known at a particular point
752/// in the program execution. Currently, this is information regarding a lock
753/// that is held at that point.
754struct FactEntry {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000755 SExpr MutID;
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000756 LockData LDat;
757
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000758 FactEntry(const SExpr& M, const LockData& L)
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000759 : MutID(M), LDat(L)
760 { }
761};
762
763
764typedef unsigned short FactID;
765
766/// \brief FactManager manages the memory for all facts that are created during
767/// the analysis of a single routine.
768class FactManager {
769private:
770 std::vector<FactEntry> Facts;
771
772public:
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000773 FactID newLock(const SExpr& M, const LockData& L) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000774 Facts.push_back(FactEntry(M,L));
775 return static_cast<unsigned short>(Facts.size() - 1);
776 }
777
778 const FactEntry& operator[](FactID F) const { return Facts[F]; }
779 FactEntry& operator[](FactID F) { return Facts[F]; }
780};
781
782
783/// \brief A FactSet is the set of facts that are known to be true at a
784/// particular program point. FactSets must be small, because they are
785/// frequently copied, and are thus implemented as a set of indices into a
786/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
787/// locks, so we can get away with doing a linear search for lookup. Note
788/// that a hashtable or map is inappropriate in this case, because lookups
789/// may involve partial pattern matches, rather than exact matches.
790class FactSet {
791private:
792 typedef SmallVector<FactID, 4> FactVec;
793
794 FactVec FactIDs;
795
796public:
797 typedef FactVec::iterator iterator;
798 typedef FactVec::const_iterator const_iterator;
799
800 iterator begin() { return FactIDs.begin(); }
801 const_iterator begin() const { return FactIDs.begin(); }
802
803 iterator end() { return FactIDs.end(); }
804 const_iterator end() const { return FactIDs.end(); }
805
806 bool isEmpty() const { return FactIDs.size() == 0; }
807
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000808 FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000809 FactID F = FM.newLock(M, L);
810 FactIDs.push_back(F);
811 return F;
812 }
813
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000814 bool removeLock(FactManager& FM, const SExpr& M) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000815 unsigned n = FactIDs.size();
816 if (n == 0)
817 return false;
818
819 for (unsigned i = 0; i < n-1; ++i) {
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000820 if (FM[FactIDs[i]].MutID.matches(M)) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000821 FactIDs[i] = FactIDs[n-1];
822 FactIDs.pop_back();
823 return true;
824 }
825 }
DeLesley Hutchinsee2f0322012-08-10 20:29:46 +0000826 if (FM[FactIDs[n-1]].MutID.matches(M)) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000827 FactIDs.pop_back();
828 return true;
829 }
830 return false;
831 }
832
DeLesley Hutchins3f0ec522012-09-10 19:58:23 +0000833 LockData* findLock(FactManager &FM, const SExpr &M) const {
Chad Rosier2de47702012-09-07 18:44:15 +0000834 for (const_iterator I = begin(), E = end(); I != E; ++I) {
Chad Rosier589190b2012-09-07 19:49:55 +0000835 const SExpr &Exp = FM[*I].MutID;
Chad Rosier2de47702012-09-07 18:44:15 +0000836 if (Exp.matches(M))
837 return &FM[*I].LDat;
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +0000838 }
839 return 0;
840 }
841
DeLesley Hutchins3f0ec522012-09-10 19:58:23 +0000842 LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
Chad Rosier2de47702012-09-07 18:44:15 +0000843 for (const_iterator I = begin(), E = end(); I != E; ++I) {
Chad Rosier589190b2012-09-07 19:49:55 +0000844 const SExpr &Exp = FM[*I].MutID;
Chad Rosier2de47702012-09-07 18:44:15 +0000845 if (Exp.matches(M) || Exp.isUniversal())
846 return &FM[*I].LDat;
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000847 }
848 return 0;
849 }
DeLesley Hutchins3f0ec522012-09-10 19:58:23 +0000850
851 FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
852 for (const_iterator I=begin(), E=end(); I != E; ++I) {
853 const SExpr& Exp = FM[*I].MutID;
854 if (Exp.partiallyMatches(M)) return &FM[*I];
855 }
856 return 0;
857 }
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000858};
859
860
861
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000862/// A Lockset maps each SExpr (defined above) to information about how it has
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000863/// been locked.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +0000864typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +0000865typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000866
867class LocalVariableMap;
868
Richard Smith2e515622012-02-03 04:45:26 +0000869/// A side (entry or exit) of a CFG node.
870enum CFGBlockSide { CBS_Entry, CBS_Exit };
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000871
872/// CFGBlockInfo is a struct which contains all the information that is
873/// maintained for each block in the CFG. See LocalVariableMap for more
874/// information about the contexts.
875struct CFGBlockInfo {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000876 FactSet EntrySet; // Lockset held at entry to block
877 FactSet ExitSet; // Lockset held at exit from block
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000878 LocalVarContext EntryContext; // Context held at entry to block
879 LocalVarContext ExitContext; // Context held at exit from block
Richard Smith2e515622012-02-03 04:45:26 +0000880 SourceLocation EntryLoc; // Location of first statement in block
881 SourceLocation ExitLoc; // Location of last statement in block.
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000882 unsigned EntryIndex; // Used to replay contexts later
883
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000884 const FactSet &getSet(CFGBlockSide Side) const {
Richard Smith2e515622012-02-03 04:45:26 +0000885 return Side == CBS_Entry ? EntrySet : ExitSet;
886 }
887 SourceLocation getLocation(CFGBlockSide Side) const {
888 return Side == CBS_Entry ? EntryLoc : ExitLoc;
889 }
890
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000891private:
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000892 CFGBlockInfo(LocalVarContext EmptyCtx)
893 : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000894 { }
895
896public:
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +0000897 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000898};
899
900
901
902// A LocalVariableMap maintains a map from local variables to their currently
903// valid definitions. It provides SSA-like functionality when traversing the
904// CFG. Like SSA, each definition or assignment to a variable is assigned a
905// unique name (an integer), which acts as the SSA name for that definition.
906// The total set of names is shared among all CFG basic blocks.
907// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
908// with their SSA-names. Instead, we compute a Context for each point in the
909// code, which maps local variables to the appropriate SSA-name. This map
910// changes with each assignment.
911//
912// The map is computed in a single pass over the CFG. Subsequent analyses can
913// then query the map to find the appropriate Context for a statement, and use
914// that Context to look up the definitions of variables.
915class LocalVariableMap {
916public:
917 typedef LocalVarContext Context;
918
919 /// A VarDefinition consists of an expression, representing the value of the
920 /// variable, along with the context in which that expression should be
921 /// interpreted. A reference VarDefinition does not itself contain this
922 /// information, but instead contains a pointer to a previous VarDefinition.
923 struct VarDefinition {
924 public:
925 friend class LocalVariableMap;
926
DeLesley Hutchins54c350a2012-04-19 16:48:43 +0000927 const NamedDecl *Dec; // The original declaration for this variable.
928 const Expr *Exp; // The expression for this variable, OR
929 unsigned Ref; // Reference to another VarDefinition
930 Context Ctx; // The map with which Exp should be interpreted.
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000931
932 bool isReference() { return !Exp; }
933
934 private:
935 // Create ordinary variable definition
DeLesley Hutchins54c350a2012-04-19 16:48:43 +0000936 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000937 : Dec(D), Exp(E), Ref(0), Ctx(C)
938 { }
939
940 // Create reference to previous definition
DeLesley Hutchins54c350a2012-04-19 16:48:43 +0000941 VarDefinition(const NamedDecl *D, unsigned R, Context C)
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000942 : Dec(D), Exp(0), Ref(R), Ctx(C)
943 { }
944 };
945
946private:
947 Context::Factory ContextFactory;
948 std::vector<VarDefinition> VarDefinitions;
949 std::vector<unsigned> CtxIndices;
950 std::vector<std::pair<Stmt*, Context> > SavedContexts;
951
952public:
953 LocalVariableMap() {
954 // index 0 is a placeholder for undefined variables (aka phi-nodes).
955 VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
956 }
957
958 /// Look up a definition, within the given context.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +0000959 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000960 const unsigned *i = Ctx.lookup(D);
961 if (!i)
962 return 0;
963 assert(*i < VarDefinitions.size());
964 return &VarDefinitions[*i];
965 }
966
967 /// Look up the definition for D within the given context. Returns
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000968 /// NULL if the expression is not statically known. If successful, also
969 /// modifies Ctx to hold the context of the return Expr.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +0000970 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000971 const unsigned *P = Ctx.lookup(D);
972 if (!P)
973 return 0;
974
975 unsigned i = *P;
976 while (i > 0) {
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000977 if (VarDefinitions[i].Exp) {
978 Ctx = VarDefinitions[i].Ctx;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000979 return VarDefinitions[i].Exp;
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000980 }
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000981 i = VarDefinitions[i].Ref;
982 }
983 return 0;
984 }
985
986 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
987
988 /// Return the next context after processing S. This function is used by
989 /// clients of the class to get the appropriate context when traversing the
990 /// CFG. It must be called for every assignment or DeclStmt.
991 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
992 if (SavedContexts[CtxIndex+1].first == S) {
993 CtxIndex++;
994 Context Result = SavedContexts[CtxIndex].second;
995 return Result;
996 }
997 return C;
998 }
999
1000 void dumpVarDefinitionName(unsigned i) {
1001 if (i == 0) {
1002 llvm::errs() << "Undefined";
1003 return;
1004 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001005 const NamedDecl *Dec = VarDefinitions[i].Dec;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001006 if (!Dec) {
1007 llvm::errs() << "<<NULL>>";
1008 return;
1009 }
1010 Dec->printName(llvm::errs());
Roman Divacky31ba6132012-09-06 15:59:27 +00001011 llvm::errs() << "." << i << " " << ((const void*) Dec);
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001012 }
1013
1014 /// Dumps an ASCII representation of the variable map to llvm::errs()
1015 void dump() {
1016 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001017 const Expr *Exp = VarDefinitions[i].Exp;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001018 unsigned Ref = VarDefinitions[i].Ref;
1019
1020 dumpVarDefinitionName(i);
1021 llvm::errs() << " = ";
1022 if (Exp) Exp->dump();
1023 else {
1024 dumpVarDefinitionName(Ref);
1025 llvm::errs() << "\n";
1026 }
1027 }
1028 }
1029
1030 /// Dumps an ASCII representation of a Context to llvm::errs()
1031 void dumpContext(Context C) {
1032 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001033 const NamedDecl *D = I.getKey();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001034 D->printName(llvm::errs());
1035 const unsigned *i = C.lookup(D);
1036 llvm::errs() << " -> ";
1037 dumpVarDefinitionName(*i);
1038 llvm::errs() << "\n";
1039 }
1040 }
1041
1042 /// Builds the variable map.
1043 void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1044 std::vector<CFGBlockInfo> &BlockInfo);
1045
1046protected:
1047 // Get the current context index
1048 unsigned getContextIndex() { return SavedContexts.size()-1; }
1049
1050 // Save the current context for later replay
1051 void saveContext(Stmt *S, Context C) {
1052 SavedContexts.push_back(std::make_pair(S,C));
1053 }
1054
1055 // Adds a new definition to the given context, and returns a new context.
1056 // This method should be called when declaring a new variable.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001057 Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001058 assert(!Ctx.contains(D));
1059 unsigned newID = VarDefinitions.size();
1060 Context NewCtx = ContextFactory.add(Ctx, D, newID);
1061 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1062 return NewCtx;
1063 }
1064
1065 // Add a new reference to an existing definition.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001066 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001067 unsigned newID = VarDefinitions.size();
1068 Context NewCtx = ContextFactory.add(Ctx, D, newID);
1069 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1070 return NewCtx;
1071 }
1072
1073 // Updates a definition only if that definition is already in the map.
1074 // This method should be called when assigning to an existing variable.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001075 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001076 if (Ctx.contains(D)) {
1077 unsigned newID = VarDefinitions.size();
1078 Context NewCtx = ContextFactory.remove(Ctx, D);
1079 NewCtx = ContextFactory.add(NewCtx, D, newID);
1080 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1081 return NewCtx;
1082 }
1083 return Ctx;
1084 }
1085
1086 // Removes a definition from the context, but keeps the variable name
1087 // as a valid variable. The index 0 is a placeholder for cleared definitions.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001088 Context clearDefinition(const NamedDecl *D, Context Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001089 Context NewCtx = Ctx;
1090 if (NewCtx.contains(D)) {
1091 NewCtx = ContextFactory.remove(NewCtx, D);
1092 NewCtx = ContextFactory.add(NewCtx, D, 0);
1093 }
1094 return NewCtx;
1095 }
1096
1097 // Remove a definition entirely frmo the context.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001098 Context removeDefinition(const NamedDecl *D, Context Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001099 Context NewCtx = Ctx;
1100 if (NewCtx.contains(D)) {
1101 NewCtx = ContextFactory.remove(NewCtx, D);
1102 }
1103 return NewCtx;
1104 }
1105
1106 Context intersectContexts(Context C1, Context C2);
1107 Context createReferenceContext(Context C);
1108 void intersectBackEdge(Context C1, Context C2);
1109
1110 friend class VarMapBuilder;
1111};
1112
1113
1114// This has to be defined after LocalVariableMap.
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001115CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1116 return CFGBlockInfo(M.getEmptyContext());
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001117}
1118
1119
1120/// Visitor which builds a LocalVariableMap
1121class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1122public:
1123 LocalVariableMap* VMap;
1124 LocalVariableMap::Context Ctx;
1125
1126 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1127 : VMap(VM), Ctx(C) {}
1128
1129 void VisitDeclStmt(DeclStmt *S);
1130 void VisitBinaryOperator(BinaryOperator *BO);
1131};
1132
1133
1134// Add new local variables to the variable map
1135void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1136 bool modifiedCtx = false;
1137 DeclGroupRef DGrp = S->getDeclGroup();
1138 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1139 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1140 Expr *E = VD->getInit();
1141
1142 // Add local variables with trivial type to the variable map
1143 QualType T = VD->getType();
1144 if (T.isTrivialType(VD->getASTContext())) {
1145 Ctx = VMap->addDefinition(VD, E, Ctx);
1146 modifiedCtx = true;
1147 }
1148 }
1149 }
1150 if (modifiedCtx)
1151 VMap->saveContext(S, Ctx);
1152}
1153
1154// Update local variable definitions in variable map
1155void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1156 if (!BO->isAssignmentOp())
1157 return;
1158
1159 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1160
1161 // Update the variable map and current context.
1162 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1163 ValueDecl *VDec = DRE->getDecl();
1164 if (Ctx.lookup(VDec)) {
1165 if (BO->getOpcode() == BO_Assign)
1166 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1167 else
1168 // FIXME -- handle compound assignment operators
1169 Ctx = VMap->clearDefinition(VDec, Ctx);
1170 VMap->saveContext(BO, Ctx);
1171 }
1172 }
1173}
1174
1175
1176// Computes the intersection of two contexts. The intersection is the
1177// set of variables which have the same definition in both contexts;
1178// variables with different definitions are discarded.
1179LocalVariableMap::Context
1180LocalVariableMap::intersectContexts(Context C1, Context C2) {
1181 Context Result = C1;
1182 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001183 const NamedDecl *Dec = I.getKey();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001184 unsigned i1 = I.getData();
1185 const unsigned *i2 = C2.lookup(Dec);
1186 if (!i2) // variable doesn't exist on second path
1187 Result = removeDefinition(Dec, Result);
1188 else if (*i2 != i1) // variable exists, but has different definition
1189 Result = clearDefinition(Dec, Result);
1190 }
1191 return Result;
1192}
1193
1194// For every variable in C, create a new variable that refers to the
1195// definition in C. Return a new context that contains these new variables.
1196// (We use this for a naive implementation of SSA on loop back-edges.)
1197LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1198 Context Result = getEmptyContext();
1199 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001200 const NamedDecl *Dec = I.getKey();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001201 unsigned i = I.getData();
1202 Result = addReference(Dec, i, Result);
1203 }
1204 return Result;
1205}
1206
1207// This routine also takes the intersection of C1 and C2, but it does so by
1208// altering the VarDefinitions. C1 must be the result of an earlier call to
1209// createReferenceContext.
1210void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1211 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001212 const NamedDecl *Dec = I.getKey();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001213 unsigned i1 = I.getData();
1214 VarDefinition *VDef = &VarDefinitions[i1];
1215 assert(VDef->isReference());
1216
1217 const unsigned *i2 = C2.lookup(Dec);
1218 if (!i2 || (*i2 != i1))
1219 VDef->Ref = 0; // Mark this variable as undefined
1220 }
1221}
1222
1223
1224// Traverse the CFG in topological order, so all predecessors of a block
1225// (excluding back-edges) are visited before the block itself. At
1226// each point in the code, we calculate a Context, which holds the set of
1227// variable definitions which are visible at that point in execution.
1228// Visible variables are mapped to their definitions using an array that
1229// contains all definitions.
1230//
1231// At join points in the CFG, the set is computed as the intersection of
1232// the incoming sets along each edge, E.g.
1233//
1234// { Context | VarDefinitions }
1235// int x = 0; { x -> x1 | x1 = 0 }
1236// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
1237// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
1238// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
1239// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
1240//
1241// This is essentially a simpler and more naive version of the standard SSA
1242// algorithm. Those definitions that remain in the intersection are from blocks
1243// that strictly dominate the current block. We do not bother to insert proper
1244// phi nodes, because they are not used in our analysis; instead, wherever
1245// a phi node would be required, we simply remove that definition from the
1246// context (E.g. x above).
1247//
1248// The initial traversal does not capture back-edges, so those need to be
1249// handled on a separate pass. Whenever the first pass encounters an
1250// incoming back edge, it duplicates the context, creating new definitions
1251// that refer back to the originals. (These correspond to places where SSA
1252// might have to insert a phi node.) On the second pass, these definitions are
Sylvestre Ledrubed28ac2012-07-23 08:59:39 +00001253// set to NULL if the variable has changed on the back-edge (i.e. a phi
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001254// node was actually required.) E.g.
1255//
1256// { Context | VarDefinitions }
1257// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
1258// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
1259// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
1260// ... { y -> y1 | x3 = 2, x2 = 1, ... }
1261//
1262void LocalVariableMap::traverseCFG(CFG *CFGraph,
1263 PostOrderCFGView *SortedGraph,
1264 std::vector<CFGBlockInfo> &BlockInfo) {
1265 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1266
1267 CtxIndices.resize(CFGraph->getNumBlockIDs());
1268
1269 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1270 E = SortedGraph->end(); I!= E; ++I) {
1271 const CFGBlock *CurrBlock = *I;
1272 int CurrBlockID = CurrBlock->getBlockID();
1273 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1274
1275 VisitedBlocks.insert(CurrBlock);
1276
1277 // Calculate the entry context for the current block
1278 bool HasBackEdges = false;
1279 bool CtxInit = true;
1280 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1281 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
1282 // if *PI -> CurrBlock is a back edge, so skip it
1283 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1284 HasBackEdges = true;
1285 continue;
1286 }
1287
1288 int PrevBlockID = (*PI)->getBlockID();
1289 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1290
1291 if (CtxInit) {
1292 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1293 CtxInit = false;
1294 }
1295 else {
1296 CurrBlockInfo->EntryContext =
1297 intersectContexts(CurrBlockInfo->EntryContext,
1298 PrevBlockInfo->ExitContext);
1299 }
1300 }
1301
1302 // Duplicate the context if we have back-edges, so we can call
1303 // intersectBackEdges later.
1304 if (HasBackEdges)
1305 CurrBlockInfo->EntryContext =
1306 createReferenceContext(CurrBlockInfo->EntryContext);
1307
1308 // Create a starting context index for the current block
1309 saveContext(0, CurrBlockInfo->EntryContext);
1310 CurrBlockInfo->EntryIndex = getContextIndex();
1311
1312 // Visit all the statements in the basic block.
1313 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1314 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1315 BE = CurrBlock->end(); BI != BE; ++BI) {
1316 switch (BI->getKind()) {
1317 case CFGElement::Statement: {
1318 const CFGStmt *CS = cast<CFGStmt>(&*BI);
1319 VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1320 break;
1321 }
1322 default:
1323 break;
1324 }
1325 }
1326 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1327
1328 // Mark variables on back edges as "unknown" if they've been changed.
1329 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1330 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
1331 // if CurrBlock -> *SI is *not* a back edge
1332 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1333 continue;
1334
1335 CFGBlock *FirstLoopBlock = *SI;
1336 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1337 Context LoopEnd = CurrBlockInfo->ExitContext;
1338 intersectBackEdge(LoopBegin, LoopEnd);
1339 }
1340 }
1341
1342 // Put an extra entry at the end of the indexed context array
1343 unsigned exitID = CFGraph->getExit().getBlockID();
1344 saveContext(0, BlockInfo[exitID].ExitContext);
1345}
1346
Richard Smith2e515622012-02-03 04:45:26 +00001347/// Find the appropriate source locations to use when producing diagnostics for
1348/// each block in the CFG.
1349static void findBlockLocations(CFG *CFGraph,
1350 PostOrderCFGView *SortedGraph,
1351 std::vector<CFGBlockInfo> &BlockInfo) {
1352 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1353 E = SortedGraph->end(); I!= E; ++I) {
1354 const CFGBlock *CurrBlock = *I;
1355 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1356
1357 // Find the source location of the last statement in the block, if the
1358 // block is not empty.
1359 if (const Stmt *S = CurrBlock->getTerminator()) {
1360 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1361 } else {
1362 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1363 BE = CurrBlock->rend(); BI != BE; ++BI) {
1364 // FIXME: Handle other CFGElement kinds.
1365 if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1366 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1367 break;
1368 }
1369 }
1370 }
1371
1372 if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1373 // This block contains at least one statement. Find the source location
1374 // of the first statement in the block.
1375 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1376 BE = CurrBlock->end(); BI != BE; ++BI) {
1377 // FIXME: Handle other CFGElement kinds.
1378 if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1379 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1380 break;
1381 }
1382 }
1383 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1384 CurrBlock != &CFGraph->getExit()) {
1385 // The block is empty, and has a single predecessor. Use its exit
1386 // location.
1387 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1388 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1389 }
1390 }
1391}
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001392
1393/// \brief Class which implements the core thread safety analysis routines.
1394class ThreadSafetyAnalyzer {
1395 friend class BuildLockset;
1396
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001397 ThreadSafetyHandler &Handler;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001398 LocalVariableMap LocalVarMap;
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001399 FactManager FactMan;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001400 std::vector<CFGBlockInfo> BlockInfo;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001401
1402public:
1403 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1404
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001405 void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1406 void removeLock(FactSet &FSet, const SExpr &Mutex,
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001407 SourceLocation UnlockLoc, bool FullyRemove=false);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001408
1409 template <typename AttrType>
1410 void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1411 const NamedDecl *D);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001412
1413 template <class AttrType>
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001414 void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1415 const NamedDecl *D,
1416 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1417 Expr *BrE, bool Neg);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001418
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001419 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1420 bool &Negate);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001421
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001422 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1423 const CFGBlock* PredBlock,
1424 const CFGBlock *CurrBlock);
DeLesley Hutchins0da44142012-06-22 17:07:28 +00001425
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001426 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1427 SourceLocation JoinLoc,
1428 LockErrorKind LEK1, LockErrorKind LEK2,
1429 bool Modify=true);
DeLesley Hutchins879a4332012-07-02 22:16:54 +00001430
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001431 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1432 SourceLocation JoinLoc, LockErrorKind LEK1,
1433 bool Modify=true) {
1434 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
DeLesley Hutchins879a4332012-07-02 22:16:54 +00001435 }
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001436
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001437 void runAnalysis(AnalysisDeclContext &AC);
1438};
1439
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001440
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001441/// \brief Add a new lock to the lockset, warning if the lock is already there.
1442/// \param Mutex -- the Mutex expression for the lock
1443/// \param LDat -- the LockData for the lock
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001444void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001445 const LockData &LDat) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001446 // FIXME: deal with acquired before/after annotations.
1447 // FIXME: Don't always warn when we have support for reentrant locks.
DeLesley Hutchins4e4c1572012-08-31 21:57:32 +00001448 if (Mutex.shouldIgnore())
1449 return;
1450
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001451 if (FSet.findLock(FactMan, Mutex)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001452 Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001453 } else {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001454 FSet.addLock(FactMan, Mutex, LDat);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001455 }
1456}
1457
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001458
1459/// \brief Remove a lock from the lockset, warning if the lock is not there.
Ted Kremenekad0fe032012-08-22 23:50:41 +00001460/// \param Mutex The lock expression corresponding to the lock to be removed
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001461/// \param UnlockLoc The source location of the unlock (only used in error msg)
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001462void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001463 const SExpr &Mutex,
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001464 SourceLocation UnlockLoc,
1465 bool FullyRemove) {
DeLesley Hutchins4e4c1572012-08-31 21:57:32 +00001466 if (Mutex.shouldIgnore())
1467 return;
1468
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001469 const LockData *LDat = FSet.findLock(FactMan, Mutex);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001470 if (!LDat) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001471 Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001472 return;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001473 }
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001474
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001475 if (LDat->UnderlyingMutex.isValid()) {
1476 // This is scoped lockable object, which manages the real mutex.
1477 if (FullyRemove) {
1478 // We're destroying the managing object.
1479 // Remove the underlying mutex if it exists; but don't warn.
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001480 if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1481 FSet.removeLock(FactMan, LDat->UnderlyingMutex);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001482 } else {
1483 // We're releasing the underlying mutex, but not destroying the
1484 // managing object. Warn on dual release.
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001485 if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001486 Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001487 UnlockLoc);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001488 }
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001489 FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1490 return;
DeLesley Hutchinsc99a5d82012-06-28 22:42:48 +00001491 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001492 }
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001493 FSet.removeLock(FactMan, Mutex);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001494}
1495
DeLesley Hutchinsc99a5d82012-06-28 22:42:48 +00001496
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001497/// \brief Extract the list of mutexIDs from the attribute on an expression,
1498/// and push them onto Mtxs, discarding any duplicates.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001499template <typename AttrType>
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001500void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1501 Expr *Exp, const NamedDecl *D) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001502 typedef typename AttrType::args_iterator iterator_type;
1503
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001504 if (Attr->args_size() == 0) {
1505 // The mutex held is the "this" object.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001506 SExpr Mu(0, Exp, D);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001507 if (!Mu.isValid())
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001508 SExpr::warnInvalidLock(Handler, 0, Exp, D);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001509 else
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001510 Mtxs.push_back_nodup(Mu);
1511 return;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001512 }
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001513
1514 for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001515 SExpr Mu(*I, Exp, D);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001516 if (!Mu.isValid())
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001517 SExpr::warnInvalidLock(Handler, *I, Exp, D);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001518 else
1519 Mtxs.push_back_nodup(Mu);
1520 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001521}
1522
1523
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001524/// \brief Extract the list of mutexIDs from a trylock attribute. If the
1525/// trylock applies to the given edge, then push them onto Mtxs, discarding
1526/// any duplicates.
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001527template <class AttrType>
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001528void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1529 Expr *Exp, const NamedDecl *D,
1530 const CFGBlock *PredBlock,
1531 const CFGBlock *CurrBlock,
1532 Expr *BrE, bool Neg) {
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001533 // Find out which branch has the lock
1534 bool branch = 0;
1535 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1536 branch = BLE->getValue();
1537 }
1538 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1539 branch = ILE->getValue().getBoolValue();
1540 }
1541 int branchnum = branch ? 0 : 1;
1542 if (Neg) branchnum = !branchnum;
1543
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001544 // If we've taken the trylock branch, then add the lock
1545 int i = 0;
1546 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1547 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1548 if (*SI == CurrBlock && i == branchnum) {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001549 getMutexIDs(Mtxs, Attr, Exp, D);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001550 }
1551 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001552}
1553
1554
DeLesley Hutchins13106112012-07-10 21:47:55 +00001555bool getStaticBooleanValue(Expr* E, bool& TCond) {
1556 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1557 TCond = false;
1558 return true;
1559 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1560 TCond = BLE->getValue();
1561 return true;
1562 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1563 TCond = ILE->getValue().getBoolValue();
1564 return true;
1565 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1566 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1567 }
1568 return false;
1569}
1570
1571
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001572// If Cond can be traced back to a function call, return the call expression.
1573// The negate variable should be called with false, and will be set to true
1574// if the function call is negated, e.g. if (!mu.tryLock(...))
1575const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1576 LocalVarContext C,
1577 bool &Negate) {
1578 if (!Cond)
1579 return 0;
1580
1581 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1582 return CallExp;
1583 }
DeLesley Hutchins13106112012-07-10 21:47:55 +00001584 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1585 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1586 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001587 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1588 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1589 }
DeLesley Hutchinsfd0f11c2012-09-05 20:01:16 +00001590 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1591 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1592 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001593 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1594 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1595 return getTrylockCallExpr(E, C, Negate);
1596 }
1597 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1598 if (UOP->getOpcode() == UO_LNot) {
1599 Negate = !Negate;
1600 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1601 }
DeLesley Hutchins13106112012-07-10 21:47:55 +00001602 return 0;
1603 }
1604 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1605 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1606 if (BOP->getOpcode() == BO_NE)
1607 Negate = !Negate;
1608
1609 bool TCond = false;
1610 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1611 if (!TCond) Negate = !Negate;
1612 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1613 }
1614 else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1615 if (!TCond) Negate = !Negate;
1616 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1617 }
1618 return 0;
1619 }
1620 return 0;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001621 }
1622 // FIXME -- handle && and || as well.
DeLesley Hutchins13106112012-07-10 21:47:55 +00001623 return 0;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001624}
1625
1626
DeLesley Hutchins0da44142012-06-22 17:07:28 +00001627/// \brief Find the lockset that holds on the edge between PredBlock
1628/// and CurrBlock. The edge set is the exit set of PredBlock (passed
1629/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001630void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1631 const FactSet &ExitSet,
1632 const CFGBlock *PredBlock,
1633 const CFGBlock *CurrBlock) {
1634 Result = ExitSet;
1635
DeLesley Hutchins0da44142012-06-22 17:07:28 +00001636 if (!PredBlock->getTerminatorCondition())
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001637 return;
DeLesley Hutchins0da44142012-06-22 17:07:28 +00001638
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001639 bool Negate = false;
1640 const Stmt *Cond = PredBlock->getTerminatorCondition();
1641 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1642 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1643
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001644 CallExpr *Exp =
1645 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001646 if (!Exp)
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001647 return;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001648
1649 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1650 if(!FunDecl || !FunDecl->hasAttrs())
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001651 return;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001652
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001653
1654 MutexIDList ExclusiveLocksToAdd;
1655 MutexIDList SharedLocksToAdd;
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001656
1657 // If the condition is a call to a Trylock function, then grab the attributes
1658 AttrVec &ArgAttrs = FunDecl->getAttrs();
1659 for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1660 Attr *Attr = ArgAttrs[i];
1661 switch (Attr->getKind()) {
1662 case attr::ExclusiveTrylockFunction: {
1663 ExclusiveTrylockFunctionAttr *A =
1664 cast<ExclusiveTrylockFunctionAttr>(Attr);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001665 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1666 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001667 break;
1668 }
1669 case attr::SharedTrylockFunction: {
1670 SharedTrylockFunctionAttr *A =
1671 cast<SharedTrylockFunctionAttr>(Attr);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001672 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1673 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001674 break;
1675 }
1676 default:
1677 break;
1678 }
1679 }
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001680
1681 // Add and remove locks.
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001682 SourceLocation Loc = Exp->getExprLoc();
1683 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001684 addLock(Result, ExclusiveLocksToAdd[i],
1685 LockData(Loc, LK_Exclusive));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001686 }
1687 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001688 addLock(Result, SharedLocksToAdd[i],
1689 LockData(Loc, LK_Shared));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001690 }
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001691}
1692
1693
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001694/// \brief We use this class to visit different types of expressions in
1695/// CFGBlocks, and build up the lockset.
1696/// An expression may cause us to add or remove locks from the lockset, or else
1697/// output error messages related to missing locks.
1698/// FIXME: In future, we may be able to not inherit from a visitor.
1699class BuildLockset : public StmtVisitor<BuildLockset> {
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001700 friend class ThreadSafetyAnalyzer;
1701
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001702 ThreadSafetyAnalyzer *Analyzer;
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001703 FactSet FSet;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001704 LocalVariableMap::Context LVarCtx;
1705 unsigned CtxIndex;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001706
1707 // Helper functions
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001708 const ValueDecl *getValueDecl(Expr *Exp);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001709
1710 void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1711 Expr *MutexExp, ProtectedOperationKind POK);
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001712 void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp);
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001713
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001714 void checkAccess(Expr *Exp, AccessKind AK);
1715 void checkDereference(Expr *Exp, AccessKind AK);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001716 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001717
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001718public:
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001719 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001720 : StmtVisitor<BuildLockset>(),
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001721 Analyzer(Anlzr),
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001722 FSet(Info.EntrySet),
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001723 LVarCtx(Info.EntryContext),
1724 CtxIndex(Info.EntryIndex)
1725 {}
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001726
1727 void VisitUnaryOperator(UnaryOperator *UO);
1728 void VisitBinaryOperator(BinaryOperator *BO);
1729 void VisitCastExpr(CastExpr *CE);
DeLesley Hutchinsdf497822011-12-29 00:56:48 +00001730 void VisitCallExpr(CallExpr *Exp);
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001731 void VisitCXXConstructExpr(CXXConstructExpr *Exp);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001732 void VisitDeclStmt(DeclStmt *S);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001733};
1734
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001735
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001736/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1737const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1738 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1739 return DR->getDecl();
1740
1741 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1742 return ME->getMemberDecl();
1743
1744 return 0;
1745}
1746
1747/// \brief Warn if the LSet does not contain a lock sufficient to protect access
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001748/// of at least the passed in AccessKind.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001749void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1750 AccessKind AK, Expr *MutexExp,
1751 ProtectedOperationKind POK) {
1752 LockKind LK = getLockKindFromAccessKind(AK);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001753
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001754 SExpr Mutex(MutexExp, Exp, D);
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001755 if (!Mutex.isValid()) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001756 SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001757 return;
1758 } else if (Mutex.shouldIgnore()) {
1759 return;
1760 }
1761
1762 LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
DeLesley Hutchins3f0ec522012-09-10 19:58:23 +00001763 bool NoError = true;
1764 if (!LDat) {
1765 // No exact match found. Look for a partial match.
1766 FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1767 if (FEntry) {
1768 // Warn that there's no precise match.
1769 LDat = &FEntry->LDat;
1770 std::string PartMatchStr = FEntry->MutID.toString();
1771 StringRef PartMatchName(PartMatchStr);
1772 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1773 Exp->getExprLoc(), &PartMatchName);
1774 } else {
1775 // Warn that there's no match at all.
1776 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1777 Exp->getExprLoc());
1778 }
1779 NoError = false;
1780 }
1781 // Make sure the mutex we found is the right kind.
1782 if (NoError && LDat && !LDat->isAtLeast(LK))
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001783 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001784 Exp->getExprLoc());
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001785}
1786
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001787/// \brief Warn if the LSet contains the given lock.
1788void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp,
1789 Expr *MutexExp) {
1790 SExpr Mutex(MutexExp, Exp, D);
1791 if (!Mutex.isValid()) {
1792 SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1793 return;
1794 }
1795
1796 LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
DeLesley Hutchins5b280f22012-09-19 19:18:29 +00001797 if (LDat) {
1798 std::string DeclName = D->getNameAsString();
1799 StringRef DeclNameSR (DeclName);
1800 Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001801 Exp->getExprLoc());
DeLesley Hutchins5b280f22012-09-19 19:18:29 +00001802 }
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001803}
1804
1805
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001806/// \brief This method identifies variable dereferences and checks pt_guarded_by
1807/// and pt_guarded_var annotations. Note that we only check these annotations
1808/// at the time a pointer is dereferenced.
1809/// FIXME: We need to check for other types of pointer dereferences
1810/// (e.g. [], ->) and deal with them here.
1811/// \param Exp An expression that has been read or written.
1812void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1813 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1814 if (!UO || UO->getOpcode() != clang::UO_Deref)
1815 return;
1816 Exp = UO->getSubExpr()->IgnoreParenCasts();
1817
1818 const ValueDecl *D = getValueDecl(Exp);
1819 if(!D || !D->hasAttrs())
1820 return;
1821
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001822 if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001823 Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1824 Exp->getExprLoc());
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001825
1826 const AttrVec &ArgAttrs = D->getAttrs();
1827 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1828 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1829 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1830}
1831
1832/// \brief Checks guarded_by and guarded_var attributes.
1833/// Whenever we identify an access (read or write) of a DeclRefExpr or
1834/// MemberExpr, we need to check whether there are any guarded_by or
1835/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1836void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1837 const ValueDecl *D = getValueDecl(Exp);
1838 if(!D || !D->hasAttrs())
1839 return;
1840
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001841 if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00001842 Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1843 Exp->getExprLoc());
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001844
1845 const AttrVec &ArgAttrs = D->getAttrs();
1846 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1847 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1848 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1849}
1850
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001851/// \brief Process a function call, method call, constructor call,
1852/// or destructor call. This involves looking at the attributes on the
1853/// corresponding function/method/constructor/destructor, issuing warnings,
1854/// and updating the locksets accordingly.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001855///
1856/// FIXME: For classes annotated with one of the guarded annotations, we need
1857/// to treat const method calls as reads and non-const method calls as writes,
1858/// and check that the appropriate locks are held. Non-const method calls with
1859/// the same signature as const method calls can be also treated as reads.
1860///
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001861void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1862 const AttrVec &ArgAttrs = D->getAttrs();
1863 MutexIDList ExclusiveLocksToAdd;
1864 MutexIDList SharedLocksToAdd;
1865 MutexIDList LocksToRemove;
1866
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001867 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001868 Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1869 switch (At->getKind()) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001870 // When we encounter an exclusive lock function, we need to add the lock
1871 // to our lockset with kind exclusive.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001872 case attr::ExclusiveLockFunction: {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001873 ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1874 Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001875 break;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001876 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001877
1878 // When we encounter a shared lock function, we need to add the lock
1879 // to our lockset with kind shared.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001880 case attr::SharedLockFunction: {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001881 SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1882 Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001883 break;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001884 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001885
1886 // When we encounter an unlock function, we need to remove unlocked
1887 // mutexes from the lockset, and flag a warning if they are not there.
1888 case attr::UnlockFunction: {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001889 UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1890 Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001891 break;
1892 }
1893
1894 case attr::ExclusiveLocksRequired: {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001895 ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001896
1897 for (ExclusiveLocksRequiredAttr::args_iterator
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001898 I = A->args_begin(), E = A->args_end(); I != E; ++I)
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001899 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1900 break;
1901 }
1902
1903 case attr::SharedLocksRequired: {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001904 SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001905
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001906 for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1907 E = A->args_end(); I != E; ++I)
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001908 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1909 break;
1910 }
1911
1912 case attr::LocksExcluded: {
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001913 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001914
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001915 for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1916 E = A->args_end(); I != E; ++I) {
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00001917 warnIfMutexHeld(D, Exp, *I);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001918 }
1919 break;
1920 }
1921
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001922 // Ignore other (non thread-safety) attributes
1923 default:
1924 break;
1925 }
1926 }
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001927
1928 // Figure out if we're calling the constructor of scoped lockable class
1929 bool isScopedVar = false;
1930 if (VD) {
1931 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1932 const CXXRecordDecl* PD = CD->getParent();
1933 if (PD && PD->getAttr<ScopedLockableAttr>())
1934 isScopedVar = true;
1935 }
1936 }
1937
1938 // Add locks.
1939 SourceLocation Loc = Exp->getExprLoc();
1940 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001941 Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1942 LockData(Loc, LK_Exclusive, isScopedVar));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001943 }
1944 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001945 Analyzer->addLock(FSet, SharedLocksToAdd[i],
1946 LockData(Loc, LK_Shared, isScopedVar));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001947 }
1948
1949 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1950 // FIXME -- this doesn't work if we acquire multiple locks.
1951 if (isScopedVar) {
1952 SourceLocation MLoc = VD->getLocation();
1953 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00001954 SExpr SMutex(&DRE, 0, 0);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001955
1956 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001957 Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
1958 ExclusiveLocksToAdd[i]));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001959 }
1960 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001961 Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
1962 SharedLocksToAdd[i]));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001963 }
1964 }
1965
1966 // Remove locks.
1967 // FIXME -- should only fully remove if the attribute refers to 'this'.
1968 bool Dtor = isa<CXXDestructorDecl>(D);
1969 for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00001970 Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
DeLesley Hutchins5381c052012-07-05 21:16:29 +00001971 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001972}
1973
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +00001974
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001975/// \brief For unary operations which read and write a variable, we need to
1976/// check whether we hold any required mutexes. Reads are checked in
1977/// VisitCastExpr.
1978void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1979 switch (UO->getOpcode()) {
1980 case clang::UO_PostDec:
1981 case clang::UO_PostInc:
1982 case clang::UO_PreDec:
1983 case clang::UO_PreInc: {
1984 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1985 checkAccess(SubExp, AK_Written);
1986 checkDereference(SubExp, AK_Written);
1987 break;
1988 }
1989 default:
1990 break;
1991 }
1992}
1993
1994/// For binary operations which assign to a variable (writes), we need to check
1995/// whether we hold any required mutexes.
1996/// FIXME: Deal with non-primitive types.
1997void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1998 if (!BO->isAssignmentOp())
1999 return;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002000
2001 // adjust the context
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00002002 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002003
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00002004 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
2005 checkAccess(LHSExp, AK_Written);
2006 checkDereference(LHSExp, AK_Written);
2007}
2008
2009/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2010/// need to ensure we hold any required mutexes.
2011/// FIXME: Deal with non-primitive types.
2012void BuildLockset::VisitCastExpr(CastExpr *CE) {
2013 if (CE->getCastKind() != CK_LValueToRValue)
2014 return;
2015 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
2016 checkAccess(SubExp, AK_Read);
2017 checkDereference(SubExp, AK_Read);
2018}
2019
2020
DeLesley Hutchinsdf497822011-12-29 00:56:48 +00002021void BuildLockset::VisitCallExpr(CallExpr *Exp) {
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00002022 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2023 if(!D || !D->hasAttrs())
2024 return;
2025 handleCall(Exp, D);
2026}
2027
2028void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00002029 // FIXME -- only handles constructors in DeclStmt below.
2030}
2031
2032void BuildLockset::VisitDeclStmt(DeclStmt *S) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002033 // adjust the context
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00002034 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002035
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00002036 DeclGroupRef DGrp = S->getDeclGroup();
2037 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2038 Decl *D = *I;
2039 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2040 Expr *E = VD->getInit();
DeLesley Hutchins9d6e7f32012-07-03 18:25:56 +00002041 // handle constructors that involve temporaries
2042 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2043 E = EWC->getSubExpr();
2044
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00002045 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2046 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2047 if (!CtorD || !CtorD->hasAttrs())
2048 return;
2049 handleCall(CE, CtorD, VD);
2050 }
2051 }
2052 }
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00002053}
2054
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00002055
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002056
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +00002057/// \brief Compute the intersection of two locksets and issue warnings for any
2058/// locks in the symmetric difference.
2059///
2060/// This function is used at a merge point in the CFG when comparing the lockset
2061/// of each branch being merged. For example, given the following sequence:
2062/// A; if () then B; else C; D; we need to check that the lockset after B and C
2063/// are the same. In the event of a difference, we use the intersection of these
2064/// two locksets at the start of D.
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002065///
Ted Kremenekad0fe032012-08-22 23:50:41 +00002066/// \param FSet1 The first lockset.
2067/// \param FSet2 The second lockset.
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002068/// \param JoinLoc The location of the join point for error reporting
DeLesley Hutchins879a4332012-07-02 22:16:54 +00002069/// \param LEK1 The error message to report if a mutex is missing from LSet1
2070/// \param LEK2 The error message to report if a mutex is missing from Lset2
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002071void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2072 const FactSet &FSet2,
2073 SourceLocation JoinLoc,
2074 LockErrorKind LEK1,
2075 LockErrorKind LEK2,
2076 bool Modify) {
2077 FactSet FSet1Orig = FSet1;
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002078
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002079 for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2080 I != E; ++I) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002081 const SExpr &FSet2Mutex = FactMan[*I].MutID;
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002082 const LockData &LDat2 = FactMan[*I].LDat;
2083
2084 if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002085 if (LDat1->LKind != LDat2.LKind) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002086 Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002087 LDat2.AcquireLoc,
2088 LDat1->AcquireLoc);
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002089 if (Modify && LDat1->LKind != LK_Exclusive) {
2090 FSet1.removeLock(FactMan, FSet2Mutex);
2091 FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2092 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002093 }
2094 } else {
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002095 if (LDat2.UnderlyingMutex.isValid()) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002096 if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002097 // If this is a scoped lock that manages another mutex, and if the
2098 // underlying mutex is still held, then warn about the underlying
2099 // mutex.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002100 Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002101 LDat2.AcquireLoc,
2102 JoinLoc, LEK1);
2103 }
2104 }
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00002105 else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002106 Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002107 LDat2.AcquireLoc,
DeLesley Hutchins879a4332012-07-02 22:16:54 +00002108 JoinLoc, LEK1);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002109 }
2110 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002111
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002112 for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2113 I != E; ++I) {
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002114 const SExpr &FSet1Mutex = FactMan[*I].MutID;
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002115 const LockData &LDat1 = FactMan[*I].LDat;
DeLesley Hutchinsc99a5d82012-06-28 22:42:48 +00002116
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002117 if (!FSet2.findLock(FactMan, FSet1Mutex)) {
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002118 if (LDat1.UnderlyingMutex.isValid()) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002119 if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002120 // If this is a scoped lock that manages another mutex, and if the
2121 // underlying mutex is still held, then warn about the underlying
2122 // mutex.
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002123 Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002124 LDat1.AcquireLoc,
2125 JoinLoc, LEK1);
2126 }
2127 }
DeLesley Hutchins0b4db3e2012-09-07 17:34:53 +00002128 else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
DeLesley Hutchinsa74b7152012-08-10 20:19:55 +00002129 Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
DeLesley Hutchinsbbe33412012-07-02 22:26:29 +00002130 LDat1.AcquireLoc,
DeLesley Hutchins879a4332012-07-02 22:16:54 +00002131 JoinLoc, LEK2);
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002132 if (Modify)
2133 FSet1.removeLock(FactMan, FSet1Mutex);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002134 }
2135 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002136}
2137
Caitlin Sadowskicb967512011-09-15 17:43:08 +00002138
DeLesley Hutchins5381c052012-07-05 21:16:29 +00002139
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002140/// \brief Check a function's CFG for thread-safety violations.
2141///
2142/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2143/// at the end of each block, and issue warnings for thread safety violations.
2144/// Each block in the CFG is traversed exactly once.
Ted Kremenek1d26f482011-10-24 01:32:45 +00002145void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002146 CFG *CFGraph = AC.getCFG();
2147 if (!CFGraph) return;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00002148 const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2149
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002150 // AC.dumpCFG(true);
2151
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00002152 if (!D)
2153 return; // Ignore anonymous functions for now.
2154 if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2155 return;
DeLesley Hutchins2f13bec2012-02-16 17:13:43 +00002156 // FIXME: Do something a bit more intelligent inside constructor and
2157 // destructor code. Constructors and destructors must assume unique access
2158 // to 'this', so checks on member variable access is disabled, but we should
2159 // still enable checks on other objects.
2160 if (isa<CXXConstructorDecl>(D))
2161 return; // Don't check inside constructors.
2162 if (isa<CXXDestructorDecl>(D))
2163 return; // Don't check inside destructors.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002164
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00002165 BlockInfo.resize(CFGraph->getNumBlockIDs(),
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002166 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002167
2168 // We need to explore the CFG via a "topological" ordering.
2169 // That way, we will be guaranteed to have information about required
2170 // predecessor locksets when exploring a new block.
Ted Kremenek439ed162011-10-22 02:14:27 +00002171 PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2172 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002173
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002174 // Compute SSA names for local variables
2175 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2176
Richard Smith2e515622012-02-03 04:45:26 +00002177 // Fill in source locations for all CFGBlocks.
2178 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2179
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00002180 // Add locks from exclusive_locks_required and shared_locks_required
DeLesley Hutchins2f13bec2012-02-16 17:13:43 +00002181 // to initial lockset. Also turn off checking for lock and unlock functions.
2182 // FIXME: is there a more intelligent way to check lock/unlock functions?
Ted Kremenek439ed162011-10-22 02:14:27 +00002183 if (!SortedGraph->empty() && D->hasAttrs()) {
2184 const CFGBlock *FirstBlock = *SortedGraph->begin();
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002185 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
Caitlin Sadowskicb967512011-09-15 17:43:08 +00002186 const AttrVec &ArgAttrs = D->getAttrs();
DeLesley Hutchins5381c052012-07-05 21:16:29 +00002187
2188 MutexIDList ExclusiveLocksToAdd;
2189 MutexIDList SharedLocksToAdd;
2190
2191 SourceLocation Loc = D->getLocation();
DeLesley Hutchins2f13bec2012-02-16 17:13:43 +00002192 for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
Caitlin Sadowskicb967512011-09-15 17:43:08 +00002193 Attr *Attr = ArgAttrs[i];
DeLesley Hutchins5381c052012-07-05 21:16:29 +00002194 Loc = Attr->getLocation();
2195 if (ExclusiveLocksRequiredAttr *A
2196 = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2197 getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2198 } else if (SharedLocksRequiredAttr *A
2199 = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2200 getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
DeLesley Hutchins2f13bec2012-02-16 17:13:43 +00002201 } else if (isa<UnlockFunctionAttr>(Attr)) {
2202 // Don't try to check unlock functions for now
2203 return;
2204 } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2205 // Don't try to check lock functions for now
2206 return;
2207 } else if (isa<SharedLockFunctionAttr>(Attr)) {
2208 // Don't try to check lock functions for now
2209 return;
DeLesley Hutchins76f0a6e2012-07-02 21:59:24 +00002210 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2211 // Don't try to check trylock functions for now
2212 return;
2213 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2214 // Don't try to check trylock functions for now
2215 return;
Caitlin Sadowskicb967512011-09-15 17:43:08 +00002216 }
2217 }
DeLesley Hutchins5381c052012-07-05 21:16:29 +00002218
2219 // FIXME -- Loc can be wrong here.
2220 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002221 addLock(InitialLockset, ExclusiveLocksToAdd[i],
2222 LockData(Loc, LK_Exclusive));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00002223 }
2224 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002225 addLock(InitialLockset, SharedLocksToAdd[i],
2226 LockData(Loc, LK_Shared));
DeLesley Hutchins5381c052012-07-05 21:16:29 +00002227 }
Caitlin Sadowskicb967512011-09-15 17:43:08 +00002228 }
2229
Ted Kremenek439ed162011-10-22 02:14:27 +00002230 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2231 E = SortedGraph->end(); I!= E; ++I) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002232 const CFGBlock *CurrBlock = *I;
2233 int CurrBlockID = CurrBlock->getBlockID();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002234 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002235
2236 // Use the default initial lockset in case there are no predecessors.
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002237 VisitedBlocks.insert(CurrBlock);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002238
2239 // Iterate through the predecessor blocks and warn if the lockset for all
2240 // predecessors is not the same. We take the entry lockset of the current
2241 // block to be the intersection of all previous locksets.
2242 // FIXME: By keeping the intersection, we may output more errors in future
2243 // for a lock which is not in the intersection, but was in the union. We
2244 // may want to also keep the union in future. As an example, let's say
2245 // the intersection contains Mutex L, and the union contains L and M.
2246 // Later we unlock M. At this point, we would output an error because we
2247 // never locked M; although the real error is probably that we forgot to
2248 // lock M on all code paths. Conversely, let's say that later we lock M.
2249 // In this case, we should compare against the intersection instead of the
2250 // union because the real error is probably that we forgot to unlock M on
2251 // all code paths.
2252 bool LocksetInitialized = false;
Richard Smithaacde712012-02-03 03:30:07 +00002253 llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002254 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2255 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2256
2257 // if *PI -> CurrBlock is a back edge
2258 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2259 continue;
2260
DeLesley Hutchins2a35be82012-03-02 22:02:58 +00002261 // Ignore edges from blocks that can't return.
2262 if ((*PI)->hasNoReturnElement())
2263 continue;
2264
Richard Smithaacde712012-02-03 03:30:07 +00002265 // If the previous block ended in a 'continue' or 'break' statement, then
2266 // a difference in locksets is probably due to a bug in that block, rather
2267 // than in some other predecessor. In that case, keep the other
2268 // predecessor's lockset.
2269 if (const Stmt *Terminator = (*PI)->getTerminator()) {
2270 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2271 SpecialBlocks.push_back(*PI);
2272 continue;
2273 }
2274 }
2275
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002276 int PrevBlockID = (*PI)->getBlockID();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002277 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002278 FactSet PrevLockset;
2279 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002280
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002281 if (!LocksetInitialized) {
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002282 CurrBlockInfo->EntrySet = PrevLockset;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002283 LocksetInitialized = true;
2284 } else {
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002285 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2286 CurrBlockInfo->EntryLoc,
2287 LEK_LockedSomePredecessors);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002288 }
2289 }
2290
Richard Smithaacde712012-02-03 03:30:07 +00002291 // Process continue and break blocks. Assume that the lockset for the
2292 // resulting block is unaffected by any discrepancies in them.
2293 for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2294 SpecialI < SpecialN; ++SpecialI) {
2295 CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2296 int PrevBlockID = PrevBlock->getBlockID();
2297 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2298
2299 if (!LocksetInitialized) {
2300 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2301 LocksetInitialized = true;
2302 } else {
2303 // Determine whether this edge is a loop terminator for diagnostic
2304 // purposes. FIXME: A 'break' statement might be a loop terminator, but
2305 // it might also be part of a switch. Also, a subsequent destructor
2306 // might add to the lockset, in which case the real issue might be a
2307 // double lock on the other path.
2308 const Stmt *Terminator = PrevBlock->getTerminator();
2309 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2310
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002311 FactSet PrevLockset;
2312 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2313 PrevBlock, CurrBlock);
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002314
Richard Smithaacde712012-02-03 03:30:07 +00002315 // Do not update EntrySet.
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002316 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2317 PrevBlockInfo->ExitLoc,
Richard Smithaacde712012-02-03 03:30:07 +00002318 IsLoop ? LEK_LockedSomeLoopIterations
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002319 : LEK_LockedSomePredecessors,
2320 false);
Richard Smithaacde712012-02-03 03:30:07 +00002321 }
2322 }
2323
DeLesley Hutchins54c350a2012-04-19 16:48:43 +00002324 BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2325
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00002326 // Visit all the statements in the basic block.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002327 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2328 BE = CurrBlock->end(); BI != BE; ++BI) {
DeLesley Hutchins6db51f72011-10-21 20:51:27 +00002329 switch (BI->getKind()) {
2330 case CFGElement::Statement: {
2331 const CFGStmt *CS = cast<CFGStmt>(&*BI);
2332 LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
2333 break;
2334 }
2335 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2336 case CFGElement::AutomaticObjectDtor: {
2337 const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
2338 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
2339 AD->getDestructorDecl(AC.getASTContext()));
2340 if (!DD->hasAttrs())
2341 break;
2342
2343 // Create a dummy expression,
2344 VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
John McCallf4b88a42012-03-10 09:33:50 +00002345 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
DeLesley Hutchins6db51f72011-10-21 20:51:27 +00002346 AD->getTriggerStmt()->getLocEnd());
2347 LocksetBuilder.handleCall(&DRE, DD);
2348 break;
2349 }
2350 default:
2351 break;
2352 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002353 }
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002354 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002355
2356 // For every back edge from CurrBlock (the end of the loop) to another block
2357 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2358 // the one held at the beginning of FirstLoopBlock. We can look up the
2359 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2360 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2361 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2362
2363 // if CurrBlock -> *SI is *not* a back edge
2364 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2365 continue;
2366
2367 CFGBlock *FirstLoopBlock = *SI;
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002368 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2369 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2370 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2371 PreLoop->EntryLoc,
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002372 LEK_LockedSomeLoopIterations,
2373 false);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002374 }
2375 }
2376
DeLesley Hutchins2a237e02012-09-19 19:49:40 +00002377
2378 // Check to make sure that the exit block is reachable
2379 bool ExitUnreachable = true;
2380 for (CFGBlock::const_pred_iterator PI = CFGraph->getExit().pred_begin(),
2381 PE = CFGraph->getExit().pred_end(); PI != PE; ++PI) {
2382 if (!(*PI)->hasNoReturnElement()) {
2383 ExitUnreachable = false;
2384 break;
2385 }
2386 }
2387 // Skip the final check if the exit block is unreachable.
2388 if (ExitUnreachable)
2389 return;
2390
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002391 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2392 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
Caitlin Sadowski1748b122011-09-16 00:35:54 +00002393
2394 // FIXME: Should we call this function for all blocks which exit the function?
DeLesley Hutchins0da44142012-06-22 17:07:28 +00002395 intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2396 Final->ExitLoc,
DeLesley Hutchins879a4332012-07-02 22:16:54 +00002397 LEK_LockedAtEndOfFunction,
DeLesley Hutchinsa1fa4712012-08-10 18:39:05 +00002398 LEK_NotLockedAtEndOfFunction,
2399 false);
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00002400}
2401
2402} // end anonymous namespace
2403
2404
2405namespace clang {
2406namespace thread_safety {
2407
2408/// \brief Check a function's CFG for thread-safety violations.
2409///
2410/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2411/// at the end of each block, and issue warnings for thread safety violations.
2412/// Each block in the CFG is traversed exactly once.
Ted Kremenek1d26f482011-10-24 01:32:45 +00002413void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00002414 ThreadSafetyHandler &Handler) {
2415 ThreadSafetyAnalyzer Analyzer(Handler);
2416 Analyzer.runAnalysis(AC);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002417}
2418
2419/// \brief Helper function that returns a LockKind required for the given level
2420/// of access.
2421LockKind getLockKindFromAccessKind(AccessKind AK) {
2422 switch (AK) {
2423 case AK_Read :
2424 return LK_Shared;
2425 case AK_Written :
2426 return LK_Exclusive;
2427 }
Benjamin Kramerafc5b152011-09-10 21:52:04 +00002428 llvm_unreachable("Unknown AccessKind");
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002429}
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00002430
Caitlin Sadowski402aa062011-09-09 16:11:56 +00002431}} // end namespace clang::thread_safety